[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016184703A - Method for producing magnetic fine particle - Google Patents

Method for producing magnetic fine particle Download PDF

Info

Publication number
JP2016184703A
JP2016184703A JP2015064959A JP2015064959A JP2016184703A JP 2016184703 A JP2016184703 A JP 2016184703A JP 2015064959 A JP2015064959 A JP 2015064959A JP 2015064959 A JP2015064959 A JP 2015064959A JP 2016184703 A JP2016184703 A JP 2016184703A
Authority
JP
Japan
Prior art keywords
fine particles
magnetic
functional group
dispersion
magnetic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015064959A
Other languages
Japanese (ja)
Other versions
JP6550836B2 (en
Inventor
山田 雅士
Masashi Yamada
雅士 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015064959A priority Critical patent/JP6550836B2/en
Publication of JP2016184703A publication Critical patent/JP2016184703A/en
Application granted granted Critical
Publication of JP6550836B2 publication Critical patent/JP6550836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of producing magnetic fine particles without using porous fine particles and without using an expensive apparatus, when fine particles are subjected to magnetization.SOLUTION: In a method for producing magnetic fine particles, a magnetic fine particle dispersion liquid is dried, the magnetic fine particle dispersion liquid being obtained by reacting fine particles coated with a metal oxide such as iron oxide or the like with a magnetic body having an ionic functional group (a cationic functional group or an anionic functional group) on a surface thereof by means of a wet method.SELECTED DRAWING: None

Description

本発明は、磁性微粒子の製造方法に関し、特に湿式方法にて得られた磁性微粒子の分散液を乾燥させることを特徴とする磁性微粒子の製造方法に関する。   The present invention relates to a method for producing magnetic fine particles, and more particularly, to a method for producing magnetic fine particles characterized by drying a dispersion of magnetic fine particles obtained by a wet method.

従来、微粒子を磁性化する際には、例えば高分子微粒子を多孔質にしてその孔に磁性体をイオン的もしくは物理的に吸着させる、もしくは高分子微粒子と磁性体を乾式回転方法によって物理的に高分子微粒子表面に磁性体をコーティングする方法が用いられていた(特許文献1)。多孔質高分子微粒子を使用する場合には、孔の奥深くまで磁性体が浸透することによる磁気応答性の低下や、磁気応答性確保のために過剰な磁性体添加を原因とする比重増大による分散安定性の低下が起こる。また、高分子微粒子と磁性体を乾式回転方式にて実施する際には、高価な装置を必要として汎用性に欠けるという問題があった。   Conventionally, when magnetizing fine particles, for example, the fine polymer particles are made porous and the magnetic material is adsorbed ionically or physically in the pores, or the fine polymer particles and the magnetic material are physically separated by a dry rotation method. A method of coating the surface of polymer fine particles with a magnetic material has been used (Patent Document 1). When using porous polymer fine particles, dispersion due to decrease in magnetic response due to penetration of magnetic material deep into the hole and increase in specific gravity due to excessive addition of magnetic material to ensure magnetic response A decrease in stability occurs. Further, when the polymer fine particles and the magnetic material are carried out by a dry rotation method, there is a problem that an expensive apparatus is required and lacks versatility.

特許4273315号公報Japanese Patent No. 4273315

本発明は、微粒子に対して磁性化を行う際に、多孔質微粒子を用いなくても、また高価な装置を使わなくても磁性微粒子を製造することができる方法を提供するものである。   The present invention provides a method for producing magnetic fine particles without using porous fine particles or using an expensive apparatus when magnetizing fine particles.

本発明者は、鋭意検討の結果、以下の方法をとることで、上記問題点を解決しうることを見出し、本発明を完成した。   As a result of intensive studies, the present inventor has found that the above problems can be solved by taking the following method, and has completed the present invention.

即ち、本発明は以下のとおりである。
(1)湿式方法にて得られた磁性微粒子の分散液を乾燥させることを特徴とする、磁性微粒子の製造方法。
(2)(1)に記載の方法において、湿式方法にて得られた磁性微粒子の分散液が、金属酸化物被覆微粒子と磁性体とを反応させて得られたものである方法。
(3)(2)に記載の方法において、金属酸化物が酸化鉄である方法。
(4)(1)に記載の方法において、湿式法にて得られた磁性微粒子の分散液が、微粒子表面にあるイオン性官能基と、磁性体表面にあり、微粒子表面にあるイオン性官能基とは反対の電荷を有するイオン性官能基とを反応させて得られたものである方法。
(5)(1)乃至(4)いずれかに記載の方法において、磁性体表面にカチオン性官能基がある方法。
(6)(1)1乃至(4)いずれかに記載の方法において、磁性体表面にアニオン性官能基がある方法。
以下に本発明を更に詳細に説明する。
That is, the present invention is as follows.
(1) A method for producing magnetic fine particles, comprising drying a dispersion of magnetic fine particles obtained by a wet method.
(2) The method according to (1), wherein the dispersion of magnetic fine particles obtained by a wet method is obtained by reacting metal oxide-coated fine particles with a magnetic substance.
(3) The method according to (2), wherein the metal oxide is iron oxide.
(4) In the method described in (1), the dispersion liquid of the magnetic fine particles obtained by the wet method is present on the surface of the fine particles and the ionic functional group on the surface of the magnetic material. A method obtained by reacting an ionic functional group having a charge opposite to the above.
(5) The method according to any one of (1) to (4), wherein the magnetic surface has a cationic functional group.
(6) The method according to any one of (1) 1 to (4), wherein the magnetic surface has an anionic functional group.
The present invention is described in further detail below.

本発明の湿式方法にて得られた磁性微粒子の分散液とは、溶媒中で微粒子に磁性体を導入させて得られた磁性微粒子の分散液である。この際に、磁性体が均一に分散(コロイド状分散状態を含む)する溶媒を用いたものであり、水溶液、有機溶媒から適宜選択したものを用いればよい。   The dispersion of magnetic fine particles obtained by the wet method of the present invention is a dispersion of magnetic fine particles obtained by introducing a magnetic substance into fine particles in a solvent. At this time, a solvent in which the magnetic substance is uniformly dispersed (including a colloidal dispersion state) is used, and a solvent appropriately selected from an aqueous solution and an organic solvent may be used.

本発明で用いられる微粒子とは、ガラス、金属、セラミツクス等の無機物であってもよく、また高分子ポリマー等の有機物であってもよい。またそれらの微粒子は磁性体を含むものであってもよい。微粒子の粒子径は0.1から50μmが好ましく、さらには1から10μmが好ましい。また微粒子は細孔を有しても有さなくてもよいが、細孔を有さない表面が平滑なものであっても本発明の方法は適用できる点に特徴がある。なお微粒子の表面とは、微粒子の外表面ばかりでなく、細孔を有する微粒子の場合は細孔内表面を含めてもよい。   The fine particles used in the present invention may be inorganic substances such as glass, metal, ceramics, etc., and may be organic substances such as polymer polymers. The fine particles may contain a magnetic material. The particle diameter of the fine particles is preferably from 0.1 to 50 μm, more preferably from 1 to 10 μm. The fine particles may or may not have pores, but are characterized in that the method of the present invention can be applied even if the surface having no pores is smooth. The surface of the fine particles may include not only the outer surface of the fine particles, but also the inner surface of the fine pores in the case of fine particles having pores.

本発明の微粒子は、金属酸化物で被覆されたものであってもよい。金属酸化物とは、FeO、Fe、Fe、CuO、CuO、AgO、AgO、Au、TiO、TiO、RuO、RuO等があげられ、特に酸化鉄が好ましい。 The fine particles of the present invention may be coated with a metal oxide. Examples of the metal oxide include FeO, Fe 3 O 4 , Fe 2 O 3 , Cu 2 O, CuO, Ag 2 O, AgO, Au 2 O 3 , Ti 2 O, TiO, RuO 2 , and RuO 4. In particular, iron oxide is preferable.

また本発明の微粒子上にイオン性官能基があってもよい。イオン性官能基とは、アミノ基、イミノ基等のカチオン性官能基、スルホニル基、カルボキシル基、フェノール性水酸基、アルコール性水酸基等のアニオン性官能基があげられる。イオン性官能基は、微粒子が既にそのような官能基を表面に有している場合(例えばイオン性官能基を有する高分子ポリマー微粒子)は、それをそのまま利用すればよい。一方、そのような官能基を有していない微粒子の場合(例えばイオン性官能基を有さない高分子ポリマーやガラス、金属、セラミツクス等の微粒子)は、その微粒子表面に官能基を導入すればよい。その方法としては特に限定されるものではないが、例えば微粒子とイオン性化合物とを反応させ、微粒子表面上にイオン性官能基を導入すればよい。このとき用いられるイオン性化合物には特に限定はないが、例えばスルホン酸、カルボン酸などの酸性化合物もしくはアンモニウム塩、フェノール性水酸基塩、アルコール性水酸基塩などが好ましい。反応条件にも特に限定はなく、例えばイオン性化合物を含む溶液に高分子微粒子を分散・反応させることにより、イオン性官能基を導入すればよい。この際に水溶性の無機もしくは有機イオン性化合物を用いる場合には溶媒として水を用いることが好ましい。有機イオン性化合物が水および有機溶媒に溶解する場合には、どちらを用いても構わない。なお、イオン性官能基を導入したのちは、十分な洗浄を行い、過剰なイオン性化合物を除去することが好ましい。   Further, an ionic functional group may be present on the fine particles of the present invention. Examples of the ionic functional group include a cationic functional group such as an amino group and an imino group, and an anionic functional group such as a sulfonyl group, a carboxyl group, a phenolic hydroxyl group, and an alcoholic hydroxyl group. As for the ionic functional group, when the fine particle already has such a functional group on the surface (for example, polymer polymer fine particle having an ionic functional group), it may be used as it is. On the other hand, in the case of fine particles not having such a functional group (for example, a polymer polymer having no ionic functional group, fine particles of glass, metal, ceramics, etc.), if a functional group is introduced on the surface of the fine particles, Good. The method is not particularly limited. For example, the ionic functional group may be introduced onto the surface of the fine particles by reacting the fine particles with an ionic compound. The ionic compound used at this time is not particularly limited, but for example, acidic compounds such as sulfonic acid and carboxylic acid or ammonium salts, phenolic hydroxyl salts, alcoholic hydroxyl salts and the like are preferable. The reaction conditions are not particularly limited, and for example, ionic functional groups may be introduced by dispersing and reacting polymer fine particles in a solution containing an ionic compound. In this case, when a water-soluble inorganic or organic ionic compound is used, it is preferable to use water as a solvent. When the organic ionic compound is dissolved in water and an organic solvent, either of them may be used. In addition, after introducing an ionic functional group, it is preferable to perform sufficient washing to remove excess ionic compounds.

一方、本発明の磁性微粒子の製造に用いられる磁性体は、その組成に特に限定はなく、例えば、フェライト、マグネタイト、マグヘマイト等があげられる。その粒子径は1から100nmが好ましい。磁性体は細孔を有しても有さなくてもよい。磁性体の表面とは、微粒子の外表面ばかりでなく、細孔を有する磁性体の場合は細孔内表面を含めてもよい。磁性体表面には、イオン性官能基(アニオン性官能基、カチオン性官能基)や脂肪酸などがあってもよい。アニオン性官能基、カチオン性官能基としては、前述と同様のものが例示される。   On the other hand, the composition of the magnetic material used for producing the magnetic fine particles of the present invention is not particularly limited, and examples thereof include ferrite, magnetite, maghemite and the like. The particle diameter is preferably 1 to 100 nm. The magnetic body may or may not have pores. The surface of the magnetic body may include not only the outer surface of the fine particles but also the inner surface of the pore in the case of a magnetic body having pores. The surface of the magnetic material may have an ionic functional group (anionic functional group, cationic functional group), a fatty acid, and the like. Examples of the anionic functional group and the cationic functional group are the same as those described above.

本発明において、前述のような微粒子に磁性体が導入されるのは、磁性体表面にイオン性官能基がある場合には、そのイオン性官能基と微粒子を被覆している金属酸化物の電子の局在化又は電荷の偏りにより結合が生じると推測される。一方、磁性体表面にイオン性官能基がない場合や脂肪酸などがある場合は、物理的吸着により金属酸化物被覆微粒子と磁性体とが結合すると推測される。   In the present invention, the magnetic substance is introduced into the fine particles as described above, when there are ionic functional groups on the surface of the magnetic substance, the electrons of the metal oxide covering the ionic functional groups and the fine particles. It is presumed that the coupling occurs due to the localization or the bias of the charge. On the other hand, when there is no ionic functional group on the surface of the magnetic material or when there is a fatty acid, it is presumed that the metal oxide-coated fine particles and the magnetic material are bonded by physical adsorption.

本発明では、湿式方法で得られた磁性微粒子の分散液を乾燥させ、磁性微粒子を得る。この時の乾燥法には特に限定はなく、磁性微粒子に悪影響値を与えない温度(例えば20〜80℃)で乾燥するまで行えばよい。このようにして得られた磁性微粒子は、乾燥前の分散液状態のものと比べて磁気応答性が大きく向上する。   In the present invention, the magnetic fine particle dispersion obtained by the wet method is dried to obtain magnetic fine particles. There is no particular limitation on the drying method at this time, and it may be carried out until drying is performed at a temperature (for example, 20 to 80 ° C.) that does not adversely affect the magnetic fine particles. The magnetic fine particles thus obtained have a greatly improved magnetic responsiveness as compared with those in a dispersion state before drying.

本発明ではこのようにして得られた磁性微粒子を原料として用いて、湿式方法にて磁性微粒子の分散液を得て、それを用いて本発明の磁性微粒子の製造方法を繰り返して行うことができる。これは必要な回数繰り返して行うことができ、これによって微粒子の上に必要な量の磁性体をコートすることができ、かつ磁気応答性も大きく向上する。   In the present invention, the magnetic fine particles obtained as described above are used as raw materials, a dispersion of magnetic fine particles is obtained by a wet method, and the method for producing magnetic fine particles of the present invention can be repeated using the obtained dispersion. . This can be repeated as many times as necessary, whereby a necessary amount of magnetic material can be coated on the fine particles, and the magnetic response is greatly improved.

本発明により、磁気応答性が大きく向上した磁性微粒子を得ることができる。   According to the present invention, magnetic fine particles having greatly improved magnetic responsiveness can be obtained.

以下、実施例により本発明を詳細に説明する。しかし本発明はこれら実施例にのみ限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited only to these examples.

(実施例1)
ポリジビニルベンゼン微粒子5.0g(粒子径2.5μm、白色)、ポリビニルピロリドン1.2g、1N−塩酸水溶液6mLを純水160mLに回転数180rpmで分散させた。窒素雰囲気下、80℃に昇温した後に、尿素6g、塩化鉄(II)四水和物2g、塩化鉄(III)六水和物3gを添加し5時間反応させた。この微粒子分散液をろ過にて微粒子と反応液を分離した後に、再度微粒子を純水200mLに回転数180rpmで分散させた。窒素雰囲気下、80℃に昇温した後に、0.2N−水酸化ナトリウム水溶液を滴下し15時間反応させた。純水にて洗浄し、黄土色の酸化鉄被覆された微粒子5.75gを得た。
Example 1
Polydivinylbenzene fine particles 5.0 g (particle diameter 2.5 μm, white), polyvinylpyrrolidone 1.2 g, 1N hydrochloric acid aqueous solution 6 mL were dispersed in pure water 160 mL at a rotation speed of 180 rpm. After heating up to 80 ° C. in a nitrogen atmosphere, 6 g of urea, 2 g of iron (II) chloride tetrahydrate and 3 g of iron (III) chloride hexahydrate were added and reacted for 5 hours. After the fine particle dispersion was separated from the reaction liquid by filtration, the fine particles were again dispersed in 200 mL of pure water at a rotation speed of 180 rpm. After raising the temperature to 80 ° C. in a nitrogen atmosphere, a 0.2N sodium hydroxide aqueous solution was added dropwise and reacted for 15 hours. It was washed with pure water to obtain 5.75 g of fine particles coated with ocher iron oxide.

このようにして得られた微粒子1gを純水50mLに室温にて回転数100rpmで分散させた。この微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.3gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄し、さらに50℃で15時間乾燥させることにより、褐色の磁性化された微粒子を1.28g得た。   1 g of the fine particles thus obtained was dispersed in 50 mL of pure water at room temperature at a rotation speed of 100 rpm. To this fine particle dispersion, 0.3 g of a magnetic substance (material: magnetite, particle diameter: 10 nm, trade name: EMG607, manufactured by Ferrotec Co., Ltd.) having a cationic dispersant on the surface is added, and the rotation speed is 100 rpm at room temperature. The reaction was performed for 2 hours. After washing with pure water and further drying at 50 ° C. for 15 hours, 1.28 g of brown magnetized fine particles were obtained.

(実施例2)
実施例1にて得られた磁性化微粒子1.2gを純水50mLに室温にて回転数100rpmで分散させた。この微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.3gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄し、さらに50℃で15時間乾燥させることにより、褐色の磁性化された微粒子を1.47g得た。
(Example 2)
1.2 g of the magnetized fine particles obtained in Example 1 were dispersed in 50 mL of pure water at room temperature at a rotation speed of 100 rpm. To this fine particle dispersion, 0.3 g of a magnetic substance (material: magnetite, particle diameter: 10 nm, trade name: EMG607, manufactured by Ferrotec Co., Ltd.) having a cationic dispersant on the surface is added, and the rotation speed is 100 rpm at room temperature. The reaction was performed for 2 hours. By washing with pure water and further drying at 50 ° C. for 15 hours, 1.47 g of brown magnetized fine particles were obtained.

(実施例3)
実施例2にて得られた磁性化微粒子1.4gを純水50mLに室温にて回転数100rpmで分散させた。この微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.3gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄し、さらに50℃で15時間乾燥させることにより、褐色の磁性化された微粒子を1.67g得た。
Example 3
1.4 g of the magnetized fine particles obtained in Example 2 were dispersed in 50 mL of pure water at room temperature at a rotation speed of 100 rpm. To this fine particle dispersion, 0.3 g of a magnetic substance (material: magnetite, particle diameter: 10 nm, trade name: EMG607, manufactured by Ferrotec Co., Ltd.) having a cationic dispersant on the surface is added, and the rotation speed is 100 rpm at room temperature. The reaction was performed for 2 hours. After washing with pure water and further drying at 50 ° C. for 15 hours, 1.67 g of brown magnetized fine particles were obtained.

(実施例4)
1,4−ジオキサン50mLに、ポリジビニルベンゼン微粒子1.0g(粒子径2.5μm、白色)を回転数100rpmにて分散させた。グリシジルメタクリレート1.35g、エチレングリコールジメタクリレート0.15g、V−65 0.03gを添加し、60℃に加熱し、この状態を維持したまま15時間反応させた。反応終了後、1,4−ジオキサンおよび純水にて洗浄した後に、純水50mLに回転数100rpmにて分散させた。この微粒子分散液に亜硫酸ナトリウム2.0gを添加し、60℃に加熱し、この状態を維持したまま15時間反応させた。反応終了後、純水にて洗浄し、表面がスルホン化された微粒子を得た。
Example 4
In 50 mL of 1,4-dioxane, 1.0 g of polydivinylbenzene fine particles (particle diameter: 2.5 μm, white) was dispersed at a rotation speed of 100 rpm. 1.35 g of glycidyl methacrylate, 0.15 g of ethylene glycol dimethacrylate and 0.03 g of V-65 were added, heated to 60 ° C., and allowed to react for 15 hours while maintaining this state. After completion of the reaction, it was washed with 1,4-dioxane and pure water, and then dispersed in 50 mL of pure water at a rotation speed of 100 rpm. To this fine particle dispersion, 2.0 g of sodium sulfite was added, heated to 60 ° C., and allowed to react for 15 hours while maintaining this state. After completion of the reaction, it was washed with pure water to obtain fine particles whose surface was sulfonated.

この微粒子1gを純水50mLに室温にて回転数100rpmで分散させた。この微粒子分散液に、表面にカチオン系分散剤を有する磁性体(材質:マグネタイト、粒子径:10nm、商品名:EMG607、フェローテック社製)0.5gを添加し、室温にて回転数100rpmで2時間反応させた。純水にて洗浄し、さらに50℃で15時間乾燥させることにより、褐色の磁性化された微粒子1.45gを得た。   1 g of the fine particles was dispersed in 50 mL of pure water at room temperature at a rotation speed of 100 rpm. To this fine particle dispersion, 0.5 g of a magnetic material (material: magnetite, particle size: 10 nm, trade name: EMG607, manufactured by Ferrotec Co., Ltd.) having a cationic dispersant on the surface is added, and the rotation speed is 100 rpm at room temperature. The reaction was performed for 2 hours. After washing with pure water and further drying at 50 ° C. for 15 hours, 1.45 g of brown magnetized fine particles were obtained.

(比較例1)
乾燥工程を行わなかった以外は実施例1と同様にして、褐色の磁性化された微粒子分散液を12.6g得た(スラリー濃度10.1%、乾燥重量換算1.27g)。
(Comparative Example 1)
Except for not carrying out the drying step, 12.6 g of a brown magnetized fine particle dispersion was obtained in the same manner as in Example 1 (slurry concentration 10.1%, dry weight conversion 1.27 g).

(比較例2)
表面にカチオン系分散剤を有する磁性体の添加量を1.0gとし、かつ乾燥工程を行わなかった以外は実施例1と同様にして、褐色の磁性化された微粒子分散液を18.8g得た(スラリー濃度10.2%、乾燥重量換算1.92g)。
(Comparative Example 2)
18.8 g of a brown magnetized fine particle dispersion was obtained in the same manner as in Example 1 except that the amount of the magnetic substance having a cationic dispersant on the surface was 1.0 g and the drying step was not performed. (Slurry concentration 10.2%, dry weight conversion 1.92g).

(比較例3)
乾燥工程を行わなかった以外は実施例4と同様にして、褐色の磁性化された微粒子分散液を14.0g得た(スラリー濃度10.5%、乾燥重量換算1.47g)。
(Comparative Example 3)
14.0 g of a brown magnetized fine particle dispersion was obtained in the same manner as in Example 4 except that the drying step was not performed (slurry concentration: 10.5%, dry weight conversion: 1.47 g).

(試験例1)
実施例1〜4、比較例1〜3にて得られた磁性化された微粒子又はその分散液をスラリー濃度1.0%の分散液とした。これら分散液1mLをプラスチック製容器に入れ、超音波洗浄機(出力240W、周波数40kHz)に10分間投入した。実施例1〜4にて得られた磁性微粒子の分散液上澄みは無色透明で磁性体の流出が確認されなかった。比較例1〜3にて得られた磁性微粒子の分散液上澄みは茶色濁った液で磁性体の流出が確認された。
(Test Example 1)
The magnetized fine particles obtained in Examples 1 to 4 and Comparative Examples 1 to 3 or dispersions thereof were used as dispersions having a slurry concentration of 1.0%. 1 mL of these dispersions were put into a plastic container and put into an ultrasonic cleaning machine (output 240 W, frequency 40 kHz) for 10 minutes. The dispersion supernatant of the magnetic fine particles obtained in Examples 1 to 4 was colorless and transparent, and no outflow of the magnetic material was confirmed. The dispersion liquid of the magnetic fine particles obtained in Comparative Examples 1 to 3 was a brownish turbid liquid, and the outflow of the magnetic material was confirmed.

(試験例2)
実施例1〜4、比較例1〜3にて得られた磁性化された微粒子をスラリー濃度0.05%の懸濁液とした。これら懸濁液2mLをプラスチック製セルに入れ、分光光度計にセットした。セル側面にネオジウム磁石を設置して吸光度の変化を測定し、初期吸光度の10分の1となるまでの時間を算出した。実施例1〜4にて得られた磁性微粒子の測定結果は、それぞれ160秒、120秒、80秒、125秒であった。比較例1〜3にて得られた磁性微粒子の測定結果は、それぞれ200秒、140秒、175秒であった。
(Test Example 2)
The magnetized fine particles obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were used as suspensions having a slurry concentration of 0.05%. 2 mL of these suspensions were placed in a plastic cell and set in a spectrophotometer. A neodymium magnet was installed on the side of the cell, the change in absorbance was measured, and the time until it became 1/10 of the initial absorbance was calculated. The measurement results of the magnetic fine particles obtained in Examples 1 to 4 were 160 seconds, 120 seconds, 80 seconds, and 125 seconds, respectively. The measurement results of the magnetic fine particles obtained in Comparative Examples 1 to 3 were 200 seconds, 140 seconds, and 175 seconds, respectively.

これらの結果から以下のことが明らかである。
1.実施例1と比較例1の結果から、また実施例4と比較例3との結果から、湿式方法で得られた磁性微粒子分散液を乾燥させて得られた磁性微粒子は、乾燥前の分散液状態のものより磁気応答性が大きく向上していた。
2.実施例3と比較例1の結果より、実施例3は用いた磁性体の合計量がより少ないにもかかわらず、湿式方法による磁性微粒子分散液の製造と乾燥工程を繰り返すことにより、磁気応答性が大きく向上していた。
3.実施例1〜3の結果より、湿式方法による磁性微粒子分散液の製造と乾燥工程の繰り返しにより、磁気応答性が大きく向上した。
From these results, the following is clear.
1. From the results of Example 1 and Comparative Example 1 and from the results of Example 4 and Comparative Example 3, the magnetic fine particles obtained by drying the magnetic fine particle dispersion obtained by the wet method are the dispersion before drying. The magnetic responsiveness was greatly improved compared to the state.
2. From the results of Example 3 and Comparative Example 1, in Example 3, although the total amount of the magnetic material used was smaller, magnetic responsiveness was obtained by repeating the production of the magnetic fine particle dispersion by the wet method and the drying step. Was greatly improved.
3. From the results of Examples 1 to 3, the magnetic responsiveness was greatly improved by the production of the magnetic fine particle dispersion by the wet method and the repetition of the drying process.

Claims (6)

湿式方法にて得られた磁性微粒子の分散液を乾燥させることを特徴とする、磁性微粒子の製造方法。   A method for producing magnetic fine particles, comprising drying a dispersion of magnetic fine particles obtained by a wet method. 請求項1に記載の方法において、湿式方法にて得られた磁性微粒子の分散液が、金属酸化物被覆微粒子と磁性体とを反応させて得られたものである方法。   2. The method according to claim 1, wherein the dispersion of magnetic fine particles obtained by a wet method is obtained by reacting metal oxide-coated fine particles with a magnetic material. 請求項2に記載の方法において、金属酸化物が酸化鉄である方法。   The method of claim 2, wherein the metal oxide is iron oxide. 請求項1に記載の方法において、湿式法にて得られた磁性微粒子の分散液が、微粒子表面にあるイオン性官能基と、磁性体表面にあり、微粒子表面にあるイオン性官能基とは反対の電荷を有するイオン性官能基とを反応させて得られたものである方法。   2. The method according to claim 1, wherein the dispersion of the magnetic fine particles obtained by the wet method is opposite to the ionic functional group on the fine particle surface and the ionic functional group on the fine particle surface. A method obtained by reacting an ionic functional group having the following charge: 請求項1乃至4いずれかに記載の方法において、磁性体表面にカチオン性官能基がある方法。   5. The method according to claim 1, wherein a cationic functional group is present on the surface of the magnetic material. 請求項1乃至4いずれかに記載の方法において、磁性体表面にアニオン性官能基がある方法。   The method according to claim 1, wherein an anionic functional group is present on the surface of the magnetic material.
JP2015064959A 2015-03-26 2015-03-26 Method for producing magnetic fine particles Active JP6550836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015064959A JP6550836B2 (en) 2015-03-26 2015-03-26 Method for producing magnetic fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064959A JP6550836B2 (en) 2015-03-26 2015-03-26 Method for producing magnetic fine particles

Publications (2)

Publication Number Publication Date
JP2016184703A true JP2016184703A (en) 2016-10-20
JP6550836B2 JP6550836B2 (en) 2019-07-31

Family

ID=57243294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064959A Active JP6550836B2 (en) 2015-03-26 2015-03-26 Method for producing magnetic fine particles

Country Status (1)

Country Link
JP (1) JP6550836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185655A1 (en) * 2023-03-06 2024-09-12 東ソー株式会社 Magnetic particles for extracellular vesicle purification, method for producing same, and method for purifying extracellular vesicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501753A (en) * 1987-10-26 1990-06-14 デイド、インターナショナル、インコーポレイテッド Manufacturing method of magnetically responsive polymer particles and its applications
JPH06304470A (en) * 1993-04-23 1994-11-01 Japan Synthetic Rubber Co Ltd Preparation of composite particle
JPH0782302A (en) * 1993-07-20 1995-03-28 Nippon Paint Co Ltd Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof
JPH07128914A (en) * 1993-11-04 1995-05-19 Mita Ind Co Ltd Magnetic grain and its production
JP2010132513A (en) * 2008-12-08 2010-06-17 Sekisui Chem Co Ltd Magnetic-substance-containing particle and method for manufacturing the same, particle for immunoassay, and immunochromatography
JP2015192995A (en) * 2014-03-27 2015-11-05 東ソー株式会社 Method of producing magnetic fine particle and dispersion of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501753A (en) * 1987-10-26 1990-06-14 デイド、インターナショナル、インコーポレイテッド Manufacturing method of magnetically responsive polymer particles and its applications
JPH06304470A (en) * 1993-04-23 1994-11-01 Japan Synthetic Rubber Co Ltd Preparation of composite particle
JPH0782302A (en) * 1993-07-20 1995-03-28 Nippon Paint Co Ltd Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof
JPH07128914A (en) * 1993-11-04 1995-05-19 Mita Ind Co Ltd Magnetic grain and its production
JP2010132513A (en) * 2008-12-08 2010-06-17 Sekisui Chem Co Ltd Magnetic-substance-containing particle and method for manufacturing the same, particle for immunoassay, and immunochromatography
JP2015192995A (en) * 2014-03-27 2015-11-05 東ソー株式会社 Method of producing magnetic fine particle and dispersion of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185655A1 (en) * 2023-03-06 2024-09-12 東ソー株式会社 Magnetic particles for extracellular vesicle purification, method for producing same, and method for purifying extracellular vesicles

Also Published As

Publication number Publication date
JP6550836B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
Yu et al. A universally applicable strategy for construction of anti‐biofouling adsorbents for enhanced uranium recovery from seawater
Li et al. Magnetic nanoparticles coated by aminoguanidine for selective adsorption of acid dyes from aqueous solution
Kalkan et al. Adsorption of reactive yellow 145 onto chitosan coated magnetite nanoparticles
Zhang et al. Benzoboroxole‐functionalized magnetic core/shell microspheres for highly specific enrichment of glycoproteins under physiological conditions
Azad et al. Preparation and characterization of an AC–Fe 3 O 4–Au hybrid for the simultaneous removal of Cd 2+, Pb 2+, Cr 3+ and Ni 2+ ions from aqueous solution via complexation with 2-((2, 4-dichloro-benzylidene)-amino)-benzenethiol: Taguchi optimization
Wang et al. Grafting of β-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr (VI) removal
Nazarzadeh Zare et al. Smart adsorbents for aquatic environmental remediation
Zhao et al. Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample
TWI438227B (en) A magnetic ion-exchange microspheres and method for preparing the same
CN103920473B (en) The preparation method of carbon modifying titanium dioxide composite magnetic nano adsorber
CN106637929B (en) Hydrophobic oleophylic cotton fiber and preparation method and application thereof
Kiani et al. Efficient removal of some anionic dyes from aqueous solution using a polymer-coated magnetic nano-adsorbent
CN106442464B (en) A kind of preparation method of silicon wafer/reduced graphene/Jenner's nano composite material
Liu et al. Progress of recyclable magnetic particles for biomedical applications
US20220001317A1 (en) Nano silver active filter element and a method for preparing the nano silver active filter
CN111203189A (en) PH-responsive magnetic material modified by carboxyl functional polymeric ionic liquid, and preparation method and application thereof
CN106268706B (en) A kind of preparation method and applications of magnetic Nano inorganic arsenic adsorbent
CN104091678A (en) Preparation method of kerosene-based magnetic fluid in which oleic-acid-coated nano Fe3O4 disperses
JP6550836B2 (en) Method for producing magnetic fine particles
Ma et al. A biomimetic Setaria viridis-inspired imprinted nanoadsorbent: green synthesis and application to the highly selective and fast removal of sulfamethazine
CN109821511A (en) A kind of preparation and application of polyvinylamine functional magnetic carbon-based nano adsorbent
Xu et al. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly [methyl vinyl ether-alt-mono-sodium maleate]· AgNO 3: Ag+/Cu 2+ ion exchange and effective antibacterial activity
Hu et al. Application of molecular imprinting technology based on new nanomaterials in adsorption and detection of fluoroquinolones
CN103130937A (en) Preparing method of ferroferric oxide functionalized nanometer materials coated by polyacrylamide (PAM)
CN107175064B (en) Magnetic microsphere silica gel and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R151 Written notification of patent or utility model registration

Ref document number: 6550836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151