JP2016166397A - Tin plated copper alloy terminal material, manufacturing method therefor and wire terminal part structure - Google Patents
Tin plated copper alloy terminal material, manufacturing method therefor and wire terminal part structure Download PDFInfo
- Publication number
- JP2016166397A JP2016166397A JP2015047103A JP2015047103A JP2016166397A JP 2016166397 A JP2016166397 A JP 2016166397A JP 2015047103 A JP2015047103 A JP 2015047103A JP 2015047103 A JP2015047103 A JP 2015047103A JP 2016166397 A JP2016166397 A JP 2016166397A
- Authority
- JP
- Japan
- Prior art keywords
- tin
- layer
- terminal
- copper
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Non-Insulated Conductors (AREA)
- Insulated Conductors (AREA)
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Abstract
Description
本発明は、アルミニウム線材からなる電線の端末に圧着される端子として用いられ、銅合金基材の表面に錫めっきを施した錫めっき銅合金端子材に係り、さらに、その製造方法、及びその端子を取り付けてなる電線端末部構造に関する。 The present invention relates to a tin-plated copper alloy terminal material that is used as a terminal to be crimped to an end of an electric wire made of an aluminum wire material, and tin-plated on the surface of a copper alloy base material. It is related with the electric wire terminal part structure formed by attaching.
従来、銅又は銅合金で構成されている電線の端末部に、銅又は銅合金で構成された端子を圧着し、この端子を別の機器の端子に接続することにより、その電線を上記別の機器に接続することが行われている。また、電線の軽量化等のために、電線を、銅又は銅合金に代えて、アルミニウム又はアルミニウム合金で構成している場合がある。
例えば、特許文献1には、アルミニウム合金からなる自動車ワイヤーハーネス用アルミ電線が開示されている。
Conventionally, by crimping a terminal made of copper or a copper alloy to the terminal part of an electric wire made of copper or a copper alloy, and connecting the terminal to a terminal of another device, Connecting to equipment is done. Further, in order to reduce the weight of the electric wire, the electric wire may be made of aluminum or aluminum alloy instead of copper or copper alloy.
For example, Patent Document 1 discloses an aluminum wire for an automobile wire harness made of an aluminum alloy.
ところで、電線(導線)をアルミニウム又はアルミニウム合金で構成し、端子を銅又は銅合金で構成すると、水が圧着部(端子と電線との係合部)に入ったときに、異金属の電位差によるガルバニック腐食が発生することがある。そして、その電線の腐食に伴い、圧着部での電気抵抗値の上昇や固着力(端子と電線との結合力)の低下が生ずるおそれがある。 By the way, when the electric wire (conducting wire) is made of aluminum or an aluminum alloy and the terminal is made of copper or a copper alloy, when water enters the crimping portion (engagement portion between the terminal and the electric wire), it depends on the potential difference between different metals. Galvanic corrosion may occur. And with the corrosion of the electric wire, there is a risk that an increase in the electric resistance value at the crimping portion and a decrease in the adhering force (bonding force between the terminal and the electric wire) may occur.
この腐食の防止法としては、例えば特許文献2や特許文献3記載のものがある。
特許文献2には、第1の金属材料で構成された地金部と、第1の金属材料よりも標準電極電位の値が小さい第2の金属材料で構成され、地金部の表面の少なくとも一部にめっきで薄く設けられた中間層と、第2の金属材料よりも標準電極電位の値が小さい第3の金属材料で構成され、中間層の表面の少なくとも一部にめっきで薄く設けられた表面層とを有する端子が開示されている。第1の金属材料として銅又はこの合金、第2の金属材料として鉛又はこの合金、あるいは錫又はこの合金、ニッケル又はこの合金、亜鉛又はこの合金が記載されており、第3の金属材料としてはアルミニウム又はこの合金が記載されている。
Examples of methods for preventing this corrosion include those described in
特許文献3には、被覆電線の端末領域において、端子金具の一方端に形成されるかしめ部が被覆電線の被覆部分の外周に沿ってかしめられ、少なくともかしめ部の端部露出領域及びその近傍領域の全外周をモールド樹脂により完全に覆ってなるワイヤーハーネスの端末構造が開示されている。
In
しかしながら、特許文献3記載の構造では腐食は防げるものの、樹脂モールド工程の追加により製造コストが増大し、さらに、樹脂による端子断面積増加によりワイヤーハーネスの小型化が妨げられるという問題があり、特許文献2記載の第3の金属材料であるアルミニウム系めっきを実施するためにはイオン性液体などを用いるため、非常にコストがかかるという問題があった。
However, although the structure described in
ところで、銅又は銅合金の基材上に錫めっきをしてリフロー処理してなる錫めっき端子材を用いることが多い。この錫めっき端子材をアルミニウム製電線に圧着する場合、錫とアルミニウムとは腐食電位が近いため電食を生じ難いはずであるが、塩水などが圧着部に付着すると電食が生じる。 By the way, in many cases, a tin-plated terminal material obtained by subjecting a copper or copper alloy base material to tin plating and reflow treatment is used. When this tin-plated terminal material is crimped to an aluminum electric wire, it should be difficult to cause electrolytic corrosion because tin and aluminum have close corrosion potentials, but electrolytic corrosion occurs when salt water or the like adheres to the crimping portion.
本発明は、前述の課題に鑑みてなされたものであって、アルミニウム線材からなる電線の端末に圧着される端子として銅合金基材を用いて電食の生じない端子材を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a terminal material that does not cause electrolytic corrosion using a copper alloy base material as a terminal to be crimped to an end of an electric wire made of an aluminum wire. And
発明者らは、錫めっき端子材の電食について鋭意研究した結果、塩水による腐食作用で表面の錫層が速やかに消失し、下層の銅錫合金層が露出するため電食が生じることが分かった。この銅錫合金層の腐食電位は銅に近いため、高い電位差が生じてアルミニウムが優先的に腐食してしまう。
そこで、錫層の上に塩水に対して耐性のある層を形成することにより、錫層の腐食を防ぎ、銅錫合金層の露出を抑えることとした。
As a result of diligent research on the electrolytic corrosion of the tin-plated terminal material, the inventors found that the surface tin layer disappears quickly due to the corrosive action of salt water, and the underlying copper-tin alloy layer is exposed, resulting in electrolytic corrosion. It was. Since the corrosion potential of the copper-tin alloy layer is close to that of copper, a high potential difference is generated and aluminum is preferentially corroded.
Therefore, by forming a layer resistant to salt water on the tin layer, corrosion of the tin layer was prevented and exposure of the copper tin alloy layer was suppressed.
すなわち、本発明の錫めっき銅合金端子材は、銅合金からなる基材の上に銅錫合金層が形成されるとともに、該銅錫合金層の上に錫層が形成され、前記錫層の上に、錫:5at%以上30at%以下、マグネシウム:15at%以上45at%以下含有し、残部が酸素である錫マグネシウム酸化物層がSiO2換算で2nm以上15nm以下の厚さで形成されている。 That is, in the tin-plated copper alloy terminal material of the present invention, a copper tin alloy layer is formed on a base material made of a copper alloy, and a tin layer is formed on the copper tin alloy layer. Further, a tin magnesium oxide layer containing tin: 5 at% to 30 at%, magnesium: 15 at% to 45 at%, and the balance being oxygen is formed with a thickness of 2 nm to 15 nm in terms of SiO 2 . .
錫マグネシウム酸化物層は、錫の含有量が5at%未満では錫マグネシウム酸化物層の電気伝導性が低下するため接触抵抗が悪化し、30at%を超えると防食効果が乏しくなる。マグネシウムの含有量が15at%未満では防食効果が乏しく、45at%を超えるとはんだ濡れ性が悪くなる。また、その厚さが2nm未満では、錫層に対する防食効果がなく、15nmを超えるとはんだ濡れ性が悪くなる。 In the tin magnesium oxide layer, if the tin content is less than 5 at%, the electrical conductivity of the tin magnesium oxide layer is lowered, so that the contact resistance is deteriorated, and if it exceeds 30 at%, the anticorrosion effect is poor. When the magnesium content is less than 15 at%, the anticorrosion effect is poor, and when it exceeds 45 at%, the solder wettability is deteriorated. Moreover, if the thickness is less than 2 nm, there is no anticorrosion effect on the tin layer, and if it exceeds 15 nm, the solder wettability is deteriorated.
本発明の錫めっき銅合金端子材の製造方法は、マグネシウムを0.5質量%以上3質量%以下含有する銅合金からなる基材の上に銅めっき層、錫めっき層をこの順に積層した後、235℃以上600℃以下の温度で5秒以上30秒以下の時間、熱処理をし、20℃以上80℃以下の温度の酸素含有気体を表面に供給して錫マグネシウム酸化物層を形成する。 In the method for producing a tin-plated copper alloy terminal material of the present invention, a copper plating layer and a tin plating layer are laminated in this order on a base material made of a copper alloy containing 0.5% by mass or more and 3% by mass or less of magnesium. Heat treatment is performed at a temperature of 235 ° C. to 600 ° C. for a time of 5 seconds to 30 seconds, and an oxygen-containing gas having a temperature of 20 ° C. to 80 ° C. is supplied to the surface to form a tin magnesium oxide layer.
基材のマグネシウム含有量が0.5質量%未満では、熱処理時に十分な量のマグネシウムを表面に供給することができず、3質量%を超えると熱処理時に表面へのマグネシウム供給量が多くなり過ぎて、はんだ濡れ性が悪くなる。熱処理の温度が235℃未満あるいは時間が5秒未満では十分にマグネシウムを錫層まで供給することができず、600℃を超え、あるいは30秒を超えて加熱するとマグネシウムの供給量が過剰となり、はんだ濡れ性が悪くなる。酸素含有気体の温度が20℃未満では十分に酸化物を形成することができず、80℃を超えると過剰に酸化され、接触抵抗が増加する。 If the magnesium content of the substrate is less than 0.5% by mass, a sufficient amount of magnesium cannot be supplied to the surface during the heat treatment, and if it exceeds 3% by mass, the amount of magnesium supplied to the surface during the heat treatment becomes excessive. Solder wettability. If the temperature of the heat treatment is less than 235 ° C. or the time is less than 5 seconds, the magnesium cannot be sufficiently supplied to the tin layer, and if it exceeds 600 ° C. or heated for more than 30 seconds, the supply amount of magnesium becomes excessive, and the solder The wettability becomes worse. If the temperature of the oxygen-containing gas is less than 20 ° C., an oxide cannot be formed sufficiently, and if it exceeds 80 ° C., it is excessively oxidized and the contact resistance increases.
そして、本発明の錫めっき銅合金端子材を用いて作製した端子をアルミニウム又はアルミニウム合金からなる電線の端末に圧着して電線端末部構造とした。 And the terminal produced using the tin plating copper alloy terminal material of this invention was crimped | bonded to the terminal of the electric wire which consists of aluminum or an aluminum alloy, and it was set as the electric wire terminal part structure.
本発明によれば、錫層の上に設けられた錫マグネシウム酸化物層が腐食を防止して、錫層の消失及び銅錫合金層の露出を防止することができ、アルミニウム製電線との電食を防止して電気抵抗値の上昇や固着力の低下を抑制することができる。 According to the present invention, the tin-magnesium oxide layer provided on the tin layer can prevent corrosion, and the disappearance of the tin layer and the exposure of the copper-tin alloy layer can be prevented. It is possible to prevent food and suppress an increase in electric resistance value and a decrease in fixing force.
本発明の実施形態の錫めっき銅合金端子材及びその製造方法を説明する。
本実施形態の錫めっき銅合金端子材1は、図1に模式的に示したように、銅合金からなる基材2上に銅錫合金層3が形成され、この銅錫合金層3の上に錫層4が形成され、錫層4上に錫マグネシウム酸化物層5が形成されている。
A tin-plated copper alloy terminal material according to an embodiment of the present invention and a manufacturing method thereof will be described.
As schematically shown in FIG. 1, the tin-plated copper alloy terminal material 1 according to the present embodiment has a copper-
基材2は、マグネシウム(Mg)が0.5質量%以上3質量%以下の範囲で含有している銅合金であればよく、残部が銅(Cu)及び不可避不純物からなる銅合金が好適である。また、マグネシウム以外にリン(P)が0.01質量%以上0.05質量%以下の範囲で含有していてもよい。
The
マグネシウムは、後述する熱処理時に表面に拡散し、錫と反応して錫マグネシウム酸化物を形成する。このマグネシウム含有量が0.5質量%未満では、熱処理時に十分な量のマグネシウムを表面に供給することができず、3質量%を超えると熱処理時に表面へのマグネシウム供給量が多くなり過ぎて、はんだ濡れ性が悪くなる。 Magnesium diffuses to the surface during the heat treatment described below and reacts with tin to form tin magnesium oxide. If the magnesium content is less than 0.5% by mass, a sufficient amount of magnesium cannot be supplied to the surface during the heat treatment, and if it exceeds 3% by mass, the amount of magnesium supplied to the surface during the heat treatment becomes too large. Solder wettability deteriorates.
銅錫合金層3は、基材2の上に銅めっき層、錫めっき層を順に形成して、前述の熱処理をすることにより形成された層であり、Cu6Sn5を主成分とする銅錫合金(Cu−Sn)の化合物層である。銅錫合金層3の平均厚みは0.4μm以上1μm以下が好ましく、薄すぎるとウィスカが発生し易く、厚過ぎるのは端子材として不経済である。
The copper-
また、錫層4は、前述した錫めっき層が熱処理によって形成された錫(Sn)からなる層である。この錫層4の平均厚みは0.2μm以上2μm以下が好ましく、薄過ぎるとはんだ濡れ性の低下、電気的接続信頼性の低下を招くおそれがあり、厚過ぎると、表面の動摩擦係数の増大を招き、コネクタ等での使用時の着脱抵抗が大きくなる傾向にある。 The tin layer 4 is a layer made of tin (Sn) formed by heat treatment of the above-described tin plating layer. The average thickness of the tin layer 4 is preferably 0.2 μm or more and 2 μm or less. If it is too thin, there is a risk of lowering solder wettability and electrical connection reliability. If it is too thick, the dynamic friction coefficient of the surface is increased. At the same time, the attachment / detachment resistance when used with a connector or the like tends to increase.
錫マグネシウム酸化物層5は、前述の熱処理した後の錫層4の上に形成された錫マグネシウム酸化物(Sn−Mg−O)の層であり、AES(Auger Electron Spectroscopy)分析装置により測定し、2nm以上15nm以下のSiO2換算厚さで錫層5の全面を被覆するように形成される。その厚さが2nm未満では、錫層5に対する防食効果がなく、15nmを超えるとはんだ濡れ性が悪くなる。
The tin-
この錫マグネシウム酸化物層5の組成は、錫:5at%以上30at%以下、マグネシウム:15at%以上45at%以下であり、残部が酸素からなる。錫の含有量が5at%未満では錫マグネシウム酸化物層5の電気伝導性が低下するため接触抵抗が悪化し、30at%を超えると防食効果が乏しくなる。マグネシウムの含有量が15at%未満では防食効果が乏しく、45at%を超えるとはんだ濡れ性が悪くなる。
The composition of the tin-
次に、この錫めっき銅合金端子材1の製造方法について説明する。
基材2として、マグネシウム含有量が0.5質量%以上3質量%以下の銅合金、例えば三菱伸銅株式会社のマグネシウム入り銅合金「MSP1」(マグネシウム:0.5〜0.9質量%、リン:0.04質量%以下)からなる板材を用い、この板材に脱脂、酸洗等の処理をすることによって表面を清浄にした後、銅めっき、錫めっきをこの順序で施す。
Next, the manufacturing method of this tin plating copper alloy terminal material 1 is demonstrated.
As the
銅めっきは一般的な銅めっき浴を用いればよく、例えば硫酸銅(CuSO4)及び硫酸(H2SO4)を主成分とした硫酸銅浴等を用いることができる。めっき浴の温度は例えば20℃以上50℃以下、電流密度は1A/dm2以上40A/dm2以下とされる。この銅めっきにより形成される銅めっき層の膜厚は0.03μm以上0.5μm以下が好ましく、厚過ぎると熱処理時に基材中のマグネシウムの拡散を阻害し、錫層にマグネシウムを供給することが難しくなる。 For copper plating, a general copper plating bath may be used. For example, a copper sulfate bath mainly composed of copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) may be used. The temperature of the plating bath is, for example, 20 ° C. or more and 50 ° C. or less, and the current density is 1 A / dm 2 or more and 40 A / dm 2 or less. The film thickness of the copper plating layer formed by this copper plating is preferably 0.03 μm or more and 0.5 μm or less. If it is too thick, diffusion of magnesium in the base material is inhibited during heat treatment, and magnesium can be supplied to the tin layer. It becomes difficult.
錫めっき層形成のためのめっき浴としては、一般的な錫めっき浴を用いればよく、例えば硫酸(H2SO4)と硫酸第一錫(SnSO4)を主成分とした硫酸浴を用いることができる。めっき浴の温度は例えば15℃以上35℃以下、電流密度は1A/dm2以上30A/dm2以下とされる。この錫めっき層の膜厚は0.6μm以上2.5μm以下である。 As a plating bath for forming the tin plating layer, a general tin plating bath may be used. For example, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) is used. Can do. The temperature of the plating bath is, for example, 15 ° C. or more and 35 ° C. or less, and the current density is 1 A / dm 2 or more and 30 A / dm 2 or less. The film thickness of this tin plating layer is 0.6 μm or more and 2.5 μm or less.
熱処理としては、還元雰囲気中で素材の表面温度が235℃以上600℃以下となる条件で5秒以上30秒以下の時間加熱するリフロー処理を実施した後、酸素濃度が15体積%以上30体積%以下の酸素含有気体を10℃以上80℃以下の温度で素材の表面に1秒以上30秒以下の時間供給することにより表面を冷却して凝固させる酸化物形成処理を実施し、その後、20℃以上60℃以下の水を供給して冷却する。 As the heat treatment, after performing a reflow treatment in which the surface temperature of the material is 235 ° C. or more and 600 ° C. or less in a reducing atmosphere and heated for 5 seconds to 30 seconds, the oxygen concentration is 15% by volume to 30% by volume. The following oxygen-containing gas is supplied to the surface of the material at a temperature of 10 ° C. or higher and 80 ° C. or lower for a time of 1 second to 30 seconds to cool and solidify the surface, and then 20 ° C. The water of 60 ° C. or lower is supplied and cooled.
この熱処理により、基材2と表面の錫めっき層との間で銅と錫とが反応して、その化合物からなる銅錫合金層3を形成し、その銅錫合金層3の上に、残った錫層4が配置されるとともに、その錫層4の上に錫マグネシウム酸化物層5を形成する。この錫マグネシウム酸化物層5は、熱処理により、基材2の銅合金からマグネシウムが上層に拡散し、錫層4の表面に供給される酸素含有気体及び錫と反応して形成された化合物層である。
By this heat treatment, copper and tin react between the
この熱処理条件において、加熱時の温度が235℃未満あるいは加熱時間が5秒未満では十分にマグネシウムを錫層4まで供給することができず、600℃を超え、あるいは30秒を超えて加熱するとマグネシウムの供給量が過剰となり、はんだ濡れ性が悪くなる。また、冷却時の酸素含有気体の温度が10℃未満又は素材表面への供給時間が1秒未満では十分に酸化物を形成することができず、80℃を超え、又は供給時間が30秒を超えると過剰に酸化され、接触抵抗が増加する。酸素含有気体の酸素含有量が15体積%未満では酸化物が形成されず、防食効果が乏しくなる。30体積%を超えると過剰に酸化され接触抵抗が悪化する。 Under this heat treatment condition, if the temperature at the time of heating is less than 235 ° C. or the heating time is less than 5 seconds, magnesium cannot be sufficiently supplied to the tin layer 4, and if heated above 600 ° C. or more than 30 seconds, the magnesium The supply amount becomes excessive and solder wettability is deteriorated. Further, when the temperature of the oxygen-containing gas at the time of cooling is less than 10 ° C. or the supply time to the material surface is less than 1 second, the oxide cannot be sufficiently formed, and the temperature exceeds 80 ° C. or the supply time is 30 seconds. When it exceeds, it will be oxidized excessively and contact resistance will increase. If the oxygen content of the oxygen-containing gas is less than 15% by volume, oxides are not formed and the anticorrosion effect becomes poor. When it exceeds 30 volume%, it will be oxidized excessively and contact resistance will deteriorate.
そして、このようにして製造された錫めっき銅合金端子材1は、例えば図2に示すような形状の端子10に成形される。
この端子10は、図2の例ではメス端子を示しており、先端から、オス端子(図示略)が嵌合される接続部11、電線12の露出した心線12aがかしめられる心線かしめ部13、電線12の被覆部12bがかしめられる被覆かしめ部14がこの順で一体に形成されている。
図3は電線12に端子10をかしめた端末部構造を示しており、心線かしめ部13が電線12の心線12aに直接接触することになる。
And the tin plating copper alloy terminal material 1 manufactured in this way is shape | molded by the
The terminal 10 is a female terminal in the example of FIG. 2, and is a connecting
FIG. 3 shows a terminal structure in which the terminal 10 is caulked to the
この端子10は、錫層4の上に錫マグネシウム酸化物層5が前述したように形成されているので、錫層4の腐食による消失を防ぐことができる。このため、錫層4の下層の銅錫合金層3の露出を防止することができるので、この端子10が接続される電線12がアルミニウム製の心線12aで、端子10の心線かしめ部13がアルミニウム製心線12aに圧着された状態となったとしても、アルミニウム製心線12aとの電食の発生を確実に防止することができる。
なお、電線12は導線が露出したままの裸電線、導線を心線として周囲を絶縁層で被覆した被覆電線のいずれにも適用することができる。本発明では、裸電線、被覆電線の心線のいずれをも含めて電線と称す。
In this terminal 10, since the tin
In addition, the
マグネシウム含有量が表1に示す銅合金板に銅めっき層、錫めっき層を形成した。銅めっき層は表1に示す厚さとし、錫めっき層はすべて厚さ1μmとした。そのめっき層付銅合金板に表1に示す熱処理(リフロー処理及び酸化物形成処理)を施した後、40℃の水に投入して冷却処理を実施し、試料とした。 A copper plating layer and a tin plating layer were formed on a copper alloy plate having a magnesium content shown in Table 1. The copper plating layer had a thickness shown in Table 1, and all the tin plating layers had a thickness of 1 μm. The copper alloy plate with plating layer was subjected to the heat treatment (reflow treatment and oxide formation treatment) shown in Table 1, and then poured into water at 40 ° C. to perform a cooling treatment to obtain a sample.
得られた試料について、表面の酸化物層の厚み、酸化物層の組成(マグネシウム濃度及び錫濃度)を測定し、また、はんだ濡れ性及び接触抵抗を評価した。 About the obtained sample, the thickness of the surface oxide layer, the composition of the oxide layer (magnesium concentration and tin concentration) were measured, and solder wettability and contact resistance were evaluated.
<酸化物層の厚み>
アルバック・ファイ株式会社製のAES(Auger Electron Spectroscopy)分析装置 PHI700を用いて試料表面の酸素が検出されなくなるまでアルゴンイオンでエッチングし、それに要した時間を測定した。また測定は電子ビーム径10nmで□1μmを走査した後、その領域から発生したオージェ電子を検出した。あらかじめ同機種で測定したSiO2のエッチングレートを用いて、要した時間から酸化層の「SiO2換算膜厚」を算出した。SiO2のエッチングレートの算出方法は、20nmの厚さであるSiO2膜を一辺が1.5mmの正方形領域でアルゴンイオンでエッチングを行い20nmをエッチングするのに要した時間で割ることによって算出した。上記分析装置の場合には17分要したためエッチングレートは1.2nm/minである。例えば試料No.1ではエッチングに1分40秒(1.7分)かかったため、SiO2換算膜厚は2nmとした。AESは深さ分解能が約0.5nmと優れるが、Arイオンビームでエッチングされる時間は各材料により異なるため、膜厚そのものの数値を得るためには、膜厚が既知かつ平坦な試料を調達し、エッチングレートを算出しなければならない。上記は容易でないため、膜厚が既知であるSiO2膜にて算出したエッチングレートで規定し、エッチングに要した時間から算出される「SiO2換算膜厚」を利用した。このため「SiO2換算膜厚」は実際の酸化物の膜厚と異なる点に注意が必要である。SiO2換算エッチングレートで膜厚を規定すると、実際の膜厚は不明であっても、一義的であるため定量的に膜厚を評価することができる。数nm以下の膜厚を測定する方法として、AESの他にTEMによる直接観察で膜厚を測定することもできる。TEMは1原子層まで観察することができるが、あくまで単結晶等の特別な場合であり、本件のようなめっき材料では表面粗さの影響を受けるため、1nm程度の分解能しか持たない。AESの場合は、原子によるが3〜5原子層の検出深さであるため、約0.5nmまで検出することができる。また分析範囲としてもTEMはX軸で最大でも約5μmまでしか測定できないために局所的な情報しか得られないが、AESは最大で約100μmまで情報を得ることができ、広い範囲で平均的な情報を得ることができる。このため今回の酸化膜厚測定にはAESを用いた。
<Thickness of oxide layer>
Using an AES (Auger Electron Spectroscopy) analyzer PHI700 manufactured by ULVAC-PHI Co., Ltd., etching was performed with argon ions until no oxygen was detected on the sample surface, and the time required for the etching was measured. The measurement was performed by scanning □ 1 μm with an electron beam diameter of 10 nm, and then detecting Auger electrons generated from that region. The “SiO 2 equivalent film thickness” of the oxide layer was calculated from the required time using the etching rate of SiO 2 measured in advance with the same model. The method of calculating the SiO 2 etching rate was calculated by dividing the time required for etching 20nm etched with argon ion side of the SiO 2 film of a thickness of 20nm is in 1.5mm square area of . In the case of the above analysis apparatus, since it took 17 minutes, the etching rate is 1.2 nm / min. For example, sample no. In No. 1, since etching took 1 minute and 40 seconds (1.7 minutes), the SiO 2 equivalent film thickness was set to 2 nm. AES has an excellent depth resolution of about 0.5 nm, but the etching time with an Ar ion beam differs depending on the material. Therefore, to obtain a numerical value of the film thickness, a sample with a known and flat film thickness is procured. Then, the etching rate must be calculated. Since the above is not easy, the “SiO 2 equivalent film thickness” calculated from the time required for etching is defined by the etching rate calculated for the SiO 2 film whose film thickness is known. Therefore, it should be noted that the “SiO 2 equivalent film thickness” is different from the actual oxide film thickness. When the film thickness is defined by the SiO 2 conversion etching rate, even if the actual film thickness is unknown, the film thickness is unambiguous and can be quantitatively evaluated. As a method of measuring a film thickness of several nm or less, the film thickness can also be measured by direct observation with a TEM in addition to AES. Although TEM can observe up to one atomic layer, it is a special case such as a single crystal, and the plating material like this case is affected by the surface roughness, so it has a resolution of about 1 nm. In the case of AES, although it depends on the atoms, the detection depth is 3 to 5 atomic layers, so that it can be detected up to about 0.5 nm. As for the analysis range, TEM can only measure up to about 5 μm on the X-axis, so only local information can be obtained, but AES can obtain information up to about 100 μm, and it is average over a wide range. Information can be obtained. Therefore, AES was used for the measurement of the oxide film thickness this time.
<酸化物層の組成(マグネシウム濃度及び錫濃度)>
アルバック・ファイ株式会社製のAES分析装置 PHI700を用いて試料表面を1分間アルゴンエッチングし、表面の吸着カーボンを除去した後、定量分析した。
<Composition of oxide layer (magnesium concentration and tin concentration)>
The sample surface was subjected to argon etching for 1 minute using an AES analyzer PHI700 manufactured by ULVAC-PHI, Inc., and the adsorbed carbon on the surface was removed, followed by quantitative analysis.
<はんだ濡れ性>
はんだ濡れ性は、JIS−C0053のはんだ付け試験方法(平衡法)に準じ、株式会社レスカ製のソルダーチェッカーWET−6000を用い、下記のフラックス塗布条件にて試料表面にフラックスを塗布した後、試料と鉛フリーはんだとの濡れ性を評価した。
(フラックス塗布条件)
フラックス:25質量%ロジン−エタノール、フラックス温度:室温、フラックス深さ:8mm、フラックス浸漬時間:5秒、たれ切り方法:ろ紙にエッジを5秒当ててフラックスを除去した。
このフラックスを塗布した試料を装置に固定し、はんだ槽内の鉛フリーはんだ内に浸漬速度2mm/secで深さ1mm浸漬して30秒保持し、ゼロクロスタイムが5秒以下のものを良、これを上回ったものを不良とした。
<Solder wettability>
The solder wettability is determined by applying a flux on the sample surface under the following flux application conditions using a solder checker WET-6000 manufactured by Reska Co., Ltd. according to the soldering test method (equilibrium method) of JIS-C0053. And the wettability of lead-free solder.
(Flux application conditions)
Flux: 25% by mass rosin-ethanol, flux temperature: room temperature, flux depth: 8 mm, flux immersion time: 5 seconds, draining method: edge was applied to filter paper for 5 seconds to remove the flux.
A sample coated with this flux is fixed to the apparatus, immersed in lead-free solder in a solder bath at a depth of 1 mm at a depth of 1 mm and held for 30 seconds, and a zero cross time of 5 seconds or less is acceptable. Anything exceeding that was considered defective.
<接触抵抗>
接触抵抗の測定方法はJCBA−T323に準拠し、4端子接触抵抗試験機(山崎精機研究所製:CRS−113−AU)を用い、摺動式(1mm)で荷重0.98N時の接触抵抗を測定した。平板試料のめっき表面に対して測定を実施した。
<Contact resistance>
The contact resistance measurement method conforms to JCBA-T323, using a 4-terminal contact resistance tester (manufactured by Yamazaki Seiki Laboratories: CRS-113-AU), sliding resistance (1 mm) and contact resistance at 0.98 N Was measured. Measurement was performed on the plated surface of the flat plate sample.
<接触抵抗の変化率>
試料を端子形状に加工し、アルミニウム線に圧着して、アルミニウム線と端子の接触抵抗を測定し、次いで、その圧着部分にJIS Z 2371に準じた塩水噴霧試験を168時間行った後に、再度アルミニウム線と端子の接触抵抗を測定し、接触抵抗の変化率を算出した。接触抵抗の測定方法はJIS−C−5402に準拠し、4端子接触抵抗試験機(山崎精機研究所製:CRS−113−AU)を用いた。
これらの測定結果、評価結果を表2に示す。
<Change rate of contact resistance>
The sample was processed into a terminal shape, crimped to an aluminum wire, the contact resistance between the aluminum wire and the terminal was measured, and then subjected to a salt spray test according to JIS Z 2371 for 168 hours, and then again aluminum The contact resistance between the wire and the terminal was measured, and the change rate of the contact resistance was calculated. The contact resistance was measured in accordance with JIS-C-5402 using a 4-terminal contact resistance tester (manufactured by Yamazaki Seiki Laboratory: CRS-113-AU).
These measurement results and evaluation results are shown in Table 2.
この表2から明らかなように、試料No.1〜4は、はんだ濡れ性が良好で、塩水噴霧試験を実施した後の接触抵抗の変化も小さく、腐食、電食が生じていないことがわかる。
これに対して、試料No.5は基材にマグネシウムが含有されていなかったため、酸化物層にマグネシウムが含有されず、塩水噴霧試験で接触抵抗が大きく変化した。試料No.6も基材中のマグネシウム含有量が少ないために、同様に接触抵抗の変化が大きくなった。試料No.7は基材中のマグネシウム含有量が多すぎるため、はんだ濡れ性が悪化し、、また、酸化物層が厚いために接触抵抗自体が大きくなった。
As apparent from Table 2, the sample No. 1-4 show that the solder wettability is good, the change in contact resistance after the salt spray test is small, and no corrosion or electrolytic corrosion occurs.
In contrast, sample no. In No. 5, since the substrate did not contain magnesium, the oxide layer did not contain magnesium, and the contact resistance greatly changed in the salt spray test. Sample No. 6 also had a large change in contact resistance due to the low magnesium content in the substrate. Sample No. In No. 7, since the magnesium content in the base material was too large, the solder wettability was deteriorated, and the contact resistance itself was increased because the oxide layer was thick.
1 錫めっき銅合金端子材
2 基材
3 銅錫合金層
4 錫層
5 錫マグネシウム酸化物層
10 端子
11 接続部
12 電線
12a 心線
12b 被覆部
13 心線かしめ部
14 被覆かしめ部
DESCRIPTION OF SYMBOLS 1 Tin plating copper
Claims (3)
A wire terminal part structure, wherein a terminal produced using the tin-plated copper alloy terminal material according to claim 1 is crimped to a terminal of a core wire of an electric wire made of aluminum or an aluminum alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015047103A JP2016166397A (en) | 2015-03-10 | 2015-03-10 | Tin plated copper alloy terminal material, manufacturing method therefor and wire terminal part structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015047103A JP2016166397A (en) | 2015-03-10 | 2015-03-10 | Tin plated copper alloy terminal material, manufacturing method therefor and wire terminal part structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016166397A true JP2016166397A (en) | 2016-09-15 |
Family
ID=56897567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015047103A Pending JP2016166397A (en) | 2015-03-10 | 2015-03-10 | Tin plated copper alloy terminal material, manufacturing method therefor and wire terminal part structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016166397A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018164127A1 (en) * | 2017-03-07 | 2018-09-13 | 三菱マテリアル株式会社 | Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure |
JP2020087868A (en) * | 2018-11-30 | 2020-06-04 | 矢崎総業株式会社 | Wire with terminal, and manufacturing method of wire with terminal |
WO2020137726A1 (en) * | 2018-12-26 | 2020-07-02 | 三菱伸銅株式会社 | Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products |
JP2020105627A (en) * | 2018-12-26 | 2020-07-09 | 三菱伸銅株式会社 | Copper alloy sheet, copper alloy sheet with plating film, and method of producing the same |
WO2021117698A1 (en) * | 2019-12-10 | 2021-06-17 | 三菱マテリアル株式会社 | Copper alloy sheet, copper alloy sheet with plating film, and method for producing same |
WO2021261348A1 (en) * | 2020-06-26 | 2021-12-30 | 三菱マテリアル株式会社 | Corrosion-resistant terminal material for aluminum core wire, method for manufacturing same, corrosion-resistant terminal, and electric wire terminal structure |
US11795525B2 (en) | 2019-03-29 | 2023-10-24 | Mitsubishi Materials Corporation | Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof |
WO2024202783A1 (en) * | 2023-03-27 | 2024-10-03 | 三菱マテリアル株式会社 | Film-provided copper terminal material and method for producing same |
-
2015
- 2015-03-10 JP JP2015047103A patent/JP2016166397A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10910130B2 (en) | 2017-03-07 | 2021-02-02 | Mitsubishi Materials Corporation | Corrosion-resistant terminal material, corrosion-resistant terminal, and wire-end structure |
WO2018164127A1 (en) * | 2017-03-07 | 2018-09-13 | 三菱マテリアル株式会社 | Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure |
JP2020087868A (en) * | 2018-11-30 | 2020-06-04 | 矢崎総業株式会社 | Wire with terminal, and manufacturing method of wire with terminal |
JP7184613B2 (en) | 2018-11-30 | 2022-12-06 | 矢崎総業株式会社 | Electric wire with terminal and method for manufacturing electric wire with terminal |
JP2020105627A (en) * | 2018-12-26 | 2020-07-09 | 三菱伸銅株式会社 | Copper alloy sheet, copper alloy sheet with plating film, and method of producing the same |
KR102572398B1 (en) | 2018-12-26 | 2023-08-29 | 미쓰비시 마테리알 가부시키가이샤 | Copper alloy plate, copper alloy plate with plating film and manufacturing method thereof |
CN113316655A (en) * | 2018-12-26 | 2021-08-27 | 三菱综合材料株式会社 | Copper alloy sheet, copper alloy sheet with plating film, and method for producing same |
KR20210107715A (en) * | 2018-12-26 | 2021-09-01 | 미쓰비시 마테리알 가부시키가이샤 | Copper alloy plate, plated film-forming copper alloy plate, and manufacturing method thereof |
TWI828828B (en) * | 2018-12-26 | 2024-01-11 | 日商三菱伸銅股份有限公司 | Copper alloy plates, copper alloy plates with plating coatings and their manufacturing methods |
US11781234B2 (en) | 2018-12-26 | 2023-10-10 | Mitsubishi Materials Corporation | Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products |
EP3904549A4 (en) * | 2018-12-26 | 2022-10-26 | Mitsubishi Materials Corporation | Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products |
WO2020137726A1 (en) * | 2018-12-26 | 2020-07-02 | 三菱伸銅株式会社 | Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products |
CN113316655B (en) * | 2018-12-26 | 2023-01-06 | 三菱综合材料株式会社 | Copper alloy sheet, copper alloy sheet with plating film, and method for producing same |
TWI840541B (en) * | 2019-03-29 | 2024-05-01 | 日商三菱伸銅股份有限公司 | Copper alloy plate, copper alloy plate with coating, and method for producing the same |
US11795525B2 (en) | 2019-03-29 | 2023-10-24 | Mitsubishi Materials Corporation | Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof |
JP2021091931A (en) * | 2019-12-10 | 2021-06-17 | 三菱マテリアル株式会社 | Copper alloy sheet, copper alloy sheet with plating coat, and method for producing the same |
CN114641585A (en) * | 2019-12-10 | 2022-06-17 | 三菱综合材料株式会社 | Copper alloy sheet, copper alloy sheet with plating film, and method for producing same |
CN114641585B (en) * | 2019-12-10 | 2023-11-17 | 三菱综合材料株式会社 | Copper alloy sheet, copper alloy sheet with plated film, and method for producing same |
US11920228B2 (en) | 2019-12-10 | 2024-03-05 | Mitsubishi Materials Corporation | Copper alloy sheet, copper alloy sheet with plating film, and method for producing same |
JP7443737B2 (en) | 2019-12-10 | 2024-03-06 | 三菱マテリアル株式会社 | Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof |
WO2021117698A1 (en) * | 2019-12-10 | 2021-06-17 | 三菱マテリアル株式会社 | Copper alloy sheet, copper alloy sheet with plating film, and method for producing same |
JP2022007802A (en) * | 2020-06-26 | 2022-01-13 | 三菱マテリアル株式会社 | Anti-corrosion terminal material for aluminum core wire and manufacturing method thereof, anti-corrosion terminal and wire terminal structure |
JP7380448B2 (en) | 2020-06-26 | 2023-11-15 | 三菱マテリアル株式会社 | Corrosion-proof terminal material for aluminum core wire and its manufacturing method, corrosion-proof terminal and electric wire terminal structure |
WO2021261348A1 (en) * | 2020-06-26 | 2021-12-30 | 三菱マテリアル株式会社 | Corrosion-resistant terminal material for aluminum core wire, method for manufacturing same, corrosion-resistant terminal, and electric wire terminal structure |
WO2024202783A1 (en) * | 2023-03-27 | 2024-10-03 | 三菱マテリアル株式会社 | Film-provided copper terminal material and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016166397A (en) | Tin plated copper alloy terminal material, manufacturing method therefor and wire terminal part structure | |
JP6740635B2 (en) | Tin-plated copper terminal material, its manufacturing method, and wire terminal structure | |
JP6304447B2 (en) | Tin-plated copper terminal material and terminal and wire terminal structure | |
JP4986499B2 (en) | Method for producing Cu-Ni-Si alloy tin plating strip | |
US7972709B2 (en) | Cu-Zn alloy strip superior in thermal peel resistance of Sn plating and Sn plating strip thereof | |
JP2017203214A (en) | Copper terminal material with tin plating, terminal and wire terminal part structure | |
JP2014208904A (en) | Electroconductive material superior in resistance to fretting corrosion for connection component | |
JP4522970B2 (en) | Cu-Zn alloy heat resistant Sn plating strip with reduced whisker | |
JP2008248332A (en) | Tin-plated strip and its production method | |
JP4489738B2 (en) | Cu-Ni-Si-Zn alloy tin plating strip | |
JP2018147777A (en) | Anticorrosive terminal material and anticorrosive terminal and wire terminal structure | |
JP2004300524A (en) | Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD | |
JP5393739B2 (en) | Cu-Ni-Si alloy tin plating strip | |
JP2005350774A (en) | Film, its production method and electric and electronic components | |
JP6620897B2 (en) | Tin-plated copper terminal material and terminal and wire terminal structure | |
WO2018212174A1 (en) | Tin-plated copper terminal material, terminal, and power cable terminal structure | |
JP7187162B2 (en) | Sn-plated material and its manufacturing method | |
WO2018164127A1 (en) | Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure | |
JP4247256B2 (en) | Cu-Zn-Sn alloy tin-plated strip | |
JP2019112666A (en) | Conductive material | |
JP4090488B2 (en) | Conductive material plate for connecting part forming process and manufacturing method thereof | |
JP5101235B2 (en) | Sn plating material for electronic parts and electronic parts | |
JP2011012350A (en) | Coating film and electric and electronic component | |
JP5226032B2 (en) | Cu-Zn alloy heat resistant Sn plating strip with reduced whisker | |
JP4090483B2 (en) | Conductive connection parts |