JP2016192382A - Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device - Google Patents
Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device Download PDFInfo
- Publication number
- JP2016192382A JP2016192382A JP2015073146A JP2015073146A JP2016192382A JP 2016192382 A JP2016192382 A JP 2016192382A JP 2015073146 A JP2015073146 A JP 2015073146A JP 2015073146 A JP2015073146 A JP 2015073146A JP 2016192382 A JP2016192382 A JP 2016192382A
- Authority
- JP
- Japan
- Prior art keywords
- group
- additive
- electrolytic solution
- compound
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、非水電解液用添加剤、非水電解液、及び蓄電デバイスに関する。 The present invention relates to an additive for non-aqueous electrolyte, a non-aqueous electrolyte, and an electricity storage device.
近年、環境問題の解決、持続可能な循環型社会の実現に対する関心が高まるにつれ、リチウムイオン電池に代表される非水電解液二次電池の研究が広範囲に行われている。リチウムイオン電池は、高い使用電圧とエネルギー密度を有していることから、ノート型パソコン、携帯電話等の電源として用いられている。リチウムイオン電池は、鉛電池及びニッケルカドミウム電池と比較して高いエネルギー密度を有していることから、電池の高容量化の実現が期待されている。 In recent years, research on non-aqueous electrolyte secondary batteries represented by lithium ion batteries has been extensively conducted as interest in solving environmental problems and realizing a sustainable recycling society has increased. Lithium ion batteries have high working voltage and energy density, and are therefore used as power sources for notebook computers and mobile phones. Since lithium ion batteries have a higher energy density than lead batteries and nickel cadmium batteries, realization of higher capacity of the batteries is expected.
しかし、リチウムイオン電池は、充放電サイクルの経過に伴って電池の容量が低下するという問題を有している。容量低下の要因は、例えば、長期間の充放電サイクルに伴って、電極反応による電解液の分解、電極活物質層への電解質の含浸性の低下、更にはリチウムイオンのインターカレーション効率の低下が生じることにあると考えられている。 However, the lithium ion battery has a problem that the capacity of the battery decreases as the charge / discharge cycle progresses. The cause of the decrease in capacity is, for example, the decomposition of the electrolyte solution due to the electrode reaction, the decrease in the impregnation property of the electrolyte into the electrode active material layer, and the decrease in the lithium ion intercalation efficiency with a long charge / discharge cycle. It is thought that this is caused by
充放電サイクルに伴う電池の容量低下を抑制する方法として、電解液に各種添加剤を加える方法が検討されている。添加剤は、一般に、最初の充放電時に分解され、電極表面上に固体電解質界面(SEI)と呼ばれる被膜を形成する。最初の充放電サイクルにおいてSEIが形成されるため、その後の充放電において、電解液の分解に電気が消費されることを抑制しながら、リチウムイオンがSEIを介して電極を行き来することができる。すなわち、SEIの形成が、充放電サイクルを繰り返したときの二次電池の劣化を抑制し、電池特性、保存特性及び負荷特性等を向上させることに大きな役割を果たすと考えられている。 Methods for adding various additives to an electrolytic solution have been studied as a method for suppressing a decrease in battery capacity associated with a charge / discharge cycle. Additives are generally decomposed during the first charge and discharge to form a film called a solid electrolyte interface (SEI) on the electrode surface. Since the SEI is formed in the first charge / discharge cycle, lithium ions can move back and forth through the SEI while suppressing the consumption of electricity for the decomposition of the electrolyte during the subsequent charge / discharge. That is, it is considered that the formation of SEI plays a major role in suppressing the deterioration of the secondary battery when the charge / discharge cycle is repeated and improving the battery characteristics, storage characteristics, load characteristics, and the like.
電解液用添加剤として、例えば、特許文献1〜3には環状モノスルホン酸エステル、特許文献4には含硫黄芳香族化合物、特許文献5にはジスルフィド化合物、特許文献6〜9にはジスルホン酸エステルがそれぞれ開示されている。また、特許文献10〜15は環状炭酸エステル又は環状スルホン、特許文献16は含窒素環状基及び電子吸引性基を有する化合物、特許文献17はスルホン酸アミド基を含む化合物を含有する電解液を開示している。
Examples of the additive for the electrolytic solution include cyclic monosulfonic acid esters in Patent Documents 1 to 3, sulfur-containing aromatic compounds in
LUMOエネルギーが低い化合物は、優れた電子受容体であり、非水電解液二次電池等の電極表面上に安定なSEIを形成し得ると考えられている(例えば、非特許文献1)。 A compound having a low LUMO energy is an excellent electron acceptor and is considered to be able to form stable SEI on the surface of an electrode such as a non-aqueous electrolyte secondary battery (for example, Non-Patent Document 1).
特許文献1〜9に開示される化合物等の従来の添加剤のいくつかは、低いLUMOエネルギーを示すものの、それらは化学的に不安定であり、水分及び温度の影響で劣化し易いという問題を有していた。例えば、ジスルホン酸エステル化合物は低いLUMOエネルギーを示すものの、水分に対する安定性が低く容易に劣化するため、長期間保管する場合には、厳密な水分含有量及び温度の管理を必要とする。一般的にリチウムイオン電池では約60℃、リチウムイオンキャパシタでは約80℃の耐熱温度が求められていることから、蓄電デバイスに用いられる非水電解液用添加剤の高温での安定性の向上は、重要な課題の1つであった。 Although some of conventional additives such as compounds disclosed in Patent Documents 1 to 9 exhibit low LUMO energy, they are chemically unstable and easily deteriorate due to the influence of moisture and temperature. Had. For example, although a disulfonic acid ester compound exhibits low LUMO energy, it has a low stability to moisture and easily deteriorates. Therefore, when it is stored for a long period of time, it is necessary to strictly control the moisture content and temperature. In general, the lithium ion battery is required to have a heat resistant temperature of about 60 ° C., and the lithium ion capacitor is about 80 ° C. It was one of the important issues.
また、従来の添加剤を含有する電解液の場合、充放電サイクルを繰り返しながら長期に亘って蓄電デバイスを使用したときに、蓄電デバイスの電池特性が低下し易いため、サイクル特性の点で更なる改善が求められていた。 In addition, in the case of an electrolytic solution containing a conventional additive, when the power storage device is used over a long period of time while repeating the charge / discharge cycle, the battery characteristics of the power storage device are likely to be deteriorated. There was a need for improvement.
特許文献10〜14に記載されている電解液は、電気化学的還元分解によって負極表面上に生成するSEIによって、不可逆的な容量低下をある程度抑制することができる。しかし、これらの電解液中の添加剤によって形成されたSEIは、電極を保護する性能に優れるものの、長期間の使用に耐えるための強度の点で十分でなかった、そのため、蓄電デバイスの使用中にSEIが分解したり、SEIに亀裂が生じたりすることによって負極表面が露出し、電解液溶媒の分解が生じて電池特性が低下するといった問題があった。特許文献15に記載されるビニレンカーボネート系の化合物を添加剤として用いた電解液は、ビニレンカーボネートが電極上で分解された際に、二酸化炭素を初めとするガスを発生し、電池性能の低下につながるといった問題を有していた。ガス発生は、高温、または長期に亘る充放電サイクルを繰り返したときに特に顕著である。 The electrolyte solutions described in Patent Documents 10 to 14 can suppress irreversible capacity reduction to some extent by SEI generated on the negative electrode surface by electrochemical reductive decomposition. However, although the SEI formed by the additive in these electrolytes is excellent in the performance of protecting the electrode, it is not sufficient in terms of strength to withstand long-term use. When the SEI is decomposed or the SEI is cracked, the surface of the negative electrode is exposed, and the electrolytic solution solvent is decomposed to deteriorate the battery characteristics. The electrolytic solution using the vinylene carbonate-based compound described in Patent Document 15 as an additive generates carbon dioxide and other gases when vinylene carbonate is decomposed on the electrode, resulting in a decrease in battery performance. It had the problem of being connected. The gas generation is particularly remarkable when a charge / discharge cycle is repeated at a high temperature or for a long time.
このように、非水電解液用添加剤に関して、保存安定性、充放電サイクルを繰り返したときに性能を維持するサイクル特性、又はガス発生の抑制の点で、更なる改善の余地があった。 As described above, the additive for non-aqueous electrolyte has room for further improvement in terms of storage stability, cycle characteristics for maintaining performance when a charge / discharge cycle is repeated, or suppression of gas generation.
そこで、本発明の主な目的は、高い保存安定性を有するとともに、蓄電デバイスに関して、サイクル特性の改善及びガス発生の抑制を可能とする、非水電解液用添加剤を提供することにある。 Accordingly, a main object of the present invention is to provide an additive for a non-aqueous electrolyte that has high storage stability and enables improvement of cycle characteristics and suppression of gas generation for an electricity storage device.
本発明者らは、特定の部分構造を含む化合物が、低いLUMOエネルギーを示し、かつ、化学的に安定であることを見出した。さらに本発明者らは、係る化合物を非水電解液用添加剤として用いたときに、優れたサイクル特性が得られるとともに、ガス発生が抑制されることを見出し、本発明を完成させるに至った。 The present inventors have found that a compound containing a specific partial structure exhibits low LUMO energy and is chemically stable. Furthermore, the present inventors have found that when such a compound is used as an additive for a non-aqueous electrolyte, excellent cycle characteristics are obtained and gas generation is suppressed, and the present invention has been completed. .
すなわち、本発明の一側面は、下記式(1)で表される化合物を含む、非水電解液用添加剤を提供する。 That is, one aspect of the present invention provides a non-aqueous electrolyte additive containing a compound represented by the following formula (1).
式(1)中、Xは、窒素原子、Z1及びZ2とともに環状基を形成する基を示し、Z1及びZ2はそれぞれ独立に、スルホニル基又はカルボニル基を示し、R1は二価のリンカー基を示す。 In the formula (1), X represents a nitrogen atom, together with Z 1 and Z 2 represents a group forming a cyclic group, respectively Z 1 and Z 2 independently represents a sulfonyl group or a carbonyl group, R 1 is a divalent The linker group of is shown.
式(1)で表される化合物は、カルボン酸アミド結合又はスルホンアミド結合を含む環状構造を有し、しかもその窒素原子に、グリシジル基を有する一価の基が更に結合していることから、電気化学的還元によって開環し、窒素原子、酸素原子、硫黄原子等を含む極性基を多数含有するSEIを形成すると考えられる。このような極性基を多数含有しているSEIは、優れたイオン伝導度を示すとともに、長期間の使用に耐える十分な強度を有すると考えられる。また、式(1)で表される化合物は、環状構造とグリシジル基とがそれぞれ開環重合的に重合しSEIを形成すると考えられる。その結果、より緻密で強固なSEIを形成し、充放電にともなうSEIの崩壊と電解液の分解が起こりにくく、上述の電池特性の改善効果を発揮するものであると考えられる。 The compound represented by the formula (1) has a cyclic structure including a carboxylic acid amide bond or a sulfonamide bond, and a monovalent group having a glycidyl group is further bonded to the nitrogen atom. It is considered that the ring is opened by electrochemical reduction to form SEI containing a large number of polar groups including nitrogen atom, oxygen atom, sulfur atom and the like. SEI containing a large number of such polar groups is considered to have excellent ionic conductivity and sufficient strength to withstand long-term use. In the compound represented by the formula (1), it is considered that a ring structure and a glycidyl group are polymerized by ring-opening polymerization to form SEI. As a result, a denser and stronger SEI is formed, and it is considered that the SEI is not easily collapsed and the electrolytic solution is not easily decomposed due to charge and discharge, and the above-described effect of improving battery characteristics is exhibited.
本発明によれば、高い保存安定性を有するとともに、蓄電デバイスに関して、サイクル特性の改善及びガス発生の抑制を可能とする、非水電解液用添加剤が提供される。いくつかの実施形態に係る非水電解液用添加剤は、非水電解液二次電池、電気二重層キャパシタ等の蓄電デバイスに用いた場合に、電極表面上に安定な固体電解質界面を形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善することができる。 ADVANTAGE OF THE INVENTION According to this invention, while having high storage stability, regarding an electrical storage device, the additive for non-aqueous electrolytes which enables improvement of cycling characteristics and suppression of gas generation is provided. The non-aqueous electrolyte additive according to some embodiments forms a stable solid electrolyte interface on the electrode surface when used in an electricity storage device such as a non-aqueous electrolyte secondary battery or an electric double layer capacitor. Thus, battery characteristics such as cycle characteristics, charge / discharge capacity, and internal resistance can be improved.
以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
本実施形態に係る非水電解用添加剤は、下記式(1)で表される化合物を1種又は2種以上含む。 The additive for nonaqueous electrolysis according to the present embodiment contains one or more compounds represented by the following formula (1).
式(1)中、Xは、窒素原子、Z1及びZ2とともに環状基を形成する基を示し、Z1及びZ2はそれぞれ独立にスルホニル基(−S(=O)2−)又はカルボニル基(−C(=O)−)を示す。Xが形成する環状基は置換されていてもよい。この環状基は、4〜6員環であってもよく、2個以上の環を含む縮合環であってもよい。 In the formula (1), X represents a nitrogen atom, a group forming a cyclic group together with Z 1 and Z 2, Z 1 and Z 2 each independently represent a sulfonyl group (-S (= O) 2 - ) or carbonyl The group (—C (═O) —) is shown. The cyclic group formed by X may be substituted. This cyclic group may be a 4- to 6-membered ring or a condensed ring containing two or more rings.
式(1)中、R1は二価のリンカー基を示す。二価のリンカー基の具体例は、置換されていてもよい炭素数1〜4のアルキレン基、エステル結合を有する炭素数1〜4の二価の有機基、エーテル結合を有する炭素数1〜4の二価の有機基、不飽和結合を有する炭素数1〜4の二価の有機基を含む。なかでも、入手性及び反応性等の観点から、R1は置換されていてもよい炭素数1〜4のアルキレン基であってもよく、メチレン基であってもよい。 In formula (1), R 1 represents a divalent linker group. Specific examples of the divalent linker group include an optionally substituted alkylene group having 1 to 4 carbon atoms, a divalent organic group having 1 to 4 carbon atoms having an ester bond, and 1 to 4 carbon atoms having an ether bond. A divalent organic group having 1 to 4 carbon atoms having an unsaturated bond. Among these, from the viewpoints of availability, reactivity and the like, R 1 may be an optionally substituted alkylene group having 1 to 4 carbon atoms, or may be a methylene group.
式(1)の化合物の具体例は、下記式(1a)、(1b)、(1c)又は(1d)で表される化合物を含む。これら化合物によれば、サイクル特性の点で特に優れた効果が得られる。 Specific examples of the compound of the formula (1) include compounds represented by the following formula (1a), (1b), (1c) or (1d). According to these compounds, particularly excellent effects are obtained in terms of cycle characteristics.
式(1)中、R1は二価のリンカー基を示す。式(1a)、式(1b)、式(1c)及び式(1d)中の、R1としては、式(1)中のR1に関して例示したものと同様のものであってもよい。
式(1a)、(1b)、(1c)及び(1d)中、R2、R3、R4及びR5は、置換されていてもよい炭素数1〜4のアルキル基、置換されていてもよい炭素数1〜4のアルコキシ基、ニトロ基、アミノ基、スルホニル基、又はハロゲン原子を示す。R2、R3、R4又はR5が複数である場合、それぞれの置換基は同一であってもよいし、異なっていてもよい。mは0〜2の整数を示し、nは0〜2の整数を示し、oは0〜4の整数を示し、pは0〜4の整数を示す。入手性、反応性等の観点から、mは0又は1であってもよく、nは0又は1であってもよく、oは0又は1であってもよく、pは0又は1であってもよい。
In formula (1), R 1 represents a divalent linker group. R 1 in Formula (1a), Formula (1b), Formula (1c), and Formula (1d) may be the same as those exemplified for R 1 in Formula (1).
In formulas (1a), (1b), (1c) and (1d), R 2 , R 3 , R 4 and R 5 are optionally substituted alkyl groups having 1 to 4 carbon atoms, It may be an alkoxy group having 1 to 4 carbon atoms, a nitro group, an amino group, a sulfonyl group, or a halogen atom. When there are a plurality of R 2 , R 3 , R 4 or R 5 , each substituent may be the same or different. m represents an integer of 0 to 2, n represents an integer of 0 to 2, o represents an integer of 0 to 4, and p represents an integer of 0 to 4. From the viewpoint of availability, reactivity, etc., m may be 0 or 1, n may be 0 or 1, o may be 0 or 1, and p is 0 or 1. May be.
R2、R3、R4又はR5としての、置換されていてもよい炭素数1〜4のアルキル基の具体例は、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、及びt−ブチル基を含む。なかでも、入手性及び反応性等の観点から、R2〜R5はメチル基であってもよい。 Specific examples of the optionally substituted alkyl group having 1 to 4 carbon atoms as R 2 , R 3 , R 4 or R 5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. Groups, isobutyl groups, and t-butyl groups. Among these, from the viewpoints of availability and reactivity, R 2 to R 5 may be a methyl group.
R2、R3、R4又はR5としての、置換されていてもよい炭素数1〜4のアルコキシ基の具体例は、メトキシ基、エトキシ基、n−プロポキシ基、及びn−ブトキシ基、トリフルオロメトキシ基、2,2,2−トリフルオロエチルオキシ基及び1,1,2,2,2−ペンタフルオロエチルオキシ基を含む。なかでも、入手性及び反応性等の観点から、R2〜R5はメトキシ基であってもよい。 Specific examples of the optionally substituted alkoxy group having 1 to 4 carbon atoms as R 2 , R 3 , R 4 or R 5 include a methoxy group, an ethoxy group, an n-propoxy group, and an n-butoxy group, It includes a trifluoromethoxy group, a 2,2,2-trifluoroethyloxy group and a 1,1,2,2,2-pentafluoroethyloxy group. Among these, R 2 to R 5 may be a methoxy group from the viewpoints of availability and reactivity.
R2、R3、R4又はR5としてのハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子であってもよい。なかでも、入手性及び反応性等の観点から、R2〜R5はフッ素原子であってもよい。 The halogen atom as R 2 , R 3 , R 4 or R 5 may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. Among these, from the viewpoints of availability and reactivity, R 2 to R 5 may be fluorine atoms.
式(1c)又は式(1d)で表される化合物において、o又はpが1であるとき、R4又はR5の位置は4位であってもよい。o又はpが2であるとき、R4又はR5の位置は4位と5位であってもよい。 In the compound represented by formula (1c) or formula (1d), when o or p is 1, the position of R 4 or R 5 may be 4-position. When o or p is 2, the position of R 4 or R 5 may be the 4th and 5th positions.
式(1)の化合物のうち、式(1a)で表される化合物としては、例えば、N−グリシジルスクシンイミド、3−メチル−N−グリシジルスクシンイミド、3−フルオロ−N−グリシジルスクシンイミド、3、4−ジフルオロ−N−グリシジルスクシンイミドが挙げられる。式(1b)で表される化合物としては、例えば、N−グリシジルマレイミド、N−グリシジル−3−クロロマレイミド、N−グリシジル−3−フルオロマレイミド、N−グリシジル−3,4−ジブロモマレイミド等が挙げられる。式(1c)で表される化合物としては、例えば、N−グリシジルフタルイミド、N−グリシジル−4−メチルフタルイミド、N−グリシジル−4−アミノフタルイミド、N−グリシジル−4−ニトロフタルイミド、N−グリシジル−4−ブロモフタルイミド、N−グリシジル−3,4,5,6−テトラクロロフタルイミド等が挙げられる。式(1d)で表される化合物としては、N−グリシジルサッカリン、N−グリシジル−4−メチルサッカリン、N−グリシジル−4−メトキシサッカリン、N−グリシジル−5−ブロモサッカリン、N−グリシジル−5−クロロサッカリン等が挙げられる。 Among the compounds of formula (1), examples of the compound represented by formula (1a) include N-glycidyl succinimide, 3-methyl-N-glycidyl succinimide, 3-fluoro-N-glycidyl succinimide, and 3, 4- Difluoro-N-glycidyl succinimide is mentioned. Examples of the compound represented by the formula (1b) include N-glycidylmaleimide, N-glycidyl-3-chloromaleimide, N-glycidyl-3-fluoromaleimide, N-glycidyl-3,4-dibromomaleimide and the like. It is done. Examples of the compound represented by the formula (1c) include N-glycidylphthalimide, N-glycidyl-4-methylphthalimide, N-glycidyl-4-aminophthalimide, N-glycidyl-4-nitrophthalimide, N-glycidyl- 4-bromophthalimide, N-glycidyl-3,4,5,6-tetrachlorophthalimide and the like can be mentioned. Examples of the compound represented by the formula (1d) include N-glycidyl saccharin, N-glycidyl-4-methyl saccharin, N-glycidyl-4-methoxysaccharin, N-glycidyl-5-bromosaccharin, N-glycidyl-5- And chlorosaccharin.
式(1)の化合物は、電気化学的還元を受けやすい低いLUMOエネルギーを示すため、これを非水電解液用添加剤として含有する非水電解液は、非水電解液二次電池等の蓄電デバイスに用いられたときに、電極表面上に安定なSEIを形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善することができる。また、式(1)の化合物は、水分及び温度変化に対して安定であるため、これを含む非水電解液用添加剤及び非水電解液は、長期間、室温で保存することが可能である。 Since the compound of formula (1) exhibits low LUMO energy that is susceptible to electrochemical reduction, a non-aqueous electrolyte containing this as an additive for a non-aqueous electrolyte is a storage battery such as a non-aqueous electrolyte secondary battery. When used in a device, stable SEI can be formed on the electrode surface to improve battery characteristics such as cycle characteristics, charge / discharge capacity, and internal resistance. Further, since the compound of the formula (1) is stable against moisture and temperature changes, the additive for nonaqueous electrolyte and the nonaqueous electrolyte containing it can be stored at room temperature for a long time. is there.
式(1)で表される化合物の最低空分子軌道(LUMO)エネルギーは、−3.0eV以上であってもよく、0.0eV以下であってもよい。LUMOエネルギーが−3.0eV以上であると、化合物の過剰な分解によって負極上に高い抵抗を示すSEIが形成されることを回避しやすい。LUMOエネルギーが0.0eV以下であると、負極表面により安定なSEIをより容易に形成することができる。同様の観点から、LUMOエネルギーは−2.9eV以上であってもよく、−0.5eV以下であってもよい。当業者であれば、式(1)で定義される化合物に関して、これら数値範囲内のLUMOエネルギーを示す化合物を過度の試行錯誤なく見出すことができる。 The lowest unoccupied molecular orbital (LUMO) energy of the compound represented by the formula (1) may be −3.0 eV or more, or 0.0 eV or less. When the LUMO energy is −3.0 eV or more, it is easy to avoid the formation of SEI showing high resistance on the negative electrode due to excessive decomposition of the compound. When the LUMO energy is 0.0 eV or less, more stable SEI can be more easily formed on the negative electrode surface. From the same viewpoint, the LUMO energy may be -2.9 eV or more, or -0.5 eV or less. One skilled in the art can find compounds exhibiting LUMO energies within these numerical ranges for the compound defined by formula (1) without undue trial and error.
本明細書において、「最低空分子軌道(LUMO)エネルギー」は、半経験的分子軌道計算法であるPM3と密度汎関数法であるB3LYP法とを組み合わせて算出される値である。具体的には、LUMOエネルギーは、Gaussian03(Revision B.03、米ガウシアン社製ソフトウェア)を用いて算出することができる。 In this specification, “lowest unoccupied molecular orbital (LUMO) energy” is a value calculated by combining the semi-empirical molecular orbital calculation method PM3 and the density functional method B3LYP method. Specifically, the LUMO energy can be calculated using Gaussian 03 (Revision B.03, software manufactured by Gaussian, USA).
当業者は、式(1)の化合物を、入手可能な原料を用い、通常の反応を組み合わせて合成することができる。例えば、式(1)の化合物は、対応する環状イミド化合物にハロゲン化物を反応させる方法によって、合成することができる。 A person skilled in the art can synthesize the compound of the formula (1) by combining usual reactions using available raw materials. For example, the compound of formula (1) can be synthesized by a method of reacting a corresponding cyclic imide compound with a halide.
式(1c)における、oが0であり、R1がメチレンである化合物、(N−グリシジルフタルイミド)を製造する場合の具体例を以下に示す。まず、有機溶媒にフタルイミドとトリエチルアミンとを溶解させ、次いで、エピクロロヒドリンを滴下し、室温で2時間撹拌する。その後、得られた反応物を水で洗浄し、結晶化させ、濾過することで、目的の化合物を得ることができる。 Specific examples in the case of producing a compound (N-glycidylphthalimide) in which o is 0 and R 1 is methylene in the formula (1c) are shown below. First, phthalimide and triethylamine are dissolved in an organic solvent, and then epichlorohydrin is added dropwise and stirred at room temperature for 2 hours. Thereafter, the obtained reaction product is washed with water, crystallized, and filtered to obtain a target compound.
本実施形態に係る非水電解液用添加剤は、式(1)の化合物の他に、SEI形成に寄与し得る化合物等の、他の成分を含んでいてもよい。あるいは、式(1)の化合物自体を非水電解液用添加剤として用いてもよい。本実施形態に係る非水電解液用添加剤は、本発明が奏する効果を損なわない範囲内で、他の一般的な成分を含んでいてもよい。他の一般的な成分としては、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)、1,3−プロパンスルトン(PS)、負極保護剤、正極保護剤、難燃剤、過充電防止剤等が挙げられる。 The additive for a non-aqueous electrolyte according to this embodiment may contain other components such as a compound that can contribute to SEI formation in addition to the compound of the formula (1). Or you may use the compound of Formula (1) itself as an additive for non-aqueous electrolytes. The additive for non-aqueous electrolyte according to the present embodiment may contain other general components as long as the effects of the present invention are not impaired. Other common components include, for example, vinylene carbonate (VC), fluoroethylene carbonate (FEC), 1,3-propane sultone (PS), negative electrode protective agent, positive electrode protective agent, flame retardant, overcharge inhibitor, etc. Is mentioned.
本実施形態に係る非水電解液は、上記非水電解液用添加剤、非水溶媒、及び電解質を含有する。この非水電解液における非水電解液用添加剤(又は式(1)の化合物)の含有量は、非水電解液の全質量を基準として、0.005質量%以上であってもよいし、10質量%以下であってもよい。この含有量が0.005質量%以上であると、電極表面での電気化学反応によって安定なSEIが充分に形成され易くなる。この含有量が10質量%以下であると、非水電解液用添加剤を非水溶媒に容易に溶解させることができる。また、非水電解液用添加剤の含有量を過度に多くしないことにより、非水電解液の粘度上昇を抑制して、イオンの移動度を特に容易に確保することができる。イオンの移動度が充分に確保されないと、非水電解液の導電性等を充分に確保することができず、蓄電デバイスの充放電特性等に支障をきたすおそれがある。同様の観点から、非水電解液用添加剤(又は式(1)の化合物)の含有量の下限は0.01質量%であってもよい。 The non-aqueous electrolyte according to this embodiment contains the additive for non-aqueous electrolyte, a non-aqueous solvent, and an electrolyte. The content of the non-aqueous electrolyte additive (or the compound of formula (1)) in the non-aqueous electrolyte may be 0.005% by mass or more based on the total mass of the non-aqueous electrolyte. It may be 10% by mass or less. When the content is 0.005% by mass or more, stable SEI is easily formed by an electrochemical reaction on the electrode surface. When the content is 10% by mass or less, the non-aqueous electrolyte additive can be easily dissolved in the non-aqueous solvent. In addition, by not excessively increasing the content of the additive for nonaqueous electrolyte, an increase in viscosity of the nonaqueous electrolyte can be suppressed, and ion mobility can be particularly ensured. If the mobility of ions is not sufficiently ensured, the conductivity of the non-aqueous electrolyte cannot be sufficiently ensured, and the charge / discharge characteristics of the electricity storage device may be hindered. From the same viewpoint, the lower limit of the content of the non-aqueous electrolyte additive (or the compound of formula (1)) may be 0.01% by mass.
非水電解液は、2種以上の非水電解液用添加剤(SEIを形成する2種以上の化合物)を含んでいてもよい。この場合、非水電解液用添加剤の合計の含有量は、0.005質量%以上であってもよく、10質量%以下であってもよい。他の添加剤としては、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)、及び1,3−プロパンスルトン(PS)がある。 The non-aqueous electrolyte may contain two or more additives for non-aqueous electrolyte (two or more compounds that form SEI). In this case, the total content of the non-aqueous electrolyte additive may be 0.005% by mass or more, or 10% by mass or less. Examples of other additives include vinylene carbonate (VC), fluoroethylene carbonate (FEC), and 1,3-propane sultone (PS).
非水溶媒としては、得られる非水電解液の粘度を低く抑える等の観点から、非プロトン性溶媒を選択することができる。非プロトン性溶媒は、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、ラクトン、ラクタム、環状エーテル、鎖状エーテル、スルホン、ニトリル、及び、これらのハロゲン誘導体からなる群より選択される少なくとも1種であってもよい。なかでも、環状カーボネート、及び/又は鎖状カーボネートを選択することができる。 As the non-aqueous solvent, an aprotic solvent can be selected from the viewpoint of keeping the viscosity of the obtained non-aqueous electrolyte low. The aprotic solvent is at least one selected from the group consisting of cyclic carbonate, chain carbonate, aliphatic carboxylic acid ester, lactone, lactam, cyclic ether, chain ether, sulfone, nitrile, and halogen derivatives thereof. It may be. Among them, a cyclic carbonate and / or a chain carbonate can be selected.
環状カーボネートとしては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレンが挙げられる。鎖状カーボネートとしては、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルが挙げられる。脂肪族カルボン酸エステルとしては、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルが挙げられる。ラクトンとしては、例えば、γ−ブチロラクトンが挙げられる。ラクタムとしては、例えば、ε−カプロラクタム、N−メチルピロリドンが挙げられる。環状エーテルとしては、例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソランが挙げられる。鎖状エーテルとしては、例えば、1,2−ジエトキシエタン、エトキシメトキシエタンが挙げられる。スルホンとしては、例えば、スルホランが挙げられる。ニトリルとしては、例えば、アセトニトリルが挙げられる。ハロゲン誘導体としては、例えば、4−フルオロ−1,3−ジオキソラン−2−オン、4−クロロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オンが挙げられる。これらの非水溶媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの非水溶媒は、例えば、リチウムイオン電池等の非水電解液二次電池、リチウムイオンキャパシタ等の電気二重層キャパシタの用途に特に適している。 Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Examples of the aliphatic carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, and methyl trimethyl acetate. Examples of lactones include γ-butyrolactone. Examples of the lactam include ε-caprolactam and N-methylpyrrolidone. Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, and 1,3-dioxolane. Examples of the chain ether include 1,2-diethoxyethane and ethoxymethoxyethane. Examples of the sulfone include sulfolane. Examples of nitriles include acetonitrile. Examples of the halogen derivative include 4-fluoro-1,3-dioxolan-2-one, 4-chloro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one Is mentioned. These nonaqueous solvents may be used alone or in combination of two or more. These nonaqueous solvents are particularly suitable for use in non-aqueous electrolyte secondary batteries such as lithium ion batteries and electric double layer capacitors such as lithium ion capacitors.
非水電解液を構成する電解質は、リチウムイオンのイオン源となるリチウム塩であってもよい。なかでも、電解質は、LiAlCl4、LiBF4、LiPF6、LiClO4、LiAsF6、及び、LiSbF6からなる群より選択される少なくとも1種であってもよい。解離度が高く電解液のイオン伝導度を高めることができ、さらには耐酸化還元特性により長期間使用による蓄電デバイスの性能劣化を抑制する作用がある等の観点から、LiBF4及び/又はLiPF6を選択してもよい。これらの電解質は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。LiBF4及びLiPF6は、非水溶媒として、環状カーボネート及び鎖状カーボネートをそれぞれ1種以上と組み合わせることができる。特に、LiBF4及び/又はLiPF6と、炭酸エチレン及び炭酸ジエチルとを組み合わせてもよい。
The electrolyte constituting the non-aqueous electrolyte may be a lithium salt that serves as a source of lithium ions. Among them, the electrolyte, LiAlCl 4, LiBF 4, LiPF 6,
非水電解液における電解質の濃度は、0.1mol/L以上であってもよく、2.0mol/L以下であってもよい。電解質の濃度が0.1mol/L以上であると、非水電解液の導電性等を充分に確保しやすい。そのため、蓄電デバイスの安定した放電特性及び充電特性が得られ易い。電解質の濃度が2.0mol/L以下であると、非水電解液の粘度上昇を抑制して、イオンの移動度を特に容易に確保することができる。イオンの移動度が充分に確保されないと、電解液の導電性等を充分に確保することができず、蓄電デバイスの充放電特性等に支障をきたす可能性がある。同様の観点から、電解質の濃度は0.5mol/L以上であってもよく、1.5mol/L以下であってもよい。 The concentration of the electrolyte in the nonaqueous electrolytic solution may be 0.1 mol / L or more, or 2.0 mol / L or less. When the concentration of the electrolyte is 0.1 mol / L or more, it is easy to sufficiently ensure the conductivity of the nonaqueous electrolytic solution. Therefore, it is easy to obtain stable discharge characteristics and charge characteristics of the electricity storage device. When the electrolyte concentration is 2.0 mol / L or less, an increase in the viscosity of the nonaqueous electrolytic solution can be suppressed, and the mobility of ions can be secured particularly easily. If the ion mobility is not sufficiently ensured, the conductivity of the electrolytic solution cannot be sufficiently ensured, and the charge / discharge characteristics of the electricity storage device may be hindered. From the same viewpoint, the concentration of the electrolyte may be 0.5 mol / L or more, or 1.5 mol / L or less.
本実施形態に係る蓄電デバイスは、上記非水電解液と、正極及び負極とから主として構成される。蓄電デバイスの具体例は、非水電解液二次電池(リチウムイオン電池等)及び電気二重層キャパシタ(リチウムイオンキャパシタ等)を含む。本実施形態に係る非水電解液は、リチウムイオン電池、及びリチウムイオンキャパシタの用途において特に効果的である。 The electricity storage device according to this embodiment is mainly composed of the non-aqueous electrolyte, a positive electrode, and a negative electrode. Specific examples of the electricity storage device include a non-aqueous electrolyte secondary battery (such as a lithium ion battery) and an electric double layer capacitor (such as a lithium ion capacitor). The nonaqueous electrolytic solution according to the present embodiment is particularly effective in applications of lithium ion batteries and lithium ion capacitors.
図1は、蓄電デバイスの一実施形態を模式的に示す断面図である。図1に示す蓄電デバイス1は、非水電解液二次電池である。蓄電デバイス1は、正極板4(正極)と、正極板4と対向する負極板7(負極)と、正極板4と負極板7との間に配置された非水電解液8と、非水電解液8中に設けられたセパレータ9と、を備える。正極板4は、正極集電体2とその非水電解液8側に設けられた正極活物質層3とを有する。負極板7は、負極集電体5と非水電解液8側に設けられた負極活物質層6とを有する。非水電解液8として、上述の実施形態に係る非水電解液を用いることができる。図1では、蓄電デバイスとして非水電解液二次電池を示したが、当該非水電解液が適用され得る蓄電デバイスはこれに限定されることはなく、電気二重層キャパシタ等のその他の蓄電デバイスであってもよい。
FIG. 1 is a cross-sectional view schematically showing an embodiment of an electricity storage device. An electricity storage device 1 shown in FIG. 1 is a non-aqueous electrolyte secondary battery. The electricity storage device 1 includes a positive electrode plate 4 (positive electrode), a negative electrode plate 7 (negative electrode) facing the
正極集電体2及び負極集電体5は、例えば、アルミニウム、銅、ニッケル、及びステンレス等の金属からなる金属箔であってもよい。 The positive electrode current collector 2 and the negative electrode current collector 5 may be metal foils made of a metal such as aluminum, copper, nickel, and stainless steel, for example.
正極活物質層3は正極活物質を含む。正極活物質は、リチウム含有複合酸化物であってもよい。リチウム含有複合酸化物の具体例は、LiMnO2、LiFeO2、LiCoO2、LiMn2O4、Li2FeSiO4、LiNi1/3Co1/3Mn1/3O2、及びLiFePO4を含む。
The positive electrode active material layer 3 contains a positive electrode active material. The positive electrode active material may be a lithium-containing composite oxide. Specific examples of the lithium-containing composite oxide includes LiMnO 2, LiFeO 2, LiCoO 2 , LiMn 2
負極活物質層6は負極活物質を含む。負極活物質は、例えば、リチウムを吸蔵、放出することができる材料であってもよい。このような材料の具体例は、黒鉛及び非晶質炭素等の炭素材料、酸化インジウム、酸化シリコン、酸化スズ、酸化亜鉛及び酸化リチウム等の酸化物材料を含む。負極活物質は、リチウム金属、又は、リチウムと合金を形成することができる金属材料であってもよい。リチウムと合金を形成することができる金属の具体例は、Cu、Sn、Si、Co、Mn、Fe、Sb、及びAgを含む。これらの金属と、リチウムとを含む2元又は3元からなる合金を負極活物質として用いることもできる。これらの負極活物質は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The negative electrode active material layer 6 contains a negative electrode active material. The negative electrode active material may be a material that can occlude and release lithium, for example. Specific examples of such materials include carbon materials such as graphite and amorphous carbon, and oxide materials such as indium oxide, silicon oxide, tin oxide, zinc oxide and lithium oxide. The negative electrode active material may be a lithium metal or a metal material capable of forming an alloy with lithium. Specific examples of metals that can form alloys with lithium include Cu, Sn, Si, Co, Mn, Fe, Sb, and Ag. A binary or ternary alloy containing these metals and lithium can also be used as the negative electrode active material. These negative electrode active materials may be used alone or in combination of two or more.
セパレータ9は、例えば、ポリエチレン、ポリプロピレン、フッ素樹脂等からなる多孔質フィルムであってもよい。 For example, the separator 9 may be a porous film made of polyethylene, polypropylene, fluororesin, or the like.
蓄電デバイスを構成する各部材の形状、厚み等の具体的な形態は、当業者であれば適宜設定することができる。蓄電デバイスの構成は、図1の実施形態に限られず、適宜変更が可能である。 Specific forms such as the shape and thickness of each member constituting the power storage device can be set as appropriate by those skilled in the art. The configuration of the power storage device is not limited to the embodiment of FIG. 1 and can be changed as appropriate.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して混合非水溶媒を得た。得られた混合非水溶媒に、電解質としてLiPF6を1.0mol/Lの濃度となるように溶解した。得られた溶液に、表1に示した化合物1を非水電解液用添加剤として添加し、非水電解液を調製した。非水電解液用添加剤(化合物1)の含有割合は、非水電解液の全質量に対して0.5質量%とした。
Example 1
Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume composition ratio of EC: DEC = 30: 70 to obtain a mixed nonaqueous solvent. LiPF 6 as an electrolyte was dissolved in the obtained mixed non-aqueous solvent so as to have a concentration of 1.0 mol / L. To the obtained solution, the compound 1 shown in Table 1 was added as an additive for non-aqueous electrolyte solution to prepare a non-aqueous electrolyte solution. The content ratio of the additive for non-aqueous electrolyte (Compound 1) was 0.5% by mass with respect to the total mass of the non-aqueous electrolyte.
(実施例2)
化合物1の含有割合を1.0質量%としたこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 2)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the content ratio of Compound 1 was 1.0% by mass.
(実施例3)
非水電解液用添加剤を化合物1から表1に示した化合物2に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
Example 3
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 2 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例4)
非水電解液用添加剤を化合物1から表1に示した化合物3に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
Example 4
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 3 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例5)
非水電解液用添加剤を化合物1から表1に示した化合物4に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 5)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 4 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例6)
非水電解液用添加剤を化合物1から表1に示した化合物5に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 6)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 5 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例7)
非水電解液用添加剤を化合物1から表1に示した化合物6に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 7)
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 6 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例8)
非水電解液用添加剤を化合物1から表1に示した化合物7に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 8)
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 7 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例9)
非水電解液用添加剤を化合物1から表1に示した化合物8に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
Example 9
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 8 shown in Table 1 and the content ratio was 1.0% by mass. did.
(比較例1)
化合物1を添加しなかったこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 1)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 1 was not added.
(比較例2)
非水電解液用添加剤を化合物1から1,3−プロパンスルトンに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 2)
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the additive for non-aqueous electrolyte was changed from Compound 1 to 1,3-propane sultone and the content ratio was 1.0% by mass. .
(比較例3)
非水電解液用添加剤を化合物1からビニレンカーボネート(VC)に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 3)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from compound 1 to vinylene carbonate (VC) and the content ratio was 1.0% by mass.
(比較例4)
ビニレンカーボネート(VC)の含有割合を2.0質量%としたこと以外は比較例3と同様にして、非水電解液を調製した。
(Comparative Example 4)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 3 except that the content of vinylene carbonate (VC) was 2.0% by mass.
(比較例5)
非水電解液用添加剤を化合物1からフルオロエチレンカーボネート(FEC)に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 5)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to fluoroethylene carbonate (FEC) and the content ratio was 1.0% by mass. .
(比較例6)
フルオロエチレンカーボネート(FEC)の含有割合を2.0質量%としたこと以外は比較例5と同様にして、非水電解液を調製した。
(Comparative Example 6)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 5 except that the content ratio of fluoroethylene carbonate (FEC) was 2.0% by mass.
(比較例7)
非水電解液用添加剤を化合物1からフタルイミドに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 7)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to phthalimide and the content ratio was 1.0% by mass.
(比較例8)
非水電解液用添加剤を化合物1からマレイミドに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 8)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to maleimide and the content ratio was 1.0% by mass.
(比較例9)
非水電解液用添加剤を化合物1からスクシンイミドに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 9)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to succinimide and the content ratio was 1.0% by mass.
(比較例10)
非水電解液用添加剤を化合物1からサッカリンに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 10)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to saccharin and the content ratio was 1.0% by mass.
<評価>
(LUMOエネルギーの測定)
実施例で用いた化合物1〜8のLUMO(最低空分子軌道)エネルギーを、Gaussian03ソフトウェアにより、半経験的分子軌道計算により求めた。算出されたLUMOエネルギーを表1に示した。
<Evaluation>
(Measurement of LUMO energy)
The LUMO (lowest unoccupied molecular orbital) energies of compounds 1-8 used in the examples were determined by semi-empirical molecular orbital calculation with Gaussian 03 software. The calculated LUMO energy is shown in Table 1.
(安定性)
実施例で用いた化合物1〜8、及び、比較例5、6で用いたフルオロエチレンカーボネート(FEC)を、温度40±2℃、湿度75±5%の恒温恒湿環境下で90日間放置する保存試験に供した。保存試験前後の各非水電解液用添加剤の1H−核磁気共鳴スペクトル(1H−NMR)を測定し、以下の基準で各化合物の安定性を評価した。表2は安定性の評価結果を示す。
○:保存試験前後で1H−NMRスペクトルのピーク変化がなかった。
△:保存試験前後で1H−NMRスペクトルのわずかなピーク変化が確認された。
×:保存試験前後で1H−NMRスペクトルの明らかなピーク変化が確認された。
(Stability)
The compounds 1 to 8 used in the Examples and the fluoroethylene carbonate (FEC) used in Comparative Examples 5 and 6 are left for 90 days in a constant temperature and humidity environment with a temperature of 40 ± 2 ° C. and a humidity of 75 ± 5%. It used for the preservation | save test. The 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR) of each non-aqueous electrolyte additive before and after the storage test was measured, and the stability of each compound was evaluated according to the following criteria. Table 2 shows the stability evaluation results.
○: There was no peak changes in 1 H-NMR spectrum before and after the storage test.
Δ: Slight peak change in 1 H-NMR spectrum was confirmed before and after the storage test.
X: A clear peak change in the 1 H-NMR spectrum was confirmed before and after the storage test.
表2に示したように、比較例5、6で用いたフルオロエチレンカーボネート(FEC)は、一部加水分解されていると考えられ、安定性が劣るものであった。一方、実施例で用いた化合物1〜8は、ほとんど変化が見られず、優れた安定性を示した。 As shown in Table 2, the fluoroethylene carbonate (FEC) used in Comparative Examples 5 and 6 was considered to be partially hydrolyzed and had poor stability. On the other hand, compounds 1 to 8 used in the examples showed almost no change and showed excellent stability.
(正極の作製)
正極活物質としてLiMn2O4、及び、導電性付与剤としてカーボンブラックを乾式混合した。得られた混合物を、バインダーとしてポリフッ化ビニリデン(PVDF)を溶解させたN−メチル−2−ピロリドン(NMP)中に均一に分散させ、スラリーを作製した。得られたスラリーをアルミ金属箔(角型、厚さ20μm)の両面に塗布した。塗膜を乾燥してNMPを除去した後、全体をプレスして、正極集電体としてのアルミ金属箔と、その両面上に形成された正極活物質層とを有する正極シートを得た。得られた正極シートの正極活物質層における固形分比率は、質量比で、正極活物質:導電性付与剤:PVDF=90:5:5とした。
(Preparation of positive electrode)
LiMn 2 O 4 as a positive electrode active material and carbon black as a conductivity imparting agent were dry mixed. The obtained mixture was uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride (PVDF) was dissolved as a binder to prepare a slurry. The obtained slurry was applied to both surfaces of an aluminum metal foil (square shape, thickness 20 μm). After the coating film was dried to remove NMP, the whole was pressed to obtain a positive electrode sheet having an aluminum metal foil as a positive electrode current collector and a positive electrode active material layer formed on both surfaces thereof. The solid content ratio in the positive electrode active material layer of the obtained positive electrode sheet was a mass ratio, and was positive electrode active material: conductivity imparting agent: PVDF = 90: 5: 5.
(負極の準備)
一方、負極シートとして、市販の黒鉛塗布電極シート(宝泉社製、商品名:電極シート負極単層)を用いた。
(Preparation of negative electrode)
On the other hand, as the negative electrode sheet, a commercially available graphite-coated electrode sheet (manufactured by Hosen Co., Ltd., trade name: electrode sheet negative electrode single layer) was used.
(非水電解液二次電池の作製)
実施例及び比較例で得られた各非水電解液中にて、負極シート、ポリエチレン製のセパレータ、正極シート、ポリエチレン製のセパレータ及び負極シートの順に積層して、電池要素を作製した。この電池要素を、アルミニウム(厚さ40μm)とその両面を被覆する樹脂層を有するラミネートフィルムから形成された袋に、正極シート及び負極シートの端部が袋から突き出るように挿入した。次いで、実施例及び比較例で得られた各非水電解液を袋内に注入した。袋を真空封止し、シート状の非水電解液二次電池を得た。更に、電極間の密着性を高めるために、ガラス板でシート状非水電解液二次電池を挟んで加圧した。
(Preparation of non-aqueous electrolyte secondary battery)
In each of the non-aqueous electrolytes obtained in the examples and comparative examples, a negative electrode sheet, a polyethylene separator, a positive electrode sheet, a polyethylene separator, and a negative electrode sheet were laminated in this order to produce a battery element. This battery element was inserted into a bag formed of a laminate film having aluminum (thickness: 40 μm) and a resin layer covering both sides thereof so that the ends of the positive electrode sheet and the negative electrode sheet protruded from the bag. Subsequently, each nonaqueous electrolyte solution obtained in the Examples and Comparative Examples was injected into the bag. The bag was vacuum-sealed to obtain a sheet-like nonaqueous electrolyte secondary battery. Furthermore, in order to improve the adhesiveness between electrodes, the sheet-like nonaqueous electrolyte secondary battery was sandwiched between glass plates and pressurized.
(放電容量維持率及び内部抵抗比の評価)
得られた非水電解液二次電池に対して、25℃において、充電レートを0.3C、放電レートを0.3C、充電終止電圧を4.2V、及び、放電終止電圧を2.5Vとして充放電サイクル試験を行った。200サイクル後の放電容量維持率(%)及び200サイクル後の内部抵抗比を表3に示した。なお、200サイクル後の「放電容量維持率(%)」とは、200サイクル試験後の放電容量(mAh)を、10サイクル試験後の放電容量(mAh)で割った値に100をかけたものである。また、200サイクル後の「内部抵抗比」とは、サイクル試験前の抵抗を1としたときの、200サイクル試験後の抵抗を相対値で示したものである。
(Evaluation of discharge capacity maintenance ratio and internal resistance ratio)
With respect to the obtained nonaqueous electrolyte secondary battery, at 25 ° C., the charge rate was 0.3 C, the discharge rate was 0.3 C, the charge end voltage was 4.2 V, and the discharge end voltage was 2.5 V. A charge / discharge cycle test was conducted. Table 3 shows the discharge capacity retention rate (%) after 200 cycles and the internal resistance ratio after 200 cycles. The “discharge capacity retention rate (%)” after 200 cycles is obtained by multiplying the value obtained by dividing the discharge capacity (mAh) after the 200 cycle test by the discharge capacity (mAh) after the 10 cycle test by 100. It is. The “internal resistance ratio” after 200 cycles represents the resistance after the 200 cycle test as a relative value when the resistance before the cycle test is 1.
(ガス発生量の測定)
サイクル試験に用いた電池とは別に、実施例及び比較例の各電解液を含む同様の構成の非水電解液二次電池を準備した。この電池を、25℃において、0.2Cに相当する電流で4.2Vまで充電した後、0.2Cに相当する電流で3Vまで放電する操作を3サイクル行なって電池を安定させた。次いで、充電レートを0.3Cとして再度4.2Vまで充電を行なった後、60℃、168時間の高温で電池を保存した。その後、室温まで冷却し、アルキメデス法により電池の体積を測定し、保存前後の体積変化からガス発生量を求めた。
(Measurement of gas generation amount)
Separately from the batteries used in the cycle test, non-aqueous electrolyte secondary batteries having the same configuration including the electrolytes of the examples and comparative examples were prepared. This battery was charged to 4.2 V at 25 ° C. with a current corresponding to 0.2 C, and then discharged to 3 V with a current corresponding to 0.2 C for 3 cycles to stabilize the battery. Subsequently, after charging again to 4.2 V with a charge rate of 0.3 C, the battery was stored at a high temperature of 60 ° C. and 168 hours. Then, it cooled to room temperature, measured the volume of the battery by Archimedes method, and calculated | required the gas generation amount from the volume change before and behind a preservation | save.
表3及び表4から、式(1)の化合物である化合物1〜8を含む各実施例の非水電解液を用いた非水電解液二次電池は、比較例の非水電解液を用いた非水電解液二次電池と比較して、サイクル試験時における放電容量維持率と、充電にともなうガス発生の抑制の両方の点で優れていることが分かる。これは、式(1)の化合物が、非水電解液二次電池に用いられたときに、充放電サイクル、及び高温保存に対して安定なSEIを形成することを強く示唆している。また、式(1)の化合物は、充放電サイクルによる内部抵抗の増加が少ない点でも、優れていることが確認された。 From Table 3 and Table 4, the nonaqueous electrolyte secondary battery using the nonaqueous electrolyte solution of each Example containing the compounds 1-8 which are the compounds of Formula (1) uses the nonaqueous electrolyte solution of the comparative example. Compared with the conventional non-aqueous electrolyte secondary battery, it can be seen that both the discharge capacity retention rate during the cycle test and the suppression of gas generation accompanying charging are superior. This strongly suggests that the compound of formula (1) forms SEI that is stable to charge / discharge cycles and high-temperature storage when used in non-aqueous electrolyte secondary batteries. Moreover, it was confirmed that the compound of Formula (1) is excellent also in the point that there is little increase in internal resistance by a charging / discharging cycle.
1…蓄電デバイス(非水電解液二次電池)、2…正極集電体、3…正極活物質層、4…正極板、5…負極集電体、6…負極活物質層、7…負極板、8…非水電解液、9…セパレータ。
DESCRIPTION OF SYMBOLS 1 ... Power storage device (nonaqueous electrolyte secondary battery), 2 ... Positive electrode current collector, 3 ... Positive electrode active material layer, 4 ... Positive electrode plate, 5 ... Negative electrode current collector, 6 ... Negative electrode active material layer, 7 ... Negative electrode Plate, 8 ... non-aqueous electrolyte, 9 ... separator.
Claims (7)
[式(1)中、Xは、窒素原子、Z1及びZ2とともに環状基を形成する基を示し、Z1及びZ2はそれぞれ独立に、スルホニル基又はカルボニル基を示し、R1は二価のリンカー基を示す。] The additive for non-aqueous electrolyte containing the compound represented by following formula (1).
[In the formula (1), X represents a nitrogen atom, together with Z 1 and Z 2 represents a group forming a cyclic group, Z 1 and Z 2 each independently represents a sulfonyl group or a carbonyl group, R 1 is two A valent linker group. ]
A lithium ion capacitor comprising the nonaqueous electrolytic solution according to claim 3, and a positive electrode and a negative electrode.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015073146A JP2016192382A (en) | 2015-03-31 | 2015-03-31 | Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device |
US15/562,348 US20180358655A1 (en) | 2015-03-31 | 2016-03-29 | Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device |
KR1020177030797A KR20170132239A (en) | 2015-03-31 | 2016-03-29 | Additives for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device |
EP16772867.4A EP3279995A4 (en) | 2015-03-31 | 2016-03-29 | Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device |
CN201680019349.7A CN107431248A (en) | 2015-03-31 | 2016-03-29 | Addition agent of non-aqueous electrolyte, nonaqueous electrolytic solution and electrical storage device |
PCT/JP2016/060201 WO2016158986A1 (en) | 2015-03-31 | 2016-03-29 | Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device |
TW105110192A TW201639225A (en) | 2015-03-31 | 2016-03-31 | Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015073146A JP2016192382A (en) | 2015-03-31 | 2015-03-31 | Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016192382A true JP2016192382A (en) | 2016-11-10 |
Family
ID=57247100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015073146A Pending JP2016192382A (en) | 2015-03-31 | 2015-03-31 | Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016192382A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018150625A1 (en) * | 2017-02-15 | 2018-08-23 | 株式会社村田製作所 | Electrolytic solution for secondary batteries, secondary battery, battery pack, electric-powered vehicle, electric power storage system, electric power tool, and electronic device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120088160A1 (en) * | 2010-10-07 | 2012-04-12 | Lu Zhang | Non-aqueous electrolyte for lithium-ion battery |
US20140308564A1 (en) * | 2013-04-10 | 2014-10-16 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery and method of fabricating the same |
-
2015
- 2015-03-31 JP JP2015073146A patent/JP2016192382A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120088160A1 (en) * | 2010-10-07 | 2012-04-12 | Lu Zhang | Non-aqueous electrolyte for lithium-ion battery |
US20140308564A1 (en) * | 2013-04-10 | 2014-10-16 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery and method of fabricating the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018150625A1 (en) * | 2017-02-15 | 2018-08-23 | 株式会社村田製作所 | Electrolytic solution for secondary batteries, secondary battery, battery pack, electric-powered vehicle, electric power storage system, electric power tool, and electronic device |
JP2018133196A (en) * | 2017-02-15 | 2018-08-23 | ソニー株式会社 | Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus |
CN110326149A (en) * | 2017-02-15 | 2019-10-11 | 株式会社村田制作所 | Secondary cell electrolyte, secondary cell, battery pack, electric vehicle, electric power storage system, electric tool and electronic equipment |
US11394057B2 (en) | 2017-02-15 | 2022-07-19 | Murata Manufacturing Co., Ltd. | Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6472888B2 (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device | |
JP6411271B2 (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device | |
WO2018016195A1 (en) | Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device | |
KR20170132239A (en) | Additives for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device | |
JP2014194872A (en) | Additive agent for nonaqueous electrolytic solution, nonaqueous electrolytic solution, and electric power storage device | |
JP6411268B2 (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device | |
US20170117588A1 (en) | Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device | |
JP5982201B2 (en) | Disulfonic acid benzylamide compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device | |
WO2017078149A1 (en) | Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device | |
JP5953146B2 (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device | |
JP6411270B2 (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device | |
JP2016192382A (en) | Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device | |
JP6411269B2 (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device | |
JP2015191808A (en) | Additive for nonaqueous electrolyte, nonaqueous electrolyte and power storage device | |
JP7166258B2 (en) | Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device | |
JP5877110B2 (en) | Phosphorus-containing sulfonic acid amide compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device | |
JP2016192360A (en) | Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180918 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190319 |