JP2016172473A - Loading bridge storage attitude correction system - Google Patents
Loading bridge storage attitude correction system Download PDFInfo
- Publication number
- JP2016172473A JP2016172473A JP2015052659A JP2015052659A JP2016172473A JP 2016172473 A JP2016172473 A JP 2016172473A JP 2015052659 A JP2015052659 A JP 2015052659A JP 2015052659 A JP2015052659 A JP 2015052659A JP 2016172473 A JP2016172473 A JP 2016172473A
- Authority
- JP
- Japan
- Prior art keywords
- boarding bridge
- aircraft
- information
- tunnel
- loading bridge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Bridges Or Land Bridges (AREA)
Abstract
Description
本発明は、搭乗橋の運用の効率化を図ることができる搭乗橋格納姿勢修正システムに関するものである。 The present invention relates to a boarding bridge storage posture correction system capable of improving the efficiency of operation of a boarding bridge.
従来より、旅客が空港のターミナルビルと航空機の間を移動するために搭乗橋(PBB)が使用されている。図1に搭乗橋の構造の概要を示す。この搭乗橋は、乗客が移動可能な中空部を有する伸縮自在のトンネルと、空港のターミナルビルの乗降口部に正逆回転自在に接続されるロタンダと、航空機の乗降口部(ドア)に正逆回転自在に接続されるキャブと、トンネルの航空機寄りの両側面に回動可能に設けられ、下方に走行タイヤを備えた一対の支柱からなるドライブコラムより構成されている(特許文献1等)。 Traditionally, a boarding bridge (PBB) has been used for passengers to move between airport terminal buildings and aircraft. Fig. 1 shows an outline of the boarding bridge structure. This boarding bridge has a telescopic tunnel with a hollow part where passengers can move, a rotunda connected to the entrance / exit part of the airport terminal building so as to be able to rotate forward and backward, and the front / rear part of the aircraft (door). It is composed of a cab that is connected in a reversely rotatable manner and a drive column that is rotatably provided on both sides of the tunnel close to the aircraft and includes a pair of support columns provided with traveling tires below (Patent Document 1, etc.) .
搭乗橋は、未使用時の際に図2に示す水平姿勢で格納される。一方、搭乗橋を使用する際は、航空機がスポットインする前にオペレータによって予め航空機の機種指定を行うと、自動(以下「プリセット」という。)で航空機のドア高さにキャブが位置するように搭乗橋の高さ方向の姿勢が変更され、また、これら動作と平行してキャブの向きも自動で変更される。
一方、航空機がスポットアウトする際は、搭乗橋はプリセットにて図2の水平姿勢に戻される。
The boarding bridge is stored in the horizontal posture shown in FIG. 2 when not in use. On the other hand, when using the boarding bridge, if the operator designates the aircraft model in advance before the aircraft is spotted, the cab is positioned automatically at the door height of the aircraft (hereinafter referred to as “preset”). The posture in the height direction of the boarding bridge is changed, and the direction of the cab is automatically changed in parallel with these operations.
On the other hand, when the aircraft is spotted out, the boarding bridge is returned to the horizontal posture of FIG. 2 by presetting.
例えば、成田国際空港では、開港当初の主流航空機はB747(大型機)であったが、昨今では図3に示すようにB737を始めとした小型機の割合が増えており、年間の発着回数も増加傾向にある。発着回数が増加すると搭乗橋の運用の効率化が求められる。しかし、昨今の大型機や小型機が混在する運用下では、搭乗橋の着脱の作業効率が向上しない事情がある。
For example, at Narita International Airport, the mainstream aircraft at the time of opening was B747 (large aircraft), but recently, the percentage of small aircraft such as B737 has increased as shown in FIG. It is increasing. As the number of departures and arrivals increases, more efficient operation of the boarding bridge is required. However, there is a situation in which the work efficiency of attaching and detaching the boarding bridge is not improved under the operation in which large machines and small machines are mixed.
スポット利用の大型機や小型機が混在する場合、搭乗橋のキャブと航空機の高さ位置が一致するように、機種に合わせて搭乗橋の昇降が行われる。この場合、搭乗橋の昇降速度は安全面を考慮し0.015m/secで設計されている。これは、搭乗橋の水平移動の速度0.3m/secと比較しても非常に遅いスピードである。 When spot-based large and small aircraft coexist, the boarding bridge is moved up and down according to the model so that the cab of the boarding bridge and the height position of the aircraft coincide. In this case, the lifting speed of the boarding bridge is designed to be 0.015 m / sec in consideration of safety. This is a very slow speed compared to the horizontal movement speed of 0.3 m / sec of the boarding bridge.
図4に示すように、大型機と小型機では搭乗橋の装着時の姿勢は大きく異なる。大型機(例えばB747)の場合、図4(a)に示すような装着時の姿勢となる。また、小型機(例えばB737)の場合、図4(b)に示すような装着時の姿勢となる。図4(a)に示すように大型機であれば、装着位置から図2に示す格納位置に戻す場合、特に問題はないが、小型機の場合、搭乗橋を図4(b)に示す装着時の姿勢から図2の格納位置に戻す場合には、高さ方向の姿勢変更に3分弱の時間がかかるのに対し、搭乗橋の水平移動は最長でも40秒弱あれば格納位置まで移動することができる。この場合、昇降及び水平移動を同時に行いながら搭乗橋が格納位置に戻ったとしても、昇降動作はまだ完了していないため、オペレータは昇降動作が完了するまでの約2分間は操縦席を離れることができない。 As shown in FIG. 4, the posture when the boarding bridge is mounted is greatly different between the large aircraft and the small aircraft. In the case of a large machine (for example, B747), the posture is as shown in FIG. In the case of a small machine (for example, B737), the posture is as shown in FIG. 4B. In the case of a large machine as shown in FIG. 4 (a), there is no particular problem when returning from the installation position to the storage position shown in FIG. 2, but in the case of a small machine, the boarding bridge is installed as shown in FIG. 4 (b). When returning from the current posture to the retracted position in FIG. 2, it takes a little less than 3 minutes to change the posture in the height direction, whereas the horizontal movement of the boarding bridge moves to the retracted position if it is less than 40 seconds at the longest. can do. In this case, even if the boarding bridge returns to the retracted position while simultaneously moving up and down and moving horizontally, the lifting operation is not yet completed, so the operator must leave the cockpit for about 2 minutes until the lifting operation is completed. I can't.
これらの事情は、搭乗橋の格納時に限らず航空機への装着時にも同様のことが言え、作業の効率化の問題に繋がってくる。現に実際の運用では、これらの内容について改善を求める声も多い。 These circumstances can be said not only when the boarding bridge is stored but also when it is mounted on an aircraft, which leads to a problem of work efficiency. In actual operation, there are many requests for improvement of these contents.
本発明は、以上のような従来技術の実情に鑑みてなされたものであり、空港のスポットに設置された搭乗橋の航空機の機体に対する脱着にかかる時間を可能な限り縮め、運用の効率を適切に図ることができる搭乗橋格納姿勢修正システムを提供することを課題とする。 The present invention has been made in view of the actual situation of the prior art as described above, and shortens the time required for detaching the boarding bridge installed in the airport spot from the aircraft body as much as possible, and makes the operation efficiency appropriate. It is an object of the present invention to provide a boarding bridge storage posture correction system that can be achieved.
本発明によれば、上記課題を解決するため、乗客が移動可能な中空部を有する伸縮自在のトンネルと、空港のターミナルビルの乗降口部に接続されるロタンダと、航空機の乗降口部に接続されるキャブと、トンネルの航空機寄りの両側面に回動可能に設けられ、下方に走行タイヤを備えた一対の支柱より構成されるドライブコラムとを有する搭乗橋の格納姿勢修正システムであって、トンネル長、トンネル高さ、ロタンダ旋回角度、キャブ旋回角度及びドライブコラム旋回角度の情報を各センサから入力し、スポット上の移動経路及び搭乗橋の高さを演算する演算処理部と、各種航空機の機体に対する最適な搭乗橋格納姿勢情報を予め記憶させた搭乗橋格納姿勢データベースと、フライトインフォーメーションシステム(以下、FISとも称する)にアクセスして次にスポット入港してくる航空機の機体情報を取得し、当該機体情報に基づき搭乗橋格納姿勢データベースに対し最適な搭乗橋格納姿勢情報を照会し、演算処理部に、スポット上の移動経路及び搭乗橋の格納姿勢を演算させ、その演算結果に基づいて、走行タイヤの駆動制御、トンネルの昇降制御、ロタンダの旋回制御、キャブの旋回制御及びドライブコラムの旋回制御を行う制御処理部を備え、搭乗橋の格納位置から次に入港してくる航空機の装着位置までにかかる高さ修正時間を最適化することを特徴とする搭乗橋格納姿勢修正システムが提供される。
上記では、次にスポット入港してくる航空機の機体情報の取得にFISを採用しているが、これらの手法はオペレータによる入力であってもよい。
また、前述では搭乗橋格納姿勢データベースから搭乗橋格納姿勢情報を照会すると記載しているが、搭乗橋格納姿勢データベースを用いなくても、既に搭乗橋のシステムとして使用されている装着時のプリセット座標(キャブ高さ)及び格納時のプリセット座標(ロタンダ旋回角、ドライブコラム旋回角、キャブ旋回角、トンネル長さ)を活用すれば、搭乗橋格納姿勢情報の照会は可能である。
According to the present invention, in order to solve the above-mentioned problems, a telescopic tunnel having a hollow portion in which passengers can move, a rotunda connected to an entrance / exit of an airport terminal building, and connected to an entrance / exit of an aircraft A loading attitude correction system for a boarding bridge having a cab and a drive column that is rotatably provided on both sides of a tunnel near an aircraft and includes a pair of support columns provided with traveling tires below. Information on the tunnel length, tunnel height, rotander turning angle, cab turning angle, and drive column turning angle is input from each sensor, and the calculation processing unit that calculates the movement path on the spot and the height of the boarding bridge, and various aircraft A boarding bridge storage attitude database storing the optimal boarding bridge storage attitude information for the aircraft in advance, and a flight information system (hereinafter also referred to as FIS) To obtain the aircraft body information of the aircraft that will enter the spot next, and query the boarding bridge storage posture database for the optimal boarding bridge storage posture information based on the aircraft information, Controls that calculate the upper travel route and retracted posture of the boarding bridge, and based on the calculation results, drive tire drive control, tunnel lift control, rotander turn control, cab turn control, and drive column turn control There is provided a boarding bridge storage attitude correction system including a processing unit and optimizing a height correction time required from the storage position of the boarding bridge to the installation position of the next incoming aircraft.
In the above, FIS is adopted for acquiring the aircraft information of the aircraft that will enter the next spot, but these methods may be input by an operator.
In addition, the above describes that the boarding bridge storage posture information is referred from the boarding bridge storage posture database, but the preset coordinates at the time of mounting that are already used as a boarding bridge system can be used without using the boarding bridge storage posture database. Using the (cab height) and preset coordinates at the time of storage (rotanda turning angle, drive column turning angle, cab turning angle, tunnel length), the boarding bridge storage posture information can be inquired.
本発明によれば、格納時の搭乗橋の姿勢を常に図2に示すような水平姿勢とすることなく、次に入港してくる航空機の機種に合わせて変化させるようにしたので、搭乗橋の航空機の機体に対する脱着にかかる時間を可能な限り縮め、運用の効率を適切に図ることが可能となる。
また、旅客が航空機を降りるまでの時間短縮ができるため、旅客への負担が軽減され、地上作業車(搭乗橋のオペレータ)への負担も軽減される。
さらに、搭乗橋も余計な昇降移動が不要となり、昇降駆動モータ等の駆動部の延命化が図れる利点がある。
According to the present invention, the posture of the boarding bridge at the time of storage is not always set to the horizontal posture as shown in FIG. 2, but is changed in accordance with the model of the next incoming aircraft. It is possible to reduce the time required for the attachment / detachment of the aircraft body as much as possible, and to appropriately improve the operation efficiency.
Further, since the time until the passenger gets off the aircraft can be shortened, the burden on the passenger is reduced, and the burden on the ground work vehicle (boarding bridge operator) is also reduced.
Further, the boarding bridge does not need to be moved up and down, and there is an advantage that the life of the drive unit such as the lift drive motor can be extended.
以下、本発明を実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments.
本発明の実施形態に係る搭乗橋格納姿勢修正システムは、搭乗橋の運用の効率化を図るため、航空機の機体に対する搭乗橋の脱着にかかる時間を可能な限り縮めるものである。
図5に、本実施形態の搭乗橋格納姿勢修正システムの構成をブロック図で示す。この搭乗橋格納姿勢修正システムは、入力部1、制御処理部2、搭乗橋格納姿勢座標データベース3、演算処理部4、走行タイヤを駆動させるモータM1を制御する駆動制御部5、乗客が移動可能な中空部を有する伸縮自在のトンネルの昇降を行うためのモータM2を制御する昇降制御部6、空港のターミナルビルの乗降口部に接続されるロタンダを正逆自在に旋回させるモータM3を制御するロタンダ旋回制御部7、航空機の乗降口部に接続されるキャブを正逆自在に旋回させるモータM4を制御するキャブ旋回制御部8、トンネルの航空機寄りの両側面に回動自在に設けられ、下方に走行タイヤを備えた一対の支柱からなるドライブコラムを正逆自在に旋回させるモータM5を制御するドライブコラム旋回制御部9を有する。また、トンネル長(1)、トンネル高さ(キャブ高さ)(2)、ロタンダ旋回角度(3)、キャブ旋回角度(4)及びドライブコラム旋回角度(5)を検出するためのセンサがそれぞれ設けられている。
The boarding bridge retracting posture correction system according to the embodiment of the present invention shortens the time required for detaching the boarding bridge from the aircraft body as much as possible in order to improve the efficiency of operation of the boarding bridge.
FIG. 5 is a block diagram showing the configuration of the boarding bridge retracted posture correction system of this embodiment. This boarding bridge storage posture correction system includes an input unit 1, a control processing unit 2, a boarding bridge storage posture coordinate database 3, a calculation processing unit 4, a drive control unit 5 that controls a motor M1 that drives a running tire, and passengers can move. A lift control unit 6 for controlling a motor M2 for lifting and lowering a telescopic tunnel having a hollow portion, and a motor M3 for rotating a rotander connected to an entrance / exit of a terminal building at an airport in a forward and reverse manner. The rotander turning control unit 7, the cab turning control unit 8 for controlling the motor M4 for turning the cab connected to the entrance / exit of the aircraft in a forward and reverse manner, and provided on both side surfaces of the tunnel near the aircraft so as to be freely rotatable. And a drive column turning control unit 9 that controls a motor M5 that turns a drive column including a pair of props provided with traveling tires in a forward and reverse manner. In addition, sensors are provided to detect the tunnel length (1), tunnel height (cab height) (2), rotander turning angle (3), cab turning angle (4) and drive column turning angle (5). It has been.
また、搭乗橋は単独システムであるため、次に入港してくる航空機の機種情報を予め把握する機能は有していないため、本実施形態の搭乗橋格納姿勢修正システムでは、FIS10にアクセスして、次に入港してくる航空機の機種情報を取得するようになっている。また、他の方法としてオペレータによる入力も考えられる。 In addition, since the boarding bridge is a single system, it does not have a function to grasp in advance the model information of the next aircraft to enter the port, so the boarding bridge storage posture correction system of this embodiment accesses the FIS 10. Then, the model information of the next incoming aircraft is acquired. As another method, input by an operator is also conceivable.
ここで、図6に示すように、本明細書において、トンネル高さとは、スポットの地面からキャブの下部までの高さのことをいい、トンネル長さとは、ロタンダからドライブコラムまでの距離のことをいう。
また、本明細書において、ロタンダ旋回角度θA、ドライブコラム(ステアリング)旋回角度θB、キャブ旋回角度θCは、図7に示すように定義される。
Here, as shown in FIG. 6, in this specification, the tunnel height refers to the height from the ground surface of the spot to the bottom of the cab, and the tunnel length refers to the distance from the rotander to the drive column. Say.
In this specification, the rotander turning angle θ A , the drive column (steering) turning angle θ B , and the cab turning angle θ C are defined as shown in FIG.
入力部1には、搭乗橋の水平移動、昇降動作のための各種操作ボタンや、プリセットボタン(次に入港してくる航空機の機種情報をFIS10に求めるための操作等を含む)、オペレータ自らが機種情報を指定することができる機種選定ボタンが設けられており、入力部1からの入力情報は制御処理部2に導かれるようになっている。 The input unit 1 includes various operation buttons for horizontal movement of the boarding bridge, ascending / descending operations, preset buttons (including operations for obtaining the model information of the next incoming aircraft from the FIS 10), and the operator himself A model selection button capable of specifying model information is provided, and input information from the input unit 1 is guided to the control processing unit 2.
図8の搭乗橋操作盤例に示すように、入力部1においてプリセット(格納)のみを入力した場合は、FIS10に機種情報を求める。
一方、オペレータが機種を指定してからプリセット(格納)を入力した場合は、FIS10を介さずに制御処理部2から搭乗橋格納姿勢データベース3へ直接情報を送る。
なお、制御処理部2内に既に存在する装着時のプリセット座標(キャブ高さ)及び格納時のプリセット座標(ロタンダ旋回角、ドライブコラム旋回角、キャブ旋回角、トンネル長さ)を活用すれば、搭乗橋格納姿勢データベース3へ情報を送らなくても済む。
As shown in the boarding bridge operation panel example of FIG. 8, when only the preset (store) is input in the input unit 1, the model information is obtained from the FIS 10.
On the other hand, when the operator designates a model and inputs a preset (storage), information is sent directly from the control processing unit 2 to the boarding bridge storage posture database 3 without using the FIS 10.
If the preset coordinates (cab height) at the time of installation and the preset coordinates at the time of storage (rotator turning angle, drive column turning angle, cab turning angle, tunnel length) already existing in the control processing unit 2 are utilized, It is not necessary to send information to the boarding bridge storage posture database 3.
制御処理部2は、入力部1からの入力を受け付け、演算処理部4に、スポット上の搭乗橋の移動経路及び搭乗橋の格納姿勢等を演算させ、その演算結果に基づいて、走行タイヤの駆動制御、トンネルの昇降制御、ロタンダの旋回制御、キャブの旋回制御及びドライブコラムの旋回制御等を行う。また、制御処理部2は、FIS10にアクセスして次に入港してくる航空機の機体情報を取得し、当該航空機情報に基づき搭乗橋格納姿勢データベース3に対し最適な搭乗橋格納姿勢情報を照会し、これらの情報を取得する。また、制御処理部2は、上述のように搭乗橋の装着時のプリセット座標及び格納時のプリセット座標を有しており、搭乗橋のシステムとして使用している。 The control processing unit 2 receives an input from the input unit 1 and causes the calculation processing unit 4 to calculate the travel route of the boarding bridge on the spot, the storage posture of the boarding bridge, and the like, and based on the calculation result, It performs drive control, tunnel elevation control, rotander turning control, cab turning control, drive column turning control, and the like. Further, the control processing unit 2 accesses the FIS 10 to acquire the aircraft body information of the next incoming aircraft, and inquires the boarding bridge storage posture database 3 for the optimum boarding bridge storage posture information based on the aircraft information. Get these information. Further, the control processing unit 2 has the preset coordinates when the boarding bridge is mounted and the preset coordinates when stored, as described above, and is used as a boarding bridge system.
搭乗橋格納姿勢データベース3は、各種航空機の機体に対する最適な搭乗橋格納姿勢情報、例えば装着時のプリセット座標(キャブ高さ)及び格納時のプリセット座標(ロタンダ旋回角、ドライブコラム旋回角、キャブ旋回角、トンネル長さ)を予め記憶しておく。そのデータベースの一例を図9に示す。図示の例では、値は空欄であるが、実際には対象航空機ごとに各種座標(格納姿勢)の値がそれぞれ記憶される。この搭乗橋格納姿勢データベース3として、本出願人の出願に係る特許第5357352号で提案したスポット管理システムのスポット管理データベースを利用してもよい。このスポット管理データベースは、少なくとも、空港の各スポット毎にそのスポットについての少なくとも搭乗橋設備、電力供給設備、空調設備および給油設備の配置位置並びに航空機停止位置が記載されたCAD図面データと搭乗橋諸元、搭乗橋設備待機位置、搭乗橋走行線を含む搭乗橋設備情報データ、電力供給設備情報データ、空調設備情報データ及び給油設備情報データと;空港を利用する航空機の構造のCAD図面データとその構造に関連する情報データと;実機をスポットに駐機させることの可否及び駐機させた場合の状況をシミュレーションしたCADデータとそれに関する情報データとを一元管理して記憶するものである。 The boarding bridge storage attitude database 3 stores optimum boarding bridge storage attitude information for various aircraft bodies, for example, preset coordinates (cab height) at the time of installation and preset coordinates (rotanda turning angle, drive column turning angle, cab turning at the time of storage) (Corner, tunnel length) is stored in advance. An example of the database is shown in FIG. In the example shown in the figure, the value is blank, but actually, the values of various coordinates (storage posture) are stored for each target aircraft. As the boarding bridge storage posture database 3, a spot management database of the spot management system proposed in Japanese Patent No. 5357352 according to the applicant's application may be used. This spot management database includes at least CAD drawing data and boarding bridge data that describe at least the boarding bridge facilities, the power supply facilities, the air conditioning facilities and the refueling facilities, and the aircraft stop positions for each spot at the airport. Original, boarding bridge equipment standby position, boarding bridge equipment information data including boarding bridge travel line, power supply equipment information data, air conditioning equipment information data and refueling equipment information data; CAD drawing data of the structure of the aircraft using the airport and its Information data related to the structure; CAD data that simulates whether or not an actual machine can be parked at a spot and the situation when parked, and information data related to the CAD data are centrally managed and stored.
演算処理部4は、現在の搭乗橋のトンネル長、トンネル高さ、ロタンダ旋回角度、キャブ旋回角度及びドライブコラム旋回角度の情報を各センサから入力するとともに、制御処理部2を介して搭乗橋格納姿勢データベース3から次に入港してくる航空機の最適な搭乗橋格納姿勢情報を受け取り、搭乗橋の装着時、経由地点、格納時におけるスポット上の移動経路及び搭乗橋の高さを演算する。 The arithmetic processing unit 4 inputs information on the tunnel length, tunnel height, rotander turning angle, cab turning angle and drive column turning angle of the current boarding bridge from each sensor and stores the boarding bridge via the control processing unit 2. The optimum boarding bridge storage attitude information of the next aircraft to enter the port is received from the attitude database 3, and the travel route on the spot and the height of the boarding bridge are calculated when the boarding bridge is mounted, the transit point, and the storage.
駆動制御部5、昇降制御部6、ロタンダ旋回制御部7、キャブ旋回制御部8及びドライブコラム旋回制御部9は、制御処理部2からの指令を受け、上記した必要な制御を行い、その制御の状態は各センサにより検出され、演算処理部4にフィードバックされる。 The drive control unit 5, the lift control unit 6, the rotander rotation control unit 7, the cab rotation control unit 8, and the drive column rotation control unit 9 receive the command from the control processing unit 2, perform the necessary control described above, and control the control This state is detected by each sensor and fed back to the arithmetic processing unit 4.
FIS10は、空港に入出港する航空機のフライト情報を管理するシステムである。本実施形態の搭乗橋格納姿勢修正システムでは、次に入港してくる航空機の機種情報をFIS10から取得し、その情報を基に最適な搭乗橋の格納姿勢を選定する。 The FIS 10 is a system that manages flight information of aircraft that enter and leave an airport. In the boarding bridge storage posture correction system according to the present embodiment, model information of the next incoming aircraft is acquired from the FIS 10, and the optimal boarding bridge storage posture is selected based on the information.
本実施形態の搭乗橋格納姿勢修正システムでは、運用の効率化を図る上で、搭乗橋の脱着にかかる時間を可能な限り縮めるため、例えば、あるスポットを小型機が連続で使用する場合、無理に図2の水平格納姿勢に戻すことをせず、最低限の昇降動作で済む図10のような格納姿勢(高さ方向)を選定する。 In the boarding bridge retracted posture correction system of this embodiment, in order to reduce the time required for detachment of the boarding bridge as much as possible in order to improve the operation efficiency, for example, when a small machine continuously uses a spot, it is impossible. The storage posture (height direction) as shown in FIG. 10 is selected, which does not return to the horizontal storage posture shown in FIG.
ここで、航空機の出発準備が完了し、搭乗橋を航空機から離脱させ、格納位置まで走行させる移動制御及びトンネル高さの修正制御について図11及び図12を参照して説明する。 Here, the movement control and the tunnel height correction control in which the preparation for departure of the aircraft is completed, the boarding bridge is detached from the aircraft and travels to the retracted position will be described with reference to FIGS.
まず、航空機の出発準備が完了すると、搭乗橋のオペレータは、搭乗橋操縦席にてスタンバイし、入力部1から搭乗橋の離脱作業開始の入力を行う(図11のステップS1、S2)。この入力は制御処理部2が受け取り、制御処理部2はFIS10にアクセスし、次に入港してくる航空機の機種情報を取得する(ステップS3)。 First, when preparation for departure of the aircraft is completed, the boarding bridge operator stands by at the boarding bridge cockpit and inputs the start of the boarding bridge detachment work from the input unit 1 (steps S1 and S2 in FIG. 11). This input is received by the control processing unit 2, and the control processing unit 2 accesses the FIS 10 and acquires model information of the next incoming aircraft (step S 3).
制御処理部2は、前述したスポット管理システムの搭乗橋格納姿勢データベース3を介して、次便の機種に適した搭乗橋の格納時の各種座標を割り出す(ステップS4)。 The control processing unit 2 calculates various coordinates at the time of storing the boarding bridge suitable for the model of the next flight via the boarding bridge storage attitude database 3 of the spot management system described above (step S4).
オペレータの入力部1の操作により、搭乗橋を図12に示す航空機側面に対して垂直方向に1m後退させ(M2)、搭乗橋のドライブコラムを経由地点Pに到着させる。ここで、制御処理部2は、トンネル高さの修正を開始するとともに、演算処理部4に、経由地点Pでのトンネル長(c)を算出させる。そして、制御処理部2は、演算処理部4に、予め定めた経由地点Qでのトンネル長(b)及びロタンダ旋回角(θ2)、経由地点Pでのトンネル長(c)及びロタンダ旋回角(θ1)のそれぞれの値を、余弦定理(式1、式2)を用いて、図12上に示す三角形の角度θ4及び底辺aの値を算出させる。 By the operation of the input unit 1 by the operator, the boarding bridge is moved backward by 1 m in the direction perpendicular to the aircraft side surface shown in FIG. Here, the control processing unit 2 starts correction of the tunnel height and causes the arithmetic processing unit 4 to calculate the tunnel length (c) at the waypoint P. Then, the control processing unit 2 gives the arithmetic processing unit 4 the tunnel length (b) and the rotander turning angle (θ 2 ) at the predetermined waypoint Q, the tunnel length (c) and the rotunda turning angle at the waypoint P. Each value of (θ 1 ) is calculated by using the cosine theorem (Equations 1 and 2) to calculate the values of the angle θ 4 and the base a of the triangle shown in FIG.
ここで、図13及び図14に示すトンネル長さ(j)及びトンネル高さ(n)の算出方法について説明する。 Here, a calculation method of the tunnel length (j) and the tunnel height (n) shown in FIGS. 13 and 14 will be described.
図13は、トンネル長さ(g)の算出方法の説明図である。図13において、d、iは固定値、θ6、e、gはセンサ測定値である。トンネル長さ(j)は次のようにして求めることができる。 FIG. 13 is an explanatory diagram of a method for calculating the tunnel length (g). In FIG. 13, d and i are fixed values, and θ 6 , e, and g are sensor measured values. The tunnel length (j) can be obtained as follows.
図14は、トンネル高さ(n)の算出方法の説明図である。図14において、kは固定値、H、θ7はセンサ測定値である。トンネル高さ(n)は次のようにして求めることができる。 FIG. 14 is an explanatory diagram of a method for calculating the tunnel height (n). In FIG. 14, k is a fixed value, and H and θ 7 are sensor measured values. The tunnel height (n) can be obtained as follows.
制御処理部2は、演算処理部4に、経由地点Qに向かうドライブコラム旋回角度(θ5)を算出させる。ここで、経由地点Pに到達した際のドライブコラム旋回角度θ5は式5で表される。
そして、制御処理部2は、ドライブコラムをθ5度分調整し、経由地点Qまでaメートル搭乗橋を動かす。 Then, the control processing unit 2 adjusts the drive column by θ 5 degrees and moves the a-meter boarding bridge to the waypoint Q.
経由点Pでのトンネル長(c)の算出からドライブコラムをθ5度分調整し、経由地点Qまでaメートル搭乗橋を動かすのと同様の方法で作業を繰り返し、搭乗橋を格納位置(M4)まで移動させる。図7に示すように、キャブ旋回角θCはロタンダ旋回角θAと同期させることにより、常に航空機と対して正面方向を保つ。以上ステップS5、S6。 Adjust the drive column by θ 5 degrees from the calculation of the tunnel length (c) at the waypoint P, and repeat the work in the same way as moving the a meter boarding bridge to the waypoint Q. ). As shown in FIG. 7, the cab turning angle θ C is always kept in front of the aircraft by synchronizing with the rotander turning angle θ A. Steps S5 and S6.
搭乗橋が格納位置に到着すると、オペレータは退場する。そして、トンネル高さの修正完了することにより、格納作業が終了する。格納作業終了後タイマにて搭乗橋の操作盤の電源をオフにする(ステップS7)。 When the boarding bridge arrives at the storage position, the operator leaves. When the tunnel height correction is completed, the storing operation is completed. After the storage operation is completed, the power of the boarding bridge operation panel is turned off by the timer (step S7).
ここで、本実施形態の搭乗橋姿勢修正システムを用いるメリットについて述べる。 Here, the merit of using the boarding bridge posture correcting system of this embodiment will be described.
トンネル高さ修正速度を0.015m/sec、トンネル長さ修正速度(水平移動)を0.3m/sec、トンネル高さ修正を最大3m、トンネル長さ修正を最大15mとすると、従来のシステムでは、トンネル高さの修正には最大約200秒かかり、トンネル長さの修正には最大約50秒かかる。 If the tunnel height correction speed is 0.015 m / sec, the tunnel length correction speed (horizontal movement) is 0.3 m / sec, the tunnel height correction is a maximum of 3 m, and the tunnel length correction is a maximum of 15 m, The tunnel height correction takes up to about 200 seconds and the tunnel length correction takes up to about 50 seconds.
これに対し、本実施形態の搭乗橋格納姿勢修正システムによれば、下記表1に示す通り、航空機への搭乗橋の装着が平均で約66秒短縮でき、トンネル高さの修正時間が大幅に削減できる。 On the other hand, according to the boarding bridge retracted posture correction system of the present embodiment, as shown in Table 1 below, the mounting of the boarding bridge to the aircraft can be shortened by about 66 seconds on average, and the tunnel height correction time is greatly increased. Can be reduced.
1 入力部
2 制御処理部
3 搭乗橋格納姿勢座標データベース(スポット管理システム)
4 演算処理部
5 駆動制御部
6 昇降制御部
7 ロタンダ旋回制御部
8 キャブ旋回制御部
9 ドライブコラム旋回制御部
10 フライトインフォーメーションシステム(FIS)
1 Input unit 2 Control processing unit 3 Boarding bridge storage attitude coordinate database (spot management system)
DESCRIPTION OF SYMBOLS 4 Arithmetic processing part 5 Drive control part 6 Elevation control part 7 Rotunda turning control part 8 Cab turning control part 9 Drive column turning control part 10 Flight information system (FIS)
本発明によれば、上記課題を解決するため、乗客が移動可能な中空部を有する伸縮自在のトンネルと、空港のターミナルビルの乗降口部に接続されるロタンダと、航空機の乗降口部に接続されるキャブと、トンネルの航空機寄りの両側面に回動可能に設けられ、下方に走行タイヤを備えた一対の支柱より構成されるドライブコラムとを有する搭乗橋の格納姿勢修正システムであって、トンネル長、トンネル高さ、ロタンダ旋回角度、キャブ旋回角度及びドライブコラム旋回角度の情報を各センサから入力し、スポット上の移動経路及び搭乗橋の高さを演算する演算処理部と、各種航空機の機体に対する最適な搭乗橋格納姿勢情報を予め記憶させた搭乗橋格納姿勢データベースと、次に入港してくる航空機の機体情報をフライトインフォーメーションシステムへのアクセスもしくはオペレータによる入力によって取得し、当該機体情報に基づき搭乗橋格納姿勢データベースのプリセット座標もしくは既に有しているプリセット座標から最適な搭乗橋格納姿勢情報を照会し、演算処理部に、スポット上の移動経路及び搭乗橋の格納姿勢を演算させ、その演算結果に基づいて、走行タイヤの駆動制御、トンネルの昇降制御、ロタンダの旋回制御、キャブの旋回制御及びドライブコラムの旋回制御を行う制御処理部を備え、該制御処理部は、搭乗橋を装着時の姿勢から格納位置に戻す際に、次に入港してくる航空機の機種に合わせて、搭乗橋のトンネル高さの修正制御を行い、修正された格納姿勢で搭乗橋の格納を行うことを特徴とする搭乗橋格納姿勢修正システムが提供される。
上記では、次にスポット入港してくる航空機の機体情報の取得にFISを採用しているが、これらの手法はオペレータによる入力であってもよい。
また、前述では搭乗橋格納姿勢データベースから搭乗橋格納姿勢情報を照会すると記載しているが、搭乗橋格納姿勢データベースを用いなくても、既に搭乗橋のシステムとして使用されている装着時のプリセット座標(キャブ高さ)及び格納時のプリセット座標(ロタンダ旋回角、ドライブコラム旋回角、キャブ旋回角、トンネル長さ)を活用すれば、搭乗橋格納姿勢情報の照会は可能である。
According to the present invention, in order to solve the above-mentioned problems, a telescopic tunnel having a hollow portion in which passengers can move, a rotunda connected to an entrance / exit of an airport terminal building, and connected to an entrance / exit of an aircraft A loading attitude correction system for a boarding bridge having a cab and a drive column that is rotatably provided on both sides of a tunnel near an aircraft and includes a pair of support columns provided with traveling tires below. Information on the tunnel length, tunnel height, rotander turning angle, cab turning angle, and drive column turning angle is input from each sensor, and the calculation processing unit that calculates the movement path on the spot and the height of the boarding bridge, and various aircraft The boarding bridge storage attitude database that stores the optimal boarding bridge storage attitude information for the aircraft in advance and the aircraft information of the next incoming aircraft Obtained by access to the navigation system or input by the operator, and based on the aircraft information, the optimal boarding bridge storage attitude information is inquired from the preset coordinates of the boarding bridge storage attitude database or the preset coordinates already possessed. The travel route on the spot and the stored posture of the boarding bridge are calculated, and based on the calculation results, drive control of the running tire, tunnel lift control, rotander turn control, cab turn control and drive column turn control are performed. A control processing unit, and when the boarding bridge is returned from the mounted posture to the retracted position, the control processing unit performs a correction control of the tunnel height of the boarding bridge according to the model of the next incoming aircraft. performed, the boarding bridges stored position correction system, wherein is provided to make the storage of boarding bridges with modified stored position.
In the above, FIS is adopted for acquiring the aircraft information of the aircraft that will enter the next spot, but these methods may be input by an operator.
In addition, the above describes that the boarding bridge storage posture information is referred from the boarding bridge storage posture database, but the preset coordinates at the time of mounting that are already used as a boarding bridge system can be used without using the boarding bridge storage posture database. Using the (cab height) and preset coordinates at the time of storage (rotanda turning angle, drive column turning angle, cab turning angle, tunnel length), the boarding bridge storage posture information can be inquired.
本発明によれば、格納時の搭乗橋の姿勢を常に図2に示すような水平姿勢とすることなく、次に入港してくる航空機の機種に合わせて変化させるようにしたので、搭乗橋の航空機の機体に対する脱着にかかる時間を可能な限り縮め、運用の効率を適切に図ることが可能となる。
また、旅客が航空機を降りるまでの時間短縮ができるため、旅客への負担が軽減され、地上作業者(搭乗橋のオペレータ)への負担も軽減される。
さらに、搭乗橋も余計な昇降移動が不要となり、昇降駆動モータ等の駆動部の延命化が図れる利点がある。
According to the present invention, the posture of the boarding bridge at the time of storage is not always set to the horizontal posture as shown in FIG. 2, but is changed in accordance with the model of the next incoming aircraft. It is possible to reduce the time required for the attachment / detachment of the aircraft body as much as possible, and to appropriately improve the operation efficiency.
In addition, since the passenger can reduce time to get off the aircraft, is reduced burden on the passengers, the burden to the ground workers (operator of the boarding bridge) is also reduced.
Further, the boarding bridge does not need to be moved up and down, and there is an advantage that the life of the drive unit such as the lift drive motor can be extended.
Claims (1)
トンネル長、トンネル高さ、ロタンダ旋回角度、キャブ旋回角度及びドライブコラム旋回角度の情報を各センサから入力し、スポット上の移動経路及び搭乗橋の高さを演算する演算処理部と、
各種航空機の機体に対する最適な搭乗橋格納姿勢情報を予め記憶させた搭乗橋格納姿勢データベースと、
次に入港してくる航空機の機体情報をフライトインフォーメーションシステムへのアクセスもしくはオペレータによる入力によって取得し、当該機体情報に基づき搭乗橋格納姿勢データベースのプリセット座標もしくは既に有しているプリセット座標から最適な搭乗橋格納姿勢情報を照会し、演算処理部に、スポット上の移動経路及び搭乗橋の格納姿勢を演算させ、その演算結果に基づいて、走行タイヤの駆動制御、トンネルの昇降制御、ロタンダの旋回制御、キャブの旋回制御及びドライブコラムの旋回制御を行う制御処理部を備え、
搭乗橋の格納位置から次に入港してくる航空機の装着位置までにかかる高さ修正時間を最適化することを特徴とする搭乗橋格納姿勢修正システム。 A telescopic tunnel with a hollow part where passengers can move, a rotunda connected to the entrance / exit of the airport terminal building, a cab connected to the entrance / exit of the aircraft, and both sides of the tunnel close to the aircraft A retractable posture correction system for a boarding bridge having a drive column that is configured to be pivotable and includes a pair of support columns provided with traveling tires below,
An arithmetic processing unit that inputs information on the tunnel length, tunnel height, rotander turning angle, cab turning angle and drive column turning angle from each sensor, and calculates the moving path on the spot and the height of the boarding bridge;
A boarding bridge storage posture database in which optimal boarding bridge storage posture information for various aircraft bodies is stored in advance;
Next, the aircraft information of the aircraft entering the port is obtained by accessing the flight information system or input by the operator, and based on the aircraft information, the optimal coordinates are obtained from the preset coordinates in the boarding bridge storage attitude database or the preset coordinates already possessed. Queries boarding bridge storage attitude information, causes the calculation processing unit to calculate the movement path on the spot and the boarding bridge storage attitude, and based on the calculation results, driving control of the driving tire, tunnel elevation control, rotation of the rotander A control processing unit for performing control, cab turning control and drive column turning control,
A boarding bridge storage attitude correction system that optimizes the height correction time required from the boarding bridge storage position to the installation position of the next incoming aircraft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015052659A JP5813892B1 (en) | 2015-03-16 | 2015-03-16 | Boarding bridge storage posture correction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015052659A JP5813892B1 (en) | 2015-03-16 | 2015-03-16 | Boarding bridge storage posture correction system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5813892B1 JP5813892B1 (en) | 2015-11-17 |
JP2016172473A true JP2016172473A (en) | 2016-09-29 |
Family
ID=54595874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015052659A Active JP5813892B1 (en) | 2015-03-16 | 2015-03-16 | Boarding bridge storage posture correction system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5813892B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6293962B1 (en) * | 2017-08-30 | 2018-03-14 | 三菱重工交通機器エンジニアリング株式会社 | Boarding bridge and control method of boarding bridge |
JP2018187982A (en) * | 2017-04-28 | 2018-11-29 | 三菱重工交通機器エンジニアリング株式会社 | Boarding bridge |
JP6770665B1 (en) * | 2019-10-30 | 2020-10-14 | 新明和工業株式会社 | Passenger boarding bridge |
JP2021070470A (en) * | 2020-09-25 | 2021-05-06 | 新明和工業株式会社 | Passenger boarding bridge |
JP2021151868A (en) * | 2019-03-25 | 2021-09-30 | 新明和工業株式会社 | Travel control method of passenger boarding bridge |
KR20240036842A (en) * | 2022-09-14 | 2024-03-21 | 인천국제공항공사 | Apparatus and method for autonomous of a boarding bridge |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0458499U (en) * | 1990-09-27 | 1992-05-19 | ||
JP4306937B2 (en) * | 2000-07-21 | 2009-08-05 | 新明和工業株式会社 | Boarding bridge |
JP2004330871A (en) * | 2003-05-07 | 2004-11-25 | Shin Meiwa Ind Co Ltd | Boarding bridge |
SE536546C2 (en) * | 2012-04-30 | 2014-02-11 | Fmt Int Trade Ab | Procedure and device for identifying an aircraft in connection with parking of the aircraft at a stand |
-
2015
- 2015-03-16 JP JP2015052659A patent/JP5813892B1/en active Active
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018187982A (en) * | 2017-04-28 | 2018-11-29 | 三菱重工交通機器エンジニアリング株式会社 | Boarding bridge |
JP6293962B1 (en) * | 2017-08-30 | 2018-03-14 | 三菱重工交通機器エンジニアリング株式会社 | Boarding bridge and control method of boarding bridge |
JP2019043211A (en) * | 2017-08-30 | 2019-03-22 | 三菱重工交通機器エンジニアリング株式会社 | Boarding bridge and method of controlling boarding bridge |
JP2021151868A (en) * | 2019-03-25 | 2021-09-30 | 新明和工業株式会社 | Travel control method of passenger boarding bridge |
JP7324800B2 (en) | 2019-03-25 | 2023-08-10 | 新明和工業株式会社 | Travel control method for passenger boarding bridge |
JP6770665B1 (en) * | 2019-10-30 | 2020-10-14 | 新明和工業株式会社 | Passenger boarding bridge |
WO2021084650A1 (en) * | 2019-10-30 | 2021-05-06 | 新明和工業株式会社 | Passenger boarding bridge |
EP4053022A4 (en) * | 2019-10-30 | 2023-07-05 | ShinMaywa Industries, Ltd. | Passenger boarding bridge |
JP2021070470A (en) * | 2020-09-25 | 2021-05-06 | 新明和工業株式会社 | Passenger boarding bridge |
JP7213212B2 (en) | 2020-09-25 | 2023-01-26 | 新明和工業株式会社 | passenger boarding bridge |
KR20240036842A (en) * | 2022-09-14 | 2024-03-21 | 인천국제공항공사 | Apparatus and method for autonomous of a boarding bridge |
KR102696255B1 (en) * | 2022-09-14 | 2024-08-19 | 인천국제공항공사 | Apparatus and method for autonomous of a boarding bridge |
Also Published As
Publication number | Publication date |
---|---|
JP5813892B1 (en) | 2015-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5813892B1 (en) | Boarding bridge storage posture correction system | |
CN105312196A (en) | Aircraft coating application system and method | |
US6684443B2 (en) | Multiple-door access boarding bridge | |
JP6678155B2 (en) | Control method of surface treatment system | |
US20230211707A1 (en) | Passenger Seats and Doors for an Autonomous Vehicle | |
JP2009073486A (en) | Working platform | |
CN106448275B (en) | Visualization-based real-time guiding system for airplane berthing | |
KR20190109041A (en) | Apparatus for osculating of boarding bridge and method thereof | |
CN205616512U (en) | Aircraft loading ramp installs car | |
EP3099626B1 (en) | Method and system for a low height lift device | |
US20200094577A1 (en) | Robotic Printing System for an Aircraft Exterior | |
CN206859089U (en) | Multi-rotor unmanned aerial vehicle airplane parking area | |
CN112265647A (en) | Remote automatic control device, medium and electronic equipment of boarding bridge | |
JP2018187982A (en) | Boarding bridge | |
WO2022190667A1 (en) | Passenger boarding bridge | |
CN113044235B (en) | Automatic surface treatment system for airplane and using method thereof | |
CN205507094U (en) | Airport shelter bridge butt joint aircraft hatch navigation | |
JP6770665B1 (en) | Passenger boarding bridge | |
JP6502570B1 (en) | Boarding bridge and boarding bridge controller | |
WO2022208601A1 (en) | Passenger boarding bridge | |
WO2024018623A1 (en) | Airport ground assistance equipment | |
JP7457873B2 (en) | passenger boarding bridge | |
US20240083596A1 (en) | Aircraft boarding vehicle and methods of use | |
JP7374674B2 (en) | boarding bridge | |
KR102696255B1 (en) | Apparatus and method for autonomous of a boarding bridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150916 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5813892 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |