JP2016174992A - Coating method and coating device - Google Patents
Coating method and coating device Download PDFInfo
- Publication number
- JP2016174992A JP2016174992A JP2015055126A JP2015055126A JP2016174992A JP 2016174992 A JP2016174992 A JP 2016174992A JP 2015055126 A JP2015055126 A JP 2015055126A JP 2015055126 A JP2015055126 A JP 2015055126A JP 2016174992 A JP2016174992 A JP 2016174992A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- coating liquid
- head
- liquid
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
Abstract
Description
本発明の実施形態は、塗布方法および塗布装置に関する。 Embodiments described herein relate generally to a coating method and a coating apparatus.
有機半導体を用いた有機薄膜太陽電池や有機/無機ハイブリッド太陽電池は、活性層の形成に安価な塗布法を適用できることから、低コストの太陽電池として期待されている。太陽電池モジュールを構成するセルは、有機活性層を透明電極と対向電極とで挟持した構造を有している。透明電極は、一般的に導電性が低いため、セルの面積を大面積化するほど発生電荷を外部に取り出す効率が低下する。そこで、短冊状のセルを複数並べて形成すると共に、これら複数のセル間を直列に接続することが一般的である。 Organic thin-film solar cells and organic / inorganic hybrid solar cells using organic semiconductors are expected as low-cost solar cells because an inexpensive coating method can be applied to the formation of the active layer. A cell constituting the solar cell module has a structure in which an organic active layer is sandwiched between a transparent electrode and a counter electrode. Since the transparent electrode generally has low conductivity, the efficiency of extracting generated charges to the outside decreases as the cell area increases. Therefore, it is common to form a plurality of strip-shaped cells side by side and connect the plurality of cells in series.
上述した有機薄膜太陽電池や有機/無機ハイブリッド太陽電池を低コストで実現するためには、有機活性層を形成する塗布液をセルパターンに応じて精度よく塗布することが求められる。さらに、有機活性層の膜厚は数10nmから数100nm程度であるため、そのような非常に薄い層を精度よく形成することが求められる。しかしながら、従来の塗布法では有機活性層パターンを低コストで精度よく形成することができない。例えば、低コストで比較的大面積に極薄い層を印刷可能な塗布法としてメニスカス印刷法が知られている。しかし、従来のメニスカス印刷法では有機活性層パターンに濃淡模様が生じたり、また塗布開始部位と塗布終了部位との間で塗布幅や塗布厚が変動する等の問題がある。このようなことから、塗布液のセルパターン等に応じた塗布技術の向上が求められている。 In order to realize the above-described organic thin-film solar cell and organic / inorganic hybrid solar cell at low cost, it is required to apply a coating solution for forming an organic active layer with high accuracy according to the cell pattern. Furthermore, since the film thickness of the organic active layer is about several tens nm to several hundreds nm, it is required to form such a very thin layer with high accuracy. However, the conventional coating method cannot accurately form the organic active layer pattern at a low cost. For example, a meniscus printing method is known as a coating method capable of printing an extremely thin layer on a relatively large area at a low cost. However, the conventional meniscus printing method has problems such as a shading pattern in the organic active layer pattern, and a variation in coating width and coating thickness between the coating start site and the coating end site. For these reasons, there is a demand for improvement in coating technology according to the cell pattern of the coating solution.
本発明が解決しようとする課題は、塗布液を塗布パターンに応じて精度よく塗布することを可能にした塗布方法および塗布装置を提供することにある。 The problem to be solved by the present invention is to provide a coating method and a coating apparatus capable of accurately coating a coating solution according to a coating pattern.
実施形態の塗布方法は、塗布領域となる外面を有する塗布ヘッドを用意する工程と、塗布ヘッドを塗布対象物の塗布面上に所定の間隙を持って配置する工程と、塗布ヘッドの外面上に塗布液を供給し、塗布液の供給位置から間隙に向けて塗布液を外面に沿って流動させることにより、塗布ヘッドと塗布面との間に塗布液溜りを形成する工程と、塗布ヘッドおよび塗布対象物の少なくとも一方を移動させ、塗布液溜りから塗布液を塗布面に塗布する工程とを具備する。塗布ヘッドの外面には、塗布液の供給位置から移動方向と略直交する外面の幅方向に塗布液を誘導する溝が設けられている。 The coating method of the embodiment includes a step of preparing a coating head having an outer surface serving as a coating region, a step of arranging the coating head on the coating surface of the coating object with a predetermined gap, and a surface of the coating head. A step of forming a coating liquid reservoir between the coating head and the coating surface by supplying the coating solution and flowing the coating solution along the outer surface from the coating solution supply position toward the gap; and the coating head and coating And a step of moving at least one of the objects and applying the coating liquid from the coating liquid reservoir to the coating surface. On the outer surface of the coating head, there is provided a groove for guiding the coating liquid in the width direction of the outer surface substantially perpendicular to the moving direction from the position where the coating liquid is supplied.
以下、実施形態の塗布方法および塗布装置について、図面を参照して説明する。なお、各実施形態において、実質的に同一の構成部位には同一の符号を付し、その説明を一部省略する場合がある。図面は模式的なものであり、厚さと平面寸法との関係、各部の厚さの比率等は現実のものとは異なる場合がある。説明中の上下等の方向を示す用語は、特に明記が無い場合には後述する塗布対象物の塗布面を上とした場合の相対的な方向を示し、重力加速度方向を基準とした現実の方向とは異なる場合がある。 Hereinafter, a coating method and a coating apparatus according to an embodiment will be described with reference to the drawings. In each embodiment, substantially the same constituent parts are denoted by the same reference numerals, and the description thereof may be partially omitted. The drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each part, and the like may differ from the actual ones. The term indicating the direction such as up and down in the description indicates the relative direction when the coating surface of the coating object to be described later is up unless otherwise specified, and the actual direction based on the gravitational acceleration direction May be different.
(第1の実施形態/塗布方法および塗布装置)
図1は実施形態の塗布装置の概略構成を示す正面図、図2は図1に示す塗布装置の側面図である。図1および図2に示す塗布装置1は、塗布対象物である基板2の塗布面(表面)2aに塗布液3を塗布することによって、基板2上に所望形状の塗膜を形成するための装置である。塗布装置1は、塗布ヘッド10と、塗布対象物である基板2と塗布ヘッド10との間に塗布液3を供給する供給機構20と、塗布ヘッド10および基板2の少なくとも一方を移動させる移動機構30とを具備している。
(First embodiment / application method and application apparatus)
FIG. 1 is a front view showing a schematic configuration of the coating apparatus of the embodiment, and FIG. 2 is a side view of the coating apparatus shown in FIG. The coating apparatus 1 shown in FIG. 1 and FIG. 2 is for applying a
塗布ヘッド10は、図中x方向に長尺な略円柱形状を有するヘッド本体11を備えている。ヘッド本体11は、塗布液3の塗布領域となる外周面11aを有している。ヘッド本体11の外周面11aには、塗布液3を多連短冊状のパターンに塗布して塗膜を形成するように、ヘッド本体11の外周面11aを長尺方向に対して複数に分割する溝12が設けられている。ヘッド本体11の外周面11aに分割溝12を設けることによって、外周面11aは複数の塗布領域13に分割されている。複数の塗布領域13は、それぞれ多連短冊状塗膜の各パターンに対応している。分割溝12は、ヘッド本体11の外周面11aの円周方向の少なくとも一部に沿って設けられていればよい。
The
図1および図2は略円柱形状を有するヘッド本体11を示しているが、ヘッド本体11の形状はこれに限られるものではない。ヘッド本体11は、例えば六角柱状のような多角柱状の形状を有していてもよい。このような場合、分割溝12はヘッド本体11の長尺方向と略直交する方向に向けて外面の少なくとも一部に沿って設けられる。複数の塗布領域13は、ヘッド本体11の外面を長尺方向に複数に分割するように設けられる。ヘッド本体11は、塗布液3を多連短冊状パターンに塗布するものに限らず、塗布液3をベタ膜状パターンに塗布するものであってもよい。この場合には、分割溝12を有しないヘッド本体11が用いられ、ヘッド本体11の外周面11aを1つの塗布領域として機能させる。
1 and 2 show the head
供給機構20は、塗布ヘッド10のヘッド本体11と基板2の塗布面2aとの間に塗布液3を供給するシリンジポンプ21を備えている。シリンジポンプ21は、複数の塗布領域13にそれぞれ設置されている。供給機構20は、シリンジポンプ21に限られるものではなく、微量の材料を正確に吐出することが可能な各種の吐出装置を用いることができる。移動機構30は、例えば塗布対象物である基板2が載置されるステージ31と、ステージ31の駆動機構32とを有している。駆動機構32は、ステージ31を図中y方向に移動させる。駆動機構32は、ステージ31を図中z方向に移動させる機構を有していてもよい。移動機構30は、塗布ヘッド10を移動させるように構成してもよい。
The
次に、実施形態の塗布装置1を用いて基板2に塗布液3を塗布する工程について、図3ないし図5を参照して説明する。なお、図3および図4では便宜的にヘッド本体11の1つの塗布領域13のみを示している。まず、塗布ヘッド10を基板2の塗布面2a上に所定の間隙を持って配置する。塗布ヘッド10は、分離溝12が塗布面2aを向くように配置される。分離溝12が外周面の全周にわたって設けられている場合には、単に塗布ヘッド10を塗布面2a上に所定の間隙を持って配置すればよい。分離溝12が外周面の一部に沿って設けられている場合には、分離溝12を有する領域が塗布面2aを向くように配置する。この状態で、塗布ヘッド10の外周面(ヘッド本体11の外周面11a)と基板2の塗布面2aとの間に供給機構20から塗布液3を供給する。
Next, the process of apply | coating the
塗布液3の供給工程は、以下のようにして実施される。まず、図3および図4に示すように、塗布液3をシリンジポンプ21からヘッド本体11の外周面11a上に供給する。外周面11a上に供給された塗布液3は、外周面11a上の塗布液3の供給位置(塗布液3が最初に接触する位置)から外周面11aと塗布面2aとの間の間隙に向けて、外周面11aに沿って流動する。外周面11aに沿って流動した塗布液3は、外周面11aと塗布面2aとの間の間隙に達した後、ヘッド本体11(塗布領域13)の幅方向(図中x方向)に向けて濡れ広がる。ここで、ヘッド本体11の幅方向(x)は、後述する基板2の移動方向(図中y方向)に対して略直交する方向である。
The supply process of the
このようにして、外周面11aと塗布面2aとの間の間隙にメニスカス柱4のような塗布液溜りを形成する。メニスカス柱4は、円弧状の曲面を有する柱状体であり、ヘッド本体11と基板2の塗布面2aとの間の間隙距離、塗布液3の性質(粘度や表面張力等)、塗布液3の供給量等に応じて所望の形状を有する。メニスカス柱4の形状、塗布液3の粘度や表面張力のような性質、基板2の移動速度等に応じて、所望の膜厚を有する塗膜が形成される。メニスカス柱4は、外周面11aと塗布面2aとの間の間隙に、x方向およびy方向に対して均一な形状で形成されていることが望ましい。
In this way, a coating liquid reservoir like the
次いで、図5に示すように、ステージ31を駆動して基板2をy方向に移動させることによって、メニスカス柱4から塗布液3を塗布面2aに塗布して塗膜5を形成する。メニスカス柱4は、分割溝12で分割された塗布領域13毎に形成されているため、複数の塗布領域13の形状にそれぞれ対応して分割されたパターン5Aを有する塗膜5が形成される。複数に分割された塗膜5の各パターン5Aには、理想的には短手方向(x)の幅および厚さが均一で、かつ長手方向(y)の厚さが均一な形状を有することが求められる。
Next, as shown in FIG. 5, the
しかしながら、シリンジポンプ21の先端部(塗布液3の吐出部/ニードル)は、微量の塗布液を正確に供給することが可能なように、塗布領域13の幅(x)と比較してかなり小さい大きさを有している。このため、シリンジポンプ21の先端部からヘッド本体11の外周面11a上に、単に塗布液3を供給しただけでは、ヘッド本体11の外周面11aと基板2の塗布面2aとの間の間隙に塗布液3を均一に供給することが難しい。塗布液3を均一に供給できないと、メニスカス柱4の形状不良、さらには塗膜パターン5Aの形状不良や濃淡不良等を引き起こすおそれがある。
However, the tip of the syringe pump 21 (the discharge portion / needle for the coating liquid 3) is considerably smaller than the width (x) of the
例えば、外周面11aと塗布面2aとの間の間隙において、塗布液3を塗布領域13の幅方向(x)に十分に濡れ広がらせることができないと、メニスカス柱4の幅方向(x)の形状が不均一になる。また、塗布液3が塗布領域13の幅方向(x)に十分に濡れ広がるように静置すると、幅方向(x)の端部における塗布液3の液量が増加するおそれがある。これらは、塗膜パターン5Aの短手方向(x)の形状不良の発生原因となる。塗布液3の濡れ広がりが不十分であると、塗膜パターン5Aの短手方向(x)の幅が長手方向(y)に対して不均一になりやすい。また、メニスカス柱4の端部の液量が増加すると、塗膜パターン5Aの短手方向(x)の端部のみが厚くなりやすい。
For example, in the gap between the outer
また、塗膜パターン5Aの長手方向(y)の長さを長くしようとすると、塗膜パターン5Aの短手方向(x)の幅が徐々に狭くなるとと共に、塗膜パターン5Aの厚さが徐々に薄くなりやすい。すなわち、塗布液3の塗布開始部位と塗布終了部位との間で、塗布液3の塗布幅や塗布厚が変動しやすい。塗布液3の塗布工程において、塗布液3を間隙に供給した後に、塗布液3の供給を止めてから基板2を移動させて塗布する場合と、塗布液3を連続的に供給しながら基板2を移動させて塗布する場合とがある。塗膜パターン5Aの長手方向(y)の長さを長くするために、塗布液3を供給しながら基板2を移動させると、塗布液3が供給され続ける塗膜パターン5Aの短手方向(x)の中央付近の濃度が高くなり、塗膜パターン5Aの中央付近に筋状の模様が生じやすくなる。
Moreover, when it is going to lengthen the length of the longitudinal direction (y) of the
上述したような問題を解消するために、実施形態の塗布装置1においては、ヘッド本体11の外周面11に塗布液3の供給位置から外周面11の幅方向(x)に塗布液3を誘導する溝を設けている。このような塗布液3の誘導溝を有するヘッド本体11を用いることによって、ヘッド本体11の外周面11aと基板2の塗布面2aとの間の間隙に塗布液3を均一に供給することができ、ひいてはメニスカス柱4の幅方向(x)および基板2の移動方向(y)に対する形状を均一化することができる。従って、塗膜パターン5Aの形状不良や濃淡不良等の発生が抑制されるため、形状精度や濃度精度に優れる塗膜パターン5Aを有する塗膜5を再現性よく形成することが可能になる。以下に、塗布液3の誘導溝を有するヘッド本体11を用いた塗布装置1について詳述する。
In order to solve the problems described above, in the coating apparatus 1 of the embodiment, the
塗布液3の誘導溝を有する塗布ヘッド10の第1の構成例について、図6および図7を参照して述べる。図6および図7に示す塗布ヘッド10は、塗布液3を幅方向(x)に誘導する溝14が設けられた外周面11aを有するヘッド本体11を備えている。誘導溝14は、外周面11a上の塗布液3の供給点Aから外周面11aと塗布面2aとの間の間隙Gに向けて流動する塗布液3を、外周面11の幅方向(x)に誘導するように設けられている。図6および図7に示す誘導溝14は、溝内の誘導路が供給点Aから幅方向(x)に分離するように分岐されている。さらに、塗布液3が複数の場所から間隙Gに達するように、誘導溝14は複数回分岐している。誘導溝14の分岐回数は、塗布領域13の幅(x)や塗布液3の流動性等を考慮して適宜に設定される。
A first configuration example of the
上述した誘導溝14を有するヘッド本体11の外周面11a上に供給された塗布液3は、供給点Aから誘導溝14内を流動し、さらに誘導溝14の分岐点で分流し、この分流を繰り返すことによって、複数の場所から間隙Gに到達する。塗布液3を複数の場所から間隙Gに到達させることによって、間隙Gの幅方向(x)に対する塗布液3の供給量が均一化される。従って、塗布領域13の幅方向(x)に対する形状が均一なメニスカス柱4を得ることができる。さらに、塗布領域13の幅方向(x)に対する塗布液3の供給量を均一化することによって、基板2の移動方向(y)に対するメニスカス柱4の形状も均一化される。このようなメニスカス柱4から塗布液3を塗布面2aに塗布することによって、塗膜パターン5Aの形状不良や濃淡不良等の発生を抑制することができる。具体的には、塗膜パターン5Aの短手方向(x)の幅が変動したり、また短手方向(x)の端部のみが厚くなるような不良の発生を抑制することが可能になる。
The
塗布液3を供給しながら基板2を移動させて塗膜5を形成する場合においても、塗布液3が複数の場所からメニスカス柱4に供給されるようになるため、塗布液3の局所的な高濃度化やそれに基づく筋状の模様の発生等を抑制することができる。さらに、塗布液3を供給しながら良好な塗膜5を形成することが可能になるため、塗膜5の長手方向(y)の長さをより長くすることができる。そのような場合において、塗膜パターン5Aの短手方向(x)の幅や厚さの変動を抑制することができる。従って、パターン5Aの幅や厚さの形状精度を向上させつつ、長手方向(y)の長さをより長くしたパターン5Aを有する塗膜5を再現性よく形成することが可能になる。
Even in the case where the
次に、塗布液3の誘導溝を有する塗布ヘッド10の第2の構成例について、図8および図9を参照して述べる。図8および図9に示す塗布ヘッド10は、塗布液3を外周面11aの幅方向(x)に誘導する溝15が設けられた外周面11aを有するヘッド本体11を備えている。誘導溝15は、外周面11a上の塗布液3の供給点Aと間隙Gとの間に、外周面11aの幅方向(x)に沿って設けられており、塗布液3の緩衝領域として機能する。誘導溝15は、塗布液3の緩衝領域として機能する程度の深さを有している。言い換えると、誘導溝15は塗布液3を一旦溜めることができる程度の深さを有している。
Next, a second configuration example of the
誘導溝15を有するヘッド本体11の外周面11a上に供給された塗布液3は、供給点Aから外周面11aに沿って流動し、一旦誘導溝15内に収容される。誘導溝15内に収容された塗布液3が幅方向(x)に濡れ広がり、さらに誘導溝15内が塗布液3で充満する。誘導溝15内を充満した塗布液3は、誘導溝15の幅方向(x)の全領域から溢れ出し、さらに間隙Gに向けて外周面11aに沿って流動する。従って、間隙Gの幅方向(x)に対する塗布液3の供給量が均一化されるため、塗布領域13の幅方向(x)に対する形状が均一なメニスカス柱4を得ることができる。さらに、塗布領域13の幅方向(x)に対する塗布液3の供給量を均一化することによって、基板2の移動方向(y)に対するメニスカス柱4の形状も均一化される。
The
このようなメニスカス柱4から塗布液3を塗布面2aに塗布することによって、塗膜パターン5Aの形状不良や濃淡不良等の発生を抑制することができる。さらに、塗布液3を供給しながら基板2を移動させて塗膜5を形成する場合においても、塗布液3が幅方向(x)の全領域からメニスカス柱4に供給されるようになるため、塗布液3の局所的な高濃度化やそれに基づく筋状の模様の発生等を抑制することができる。さらに、塗布液3を供給しながら良好な塗膜5を形成することが可能になるため、塗膜5の長手方向(y)の長さをより長くすることができる。そのような場合において、塗膜パターン5Aの短手方向(x)の幅や厚さの変動を抑制することができる。従って、パターン5Aの幅や厚さの形状精度を向上させつつ、長手方向(y)の長さをより長くしたパターン5Aを有する塗膜5を再現性よく形成することが可能になる。
By applying the
(第2の実施形態/有機薄膜太陽電池)
実施形態の塗布装置1およびそれを用いた塗布方法は、例えば有機薄膜太陽電池モジュールの製造方法における有機活性層の形成工程に好適に用いられる。図10および図11は、実施形態の塗布方法が有機活性層の形成工程に適用される有機薄膜太陽電池モジュール100の一例を示している。なお、図11は対向電極の図示を省略している。図10および図11に示す有機薄膜太陽電池モジュール100は、直列接続された複数のセル部102A、102Bを有している。支持基板101上には、分離された複数の第1電極層103A、103Bが形成されている。第1電極層103A、103B上には、それぞれ光電変換層104A、104Bが形成されている。光電変換層104A、104B上には、それぞれ第2電極層105A、105Bが形成されている。セル部102Aの第2電極層105Aは、セル部102Bの第1電極層103Bと電気的に接続されている。
Second Embodiment / Organic Thin Film Solar Cell
The coating apparatus 1 and the coating method using the same according to the embodiment are suitably used for, for example, a process of forming an organic active layer in a method for manufacturing an organic thin film solar cell module. 10 and 11 show an example of the organic thin-film
図10に示す有機薄膜太陽電池モジュール100において、光電変換層104(104A、104B)には支持基板101側から太陽光や照明光等の光が照射される。光電変換層104は、例えばp型半導体とn型半導体とを含む有機活性層と、場合によって、第1電極層103と有機活性層との間に配置された、図示しない第1中間層(例えば電子輸送層)、および有機活性層と第2電極層105との間に配置された、図示しない第2中間層(例えば正孔輸送層)とを有している。光電変換層104に照射された光を有機活性層が吸収すると、p型半導体とn型半導体との相界面で電荷分離が生じることによって、電子とそれと対になる正孔とが生成される。有機活性層で生成された電子と正孔のうち、例えば電子は第1電極層103で捕集され、正孔は第2電極層105で捕集される。
In the organic thin film
支持基板101は、光透過性を有する材料により構成される。支持基板101の構成材料としては、無アルカリガラス、石英ガラス、サファイア等の無機材料、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリアミド、ポリアミドイミド、液晶ポリマー等の有機材料が挙げられる。
The
第1電極層103は、光透過性と導電性とを有する材料により構成される。第1電極層103の構成材料としては、酸化インジウム、酸化亜鉛、酸化錫、酸化インジウム錫(ITO)、フッ素がドープされた酸化錫(FTO)、インジウム−亜鉛酸化物(IZO)、インジウム−ガリウム−亜鉛酸化物(IGZO)等の導電性金属酸化物、金、白金、銀、銅、チタン、ジルコニウム、コバルト、ニッケル、インジウム、アルミニウム等の金属やそれら金属を含む合金、あるいはポリ(3,4−エチレンジオキシチオフェン)/ポリ(4−スチレンスルホン酸)(PEDOT/PSS)のような導電性高分子等が挙げられる。第1電極層103は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法等により形成される。 The first electrode layer 103 is made of a material having optical transparency and conductivity. Constituent materials of the first electrode layer 103 include indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), tin oxide doped with fluorine (FTO), indium-zinc oxide (IZO), indium-gallium. -Conductive metal oxides such as zinc oxide (IGZO), metals such as gold, platinum, silver, copper, titanium, zirconium, cobalt, nickel, indium, aluminum, alloys containing these metals, or poly (3,4) -Conductive polymers such as ethylenedioxythiophene) / poly (4-styrenesulfonic acid) (PEDOT / PSS). The first electrode layer 103 is formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, a plating method, a coating method, or the like.
有機活性層は、照射された光により電荷分離を行う機能を有し、p型半導体とn型半導体とを含んでいる。p型半導体には、電子供与性を有する材料が用いられる。n型半導体には、電子受容性を有する材料が用いられる。有機活性層を構成するp型半導体およびn型半導体は、それらが共に有機材料であってもよいし、一方が有機材料であってもよい。 The organic active layer has a function of performing charge separation by irradiated light and includes a p-type semiconductor and an n-type semiconductor. For the p-type semiconductor, a material having an electron donating property is used. For the n-type semiconductor, an electron-accepting material is used. Both the p-type semiconductor and the n-type semiconductor constituting the organic active layer may be an organic material, or one of them may be an organic material.
有機活性層に含まれるp型半導体には、例えば、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェンおよびその誘導体、ポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖または主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリンおよびその誘導体、フタロシアニン誘導体、ポルフィリンおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体等を使用することができ、これらを併用してもよい。また、これらの共重合体を使用してもよく、例えばチオフェン−フルオレン共重合体やフェニレンエチニレン−フェニレンビニレン共重合体等が挙げられる。 Examples of the p-type semiconductor contained in the organic active layer include polythiophene and derivatives thereof, polypyrrole and derivatives thereof, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, and polyvinylcarbazole and derivatives thereof. , Polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, phthalocyanine derivatives, porphyrin and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, etc. These may be used in combination. These copolymers may be used, and examples thereof include a thiophene-fluorene copolymer and a phenylene ethynylene-phenylene vinylene copolymer.
p型の有機半導体としては、π共役を有する導電性高分子であるポリチオフェンおよびその誘導体を用いることが好ましい。ポリチオフェンおよびその誘導体は、優れた立体規則性を確保することができ、溶媒への溶解性が比較的高い。ポリチオフェンおよびその誘導体は、チオフェン骨格を有する化合物であれば特に限定されない。ポリチオフェンおよびその誘導体の具体例としては、ポリ(3−メチルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)等のポリアルキルチオフェン、ポリ(3−フェニルチオフェン)、ポリ(3−(p−アルキルフェニルチオフェン))等のポリアリールチオフェン、ポリ(3−ブチルイソチオナフテン)、ポリ(3−ヘキシルイソチオナフテン)、ポリ(3−オクチルイソチオナフテン)、ポリ(3−デシルイソチオナフテン)等のポリアルキルイソチオナフテン、ポリエチレンジオキシチオフェン等が挙げられる。また、カルバゾール、ベンゾチアジアゾール、およびチオフェンからなる共重合体(例えば、ポリ[N−9’−ヘプタデカニル−2,7−カルバゾール−アルト−5,5−(4,7−ジ−2−チエニル−2’,1’,3’−ベンゾチアジアゾール)]/PCDTBT)が、優れた光電変換効率を有する化合物として知られている。 As the p-type organic semiconductor, it is preferable to use polythiophene which is a conductive polymer having π conjugation and a derivative thereof. Polythiophene and its derivatives can ensure excellent stereoregularity and have relatively high solubility in a solvent. Polythiophene and derivatives thereof are not particularly limited as long as they are compounds having a thiophene skeleton. Specific examples of polythiophene and derivatives thereof include poly (3-methylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), Polyalkylthiophene such as poly (3-dodecylthiophene), polyarylthiophene such as poly (3-phenylthiophene), poly (3- (p-alkylphenylthiophene)), poly (3-butylisothionaphthene), poly Polyalkylisothionaphthenes such as (3-hexylisothionaphthene), poly (3-octylisothionaphthene), poly (3-decylisothionaphthene), and polyethylenedioxythiophene. In addition, a copolymer of carbazole, benzothiadiazole, and thiophene (for example, poly [N-9′-heptadecanyl-2,7-carbazole-alt-5,5- (4,7-di-2-thienyl-2) ', 1', 3'-benzothiadiazole)] / PCDTBT) is known as a compound having excellent photoelectric conversion efficiency.
有機活性層に含まれるn型半導体には、フラーレンおよびフラーレン誘導体等が用いられる。フラーレン誘導体は、フラーレン骨格を有するものであればよい。フラーレンおよびフラーレン誘導体としては、C60、C70、C76、C78、C84等のフラーレン、これらフラーレンの炭素原子の少なくとも一部が酸化された酸化フラーレン、フラーレン骨格の一部の炭素原子を任意の官能基で修飾した化合物、これら官能基同士が互いに結合して環を形成した化合物等が挙げられる。 For the n-type semiconductor contained in the organic active layer, fullerene, fullerene derivatives and the like are used. The fullerene derivative should just have a fullerene skeleton. Fullerenes and fullerene derivatives include fullerenes such as C 60 , C 70 , C 76 , C 78 , C 84 , fullerene oxides in which at least some of the carbon atoms of these fullerenes are oxidized, and some carbon atoms of the fullerene skeleton. Examples thereof include a compound modified with an arbitrary functional group, a compound in which these functional groups are bonded to each other to form a ring, and the like.
フラーレン誘導体に用いられる官能基としては、水素原子、水酸基、フッ素原子や塩素原子のようなハロゲン原子、メチル基やエチル基のようなアルキル基、ビニル基のようなアルケニル基、シアノ基、メトキシ基やエトキシ基のようなアルコキシ基、フェニル基やナフチル基のような芳香族炭化水素基、チエニル基やピリジル基のような芳香族複素環基等が挙げられる。フラーレン誘導体の具体例としては、C60H36やC70H36のような水素化フラーレン、C60やC70を酸化した酸化フラーレン、フラーレン金属錯体等が挙げられる。フラーレン誘導体としては、[6,6]フェニルC61酪酸メチルエステル(60PCBM)、[6,6]フェニルC71酪酸メチルエステル(70PCBM)、ビスインデンC60(60ICBA)等を用いることが好ましい。 Functional groups used in fullerene derivatives include hydrogen atoms, hydroxyl groups, halogen atoms such as fluorine atoms and chlorine atoms, alkyl groups such as methyl groups and ethyl groups, alkenyl groups such as vinyl groups, cyano groups, and methoxy groups. And an alkoxy group such as ethoxy group, an aromatic hydrocarbon group such as phenyl group and naphthyl group, and an aromatic heterocyclic group such as thienyl group and pyridyl group. Specific examples of fullerene derivatives include hydrogenated fullerenes such as C 60 H 36 and C 70 H 36 , fullerene oxides obtained by oxidizing C 60 and C 70 , fullerene metal complexes, and the like. As the fullerene derivative, it is preferable to use [6,6] phenyl C 61 butyric acid methyl ester (60PCBM), [6,6] phenyl C 71 butyric acid methyl ester (70PCBM), bisindene C 60 (60ICBA) or the like.
有機活性層は、例えばp型半導体材料とn型半導体材料との混合物を含むバルクヘテロ接合構造を有する。バルクヘテロ接合型の有機活性層は、p型半導体材料とn型半導体材料とのミクロ相分離構造を有する。有機活性層内において、p型半導体相とn型半導体相とは互いに相分離しており、ナノオーダーのpn接合を形成している。有機活性層が光を吸収すると、これらの相界面で負電荷(電子)と正電荷(正孔)とが分離され、各半導体を通って電極103、105に輸送される。 The organic active layer has a bulk heterojunction structure including, for example, a mixture of a p-type semiconductor material and an n-type semiconductor material. The bulk heterojunction organic active layer has a microphase separation structure of a p-type semiconductor material and an n-type semiconductor material. In the organic active layer, the p-type semiconductor phase and the n-type semiconductor phase are phase-separated from each other to form a nano-order pn junction. When the organic active layer absorbs light, negative charges (electrons) and positive charges (holes) are separated at these phase interfaces, and are transported to the electrodes 103 and 105 through each semiconductor.
バルクヘテロ接合型の有機活性層は、p型半導体とn型半導体を溶媒に溶解させた溶液を塗布液として使用し、この塗布液を第1電極層(透明電極)103等を有する支持基板(透明基板)101上に塗布することにより形成される。有機活性層を構成する塗布液は、実施形態の塗布装置1およびそれを用いた塗布方法を適用して支持基板(透明基板)101上に塗布される。これによって、図11に示すような多連短冊状のパターンを有する光電変換層103A、103Bを、高精度にかつ低コストで形成することが可能になる。有機活性層の厚さは特に限定されないが、10nm〜1000nmが好ましい。
For the bulk heterojunction type organic active layer, a solution obtained by dissolving a p-type semiconductor and an n-type semiconductor in a solvent is used as a coating solution, and this coating solution is used as a support substrate (transparent electrode) having a first electrode layer (transparent electrode) 103 and the like. Substrate) 101 is applied by coating. The coating liquid constituting the organic active layer is applied onto the support substrate (transparent substrate) 101 by applying the coating apparatus 1 of the embodiment and a coating method using the same. As a result, the
電子輸送層は、有機活性層で生成された正孔をブロックし、電子を選択的にかつ効率的に第1電極層103に輸送する機能を有する。電子輸送層の構成材料としては、酸化亜鉛、酸化チタン、酸化ガリウムのような金属酸化物、ポリエチレンイミンのような有機材料等が挙げられる。正孔輸送層は、有機活性層で生成された電子をブロックし、正孔を選択的にかつ効率的に第2電極層105に輸送する機能を有する。正孔輸送層の構成材料としては、PEDOT/PSS、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミンポリピロール、ポリアニリンのような有機導電性ポリマー、酸化モリブデン、酸化バナジウムのような金属酸化物等が挙げられる。電子輸送層および正孔輸送層は、例えば真空蒸着法やスパッタ法のような真空成膜法、ゾルゲル法、塗布法等により形成される。 The electron transport layer has a function of blocking holes generated in the organic active layer and selectively and efficiently transporting electrons to the first electrode layer 103. Examples of the constituent material of the electron transport layer include metal oxides such as zinc oxide, titanium oxide, and gallium oxide, and organic materials such as polyethyleneimine. The hole transport layer has a function of blocking electrons generated in the organic active layer and transporting holes to the second electrode layer 105 selectively and efficiently. Examples of the constituent material of the hole transport layer include organic conductive polymers such as PEDOT / PSS, polythiophene, polypyrrole, polyacetylene, triphenylenediamine polypyrrole, and polyaniline, and metal oxides such as molybdenum oxide and vanadium oxide. The electron transport layer and the hole transport layer are formed by, for example, a vacuum film formation method such as a vacuum deposition method or a sputtering method, a sol-gel method, a coating method, or the like.
第2電極層105は、導電性を有し、場合によっては光透過性を有する材料により構成される。第2電極層105の構成材料としては、例えば白金、金、銀、銅、ニッケル、コバルト、鉄、マンガン、タングステン、チタン、ジルコニウム、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、カルシウム、マグネシウム、バリウム、サマリウム、テルビウムのような金属、それらを含む合金、インジウム−亜鉛酸化物(IZO)のような導電性金属酸化物、PEDOT/PSSのような導電性高分子、あるいはグラフェン、カーボンナノチューブのような炭素材料等が挙げられる。第2電極層105は、例えば真空蒸着法やスパッタ法のような真空成膜法、ゾルゲル法、塗布法等により形成される。 The second electrode layer 105 is made of a material having conductivity and, in some cases, light transmission. As the constituent material of the second electrode layer 105, for example, platinum, gold, silver, copper, nickel, cobalt, iron, manganese, tungsten, titanium, zirconium, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, Metals such as rubidium, cesium, calcium, magnesium, barium, samarium and terbium, alloys containing them, conductive metal oxides such as indium-zinc oxide (IZO), conductive polymers such as PEDOT / PSS Or carbon materials such as graphene and carbon nanotubes. The second electrode layer 105 is formed by, for example, a vacuum film formation method such as a vacuum deposition method or a sputtering method, a sol-gel method, a coating method, or the like.
実施形態の塗布装置1およびそれを用いた塗布方法を適用することによって、多連短冊状の光電変換層103A、103Bを備える有機薄膜太陽電池100を高精度にかつ低コストで作製することが可能になる。実施形態の塗布装置1およびそれを用いた塗布方法は、有機薄膜太陽電池の有機活性層の形成工程に限らず、電子輸送層や正孔輸送層の形成工程等、塗布法を適用する形成工程に適用可能である。さらに、有機薄膜太陽電池の製造工程に限らす、活性層に有機/無機混成ペロブスカイト化合物を用いた有機/無機ハイブリッド太陽電池等の製造工程に適用することができる。例えば、活性層に用いられるペロブスカイト半導体としては、(CH3NH3)BX3(BはPbやSn等の金属原子、XはI、Br、Cl等のハロゲン元素である)が知られている。このような形成材料の少なくとも一部として有機物を含む構成層を備える太陽電池の製造工程、さらには発光素子や光センサの製造工程に、実施形態の塗布装置1を適用することができる。
By applying the coating apparatus 1 of the embodiment and the coating method using the same, it is possible to manufacture the organic thin-film
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In addition, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1…塗布装置、2…基板、3…塗布液、4…塗布液溜り(メニスカス柱)、5…塗膜、10…塗布ヘッド、11…ヘッド本体、12…分離溝、13…塗布領域、14,15…誘導溝、20…供給機構、21…シリンジポンプ、30…移動機構、31…ステージ、32…ステージ駆動機構。 DESCRIPTION OF SYMBOLS 1 ... Coating apparatus, 2 ... Substrate, 3 ... Coating liquid, 4 ... Coating liquid reservoir (meniscus column), 5 ... Coating film, 10 ... Coating head, 11 ... Head body, 12 ... Separation groove, 13 ... Coating area, 14 , 15 ... guide groove, 20 ... supply mechanism, 21 ... syringe pump, 30 ... movement mechanism, 31 ... stage, 32 ... stage drive mechanism.
Claims (8)
前記塗布ヘッドを塗布対象物の塗布面上に所定の間隙を持って配置する工程と、
前記塗布ヘッドの前記外面上に塗布液を供給し、前記塗布液の供給位置から前記間隙に向けて前記塗布液を前記外面に沿って流動させることにより、前記塗布ヘッドと前記塗布面との間に塗布液溜りを形成する工程と、
前記塗布ヘッドおよび前記塗布対象物の少なくとも一方を移動させ、前記塗布液溜りから前記塗布液を前記塗布面に塗布する工程とを具備し、
前記塗布ヘッドの前記外面に、前記塗布液の供給位置から前記移動方向と略直交する前記外面の幅方向に前記塗布液を誘導する溝が設けられている、塗布方法。 Preparing a coating head having an outer surface to be a coating region;
Arranging the coating head on the coating surface of the coating object with a predetermined gap;
By supplying a coating liquid onto the outer surface of the coating head and causing the coating liquid to flow along the outer surface from the supply position of the coating liquid toward the gap, a gap between the coating head and the coating surface is obtained. Forming a coating liquid reservoir in
Moving at least one of the application head and the object to be applied, and applying the application liquid from the application liquid reservoir to the application surface;
A coating method, wherein a groove for guiding the coating liquid is provided on the outer surface of the coating head from a supply position of the coating liquid in a width direction of the outer surface substantially orthogonal to the moving direction.
前記塗布ヘッドと前記塗布面との間に塗布液溜りを形成するように、前記塗布ヘッドの前記外面上に塗布液を供給する供給機構と、
前記塗布液溜りから前記塗布液を前記塗布面に塗布するように、前記塗布ヘッドおよび前記塗布対象物の少なくとも一方を移動させる移動機構とを具備し、
前記塗布ヘッドは、前記塗布液の供給位置から前記間隙に向けて前記外面に沿って流動する前記塗布液を、前記移動方向と略直交する前記外面の幅方向に誘導するように、前記外面に設けられた溝を有する、塗布装置。 A coating head having an outer surface to be a coating region and disposed with a predetermined gap on a coating surface of a coating target;
A supply mechanism for supplying a coating liquid onto the outer surface of the coating head so as to form a coating liquid pool between the coating head and the coating surface;
A moving mechanism for moving at least one of the application head and the application object so as to apply the application liquid from the application liquid reservoir to the application surface;
The coating head is arranged on the outer surface so as to guide the coating liquid flowing along the outer surface from the supply position of the coating solution toward the gap in the width direction of the outer surface substantially perpendicular to the moving direction. A coating device having a groove provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015055126A JP5897749B1 (en) | 2015-03-18 | 2015-03-18 | Coating method and coating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015055126A JP5897749B1 (en) | 2015-03-18 | 2015-03-18 | Coating method and coating apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5897749B1 JP5897749B1 (en) | 2016-03-30 |
JP2016174992A true JP2016174992A (en) | 2016-10-06 |
Family
ID=55628670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015055126A Active JP5897749B1 (en) | 2015-03-18 | 2015-03-18 | Coating method and coating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5897749B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021048924A1 (en) * | 2019-09-10 | 2021-03-18 | 株式会社 東芝 | Coating method, coating bar head, and coating device |
WO2021176606A1 (en) * | 2020-03-04 | 2021-09-10 | 株式会社 東芝 | Coating method that can be used to form device, and coating apparatus |
WO2021181445A1 (en) | 2020-03-09 | 2021-09-16 | 株式会社 東芝 | Coating head, coating device, and coating method |
WO2022185467A1 (en) * | 2021-03-04 | 2022-09-09 | 株式会社 東芝 | Coating apparatus and coating method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270079A (en) * | 1992-12-18 | 1993-12-14 | Specialty Coatings Systems, Inc. | Methods of meniscus coating |
JP2012157810A (en) * | 2011-01-31 | 2012-08-23 | Masao Kanda | Coating roll |
JP5323114B2 (en) * | 2011-03-17 | 2013-10-23 | 株式会社東芝 | Solar cell module |
JP5677253B2 (en) * | 2011-09-26 | 2015-02-25 | 株式会社東芝 | Film forming method and film forming apparatus |
-
2015
- 2015-03-18 JP JP2015055126A patent/JP5897749B1/en active Active
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7093891B2 (en) | 2019-09-10 | 2022-06-30 | 株式会社東芝 | Coating method, coating barrhead and coating equipment |
US11623238B2 (en) | 2019-09-10 | 2023-04-11 | Kabushiki Kaisha Toshiba | Coating method, coating bar head and coating apparatus |
WO2021048924A1 (en) * | 2019-09-10 | 2021-03-18 | 株式会社 東芝 | Coating method, coating bar head, and coating device |
JPWO2021048924A1 (en) * | 2019-09-10 | 2021-10-14 | 株式会社東芝 | Coating method, coating barrhead and coating equipment |
WO2021176606A1 (en) * | 2020-03-04 | 2021-09-10 | 株式会社 東芝 | Coating method that can be used to form device, and coating apparatus |
JPWO2021176606A1 (en) * | 2020-03-04 | 2021-09-10 | ||
CN113613798A (en) * | 2020-03-04 | 2021-11-05 | 株式会社东芝 | Coating method and coating apparatus usable for forming device |
JP7145342B2 (en) | 2020-03-04 | 2022-09-30 | 株式会社東芝 | COATING METHOD AND COATING APPARATUS USABLE FOR DEVICE FORMATION |
US20210408378A1 (en) * | 2020-03-04 | 2021-12-30 | Kabushiki Kaisha Toshiba | Coating process and coating apparatus usable for device formation |
JPWO2021181445A1 (en) * | 2020-03-09 | 2021-09-16 | ||
JP7077491B2 (en) | 2020-03-09 | 2022-05-30 | 株式会社東芝 | Coating head, coating device and coating method |
CN113631277A (en) * | 2020-03-09 | 2021-11-09 | 株式会社东芝 | Coating head, coating device and coating method |
WO2021181445A1 (en) | 2020-03-09 | 2021-09-16 | 株式会社 東芝 | Coating head, coating device, and coating method |
US11707759B2 (en) | 2020-03-09 | 2023-07-25 | Kabushiki Kaisha Toshiba | Coating head, coating apparatus, and coating method |
EP4119237A4 (en) * | 2020-03-09 | 2024-01-03 | Kabushiki Kaisha Toshiba | Coating head, coating device, and coating method |
WO2022185467A1 (en) * | 2021-03-04 | 2022-09-09 | 株式会社 東芝 | Coating apparatus and coating method |
JPWO2022185467A1 (en) * | 2021-03-04 | 2022-09-09 | ||
JP7362936B2 (en) | 2021-03-04 | 2023-10-17 | 株式会社東芝 | Coating equipment and coating method |
Also Published As
Publication number | Publication date |
---|---|
JP5897749B1 (en) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10305055B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
US7781760B2 (en) | Thin film transistor, electro-optical device, and electronic apparatus | |
JP5897749B1 (en) | Coating method and coating apparatus | |
KR20110052691A (en) | Method of making organic thin film transistors using a laser induced thermal transfer printing process | |
JP2016157777A (en) | Salar battery and manufacturing method for the same | |
Hassinen et al. | Roll-to-roll compatible organic thin film transistor manufacturing technique by printing, lamination, and laser ablation | |
US10205110B2 (en) | Photoelectric conversion element and manufacturing method of photoelectric conversion element | |
JP5981589B1 (en) | Coating method and coating apparatus | |
US20140137919A1 (en) | Solar cell and solar cell module | |
JP5981594B1 (en) | Coating method and coating apparatus | |
JP6046014B2 (en) | Solar cell and solar cell module | |
JP5981588B1 (en) | Coating method and coating apparatus | |
CN105518894A (en) | Solar cell, solar cell module and method for manufacturing solar cell | |
JP5250981B2 (en) | Organic device manufacturing method and electronic device | |
JP5981599B1 (en) | Coating method and coating apparatus | |
JP5981596B1 (en) | Coating apparatus and coating method | |
Wong et al. | Materials and novel patterning methods for flexible electronics | |
JP6034429B2 (en) | Photoelectric conversion device and method for manufacturing photoelectric conversion device | |
JP5875880B2 (en) | Organic transistor | |
JP2011171484A (en) | Thin film transistor, and electronic apparatus and method of manufacturing the same | |
Song | Self-Aligned Capillary-Assisted Printing of Bottom-Gate Electrolyte-Gated Transistors on Plastic | |
JPWO2012098876A1 (en) | Photoelectric conversion element, method for producing the same, and solar cell | |
JP2017157623A (en) | Photoelectric conversion device | |
JP2016189383A (en) | Photoelectric conversion element and method for manufacturing the same | |
Patchett | A roll-to-roll compatible vacuum-evaporation route to organic circuit production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160302 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5897749 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |