JP2016183764A - Composite gear and manufacturing method thereof - Google Patents
Composite gear and manufacturing method thereof Download PDFInfo
- Publication number
- JP2016183764A JP2016183764A JP2015065247A JP2015065247A JP2016183764A JP 2016183764 A JP2016183764 A JP 2016183764A JP 2015065247 A JP2015065247 A JP 2015065247A JP 2015065247 A JP2015065247 A JP 2015065247A JP 2016183764 A JP2016183764 A JP 2016183764A
- Authority
- JP
- Japan
- Prior art keywords
- tooth
- gear
- cylindrical portion
- resin
- outer cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Gears, Cams (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、歯部とその他の部位の材料が異なる複合歯車およびその製造方法に関するものである。 The present invention relates to a compound gear and a method for manufacturing the same, in which materials of a tooth part and other parts are different.
樹脂製歯車は、複写機、プリンター等のOA機器、インクカートリッジ等の消耗品、デジタルカメラやビデオカメラ等の小型精密機器の機械製品等に動力伝達部品として組み込まれている。従来、高精度な動力伝達部品としての樹脂製歯車には、歯先円寸法や噛合い誤差(JGMA 116−02)や歯すじ等級(JIS B 1702)の精度規格が、その用途と目的に応じて設定されている。特に高品質な機械製品に用いられる樹脂製歯車では、これら精度規格の幅を小さく設定して品質を高めることが多い。しかし、近年のカラープリンターやカラー複写機は高品質だけでなく、駆動時の低騒音性能や印字性能の高度化など、機能面の向上も併せて求められるようになってきている。これらの場合、従来のように歯車の精度規格幅を小さく設定する方法だけは要求を満足することが困難なため、歯車の回転伝達精度(動的精度)も高めていくことが必要になる。 Resin gears are incorporated as power transmission components in OA equipment such as copiers and printers, consumables such as ink cartridges, and mechanical products of small precision equipment such as digital cameras and video cameras. Conventionally, for resin gears as high-accuracy power transmission components, the accuracy standards of the tip circle size, meshing error (JGMA 116-02) and tooth trace grade (JIS B 1702) depend on the application and purpose. Is set. In particular, resin gears used for high-quality machine products often increase the quality by setting a small range of these accuracy standards. However, recent color printers and color copiers are required to have not only high quality but also functional improvements such as low noise performance during driving and advanced printing performance. In these cases, since it is difficult to satisfy the requirements only by the conventional method of setting the gear accuracy standard width to be small, it is necessary to improve the rotation transmission accuracy (dynamic accuracy) of the gear.
歯車の回転伝達精度を高めるには(1)噛合い率を大きくする、(2)回転駆動時の歯打ちを防ぐ、(3)回転駆動時の変形を抑えるといった手段が考えられてきた。 In order to increase the rotation transmission accuracy of the gear, means such as (1) increasing the meshing rate, (2) preventing gear rattling during rotation driving, and (3) suppressing deformation during rotation driving have been considered.
具体的には、(1)の場合は、一組の歯車対が回転駆動している際、連続的に噛合う歯の数を多くすることである。例えば平歯車のように歯にねじれ角度が無い歯車では歯が噛合い始めてから終わるまでには噛合い状態に変化が生じる。しかし、噛合い率を大きくすることでこの変化が小さくなり、滑らかに動力を伝えることが可能になる。従来、噛合い率を大きくするには歯車をはすば歯車にするという手段が挙げられる。はすば歯車の歯はねじれを有するため回転軸方向に螺旋状に延在する。そのため、作用面の始めは歯の一方の端で点接触が始まり、次いで歯の接触幅が増して最大になり、それから次第に減少して作用面の終わりで歯幅の反対側の点接触で噛合いが終わる。従って歯にかかる力の変動も滑らかになり、歯車の回転も滑らかになる。はすば歯車ではねじれ角度や歯幅が大きいほど、またモジュールが小さいほど噛合い率が大きくなる。 Specifically, in the case of (1), when a pair of gear pairs is rotationally driven, the number of teeth that mesh continuously is increased. For example, in the case of a gear having no twist angle, such as a spur gear, the meshing state changes from the start to the end of the meshing. However, this change is reduced by increasing the meshing rate, and power can be transmitted smoothly. Conventionally, in order to increase the meshing rate, there is a means of using a helical gear as a gear. The teeth of the helical gear have a twist, and thus extend helically in the direction of the rotation axis. Therefore, point contact begins at one end of the tooth at the beginning of the working surface, then the contact width of the tooth increases to a maximum and then gradually decreases and meshes with point contact on the opposite side of the tooth width at the end of the working surface. It ends. Therefore, the fluctuation of the force applied to the teeth becomes smooth and the rotation of the gears becomes smooth. In helical gears, the greater the twist angle and tooth width, and the smaller the module, the greater the meshing rate.
(2)の場合は、噛合い始めに発生する衝撃や振動を抑制することである。歯車には歯部だけでなく軸部にも工作過程で発生する形状誤差を含むため、噛合い時の歯部に干渉領域が発生する。この干渉領域の発生が衝撃や振動となって歯車の伝達性能を悪化させることになる。従来、この衝撃や振動を抑えるために歯形修正やクラウニング、エンドレリーフといった手段が用いられてきた。歯形修正では干渉が発生している歯先や歯元部分を痩せさせる方法である。またクラウニングは歯車の歯すじ方向誤差、軸の平行誤差、取り付け誤差などによって発生する歯部の干渉を防ぐために歯すじ方向に適当なふくらみを付加させたものである。同様にエンドレリーフは歯すじ方向の歯端部に面取り状の逃がしを設ける方法である。 In the case of (2), it is to suppress the impact and vibration generated at the beginning of meshing. Since the gear includes not only the tooth portion but also the shaft portion in a shape error that occurs in the machining process, an interference region is generated in the tooth portion during meshing. The generation of this interference region becomes an impact or vibration and deteriorates the transmission performance of the gear. Conventionally, means such as tooth profile correction, crowning, and end relief have been used to suppress this impact and vibration. Tooth profile correction is a method of thinning the tooth tip and root portion where interference has occurred. In addition, the crowning is one in which an appropriate bulge is added in the tooth line direction in order to prevent tooth interference caused by a gear tooth direction error, a shaft parallel error, a mounting error, and the like. Similarly, the end relief is a method of providing a chamfered relief at the tooth end portion in the tooth line direction.
(3)の場合は、はすば歯車にトルクがかかった時に発生するスラスト方向の分力による変形を抑えることである。スラスト方向に変形してしまうと歯の噛合いの位置と角度が変わってしまうため、前述した歯の干渉が発生することがある。従来、ポリアセタールなどの合成樹脂を射出成形して製造した歯車ではリブを複数配設することで歯車全体の剛性を向上させてきた。 In the case of (3), it is to suppress the deformation due to the component force in the thrust direction that occurs when torque is applied to the helical gear. If the tooth is deformed in the thrust direction, the position and angle of the tooth meshing change, and the above-described tooth interference may occur. Conventionally, in a gear manufactured by injection molding a synthetic resin such as polyacetal, the rigidity of the entire gear has been improved by arranging a plurality of ribs.
しかし近年のカラープリンターやカラー複写機の高性能化に伴い、このような従来手法だけでは機能の向上が限界に達している。例えば、非常に高い回転伝達精度が必要となるバンディングと呼ばれる印刷時の濃淡による縞模様の抑制は、前述した方法だけでは解決が困難である。そのため、近年では二種類以上の材料で形成された複合歯車が考案されている。 However, with the recent improvement in performance of color printers and color copiers, improvement of functions has reached the limit only with such conventional methods. For example, the suppression of the striped pattern due to shading during printing, which is called banding, which requires very high rotation transmission accuracy, is difficult to solve only by the method described above. Therefore, in recent years, compound gears formed of two or more kinds of materials have been devised.
例えば、図11は二種類の材料で形成された複合歯車の従来例である。図7(a)は、従来の複合歯車の側面図であり、図11(b)は、図11(a)の縦断面図である。 For example, FIG. 11 shows a conventional example of a compound gear formed of two kinds of materials. Fig.7 (a) is a side view of the conventional compound gear, FIG.11 (b) is a longitudinal cross-sectional view of Fig.11 (a).
図11において、複合歯車70は、第1の部材73と第2の部材71を有している。第1の部材73は、樹脂で形成され、軸中心75を有する軸(不図示)に嵌合されるボス(軸支持部)である内側円筒部76と、内側円筒部76の外側に形成された外側円筒部77と、内側円筒部76と外側円筒部77をつなぐ板状のウェブを有している。第2の部材は、前記第1の部材よりも軟らかい材料から形成され、前記外側円筒部77の外周面に歯部74を形成している。第2の部材71の樹脂材料を、通常歯車に用いられるポリアセタール樹脂よりも弾性率が低いものにすることで、歯車が噛み合う際、歯面が弾性変形して実噛合い率を大きくすることが可能となる。また、弾性率が小さいことで緩衝材としての役割も担い、回転駆動時の歯打ちの挙動を抑制することが可能になる。つまり、前述した(1)および(2)をより効果的に得ることが可能となる。また、第1の部材73の樹脂材料を高い剛性のものにすることで回転駆動時の歯車の変形を抑制することができ、前述した(3)の効果を阻害することがない。 In FIG. 11, the compound gear 70 has a first member 73 and a second member 71. The first member 73 is formed of resin, and is formed on the outer side of the inner cylindrical portion 76 and an inner cylindrical portion 76 that is a boss (shaft support portion) fitted to a shaft (not shown) having an axial center 75. The outer cylindrical portion 77 has a plate-like web that connects the inner cylindrical portion 76 and the outer cylindrical portion 77. The second member is made of a softer material than the first member, and the tooth portion 74 is formed on the outer peripheral surface of the outer cylindrical portion 77. By making the resin material of the second member 71 have a lower elastic modulus than the polyacetal resin normally used for gears, the tooth surfaces can be elastically deformed to increase the actual engagement rate when the gears are engaged. It becomes possible. Further, since the elastic modulus is small, it also serves as a cushioning material, and can suppress the behavior of rattling during rotation driving. That is, (1) and (2) described above can be obtained more effectively. Further, by making the resin material of the first member 73 highly rigid, it is possible to suppress the deformation of the gear during the rotational drive, and the above-described effect (3) is not hindered.
このような複合歯車の製造は第1の部材を金型内にインサートし第2の部材を二次成形する方法が一般的である。しかし、第2の部材は第1の部材の外周面に形成されるため、第2の部材のゲートは限られた領域に設置しなければならない。従来例である図11では歯部に直接ゲート72を設置する方法が用いられているが、OA機器などに用いられる小モジュールの歯車ではスペース不足によりゲート設置が困難である。また、歯部近傍にゲートを設置することで熱による収縮率の違いによる歯精度の悪化や、ゲートカット時の変形などの問題が生じる。 In general, such a compound gear is manufactured by inserting the first member into a mold and secondarily forming the second member. However, since the second member is formed on the outer peripheral surface of the first member, the gate of the second member must be installed in a limited area. In FIG. 11, which is a conventional example, a method of installing the gate 72 directly on the tooth portion is used, but it is difficult to install the gate due to a lack of space in a small module gear used for OA equipment or the like. In addition, the installation of a gate near the tooth portion causes problems such as deterioration of tooth accuracy due to a difference in contraction rate due to heat and deformation at the time of gate cutting.
このような不具合を解消するため、図12に示すような複合歯車80では、歯部から遠く、比較的ゲート設置が容易な第1の部材81の外側円筒部87と内側円筒部88の間の空間85に第2の部材のゲートを設ける手段が用いられている。この場合、第2の部材のゲート82は第1の部材の外側円筒部87の内側の空間85に設置され、注入された溶融樹脂は第1の部材に形成された貫通穴86を通じて歯部84へ充填される。そのため、熱や変形による歯部の精度悪化が抑えられるだけでなく、第2の部材が第1の部材の内外に形成されるので互いが強固に結合する効果も生まれる。 In order to solve such a problem, in the composite gear 80 as shown in FIG. 12, the distance between the outer cylindrical portion 87 and the inner cylindrical portion 88 of the first member 81 that is far from the tooth portion and relatively easy to install the gate is set. A means for providing a gate of the second member in the space 85 is used. In this case, the gate 82 of the second member is installed in the space 85 inside the outer cylindrical portion 87 of the first member, and the injected molten resin passes through the through hole 86 formed in the first member and the tooth portion 84. To be filled. Therefore, not only is the accuracy of the teeth part deteriorated due to heat and deformation, but also the second member is formed inside and outside the first member, so that the effect of firmly bonding each other is also produced.
例えば特許文献1では、第1の部材に設けられた第2の部材の樹脂流路を放射方向から斜めにすることで、第2の部材の充填時に第1の部材が射出圧で回転し、歯ごとで生じる流動距離の差を小さく抑える技術が開示されている。 For example, in Patent Document 1, the first member rotates at the injection pressure when filling the second member by making the resin flow path of the second member provided in the first member oblique from the radial direction, A technique for minimizing a difference in flow distance generated between teeth is disclosed.
第1の部材の内側に第2の部材のゲートを設ける場合、第1の部材の内径部と外周部の歯部をつなぐ樹脂流路は、図12に示されるような第1の部材に設けられた複数の貫通穴86として形成されている。 When the gate of the second member is provided inside the first member, the resin flow path connecting the inner diameter portion of the first member and the tooth portion of the outer peripheral portion is provided in the first member as shown in FIG. The plurality of through holes 86 are formed.
しかしながら、第2の部材の流動は貫通穴を通過することで複数に分岐し、第1の部材の外周面で再度合流するため様々な問題が生じる。図13は複数の貫通穴86を有した第1の部材の外周面に第2の部材が充填されていく様子を表す図である。外周面に形成される第2の部材83は、歯先部の肉厚Ttに比べ歯底部の肉厚Tbは薄肉になる。そのため、貫通穴86を通過した樹脂は貫通穴近傍の歯部87を優先的に流れ、隣接する歯部には流れ込み難くい状態なる。つまり、周方向への流動が遅く、貫通穴86の中間近傍に位置する歯部88と貫通穴近傍の歯部87の充填タイミングに大きな差が生じることになる。このような場合、第2の部材の固化状態が歯ごとで違ってくるため、歯ごとの加圧状態にも差が生じ、結果として歯の形状にも差が生じてしまうことになる。さらにこの場合、分岐した樹脂流動が歯部88付近で2つの方向から再び合流する際の樹脂の流れてくる方向を2つの線で表した時の2つの線がなす角度をαとした時、角度αが小さいため、ウェルドが形成されて著しい歯面精度の悪化が発生する可能性がある。 However, the flow of the second member branches into a plurality of parts by passing through the through holes and rejoins on the outer peripheral surface of the first member, so that various problems arise. FIG. 13 is a diagram illustrating a state in which the outer peripheral surface of the first member having the plurality of through holes 86 is filled with the second member. In the second member 83 formed on the outer peripheral surface, the thickness Tb of the tooth bottom portion is thinner than the thickness Tt of the tooth tip portion. Therefore, the resin that has passed through the through hole 86 preferentially flows through the tooth portion 87 in the vicinity of the through hole, and is difficult to flow into the adjacent tooth portion. That is, the flow in the circumferential direction is slow, and there is a large difference in the filling timing of the tooth portion 88 located near the middle of the through hole 86 and the tooth portion 87 near the through hole. In such a case, since the solidified state of the second member varies from tooth to tooth, a difference occurs in the pressed state of each tooth, resulting in a difference in tooth shape. Furthermore, in this case, when the angle formed by the two lines when the resin flow direction when the branched resin flow merges again from the two directions near the tooth portion 88 is represented by two lines is α, Since the angle α is small, there is a possibility that a weld is formed and the tooth surface accuracy is significantly deteriorated.
特許文献1では、第1の部材に設けられた第2の部材の樹脂流路を放射方向から斜めにすることで、第2の部材の充填時に第1の部材が射出圧で回転し、歯ごとで生じる流動距離の差を小さく抑える技術が開示されている。しかし、この手法では第2の部材の合流角を小さくする効果は得られないので、最終充填部付近にウェルドが形成される可能性がある。第1の部材第2の部材の射出によって回転できるようにするには、金型の構成が複雑になり型費が増大する。さらに、第1の部材が成形中に回転するため、歯車の同軸性などの円筒精度に悪影響を及ぼす可能性もある。 In Patent Document 1, the resin flow path of the second member provided in the first member is inclined from the radial direction, so that the first member rotates at the injection pressure when filling the second member, and the teeth A technique for minimizing the difference in flow distance between the two is disclosed. However, since this method cannot obtain the effect of reducing the merging angle of the second member, there is a possibility that a weld is formed in the vicinity of the final filling portion. In order to be able to rotate by injection of the first member and the second member, the structure of the mold becomes complicated and the mold cost increases. Furthermore, since the first member rotates during molding, there is a possibility that the cylindrical accuracy such as the coaxiality of the gears may be adversely affected.
本出願に関わる発明は、上述した従来技術の問題点に鑑みてなされたものであり、簡単な構成で、歯ごとの充填タイミング差から生じる歯形状の差を小さくし、樹脂合流部付近のウェルド発生を抑制することができる複合歯車を提供することにある。 The invention relating to the present application has been made in view of the above-described problems of the prior art. With a simple configuration, the difference in tooth shape caused by the difference in filling timing for each tooth is reduced, and the weld near the resin merging portion is obtained. An object of the present invention is to provide a compound gear capable of suppressing generation.
本発明の複合歯車は、合成樹脂または金属からなり、内側円筒部あるいは軸部と、外側円筒部を有する第1の部材と、前記第1の部材の外周面に、前記第1の部材とは異なる合成樹脂で形成された歯部を有する第2の部材から成る複合歯車において、前記第2の部材は、前記内側円筒部あるいは前記軸部と、前記外側円筒部と、の間と、前記外側円筒部にあけられた貫通穴に充填されているとともに、
前記貫通穴と前記歯部の間であって、前記外周面と垂直方向の前記歯部に連通する厚肉部を形成していることを特徴とする。
The composite gear of the present invention is made of synthetic resin or metal, and includes a first member having an inner cylindrical portion or a shaft portion, an outer cylindrical portion, and an outer peripheral surface of the first member. In the composite gear including the second member having tooth portions formed of different synthetic resins, the second member includes the inner cylindrical portion or the shaft portion, the outer cylindrical portion, and the outer outer portion. It is filled in the through hole made in the cylindrical part,
A thick wall portion is formed between the through hole and the tooth portion and communicates with the tooth portion perpendicular to the outer peripheral surface.
本発明の複合歯車の製造方法は、内側円筒部あるいは軸部と、外側円筒部を有する第1の部材の、前記内側円筒部あるいは前記軸部と、前記外側円筒部と、の間から樹脂を注入し、前記外側円筒部にあけられた貫通穴を通過した樹脂によって前記外側円筒部の外周面に歯部を形成する複合歯車の製造方法であって、前記貫通穴を通過した樹脂は、厚肉部を介して前記外周面と垂直な方向から前記歯部に注入されることを特徴とする。 In the method for manufacturing a composite gear according to the present invention, resin is supplied from between the inner cylindrical portion or the shaft portion and the outer cylindrical portion of the first member having the inner cylindrical portion or the shaft portion and the outer cylindrical portion. Injecting and forming a toothed portion on the outer peripheral surface of the outer cylindrical portion by the resin that has passed through the through hole formed in the outer cylindrical portion, the resin that has passed through the through hole is thick The tooth portion is injected from a direction perpendicular to the outer peripheral surface through a meat portion.
本発明によれば、簡単な構成で、熱影響やゲートカットに伴う歯精度の悪化が起こり難く、また、周方向への流動性悪化を最小限に抑えることができる。そのため、歯ごとの充填タイミング差から生じる歯形状の差を小さくし、さらに樹脂合流部で合流角を大きくしてウェルドの発生を抑制することができる。 According to the present invention, with a simple configuration, it is difficult for the tooth accuracy to deteriorate due to thermal effects and gate cuts, and the deterioration of fluidity in the circumferential direction can be minimized. Therefore, it is possible to reduce the difference in tooth shape resulting from the filling timing difference for each tooth, and further increase the joining angle at the resin joining portion to suppress the occurrence of welds.
図1、図2および図3は本発明の特徴を最もよく表す図面である。図1、図2は本発明における実施の形態の一例を表す複合歯車10の概略図であり、図1(a)は正面図を示し、図1(b)は、図1(a)のA−A断面図を示す。図2(a)は複合歯車10の側面図を示し、図2(b)は図2(a)のB−B断面図を示す。複合歯車10は第1の部材11と、第2の部材20を有している。第1の部材11は、軸中心14を有する軸(不図示)への取付け部である内側円筒部15と、外側円筒部18を有している。そして、内側円筒部15と外側円筒部18をつなぐとともに、内側円筒部15と外側円筒部18間の空間12を分割するスポーク部111とスポーク部の間を埋める板状のウェブ112を含んでいる。第2の部材20は、外側円筒部18の外周面に、歯部23を形成する。第一の部材11として、ここでは軸への取付け部である内側円筒部15を有する例を示すが、第1の部材11に、軸が直接取り付けられていてもよい。つまり、内側円筒部15に代わり軸部を有していてもよい。また、外側円筒部18は、その内側(内周面)と外側(外周面)とを貫通する複数の貫通穴13が形成されている。図1、図2では、貫通穴13が等間隔に8箇所に設けられている例を示すがこれに限るものではない。内側円筒部15(あるいは軸部)と外側円筒部18間の空間12には樹脂を注入するためのゲート21が形成されている。ゲート21から射出された樹脂は、内側円筒部15(あるいは軸部)と外側円筒部18間の空間12、貫通穴13を通過して、第1の部材11の外側円筒部18の外周面に、歯部23を形成する。つまり貫通穴13により歯部23とゲート21が接続される。29は、貫通穴13を通過した樹脂が、歯部23を形成する前に通過する厚肉部であり、第2の部材で形成される。また、第2の部材による歯部23と第1の部材による外側円筒部18の外周面との間には、第2の部材によるリム28が形成される。リム28は、歯部23の径方向の内側方向であって、歯部23の底部と連通するように、複数の歯部23にまたがるように形成される。そして、厚肉部29は、歯部23の横方向(軸と平行方向)であって、複数の歯部23にまたがって、外周面と垂直な方向の歯部に連通するように形成される。また、リム28と厚肉部29とは連通している。厚肉部29は横方向(軸と平行方向)に厚みTrを有している。リム28は、径方向に厚みTbを有している。ゲート21から射出された樹脂により、第2の部材20が形成される。つまり、第2の部材20は内側円筒部15と外側円筒部18間の空間12、貫通穴13、厚肉部29、リム28、歯部23に充填された樹脂により形成されている。 1, 2 and 3 are drawings which best illustrate the features of the present invention. 1 and 2 are schematic views of a compound gear 10 showing an example of an embodiment of the present invention. FIG. 1 (a) shows a front view, and FIG. 1 (b) shows A in FIG. 1 (a). -A shows a cross-sectional view. Fig.2 (a) shows the side view of the compound gearwheel 10, and FIG.2 (b) shows BB sectional drawing of Fig.2 (a). The compound gear 10 has a first member 11 and a second member 20. The first member 11 has an inner cylindrical portion 15 that is an attachment portion to a shaft (not shown) having an axial center 14 and an outer cylindrical portion 18. The inner cylindrical portion 15 and the outer cylindrical portion 18 are connected to each other, and the spoke portion 111 that divides the space 12 between the inner cylindrical portion 15 and the outer cylindrical portion 18 and a plate-like web 112 that fills the space between the spoke portions are included. . The second member 20 forms a tooth portion 23 on the outer peripheral surface of the outer cylindrical portion 18. Although the example which has the inner side cylindrical part 15 which is an attachment part to a axis | shaft is shown here as the 1st member 11, the axis | shaft may be directly attached to the 1st member 11. FIG. That is, a shaft portion may be provided instead of the inner cylindrical portion 15. The outer cylindrical portion 18 is formed with a plurality of through holes 13 penetrating the inner side (inner peripheral surface) and the outer side (outer peripheral surface). 1 and 2 show an example in which the through holes 13 are provided at eight positions at equal intervals, but the present invention is not limited to this. A gate 21 for injecting resin is formed in the space 12 between the inner cylindrical portion 15 (or the shaft portion) and the outer cylindrical portion 18. The resin injected from the gate 21 passes through the space 12 and the through hole 13 between the inner cylindrical portion 15 (or shaft portion) and the outer cylindrical portion 18, and reaches the outer peripheral surface of the outer cylindrical portion 18 of the first member 11. The tooth part 23 is formed. That is, the tooth portion 23 and the gate 21 are connected by the through hole 13. 29 is a thick part through which the resin that has passed through the through hole 13 passes before forming the tooth part 23, and is formed of the second member. Further, a rim 28 made of the second member is formed between the tooth portion 23 made of the second member and the outer peripheral surface of the outer cylindrical portion 18 made of the first member. The rim 28 is formed so as to straddle the plurality of tooth portions 23 so as to communicate with the bottom portion of the tooth portion 23 in the radial inner direction of the tooth portion 23. The thick portion 29 is formed so as to communicate with the tooth portion in the direction perpendicular to the outer peripheral surface in the lateral direction (parallel to the axis) of the tooth portion 23 and across the plurality of tooth portions 23. . In addition, the rim 28 and the thick part 29 communicate with each other. The thick portion 29 has a thickness Tr in the lateral direction (direction parallel to the axis). The rim 28 has a thickness Tb in the radial direction. The second member 20 is formed by the resin injected from the gate 21. That is, the second member 20 is formed of a resin filled in the space 12 between the inner cylindrical portion 15 and the outer cylindrical portion 18, the through hole 13, the thick portion 29, the rim 28, and the tooth portion 23.
図3は、図1に示した複合歯車10のDT1部の拡大図である。18は外側円筒部であり、第1の部材11で形成される。28は、厚みTbの第2の部材によるリムである。外側円筒部18も複合歯車10のリムの一部となる。リム28は外側円筒部18の外周面に同心円状に第2の部材20で形成される。第1の部材は第2の部材より弾性率が高いことが好ましい。第2の部材を、前記第1の部材よりも軟らかい材料とすることで、歯車が噛み合う際、歯面が弾性変形して実噛合い率を大きくすることが可能となり、歯にかかる力の変動も滑らかになり、歯車の回転も滑らかになる。また、歯打ちを抑制することができるため振動を低減させることができる。また、第1の部材の樹脂材料を高い剛性のものにすることができるので、回転駆動時の歯車の変形を抑制することができる。第1の部材11は、具体的には、ポリアセタール、ポリブチレンテレフタレート、ポリフェニレンスルフィド、ポリアミド、ナイロンのいずれか等を含む樹脂材料を用いて射出成形で製造される。あるいは、金属材料を用いて切削加工、焼結、プレスなどで製造される。第2の部材20は熱可塑性エラストマーなどを含む合成樹脂材料を用いて射出成形で製造される。 FIG. 3 is an enlarged view of a DT1 portion of the compound gear 10 shown in FIG. Reference numeral 18 denotes an outer cylindrical portion which is formed of the first member 11. Reference numeral 28 denotes a rim made of a second member having a thickness Tb. The outer cylindrical portion 18 also becomes a part of the rim of the compound gear 10. The rim 28 is formed by the second member 20 concentrically on the outer peripheral surface of the outer cylindrical portion 18. The first member preferably has a higher elastic modulus than the second member. By making the second member a softer material than the first member, it is possible to increase the actual meshing rate by elastically deforming the tooth surface when the gear meshes, and fluctuations in the force applied to the teeth. Becomes smoother, and the rotation of the gears becomes smoother. In addition, since rattling can be suppressed, vibration can be reduced. Moreover, since the resin material of the first member can be made highly rigid, deformation of the gear during rotation driving can be suppressed. Specifically, the first member 11 is manufactured by injection molding using a resin material containing any of polyacetal, polybutylene terephthalate, polyphenylene sulfide, polyamide, nylon, and the like. Alternatively, it is manufactured by cutting, sintering, pressing or the like using a metal material. The second member 20 is manufactured by injection molding using a synthetic resin material including a thermoplastic elastomer.
図1、図2および図3に示す本実施の形態は、第2の部材が第1の部材に設けられた貫通穴を通り歯部に流入する前に複数の歯部にまたがる肉厚部を通過する点に特徴がある。図5は図1、図2および図3で示した本実施の形態における複合歯車10の第2の部材20の充填傾向を表す図である。本実施の形態では貫通穴13と歯部23の間には厚みTrの厚肉部29が複数の歯にまたがるように設けられているため、第2の部材20は歯先部と歯底部の肉厚差影響を受けずに周方向へ流れる作用が働く。そのため隣接する歯へ流入しやすくなり、図5に示すように、歯ごとの充填タイミングに大きな差は生まれない。この結果、歯への加圧状態の差も小さくなり、歯形状の差も生じ難くなる。さらに樹脂合流部で、2つの方向から合流する樹脂の流れてくる方向をそれぞれ線で表した時、2つの線がなす角度を合流角αとすると、この合流角αが大きくなるのでウェルドの発生を抑制することができる。また、本実施の形態では、金型の構成が複雑になることなく充填タイミング差の抑制と、ウェルドの抑制が可能である。さらに、歯車の同軸性を損なうこともない。 1, 2, and 3, the second member has a thick portion that spans a plurality of tooth portions before flowing into the tooth portion through a through hole provided in the first member. Characterized by the point of passing. FIG. 5 is a diagram showing a filling tendency of the second member 20 of the compound gear 10 in the present embodiment shown in FIGS. 1, 2, and 3. In the present embodiment, a thick portion 29 having a thickness Tr is provided between the through hole 13 and the tooth portion 23 so as to extend over a plurality of teeth. Therefore, the second member 20 includes a tooth tip portion and a tooth bottom portion. The effect of flowing in the circumferential direction works without being affected by the thickness difference. Therefore, it becomes easy to flow into adjacent teeth, and as shown in FIG. 5, there is no great difference in filling timing for each tooth. As a result, the difference in the pressure applied to the teeth is reduced, and the difference in tooth shape is less likely to occur. Furthermore, when the direction of the resin flowing from the two directions is represented by lines in the resin merge section, if the angle formed by the two lines is the merge angle α, this merge angle α increases, so that welds are generated. Can be suppressed. In the present embodiment, it is possible to suppress the filling timing difference and suppress the weld without complicating the structure of the mold. Furthermore, the coaxiality of the gear is not impaired.
以上のように、本実施の形態の複合歯車10は、歯ごとの充填タイミング差から生じる歯形状の差を小さくし、さらに樹脂会合合流部付近のウェルド発生を抑制することができる第1の部材と第2の部材で形成された複合歯車を提供することが可能である。 As described above, the composite gear 10 of the present embodiment is a first member that can reduce the difference in tooth shape caused by the difference in filling timing for each tooth and can further suppress the occurrence of welds near the resin meeting portion. It is possible to provide a compound gear formed by the second member.
次に本発明の実施の形態における複合歯車を製造する方法について説明する。第1の部材11は、従来から用いられている金型による射出成形によって製造することが可能である。金型31にはコア駒やスライド駒などを含んだ金型を用いることで、第1の部材11がアンダーカット部を持つような複雑な形状であっても成形することが可能である。また、第1の部材11は、金属であってもよく、従来から用いられている金属加工により製造することが可能である。 Next, a method for manufacturing the compound gear according to the embodiment of the present invention will be described. The first member 11 can be manufactured by injection molding using a conventionally used mold. By using a mold including a core piece and a slide piece as the mold 31, it is possible to mold even the first member 11 having a complicated shape having an undercut portion. Further, the first member 11 may be a metal and can be manufactured by metal processing conventionally used.
図4は本発明の実施の形態における第2の部材20を形成する手段の一例を示したものである。第1の部材11を金型41にインサートし、ギア駒42、キャビ駒43、コア駒44と第1の部材11の間に形成された空間に熱可塑性エラストマーなどの合成樹脂を充填させて第2の部材20を形成する。材料となる合成樹脂はスプルランナー49を介して注入される。また、ギア駒42はベアリングなどの部品を隣接するように設置することで回転できるように設置することが可能である。そうすることで離型時に、第2の部材が離型抵抗などで変形することが無いように複合歯車10を取出すことができる。 FIG. 4 shows an example of means for forming the second member 20 in the embodiment of the present invention. The first member 11 is inserted into the mold 41, and the space formed between the gear piece 42, the cavity piece 43, the core piece 44 and the first member 11 is filled with a synthetic resin such as a thermoplastic elastomer. The second member 20 is formed. A synthetic resin as a material is injected through a sprue runner 49. Further, the gear piece 42 can be installed so as to be rotated by installing parts such as bearings adjacent to each other. By doing so, the composite gear 10 can be taken out so that the second member is not deformed by a release resistance or the like at the time of release.
次に実施例について説明する。 Next, examples will be described.
図1、図2に示す本発明の複合歯車を製造した。また比較例として、図11に示す従来の複合歯車を製造した。 The compound gear of the present invention shown in FIGS. 1 and 2 was manufactured. As a comparative example, a conventional compound gear shown in FIG. 11 was manufactured.
第1の部材は、引っ張り弾性率が3200MPaの、ポリアセタール樹脂(旭化成ケミカルズ社製テナック(登録商標)HC750)を用いた。第2の部材の材料は、3種類のポリエステル・エラストマー(東レ・デュポン社製ハイトレル(登録商標)4047、5557および7247)を用いて、実施例、比較例それぞれ3種類の複合歯車を製造した。ハイトレル4047のショア硬さは40D、5557は55D、7247は72Dであり、樹脂グレードの数字が大きくなるほど硬度が高くなる。ハイトレル4047の引っ張り弾性率は49.5MPa、5557は137MPa、7247は422MPaであり、樹脂グレードの数字が大きくなるほど高くなる。 As the first member, a polyacetal resin (Tenac (registered trademark) HC750 manufactured by Asahi Kasei Chemicals Corporation) having a tensile elastic modulus of 3200 MPa was used. As the material of the second member, three types of compound gears were manufactured for each of Examples and Comparative Examples using three types of polyester elastomers (Hytrel (registered trademark) 4047, 5557 and 7247 manufactured by Toray DuPont). The Shore hardness of Hytrel 4047 is 40D, 5557 is 55D, and 7247 is 72D. The higher the resin grade number, the higher the hardness. The tensile modulus of Hytrel 4047 is 49.5 MPa, 5557 is 137 MPa, and 7247 is 422 MPa, and increases as the resin grade number increases.
製造方法は、まず図4のようなに示す金型で第1の部材を形成した。次いで図4のようなに示す金型に第1の部材をインサートし第2の部材を形成する手順であるした。そして、複合歯車はモジュールm=0.7、圧力角20°、歯数32、ねじれ角β=25°、歯幅t=10mmとなるように製造した。 In the manufacturing method, the first member was first formed with a mold as shown in FIG. Next, the procedure was to insert the first member into the mold shown in FIG. 4 to form the second member. The compound gear was manufactured so that the module m = 0.7, the pressure angle 20 °, the number of teeth 32, the twist angle β = 25 °, and the tooth width t = 10 mm.
製造した、実施例、比較例、3種類ずつの複合歯車の、歯先円の真円度測定、全噛合い誤差測定、歯形・歯すじ測定をそれぞれ行った。歯先の真円度測定は、真円度測定機によって歯車の特徴点(歯先位置)を抽出し繋げることで歯先円の真円度を算出した。全噛合い誤差測定は、両歯噛合い試験機によって、JIS(JIS B 1702−2:1998)に記載されている方法で測定した。歯形・歯すじ測定は、歯車測定機によってJIS(JIS B 1702−1:1998)に記載されている方法で測定した。
その結果を表1に示す。
The manufactured Example, Comparative Example, and each of the three types of compound gears were each subjected to the measurement of the roundness of the tip circle, the total meshing error measurement, and the tooth profile / tooth trace measurement. In the measurement of the roundness of the tooth tip, the roundness of the tooth tip circle was calculated by extracting and connecting the feature point (tooth tip position) of the gear with a roundness measuring machine. The total meshing error was measured by a method described in JIS (JIS B 1702-2: 1998) using a double-tooth mesh testing machine. Tooth profile and tooth trace were measured by a method described in JIS (JIS B 1702-1: 1998) with a gear measuring machine.
The results are shown in Table 1.
表1から、実施例と比較例では、先円の真円度と全噛合い誤差の値に大きな開きがあることがわかった。いずれも比較例の値が大きく、精度が悪い。これは、比較例では実施例のような本発明の特徴である複数の歯にまたがる厚肉部が無いので周方向への流動性が悪くなり、歯ごとの充填タイミングに大きな差が生じているためと考えられる。これらの傾向は第2の部材の種類によって若干の違いがあり、材料の流動性にも若干影響されるが、いずれにしても、厚肉部によって歯の充填タイミングの差が改善されることがわかった。 From Table 1, it was found that there was a large difference between the roundness of the tip circle and the total meshing error value in the example and the comparative example. In both cases, the value of the comparative example is large and the accuracy is poor. This is because, in the comparative example, there is no thick portion that spans a plurality of teeth, which is a feature of the present invention as in the embodiment, so the fluidity in the circumferential direction is deteriorated, and there is a large difference in filling timing for each tooth. This is probably because of this. These tendencies vary slightly depending on the type of the second member, and are somewhat affected by the fluidity of the material, but in any case, the difference in tooth filling timing may be improved by the thick part. all right.
また、歯形・歯すじ誤差においても比較例の値は大きく、精度が悪くなっている。これは第2の部材を成形した後、ゲートカットされる際の負荷が歯部に加わり、歯面精度が低下したためと考えられる。図6は比較例3と本発明の実施例1−3の歯すじ測定結果を比較したものである。図6からも明らかなように、比較例3では歯面が大きくうねり変形している。さらに第2の部材の材質が軟質である比較例1や比較例2では歯すじ測定が不能になるほど大きく精度が悪化した。一方、本発明の実施例ではゲート位置が第1の部材の内径部に配設されているためゲートカットの影響を受けにくく、第2の部材の硬度に関わらず、安定的に歯面精度を確保できた。 Further, the tooth profile / tooth line error is large in the value of the comparative example, and the accuracy is deteriorated. This is considered to be because the load at the time of gate cutting was applied to the tooth portion after forming the second member, and the tooth surface accuracy was lowered. FIG. 6 compares the tooth trace measurement results of Comparative Example 3 and Example 1-3 of the present invention. As is apparent from FIG. 6, in Comparative Example 3, the tooth surface is greatly swelled and deformed. Furthermore, in Comparative Example 1 and Comparative Example 2 in which the material of the second member is soft, the accuracy is greatly deteriorated so that the tooth trace measurement becomes impossible. On the other hand, in the embodiment of the present invention, since the gate position is disposed on the inner diameter portion of the first member, it is hardly affected by the gate cut, and the tooth surface accuracy is stably increased regardless of the hardness of the second member. I was able to secure it.
本発明の図1、図2に示す複合歯車を実施例2として、図12に示す複合歯車を比較例4として、特許文献1に記載されているような第1の部材に設けられた第2の部材の樹脂流路を放射方向から斜めにした複合歯車を比較例5としてそれぞれ製造した。第2の部材の材料はいずれもハイトレル7247を用いた。また、複合歯車はモジュールm=0.7、圧力角20°、歯数32、ねじれ角β=25°、歯幅t=10mmとなるように製造した。 A composite gear shown in FIGS. 1 and 2 of the present invention is used as a second embodiment, and a composite gear shown in FIG. 12 is used as a comparative example 4, and a second gear provided on a first member as described in Patent Document 1. Compound gears in which the resin flow paths of the members were slanted from the radial direction were manufactured as Comparative Example 5, respectively. As the material of the second member, Hytrel 7247 was used. The compound gear was manufactured such that the module m = 0.7, the pressure angle 20 °, the number of teeth 32, the twist angle β = 25 °, and the tooth width t = 10 mm.
そして、製造した、実施例2、比較例4、比較例5の複合歯車の、歯先円の真円度測定、全噛合い誤差測定、歯形・歯すじ測定をそれぞれ行った。また、ウエルドが発生しているかどうか目視で観察した。歯先の真円度測定は、真円度測定機によって歯車の特徴点(歯先位置)を抽出し繋げることで歯先円の真円度を算出した。全噛合い誤差測定は、両歯噛合い試験機によって、JIS(JIS B 1702−2:1998)に記載されている方法で測定した。歯形・歯すじ測定は、歯車測定機によってJIS(JIS B 1702−1:1998)に記載されている方法で測定した。ウェルドの確認は、デジタルマイクロスコープ(倍率×100以上)により、目視で確認した。その結果を表2に示す。 And the roundness measurement of the tooth tip circle | round | yen, the total meshing error measurement, and the tooth profile and the tooth trace measurement were performed on the manufactured composite gears of Example 2, Comparative Example 4 and Comparative Example 5, respectively. Further, it was visually observed whether or not welds were generated. In the measurement of the roundness of the tooth tip, the roundness of the tooth tip circle was calculated by extracting and connecting the feature point (tooth tip position) of the gear with a roundness measuring machine. The total meshing error was measured by a method described in JIS (JIS B 1702-2: 1998) using a double-tooth mesh testing machine. Tooth profile and tooth trace were measured by a method described in JIS (JIS B 1702-1: 1998) with a gear measuring machine. Weld was confirmed visually with a digital microscope (magnification x 100 or more). The results are shown in Table 2.
従来技術である比較例4、比較例5は歯先の真円度、全噛合い誤差、歯形誤差、歯すじ誤差の全てにおいて実施例2と比べて悪い結果であった。特に歯形・歯すじ誤差は非常に悪い値であった。図7は実施例2と、比較例4および比較例5の歯形誤差の測定の結果を比較した図である。この中で、比較例4の測定結果は周期的に歯形誤差が悪化する歯が発生している事がわかった。これは、歯部の歯先部・歯底部の肉厚差に伴う第2の部材の周方向の流動性悪化に要因があると考えられる。つまり、周方向の流動性悪化に伴い、樹脂合流部付近の歯への充填が極端に遅くなり、同箇所の歯形形状が悪化する現象を表している。また、比較例5では比較例4のような周期的な歯形誤差の悪化ではなく、全ての歯において歯形がうねりを持った誤差を有していた。比較例5では第1の部材に設けられた貫通穴が斜めになっており、第2の部材が射出されると第1の部材が回転しながら歯部へ樹脂が充填される。そのため、金型構造が複雑になり、充填性及び加圧状態が不安定になってしまう。結果、図7に示すように歯部の転写性が低下して歯形誤差が悪化してしまったと考えられる。一方、実施例2では複数の歯にまたがる厚肉部を有しているため周方向の流動性が良く、歯ごとの充填タイミングの差が小さい。そのため樹脂合流部付近で発生する不良も少なく、全体的に転写性の良い歯を形成できた。ウエルドの発生の有無を目視で確認したところ、比較例4、5ではウエルドが発生していることが確認されたが、実施例2では発生しているかどうかは目視では確認されなかった。 Comparative Example 4 and Comparative Example 5, which are conventional techniques, were worse than Example 2 in all of the roundness of the tooth tip, the total meshing error, the tooth profile error, and the tooth trace error. In particular, tooth profile and tooth trace errors were very bad values. FIG. 7 is a diagram comparing the measurement results of tooth profile errors in Example 2 and Comparative Examples 4 and 5. Among these, it was found that the measurement results of Comparative Example 4 generated teeth whose tooth profile errors deteriorate periodically. This is considered to be caused by the deterioration in the fluidity in the circumferential direction of the second member due to the thickness difference between the tooth tip part and the tooth bottom part of the tooth part. That is, as the fluidity in the circumferential direction deteriorates, the filling of the teeth near the resin joining portion becomes extremely slow, and the tooth profile shape at the same location deteriorates. In Comparative Example 5, the periodic tooth profile error did not deteriorate as in Comparative Example 4, but the tooth profile had an error with waviness in all teeth. In Comparative Example 5, the through hole provided in the first member is slanted, and when the second member is injected, the first member rotates and the tooth portion is filled with resin. For this reason, the mold structure becomes complicated, and the filling property and the pressurized state become unstable. As a result, as shown in FIG. 7, it is considered that the transferability of the tooth portion was lowered and the tooth profile error was deteriorated. On the other hand, in Example 2, since it has the thick part which straddles several teeth, the fluidity | liquidity of the circumferential direction is good, and the difference of the filling timing for every tooth is small. Therefore, there were few defects generated near the resin junction, and teeth with good transferability could be formed as a whole. When the presence or absence of the weld was visually confirmed, it was confirmed that the weld was generated in Comparative Examples 4 and 5, but it was not visually confirmed whether or not the weld was generated in Example 2.
本発明の図1、図2に示す複合歯車を実施例3として製造した。第2の部材としてハイトレル7247を用いた。複合歯車の歯部が、モジュールm=0.7、圧力角20°、歯数32、ねじれ角β=25°、歯幅t=10mmとなるようにそれぞれ製造した。 The compound gear shown in FIGS. 1 and 2 of the present invention was manufactured as Example 3. Hytrel 7247 was used as the second member. The teeth of the compound gear were manufactured so that the module m = 0.7, the pressure angle 20 °, the number of teeth 32, the twist angle β = 25 °, and the tooth width t = 10 mm.
図8は、複合歯車の歯底部の肉厚TbをTb=0.2mmとし、厚肉部の肉厚Trを変えた場合の歯先真円度を測定した結果である。歯先の真円度測定は、真円度測定機によって歯車の特徴点(歯先位置)を抽出し繋げることで算出した。 FIG. 8 shows the result of measuring the roundness of the tooth tip when the thickness Tb of the tooth bottom portion of the compound gear is Tb = 0.2 mm and the thickness Tr of the thick portion is changed. The roundness measurement of the tooth tip was calculated by extracting and connecting the characteristic points (tooth tip positions) of the gears with a roundness measuring machine.
この結果によると、厚肉部の肉厚Trが厚ければ厚いほど真円度も良化していた。特にTrが1.5mm以上の場合、真円度は30μm以下で安定していた。 According to this result, the roundness improved as the thickness Tr of the thick portion increased. In particular, when Tr was 1.5 mm or more, the roundness was stable at 30 μm or less.
図9は、複合歯車の厚肉部の肉厚TrをTr=1.0mmとし、歯底部の肉厚Tbを変えた場合の歯先真円度を測定した結果である。歯先の真円度測定は、同様に真円度測定機によって歯車の特徴点(歯先位置)を抽出し繋げることで算出した。 FIG. 9 shows the result of measuring the roundness of the tooth tip when the thickness Tr of the thick portion of the compound gear is Tr = 1.0 mm and the thickness Tb of the bottom portion is changed. Similarly, the roundness measurement of the tooth tip was calculated by extracting and connecting the characteristic points (tooth tip positions) of the gears with a roundness measuring machine.
この結果によると、歯底部の肉厚Tbが厚ければ厚いほど真円度が良化していた。特にTbが0.7mm以上の場合、真円度は30μm以下で安定していた。 According to this result, the roundness improved as the thickness Tb of the tooth bottom increased. In particular, when Tb was 0.7 mm or more, the roundness was stable at 30 μm or less.
図10はTb+Trの値が1.0mmの場合、1.4mmの場合、1.7mmの場合の時の真円度傾向を表した図である。 FIG. 10 is a diagram showing a roundness tendency when the value of Tb + Tr is 1.0 mm, 1.4 mm, and 1.7 mm.
これらの結果から、Tb+Trの値が1.7mm以上の場合において、歯先円の真円度が30μm以下で、特に安定することがわかった。 From these results, it was found that when the value of Tb + Tr is 1.7 mm or more, the roundness of the tooth tip circle is 30 μm or less and is particularly stable.
10 複合歯車
11 第1の部材
12 内径部
13 貫通穴
14 軸
15 ボス(軸支持部)
18 リム(第1の部材)
20 第2の部材
21 ゲート
23 歯部
28 リム(第2の部材)
29 厚肉部
α 合流角
Tr 厚肉部の肉厚
Tt 歯先の肉厚
Tb 歯底部の肉厚
DESCRIPTION OF SYMBOLS 10 Compound gear 11 1st member 12 Inner diameter part 13 Through hole 14 Shaft 15 Boss (shaft support part)
18 Rim (first member)
20 second member 21 gate 23 tooth portion 28 rim (second member)
29 Thick part α Merge angle Tr Thick part thickness Tt Thickness of tooth tip Tb Thickness of bottom part
Claims (10)
前記第2の部材は、前記内側円筒部あるいは前記軸部と、前記外側円筒部と、の間と、
前記外側円筒部にあけられた貫通穴に充填されているとともに、
前記貫通穴と前記歯部の間であって、前記外周面と垂直な方向の前記歯部に連通する厚肉部を形成していることを特徴とする複合歯車。 It is made of synthetic resin or metal, and is formed of a synthetic resin different from the first member on the first member having the inner cylindrical part or shaft part, the outer cylindrical part, and the outer peripheral surface of the first member. In a compound gear composed of a second member having a tooth portion,
The second member is between the inner cylindrical portion or the shaft portion and the outer cylindrical portion,
The through hole formed in the outer cylindrical portion is filled,
A composite gear formed between the through hole and the tooth portion and having a thick wall portion communicating with the tooth portion in a direction perpendicular to the outer peripheral surface.
前記貫通穴を通過した樹脂は、厚肉部を介して前記外周面と垂直な方向から前記歯部に注入されることを特徴とする複合歯車の製造方法。 Resin is injected from between the inner cylindrical portion or the shaft portion and the outer cylindrical portion of the first member having the inner cylindrical portion or the shaft portion and the outer cylindrical portion, and is opened in the outer cylindrical portion. A method of manufacturing a compound gear that forms a tooth portion on the outer peripheral surface of the outer cylindrical portion by the resin that has passed through the through-hole,
The resin that has passed through the through-hole is injected into the tooth portion from a direction perpendicular to the outer peripheral surface through a thick-wall portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015065247A JP6472296B2 (en) | 2015-03-26 | 2015-03-26 | Compound gear, manufacturing method thereof, and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015065247A JP6472296B2 (en) | 2015-03-26 | 2015-03-26 | Compound gear, manufacturing method thereof, and apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016183764A true JP2016183764A (en) | 2016-10-20 |
JP2016183764A5 JP2016183764A5 (en) | 2018-04-26 |
JP6472296B2 JP6472296B2 (en) | 2019-02-20 |
Family
ID=57242941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015065247A Active JP6472296B2 (en) | 2015-03-26 | 2015-03-26 | Compound gear, manufacturing method thereof, and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6472296B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024202730A1 (en) * | 2023-03-29 | 2024-10-03 | グローバルポリアセタール株式会社 | Insert molded body, anchor for attaching seat belt, and method for producing insert molded body |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55135265A (en) * | 1979-04-07 | 1980-10-21 | Daihatsu Motor Co Ltd | Gear made of resin in engine |
JPH04175555A (en) * | 1990-11-06 | 1992-06-23 | Asahi Chem Ind Co Ltd | Complex formed gear |
JP2003156126A (en) * | 2001-11-20 | 2003-05-30 | Koyo Seiko Co Ltd | Resin gear |
-
2015
- 2015-03-26 JP JP2015065247A patent/JP6472296B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55135265A (en) * | 1979-04-07 | 1980-10-21 | Daihatsu Motor Co Ltd | Gear made of resin in engine |
JPH04175555A (en) * | 1990-11-06 | 1992-06-23 | Asahi Chem Ind Co Ltd | Complex formed gear |
JP2003156126A (en) * | 2001-11-20 | 2003-05-30 | Koyo Seiko Co Ltd | Resin gear |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024202730A1 (en) * | 2023-03-29 | 2024-10-03 | グローバルポリアセタール株式会社 | Insert molded body, anchor for attaching seat belt, and method for producing insert molded body |
Also Published As
Publication number | Publication date |
---|---|
JP6472296B2 (en) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4618806B2 (en) | gear | |
JP2016023698A (en) | Composite gear and method of manufacturing the same | |
US7644640B2 (en) | Injection-molded resin bevel gear | |
JP5005422B2 (en) | Injection molding gear | |
US8100026B2 (en) | Plastic injection-molded gear | |
KR20210080315A (en) | Spur gear for use in a spur gear unit, gearwheel pair for a spur gear unit, spur gear unit having such a gearwheel pair, and method for producing a spur gear and its use in spur gear units | |
JP2009236144A (en) | Spiral bevel gear and gear device | |
JP6472296B2 (en) | Compound gear, manufacturing method thereof, and apparatus | |
JP4640777B2 (en) | Resin gear | |
EP1959167B1 (en) | Injection-molded resin face gear | |
JP6108547B2 (en) | Fiber reinforced resin gear, fiber reinforced resin gear injection molding method, fiber reinforced resin rotating body, and fiber reinforced resin rotating body injection molding method | |
JP2010139041A (en) | Synthetic resin gear | |
US8815142B2 (en) | Method of manufacturing a resin molded gear by injection molding | |
JP2010025239A (en) | Gear and method for manufacturing the same | |
JP2009236151A (en) | Worm gear | |
US8240227B2 (en) | Injection-molded resin face gear | |
JP2005240855A (en) | Gear | |
JP2019195937A (en) | Gear, manufacturing method of the same, and injection mold used for gear manufacturing | |
US8991277B2 (en) | Worm wheel | |
JP4919495B2 (en) | Resin toothbrush gear | |
JP2006308107A (en) | Injection-molded plastic gear | |
JP4282423B2 (en) | Resin toothbrush gear | |
JP2008115886A (en) | Helical gear | |
US20200240502A1 (en) | Multi-component gear | |
JP6067338B2 (en) | Yamaba gear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180319 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190122 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6472296 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |