[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016142106A - Method and device for cooling concrete - Google Patents

Method and device for cooling concrete Download PDF

Info

Publication number
JP2016142106A
JP2016142106A JP2015020848A JP2015020848A JP2016142106A JP 2016142106 A JP2016142106 A JP 2016142106A JP 2015020848 A JP2015020848 A JP 2015020848A JP 2015020848 A JP2015020848 A JP 2015020848A JP 2016142106 A JP2016142106 A JP 2016142106A
Authority
JP
Japan
Prior art keywords
cooling
water
concrete
absorbing member
cooling pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015020848A
Other languages
Japanese (ja)
Other versions
JP2016142106A5 (en
JP6482304B2 (en
Inventor
哲也 小笠原
Tetsuya Ogasawara
哲也 小笠原
浩一朗 安野
Koichiro Yasuno
浩一朗 安野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2015020848A priority Critical patent/JP6482304B2/en
Publication of JP2016142106A publication Critical patent/JP2016142106A/en
Publication of JP2016142106A5 publication Critical patent/JP2016142106A5/ja
Application granted granted Critical
Publication of JP6482304B2 publication Critical patent/JP6482304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for cooling concrete, which bring about a greater cooling effect than air cleaning, which require only a small quantity of water and which do not decrease the cooling effect even when a cooling pipe is longer.SOLUTION: In a concrete cooling method, a cooling pipe 10 is arranged before concrete placement; water is included in a water-absorbing member 15 arranged within the cooling pipe; and negative pressure acts on the cooling pipe to vaporize the water included in the water-absorbing member and cool the inside of concrete.SELECTED DRAWING: Figure 1

Description

本発明は、コンクリートを冷却する方法および装置に関する。   The present invention relates to a method and apparatus for cooling concrete.

マスコンクリートを施工する際、コンクリートの内部温度上昇を抑制するために、特許文献1は、垂直方向に配置した複数の管体内に給水管を挿入し、給水管を介して管体内に水を供給することでコンクリートを冷却する方法を提案する。特許文献2は、コンクリート打設空間内に組み込んだ中空材の周りと、その内部との一方にコンクリート打設をした後、他方にコンクリート打設をする工法を提案する。   When constructing mass concrete, in order to suppress an increase in the internal temperature of concrete, Patent Document 1 inserts a water supply pipe into a plurality of pipes arranged in a vertical direction, and supplies water to the pipe body through the water supply pipe. By doing so, we propose a method for cooling concrete. Patent Document 2 proposes a construction method in which concrete is placed on one of the periphery of the hollow material incorporated in the concrete placement space and the interior thereof, and then the concrete is placed on the other.

また、特許文献3は、型枠内に複数の直線状の管路を設置し、コンクリート打設後、各管路に空気を流す方法を提案する。特許文献4は、送風機から送風ダクト内に空気を送り込んで中空鋼管の内部に供給し、この空気が中空鋼管の周囲に打設されたフレッシュコンクリートを冷却する打設コンクリートの冷却装置を提案する。特許文献5は、RC構造物の基礎部と立ち上り部の打継面近傍にクーリングパイプを設置し、クーリングパイプに空気または液体を通過させて、クーリングパイプ周囲のコンクリート温度の上昇を抑える工法を提案する。   Patent Document 3 proposes a method in which a plurality of straight pipelines are installed in a mold, and air is allowed to flow through each pipeline after placing concrete. Patent Document 4 proposes a cast concrete cooling device that feeds air from a blower into a blow duct and supplies the air to the inside of a hollow steel pipe and cools the fresh concrete placed around the hollow steel pipe. Patent Document 5 proposes a construction method in which a cooling pipe is installed in the vicinity of the joining surface of the foundation part and the rising part of the RC structure, and air or liquid is passed through the cooling pipe to suppress the rise in the concrete temperature around the cooling pipe. To do.

特開2007-303159号公報JP 2007-303159 A 特開2007-146636号公報JP 2007-146636 Gazette 特開2009-235808号公報JP 2009-235808 JP 特開2011-32658号公報JP 2011-32658 特開2012-92633号公報JP 2012-92633 A

通常、マスコンクリート打設時に水を流してパイプクーリングを行う期間は、3〜7日程度であり、通水量は1系統あたり20リットル/分である。このため、井戸水や河川水を採取し通水してパイプクーリングを行い、そのまま放水する場合には、水を大量に必要とするが、実際の現場では、必要な水量を確保することが困難な場合が多い。このため、水を循環させて再利用することが考えられるが、この場合には、コンクリートの水和熱を冷却した分、上昇した水の温度を冷却する必要があり、非常に大がかりな冷却装置とシステムが必要であり、このため、施工コストがかさんでしまう。   Usually, the period of pipe cooling by flowing water when placing mass concrete is about 3-7 days, and the water flow rate is 20 liters / minute per system. For this reason, when well water or river water is sampled and piped, pipe cooling is performed, and water is discharged as it is, a large amount of water is required, but it is difficult to secure the required amount of water at the actual site. There are many cases. For this reason, it is conceivable to circulate and reuse the water, but in this case, it is necessary to cool the temperature of the raised water by the amount of cooling of the hydration heat of the concrete. And a system are required, which increases the construction cost.

また、水を必要としないエアクーリング等があるが、水と比較して空気の熱容量は小さく、冷却管の大きさが同様であれば冷却効果が小さくなる。水と同様の効果を得るためには、コンクリート内部の冷却管面積を大きくする必要があり、この場合、たとえば、特許文献2のように大きなダクトが必要となり、施工が大掛かりとなってしまう。また、通常、送風機によって外気を取り込んでいるため、外気温よりも温度を下げることができない。   In addition, there is air cooling that does not require water, but the heat capacity of air is smaller than that of water, and the cooling effect is reduced if the size of the cooling pipe is the same. In order to obtain the same effect as water, it is necessary to increase the area of the cooling pipe inside the concrete. In this case, for example, a large duct as in Patent Document 2 is required, and the construction becomes large. Moreover, since the outside air is usually taken in by the blower, the temperature cannot be lowered than the outside air temperature.

また、冷却水の循環設備をなくすために、特殊な冷却媒体(ヒートパイプ)を使用してパイプクーリングを行う工法が開発されているが、この工法は冷却媒体を下部から上部へ移動させて放熱する必要があり、鉛直パイプクーリングのみに適用できるものである。さらに冷却効果がパイプの上下方向で一様になりづらく、延長の長い鉛直パイプクーリングには適用できない。   In addition, in order to eliminate the cooling water circulation facility, a pipe cooling method using a special cooling medium (heat pipe) has been developed, but this method moves the cooling medium from the bottom to the top to dissipate heat. This is applicable only to vertical pipe cooling. Furthermore, the cooling effect is difficult to be uniform in the vertical direction of the pipe, and it cannot be applied to vertical pipe cooling with a long extension.

また、先に本発明者の一人は他の発明者とともに特願2014-30223において、管の一端から水を噴霧し他端から負圧を作用させ、その気化熱によりコンクリート内部を冷却する方法を提案した。本発明者等の検討によれば、かかる冷却方法はエアクーリングよりも冷却効果が大きく、必要な水量が少なく、また、管の長さ方向に均質な冷却効果を得ることができるが、クーリングする管の延長がかなり長くなると、冷却効果が低下する傾向にあり、冷却領域が制限されてしまうことが判明した。   In addition, in Japanese Patent Application No. 2014-30223, one of the present inventors, together with another inventor, previously applied a method of spraying water from one end of a pipe and applying negative pressure from the other end to cool the inside of the concrete by the heat of vaporization. Proposed. According to studies by the present inventors, such a cooling method has a cooling effect greater than that of air cooling, requires a small amount of water, and can obtain a homogeneous cooling effect in the length direction of the tube, but cooling is performed. It has been found that when the length of the tube becomes considerably long, the cooling effect tends to decrease, and the cooling region is limited.

本発明は、上述のような従来技術の問題に鑑み、エアクーリングよりも冷却効果が大きくかつ必要な水が少なくて済むとともに、冷却領域が制限されないコンクリートを冷却する方法および装置を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above-described problems of the prior art, the present invention provides a method and an apparatus for cooling concrete that has a cooling effect larger than that of air cooling and requires less water, and whose cooling region is not limited. Objective.

上記目的を達成するためのコンクリートの冷却方法は、コンクリート打設前に冷却管を配置し、前記冷却管内に配置された吸水性部材に水を含ませ、前記冷却管に負圧を作用させて前記吸水性部材に含まれた水を気化させることでコンクリート内部を冷却する。   A concrete cooling method for achieving the above-described object is that a cooling pipe is arranged before placing concrete, water is contained in the water absorbing member arranged in the cooling pipe, and negative pressure is applied to the cooling pipe. The inside of the concrete is cooled by vaporizing water contained in the water absorbing member.

このコンクリートの冷却方法によれば、冷却管内に負圧を作用させることで、吸水性部材に含ませた水が容易に気化し、その気化熱により冷却管を冷却できるため、空気を流すエアクーリングよりも冷却効果が大きく、必要な水が少量で済む。また、冷却管内への吸水性部材の配置によって冷却領域を自在に設定できるので、冷却領域が制限されることはない。たとえば、冷却管が長くなっても、それに応じて吸水性部材を配置するだけでよく、冷却効果の低下はなく、また、冷却管内における冷却効果を均質化でき、冷却管内の均一な冷却が可能となる。   According to this concrete cooling method, by applying a negative pressure to the cooling pipe, the water contained in the water absorbing member is easily vaporized, and the cooling pipe can be cooled by the heat of vaporization. The cooling effect is greater than that, and a small amount of water is required. Further, since the cooling region can be freely set by arranging the water absorbing member in the cooling pipe, the cooling region is not limited. For example, even if the cooling pipe becomes long, it is only necessary to arrange the water absorbing member accordingly, the cooling effect does not deteriorate, the cooling effect in the cooling pipe can be homogenized, and uniform cooling in the cooling pipe is possible It becomes.

上記コンクリートの冷却方法において、前記吸水性部材を前記冷却管のほぼ全長にわたって配置することで、冷却管内の長さ方向のほぼ全体に水を存在させることができ、冷却管内のほぼ全体を冷却することができる。   In the concrete cooling method, by disposing the water absorbing member over substantially the entire length of the cooling pipe, water can be present in almost the entire length of the cooling pipe, and the entire cooling pipe is cooled. be able to.

また、前記吸水性部材を前記冷却管の一部に配置することで、冷却管内の冷却したい一部の領域のみを冷却することが可能になる。   Moreover, it becomes possible to cool only the one part area | region which wants to cool in a cooling pipe by arrange | positioning the said water absorbing member in a part of said cooling pipe.

また、前記コンクリート内部の冷却中に前記吸水性部材に水を供給するようにしてもよい。吸水性部材に予め含ませた水だけでは冷却が不十分な場合、吸水性部材に水を供給することで十分な冷却が可能となる。   Moreover, you may make it supply water to the said water absorbing member during cooling of the said concrete inside. When cooling is insufficient with only water preliminarily contained in the water absorbent member, sufficient cooling is possible by supplying water to the water absorbent member.

また、前記吸水性部材を前記冷却管内に予め配置しておくことが好ましい。また、前記吸水性部材は吸水性繊維からなることが好ましい。   Moreover, it is preferable that the water absorbing member is disposed in advance in the cooling pipe. The water absorbing member is preferably made of water absorbing fibers.

上記目的を達成するためのコンクリートの冷却装置は、コンクリート打設前に配置された冷却管と、前記冷却管内に配置された吸水性部材と、前記冷却管に連結された真空装置と、を備え、前記吸水性部材に水を含ませ、前記真空装置により前記冷却管内に負圧を作用させて前記吸水性部材に含まれた水を気化させることでコンクリート内部を冷却する。   A concrete cooling device for achieving the above object includes a cooling pipe arranged before placing concrete, a water absorbing member arranged in the cooling pipe, and a vacuum device connected to the cooling pipe. Water is contained in the water absorbing member, and the inside of the concrete is cooled by vaporizing water contained in the water absorbing member by applying a negative pressure in the cooling pipe by the vacuum device.

このコンクリートの冷却装置によれば、真空装置により冷却管内に負圧を作用させることで、吸水性部材に含ませた水が容易に気化し、その気化熱により冷却管を冷却できるため、空気を流すエアクーリングよりも冷却効果が大きく、必要な水が少量で済む。また、冷却管内への吸水性部材の配置によって冷却領域を自在に設定できるので、冷却領域が制限されることはない。たとえば、冷却管が長くなっても、それに応じて吸水性部材を配置するだけでよく、冷却効果の低下はなく、また、冷却管内における冷却効果を均質化でき、冷却管内の均一な冷却が可能となる。   According to this concrete cooling apparatus, by applying a negative pressure in the cooling pipe by a vacuum apparatus, water contained in the water absorbing member is easily vaporized, and the cooling pipe can be cooled by the heat of vaporization. Cooling effect is greater than flowing air cooling and requires less water. Further, since the cooling region can be freely set by arranging the water absorbing member in the cooling pipe, the cooling region is not limited. For example, even if the cooling pipe becomes long, it is only necessary to arrange the water absorbing member accordingly, the cooling effect does not deteriorate, the cooling effect in the cooling pipe can be homogenized, and uniform cooling in the cooling pipe is possible It becomes.

上記コンクリートの冷却装置において、前記吸水性部材は前記冷却管のほぼ全長にわたって配置されることで、冷却管内の長さ方向のほぼ全体に水を存在させることができ、冷却管内のほぼ全体を冷却することができる。   In the concrete cooling apparatus, the water-absorbing member is disposed over substantially the entire length of the cooling pipe, so that water can be present in almost the entire length of the cooling pipe, and the entire cooling pipe is cooled. can do.

また、前記吸水性部材は前記冷却管の一部に配置されることで、冷却管内の冷却したい一部の領域のみを冷却することが可能になる。   In addition, the water absorbing member is disposed in a part of the cooling pipe, so that it is possible to cool only a part of the cooling pipe that is desired to be cooled.

また、前記コンクリート内部の冷却中に前記吸水性部材に水を供給可能に構成することで、吸水性部材に予め含ませた水だけでは冷却が不十分な場合、吸水性部材に水を供給することで十分な冷却が可能となる。   In addition, when the inside of the concrete is cooled, water can be supplied to the water absorbing member, so that water is supplied to the water absorbing member when cooling is insufficient with only water previously contained in the water absorbing member. Therefore, sufficient cooling is possible.

また、前記吸水性部材は吸水性繊維からなることが好ましい。また、前記冷却管を複数本配置し、前記各冷却管の端部を共通のヘッダに連結し、前記ヘッダを介して前記真空装置により前記各冷却管内に負圧を作用させることが好ましい。   The water absorbing member is preferably made of water absorbing fibers. It is preferable that a plurality of the cooling pipes are arranged, end portions of the cooling pipes are connected to a common header, and a negative pressure is applied to the cooling pipes by the vacuum device via the header.

本発明のコンクリートの冷却方法および装置によれば、エアクーリングよりも冷却効果が大きくかつ必要な水が少なくて済むとともに、冷却領域が制限されず、たとえば、冷却管が長くなっても冷却効果が低下しない。   According to the concrete cooling method and apparatus of the present invention, the cooling effect is greater than that of air cooling and less water is required, and the cooling region is not limited. For example, the cooling effect can be obtained even if the cooling pipe becomes longer. It does not decline.

第1の実施形態によるコンクリート冷却装置を示す概略図である。It is the schematic which shows the concrete cooling device by 1st Embodiment. 第2の実施形態によるコンクリート冷却装置を示す概略図である。It is the schematic which shows the concrete cooling device by 2nd Embodiment. 第3の実施形態によるコンクリート冷却装置を示す概略図である。It is the schematic which shows the concrete cooling device by 3rd Embodiment.

以下、本発明を実施するための形態について図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

[第1の実施形態]
図1は第1の実施形態によるコンクリート冷却装置を示す概略図である。
[First Embodiment]
FIG. 1 is a schematic view showing a concrete cooling apparatus according to the first embodiment.

図1に示すように、第1の実施形態によるコンクリート冷却装置は、コンクリート構造物CS内に配置された冷却管10の一端10aに対し水を管11aを通して供給可能な水タンク11と、冷却管10の他端10bに配置されたエジェクタ12と、エジェクタ12に圧縮空気を送ることで冷却管10内に負圧を作用させるコンプレッサ13と、冷却管10の一端10aと他端10bとの間に配置した吸水性部材15と、を備える。   As shown in FIG. 1, the concrete cooling apparatus according to the first embodiment includes a water tank 11 capable of supplying water through a pipe 11a to one end 10a of a cooling pipe 10 disposed in a concrete structure CS, and a cooling pipe. 10 between the ejector 12 disposed at the other end 10b, the compressor 13 that applies a negative pressure to the cooling pipe 10 by sending compressed air to the ejector 12, and the one end 10a and the other end 10b of the cooling pipe 10. And a disposed water-absorbing member 15.

冷却管10は、直線状に構成され、型枠内に配置されてからコンクリートが打設されてコンクリート構造物CSの内部に予め配置されている。吸水性部材15は、冷却管10内に予め配置しておくことが好ましく、この場合、図1のように、冷却管10の断面の一部に配置するが、断面全体に配置してもよい。   The cooling pipe 10 is configured in a straight line, and after being placed in the formwork, concrete is cast and placed in advance in the concrete structure CS. It is preferable to arrange the water absorbing member 15 in the cooling pipe 10 in advance. In this case, the water absorbing member 15 is arranged in a part of the cross section of the cooling pipe 10 as shown in FIG. .

図1において、水タンク11から冷却管10内の吸水性部材15に対し水を供給可能に構成するために、冷却管10の端部10aを閉塞板10cで閉塞し、管11aの先端(または管11aの途中)にノズル11bを配置し閉塞板10cに貫通して取り付け、このノズル11bから吸水性部材15に比較的少量の水を継続的に供給するように構成できる。この構成によれば、冷却管10内の負圧を維持したままで水の継続的な供給が可能である。   In FIG. 1, in order to be able to supply water from the water tank 11 to the water absorbing member 15 in the cooling pipe 10, the end 10a of the cooling pipe 10 is closed with a closing plate 10c, and the tip of the pipe 11a (or The nozzle 11b is disposed in the middle of the pipe 11a and is attached through the blocking plate 10c so that a relatively small amount of water is continuously supplied from the nozzle 11b to the water absorbing member 15. According to this configuration, it is possible to continuously supply water while maintaining the negative pressure in the cooling pipe 10.

なお、吸水性部材15の保水性能等に応じて、ノズル11bから比較的少量の水を断続的に供給してもよい。また、ノズル11bを噴霧ノズルとし、コンプレッサを用いて噴霧ノズルから水をミスト状に噴霧するように構成してもよい。水はミスト状にする方が負圧を保持しやすいので、冷却管10内の負圧維持の点で好ましい。   Note that a relatively small amount of water may be intermittently supplied from the nozzle 11b in accordance with the water retention performance of the water absorbing member 15. Alternatively, the nozzle 11b may be a spray nozzle, and water may be sprayed in a mist form from the spray nozzle using a compressor. Since water is more likely to maintain a negative pressure, water is preferable in terms of maintaining a negative pressure in the cooling pipe 10.

また、冷却管10の他端10bを閉塞板10dで閉塞し、閉塞板10dにエジェクタ12を取り付ける。コンプレッサ13からエジェクタ12に圧縮空気を送り冷却管10の他端10bから空気を排出することで、冷却管10内に負圧を作用させる。   Further, the other end 10b of the cooling pipe 10 is closed with the closing plate 10d, and the ejector 12 is attached to the closing plate 10d. By sending compressed air from the compressor 13 to the ejector 12 and discharging air from the other end 10 b of the cooling pipe 10, negative pressure is applied to the cooling pipe 10.

吸水性部材15は、吸水性があるものであればいずれでも使用可能であるが、保水性・吸水性に優れた材料を使用することが好ましく、より効率的であり、たとえば、高吸水性高分子(ポリアクリル酸ナトリウムなどの吸水性ポリマー)、ポリエステル、ナイロン(登録商標)、ウレタン、ポリビニルアルコールなどの人工素材を用いることができる。さらに、これらの人工素材を繊維状にするなどの加工により単位容積当たりの繊維の表面積を増やすことで、繊維表面と水との接触面積が増え、表面張力が大きくなり吸水性を向上させた吸水性繊維が好ましい。吸水性繊維における吸水性向上の方法・手段としては、繊維の極細化、繊維断面の異形化や側面の溝付与、繊維側面に微細な溝や窪み付与、繊維側面の多孔化などがある。   Any water-absorbing member 15 can be used as long as it has water absorption, but it is preferable to use a material excellent in water retention and water absorption, which is more efficient. Artificial materials such as molecules (water-absorbing polymers such as sodium polyacrylate), polyester, nylon (registered trademark), urethane, and polyvinyl alcohol can be used. Furthermore, by increasing the surface area of the fiber per unit volume by processing such as making these artificial materials into a fibrous form, the contact area between the fiber surface and water is increased, the surface tension is increased, and the water absorption is improved. Is preferred. Examples of methods and means for improving water absorption in water-absorbing fibers include ultra-thinning of fibers, deforming the cross section of the fibers and providing side grooves, providing fine grooves and depressions on the fiber side surfaces, and making the fiber side surfaces porous.

各種の吸水性繊維を使用できるが、たとえば、繊維1gあたり150mlの水を保水可能な保水性、および、吸水速度が速く、たとえば、約10秒で平衡吸水量の70%に達するような優れた吸水性を備える吸水性繊維を用いることができる。また、吸水性繊維は、多少の圧力が加えられても離水しない性質を有することが好ましい。   Various water-absorbing fibers can be used.For example, the water-retaining capacity can hold 150 ml of water per 1 g of fiber, and the water-absorbing speed is fast, for example, it reaches 70% of the equilibrium water absorption in about 10 seconds. Water-absorbing fibers having water absorption can be used. Moreover, it is preferable that a water absorptive fiber has a property which does not separate even if some pressure is applied.

上述のように優れた吸水性を発揮する素材を使用し、かつ、素材を加工することで吸水性を高めた人工材料の製品名としては、ランシールF(東洋紡社製)、モイスファイン(東洋紡社製)、アクアキープ(住友精化社製)などがあるが、これらに限定されない。   As mentioned above, the product names of artificial materials that use materials that exhibit excellent water absorption and have improved water absorption by processing the materials include Lanseal F (Toyobo), Moisfine (Toyobo) Product) and Aqua Keep (manufactured by Sumitomo Seika Co., Ltd.), but are not limited to these.

図1のコンクリート冷却装置の動作について説明する。水タンク11から管11a、ノズル11bを通して、冷却管10内の吸水性部材15に対し水を供給することで、吸水性部材15全体に水を含ませ保持する。次に、コンプレッサ13を作動させてエジェクタ12に矢印方向cへ圧縮空気を通すことで、エジェクタ12により冷却管10の他端10bから冷却管10内の空気を排出し冷却管10内に負圧を作用させる。このように、冷却管10内に負圧を作用させることで冷却管10内の圧力が低下し、水の気化温度が低下するので、冷却管10内の吸水性部材15に含まれた水が容易に気化する。かかる気化熱により冷却管10を介してコンクリート構造物CSの内部の熱を図1の矢印方向aに除去し、コンクリート構造物CSの内部を冷却することができる。このようにして、コンクリート打設によって発生する水和熱を除去することができ、コンクリートの内部温度上昇を効率的に抑制することができる。   The operation of the concrete cooling device of FIG. 1 will be described. By supplying water from the water tank 11 to the water absorbing member 15 in the cooling pipe 10 through the pipe 11a and the nozzle 11b, the entire water absorbing member 15 is contained and held. Next, the compressor 13 is operated and compressed air is passed through the ejector 12 in the direction of the arrow c, whereby the air in the cooling pipe 10 is discharged from the other end 10 b of the cooling pipe 10 by the ejector 12 and negative pressure is applied to the cooling pipe 10. Act. In this way, by applying a negative pressure to the cooling pipe 10, the pressure in the cooling pipe 10 is lowered and the vaporization temperature of the water is lowered. Therefore, the water contained in the water absorbing member 15 in the cooling pipe 10 is reduced. Evaporates easily. With this heat of vaporization, the heat inside the concrete structure CS can be removed via the cooling pipe 10 in the direction of the arrow a in FIG. 1 to cool the inside of the concrete structure CS. In this way, the heat of hydration generated by placing the concrete can be removed, and an increase in the internal temperature of the concrete can be efficiently suppressed.

また、吸水性部材15は冷却管10の一端10aから他端10bまでの全体にわたって配置されているので、吸水性部材15が保持する水により冷却管10全体にわたって冷却でき、また、均一に冷却できるので冷却効果が均質化される。   In addition, since the water absorbing member 15 is disposed over the entire portion from the one end 10a to the other end 10b of the cooling tube 10, it can be cooled over the entire cooling tube 10 with water held by the water absorbing member 15, and can be uniformly cooled. Therefore, the cooling effect is homogenized.

また、コンクリート冷却中に、必要に応じて水タンク11から水をノズル11bを通して吸水性部材15に供給できるので、継続的な冷却効果を得ることができる。この場合、水は負圧維持のため比較的少量を継続的に供給するが、たとえば、管11aの途中にバルブを設け、このバルブの操作により断続的に供給してもよい。   Moreover, since water can be supplied from the water tank 11 to the water absorbing member 15 through the nozzle 11b as needed during concrete cooling, a continuous cooling effect can be obtained. In this case, a relatively small amount of water is continuously supplied to maintain the negative pressure. For example, a valve may be provided in the middle of the pipe 11a and supplied intermittently by operating this valve.

以上のように、本実施形態によれば、冷却管10内を負圧状態にすることで水の気化温度が低下し、吸水性部材15に含まれた水が容易に気化し、かかる気化熱によりコンクリート構造物CSの内部を効率よく冷却できるため、空気を流すエアクーリングよりも冷却効果が大きく、コンクリートの水和熱を効率的に除去することができる。また、パイプクーリングの冷却管10内の吸水性部材15に含ませた水を気化させて冷却することで、必要な水量が通常の水によるパイプクーリングと比べて大幅に少なくて済む。このように少量の水で済むため、多量の水の確保が困難なコンクリート施工現場においてもコンクリートの水和熱の効率的除去が可能となる。また、冷却水の冷却装置・システムが不要となるため、施工コストがかさむこともない。   As mentioned above, according to this embodiment, the vaporization temperature of water falls by making the inside of the cooling pipe 10 into a negative pressure state, the water contained in the water absorbing member 15 vaporizes easily, and this vaporization heat | fever As a result, the inside of the concrete structure CS can be efficiently cooled. Therefore, the cooling effect is greater than that of air cooling that allows air to flow, and the heat of hydration of the concrete can be efficiently removed. Further, by evaporating the water contained in the water-absorbing member 15 in the pipe cooling cooling pipe 10 and cooling it, the required amount of water can be significantly reduced compared to pipe cooling with ordinary water. Since only a small amount of water is required in this way, it is possible to efficiently remove the heat of hydration of the concrete even in a concrete construction site where it is difficult to secure a large amount of water. Moreover, since the cooling water cooling device / system becomes unnecessary, the construction cost does not increase.

また、冷却管10が長くなっても、それに応じて吸水性部材15を配置することができるので、冷却効果の低下はない。すなわち、冷却管10内の吸水性部材15に含水させ、その吸水性により冷却管10の一端だけでなく吸水性部材15を配置した冷却管10内の広範囲にわたって水を存在させることができるため、冷却管10の延長が長くなっても効果が低下しない。   Further, even if the cooling pipe 10 becomes long, the water absorbing member 15 can be arranged accordingly, so that the cooling effect is not lowered. That is, since water can be contained in the water absorbing member 15 in the cooling pipe 10 and water can be present not only at one end of the cooling pipe 10 but also in a wide range in the cooling pipe 10 in which the water absorbing member 15 is disposed due to the water absorption. Even if the extension of the cooling pipe 10 becomes longer, the effect does not decrease.

また、負圧により冷却管10内の冷却効果を均質化することができ、コンクリート打設による水和熱を冷却管10の延びる方向に均一に除去することができる。   Moreover, the cooling effect in the cooling pipe 10 can be homogenized by the negative pressure, and the heat of hydration due to concrete placement can be uniformly removed in the direction in which the cooling pipe 10 extends.

また、本実施形態によるコンクリート冷却装置は、必要な装置部分が、小型の水タンクとコンプレッサだけでよく、設置が簡易であり、コストもさほどかさまない。   In addition, the concrete cooling device according to the present embodiment requires only a small water tank and a compressor, and the installation is simple and the cost is not so high.

また、吸水性部材として上述のような吸水性繊維を用いることで、吸水性部材15の一端に水を少量供給するだけで遠く離れた部分まで水が比較的短時間で浸透し、水を保持することができるので、効率的な冷却が可能である。また、吸水性繊維によれば、多少の圧力が加えられても離水しないので、負圧により徐々に水を気化させることができる。   In addition, by using the above-described water-absorbing fiber as the water-absorbing member, water can permeate to a distant part in a relatively short time by supplying a small amount of water to one end of the water-absorbing member 15 and retain water. Efficient cooling is possible. Further, according to the water-absorbing fiber, water is not separated even when a certain pressure is applied, so that water can be gradually vaporized by the negative pressure.

なお、本実施形態では、コンクリート冷却の開始前に水を水タンク11からノズル11bを通して供給したが、これには限定されず、予め別の方法(たとえば、ポンプや重力など)により吸水性部材15に給水するようにしてもよい。   In the present embodiment, water is supplied from the water tank 11 through the nozzle 11b before the start of concrete cooling. However, the present invention is not limited to this, and the water absorbing member 15 is previously prepared by another method (for example, a pump or gravity). You may make it supply water.

また、真空装置として、エジェクタ12とコンプレッサ13とを用いたが、これに限定されず、たとえば、ロータリーポンプやダイアフラムポンプからなる真空ポンプを用い、冷却管10内に負圧を作用させるようにしてもよい。   Moreover, although the ejector 12 and the compressor 13 were used as a vacuum device, it is not limited to this, For example, using a vacuum pump which consists of a rotary pump and a diaphragm pump, it is made to make a negative pressure act in the cooling pipe 10 Also good.

[第2の実施形態]
図2は、第2の実施形態によるコンクリート冷却装置を示す概略図である。図2のコンクリート冷却装置は、吸水性部材15Aを冷却管10の中央近傍の一部に配置し、水タンク11からの管11aを延長しノズル11bを吸水性部材15の近傍に配置する。これ以外の構成は図1と同様である。
[Second Embodiment]
FIG. 2 is a schematic view showing a concrete cooling apparatus according to the second embodiment. In the concrete cooling device of FIG. 2, the water absorbing member 15 </ b> A is arranged in a part near the center of the cooling pipe 10, the pipe 11 a from the water tank 11 is extended, and the nozzle 11 b is arranged in the vicinity of the water absorbing member 15. The rest of the configuration is the same as in FIG.

図2のコンクリート冷却装置によれば、冷却管10内を負圧状態にすることで、吸水性部材15Aの配置された冷却管10の中央近傍において吸水性部材15Aに含まれた水が容易に気化し、この気化熱により冷却管10を介してコンクリート構造物CSの内部の主に中央部の熱を図2の矢印方向bに除去し、コンクリート構造物CSの中央内部を効率よく冷却することができる。   According to the concrete cooling device of FIG. 2, the water contained in the water absorbing member 15A can be easily obtained in the vicinity of the center of the cooling pipe 10 where the water absorbing member 15A is disposed by setting the inside of the cooling pipe 10 to a negative pressure state. Evaporation is performed to remove heat mainly in the center of the concrete structure CS in the direction of the arrow b in FIG. 2 through the cooling pipe 10 to efficiently cool the center of the concrete structure CS. Can do.

たとえば、中心部と表面部の温度差に起因する内部拘束型のマスコンクリートでは、中心部温度を下げて、表面部温度を下げないほうが有利となるが、図2のコンクリート冷却装置により、コンクリート構造物CSの主に中心部の温度を下げることで、従来のパイプクーリングよりも、温度差による応力を効果的に低減することができる。   For example, in an internally constrained mass concrete resulting from a temperature difference between the center and the surface, it is advantageous to lower the center temperature and not lower the surface temperature. However, the concrete cooling device in FIG. By lowering the temperature mainly in the center of the object CS, the stress due to the temperature difference can be effectively reduced as compared with the conventional pipe cooling.

図1や図2の実施形態から明らかであるが、吸水性部材15,15Aは冷却管10内の冷却したい範囲に容易に設置できるので、冷却したい領域が全体であっても部分であってもその領域を効率的に冷却できる。   As is clear from the embodiment of FIGS. 1 and 2, the water absorbing members 15 and 15A can be easily installed in the cooling pipe 10 in the range to be cooled. The area can be efficiently cooled.

[第3の実施形態]
図3は、第3の実施形態によるコンクリート冷却装置を示す概略図である。図2のコンクリート冷却装置は、複数本の冷却管10A,10B,10Cを配置し、マスコンクリートの場合に適用可能としたものである。図1と同様に、各冷却管10A,10B,10C内には吸水性部材15が設けられ、各冷却管10A,10B,10Cの一端において水タンク11の水が管11a、ノズル11bを通して吸水性部材15に供給可能であり、他端においてヘッダ16を介して各冷却管10A,10B,10Cに真空ポンプ17が連結される。図3では、コンクリート構造物の規模等に応じて所定数の冷却管が所定間隔で配置される。
[Third Embodiment]
FIG. 3 is a schematic view showing a concrete cooling device according to the third embodiment. The concrete cooling device in FIG. 2 is provided with a plurality of cooling pipes 10A, 10B, 10C, and is applicable to mass concrete. As in FIG. 1, a water absorbing member 15 is provided in each of the cooling pipes 10A, 10B, 10C, and water in the water tank 11 passes through the pipe 11a and the nozzle 11b at one end of each cooling pipe 10A, 10B, 10C. The vacuum pump 17 can be supplied to the member 15 and connected to the cooling pipes 10A, 10B, and 10C via the header 16 at the other end. In FIG. 3, a predetermined number of cooling pipes are arranged at predetermined intervals according to the scale of the concrete structure.

図3の構成によれば、図1と同様の効果を得ることができるとともに、マスコンクリートであっても効率的に冷却することができる。この場合、各冷却管10A,10B,10Cの吸水性部材15を、必要に応じて、図2のように、冷却管の一部に部分的に配置し、温度差による応力を効果的に低減するようにしてもよい。   According to the configuration of FIG. 3, the same effects as in FIG. 1 can be obtained, and even mass concrete can be efficiently cooled. In this case, the water-absorbing members 15 of the cooling pipes 10A, 10B, and 10C are partially arranged on a part of the cooling pipes as shown in FIG. 2 as necessary, and the stress due to the temperature difference is effectively reduced. You may make it do.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、吸水性部材15として、本実施形態では人工素材によるものを用いたが、本発明は、これに限定されず、たとえば、綿や羊毛などの天然素材によるものを用いてもよい。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, as the water absorbing member 15, an artificial material is used in the present embodiment, but the present invention is not limited to this, and for example, a natural material such as cotton or wool may be used.

また、本実施形態では、コンクリートの冷却中に、吸水性部材15に対し比較的少量の水を継続的または断続的に供給するようにしたが、本発明はこれに限定されず、比較的多量の水を継続的または断続的に供給するようにしてもよい。この場合、冷却管10内は負圧状態であるため、負圧を保持したまま多量の水を冷却管10内に供給することが難しい。したがって、水を多量に供給する場合には、冷却管10内の気圧をいったん大気圧に近づけてから水を供給する、または、多量の水を供給することで冷却管10内の気圧は大気圧に近づくが、その後再度負圧を作用させる。具体的には、たとえば、コンプレッサ13のスイッチを切り、ポンプを用いたり、冷却管10の上から重力を利用して水を供給し、その後、コンプレッサ13を再作動させる。   In the present embodiment, a relatively small amount of water is continuously or intermittently supplied to the water absorbing member 15 during cooling of the concrete. However, the present invention is not limited to this, and a relatively large amount of water is supplied. The water may be supplied continuously or intermittently. In this case, since the inside of the cooling pipe 10 is in a negative pressure state, it is difficult to supply a large amount of water into the cooling pipe 10 while maintaining the negative pressure. Therefore, when supplying a large amount of water, the air pressure in the cooling pipe 10 is first brought close to the atmospheric pressure before supplying water, or by supplying a large amount of water, the atmospheric pressure in the cooling pipe 10 becomes the atmospheric pressure. Then, negative pressure is applied again. Specifically, for example, the compressor 13 is turned off, water is supplied from above the cooling pipe 10 using gravity, and then the compressor 13 is restarted.

また、上述のように、比較的大量の水を供給するようにすることで、図1などの水タンク11,管11a、ノズル11bを省略してもよい。   Further, as described above, by supplying a relatively large amount of water, the water tank 11, the pipe 11a, and the nozzle 11b in FIG. 1 may be omitted.

また、図2では、吸水性部材15を冷却管10内の一部に部分的に配置したが、本発明はこれに限定されず、冷却管10内の複数領域に飛び飛びに部分的に配置するようにしてもよい。この場合、水タンク11からの管11aを各領域の吸水性部材へと延長しノズル11bを各吸水性部材近傍に配置することができる。   In FIG. 2, the water absorbing member 15 is partially disposed in a part of the cooling pipe 10, but the present invention is not limited thereto, and is partially disposed in a plurality of regions in the cooling pipe 10. You may do it. In this case, the pipe 11a from the water tank 11 can be extended to the water absorbing member in each region, and the nozzle 11b can be disposed in the vicinity of each water absorbing member.

また、冷却管は、本実施形態では、直線状であるが、コイル状やU字状であっもよい。また、冷却管は、円筒であってよいが、角筒等であってもよく、また、鋼管から構成されてよいが、鉄鋼よりも熱伝導性のよい材料、たとえば、銅材料やアルミニウム材料から構成してもよい。   The cooling pipe is linear in this embodiment, but may be coiled or U-shaped. In addition, the cooling pipe may be a cylinder, but may be a square tube or the like, and may be formed of a steel pipe, but it is made of a material having better thermal conductivity than steel, for example, a copper material or an aluminum material. It may be configured.

また、吸水性部材15は、冷却管10が型枠内に配置される前に、冷却管10内に予め配置しておくことが好ましいが、これに限定されず、冷却管10の型枠内への配置後、冷却実施前の間に配置するようにしてもよい。   In addition, the water absorbing member 15 is preferably arranged in advance in the cooling pipe 10 before the cooling pipe 10 is arranged in the mold, but the present invention is not limited to this, and the inside of the cooling pipe 10 is not limited to this. You may make it arrange | position after arrangement | positioning to before cooling implementation.

本発明のコンクリートの冷却方法・装置によれば、エアクーリングよりも冷却効果が大きくかつ必要な水量が少なくて済むので、多量の水の確保が困難な施工現場でもコンクリートの水和熱の効率的除去が可能となり、また、冷却水の冷却装置・システムが不要となるため、施工コストがかさむことがなく、さらに、必要な箇所のみを冷却できるため、効率的なコンクリートの水和熱除去が実現できる。   According to the concrete cooling method and apparatus of the present invention, since the cooling effect is greater than that of air cooling and the amount of water required is small, the efficiency of heat of hydration of concrete can be improved even at construction sites where it is difficult to secure a large amount of water. This eliminates the need for cooling water cooling devices and systems, so construction costs do not increase, and only the necessary parts can be cooled, enabling efficient hydration heat removal from concrete. it can.

10,10A,10B,10C 冷却管
11 水タンク
11b ノズル
12 エジェクタ
13 コンプレッサ
15,15A 吸水性部材
16 ヘッダ
17 真空ポンプ
CS コンクリート構造物
10, 10A, 10B, 10C Cooling pipe 11 Water tank 11b Nozzle 12 Ejector 13 Compressor 15, 15A Water absorbent member 16 Header 17 Vacuum pump CS Concrete structure

Claims (12)

コンクリート打設前に冷却管を配置し、前記冷却管内に配置された吸水性部材に水を含ませ、前記冷却管に負圧を作用させて前記吸水性部材に含まれた水を気化させることでコンクリート内部を冷却するコンクリートの冷却方法。   Before placing concrete, a cooling pipe is arranged, water is contained in the water absorbing member arranged in the cooling pipe, and a negative pressure is applied to the cooling pipe to vaporize the water contained in the water absorbing member. Concrete cooling method that cools the inside of the concrete. 前記吸水性部材を前記冷却管のほぼ全長にわたって配置する請求項1に記載のコンクリートの冷却方法。   The concrete cooling method according to claim 1, wherein the water absorbing member is disposed over substantially the entire length of the cooling pipe. 前記吸水性部材を前記冷却管の一部に配置する請求項1に記載のコンクリートの冷却方法。   The concrete cooling method according to claim 1, wherein the water absorbing member is disposed in a part of the cooling pipe. 前記コンクリート内部の冷却中に前記吸水性部材に水を供給する請求項1乃至3のいずれか1項に記載のコンクリートの冷却方法。   The method for cooling concrete according to any one of claims 1 to 3, wherein water is supplied to the water absorbing member during cooling of the concrete. 前記吸水性部材を前記冷却管内に予め配置しておく請求項1乃至4のいずれか1項に記載のコンクリートの冷却方法。   The concrete cooling method according to any one of claims 1 to 4, wherein the water-absorbing member is disposed in the cooling pipe in advance. 前記吸水性部材は吸水性繊維からなる請求項1乃至5のいずれか1項に記載のコンクリートの冷却方法。   The method for cooling concrete according to any one of claims 1 to 5, wherein the water absorbing member is made of water absorbing fibers. コンクリート打設前に配置された冷却管と、
前記冷却管内に配置された吸水性部材と、
前記冷却管に連結された真空装置と、を備え、
前記吸水性部材に水を含ませ、前記真空装置により前記冷却管内に負圧を作用させて前記吸水性部材に含まれた水を気化させることでコンクリート内部を冷却するコンクリートの冷却装置。
Cooling pipes placed before placing concrete;
A water absorbent member disposed in the cooling pipe;
A vacuum device connected to the cooling pipe,
A concrete cooling device that cools the inside of a concrete by causing water to be contained in the water absorbent member and causing the negative pressure to act in the cooling pipe by the vacuum device to vaporize the water contained in the water absorbent member.
前記吸水性部材は前記冷却管のほぼ全長にわたって配置される請求項7に記載のコンクリートの冷却装置。   The concrete cooling device according to claim 7, wherein the water absorbing member is disposed over substantially the entire length of the cooling pipe. 前記吸水性部材は前記冷却管の一部に配置される請求項7に記載のコンクリートの冷却装置。   The concrete cooling device according to claim 7, wherein the water absorbing member is disposed in a part of the cooling pipe. 前記コンクリート内部の冷却中に前記吸水性部材に水を供給可能に構成した請求項7乃至9のいずれか1項に記載のコンクリートの冷却装置。   The concrete cooling device according to any one of claims 7 to 9, wherein water can be supplied to the water absorbing member during cooling of the concrete. 前記吸水性部材は吸水性繊維からなる請求項7乃至10のいずれか1項に記載のコンクリートの冷却装置。   The concrete cooling device according to any one of claims 7 to 10, wherein the water absorbing member is made of water absorbing fibers. 前記冷却管を複数本配置し、
前記各冷却管の端部を共通のヘッダに連結し、前記ヘッダを介して前記真空装置により前記各冷却管内に負圧を作用させる請求項7乃至11のいずれか1項に記載のコンクリートの冷却装置。
Arranging a plurality of the cooling pipes,
12. The concrete cooling according to claim 7, wherein ends of the cooling pipes are connected to a common header, and negative pressure is applied to the cooling pipes by the vacuum device via the header. apparatus.
JP2015020848A 2015-02-05 2015-02-05 Method and apparatus for cooling concrete Active JP6482304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020848A JP6482304B2 (en) 2015-02-05 2015-02-05 Method and apparatus for cooling concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020848A JP6482304B2 (en) 2015-02-05 2015-02-05 Method and apparatus for cooling concrete

Publications (3)

Publication Number Publication Date
JP2016142106A true JP2016142106A (en) 2016-08-08
JP2016142106A5 JP2016142106A5 (en) 2017-12-21
JP6482304B2 JP6482304B2 (en) 2019-03-13

Family

ID=56570024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020848A Active JP6482304B2 (en) 2015-02-05 2015-02-05 Method and apparatus for cooling concrete

Country Status (1)

Country Link
JP (1) JP6482304B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200069074A (en) * 2018-12-06 2020-06-16 현대건설주식회사 Concrete Block of Concrete Temperature Gap by means of Pipe Cooling and Manufacturing Method for Concrete Block
CN113216187A (en) * 2021-04-29 2021-08-06 中国水利水电第四工程局有限公司 Concrete-based heat-insulating material for hydraulic engineering and temperature control system
CN114370052A (en) * 2021-12-29 2022-04-19 厦门中宸集团有限公司 System for efficiently controlling large-volume concrete cracks and control method thereof
CN115182602A (en) * 2022-07-05 2022-10-14 中冶检测认证(安徽)有限公司 Mass concrete construction and maintenance system and construction method thereof
CN115450448A (en) * 2022-09-06 2022-12-09 中铁十一局集团有限公司 Mass concrete uniform heat dissipation device and construction method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928885U (en) * 1972-06-13 1974-03-12
JPS61200269A (en) * 1985-03-04 1986-09-04 株式会社大林組 Prevention of cracking of concrete structure
US5707179A (en) * 1996-03-20 1998-01-13 Bruckelmyer; Mark Method and apparaatus for curing concrete
JPH11141128A (en) * 1997-11-06 1999-05-25 Shimizu Corp Cracking prevention device of concrete structure
JP2000110270A (en) * 1998-10-09 2000-04-18 Sumitomo Constr Co Ltd Roof cooling structure
JP2009235808A (en) * 2008-03-27 2009-10-15 Taisei Corp Concrete slab and construction method therefor
JP2014221979A (en) * 2013-05-13 2014-11-27 株式会社鴻池組 Concrete curing method
JP2015155598A (en) * 2014-02-20 2015-08-27 五洋建設株式会社 Method and equipment for cooling concrete

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928885U (en) * 1972-06-13 1974-03-12
JPS61200269A (en) * 1985-03-04 1986-09-04 株式会社大林組 Prevention of cracking of concrete structure
US5707179A (en) * 1996-03-20 1998-01-13 Bruckelmyer; Mark Method and apparaatus for curing concrete
JPH11141128A (en) * 1997-11-06 1999-05-25 Shimizu Corp Cracking prevention device of concrete structure
JP2000110270A (en) * 1998-10-09 2000-04-18 Sumitomo Constr Co Ltd Roof cooling structure
JP2009235808A (en) * 2008-03-27 2009-10-15 Taisei Corp Concrete slab and construction method therefor
JP2014221979A (en) * 2013-05-13 2014-11-27 株式会社鴻池組 Concrete curing method
JP2015155598A (en) * 2014-02-20 2015-08-27 五洋建設株式会社 Method and equipment for cooling concrete

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200069074A (en) * 2018-12-06 2020-06-16 현대건설주식회사 Concrete Block of Concrete Temperature Gap by means of Pipe Cooling and Manufacturing Method for Concrete Block
KR102124709B1 (en) 2018-12-06 2020-06-18 현대건설주식회사 Concrete Block of Concrete Temperature Gap by means of Pipe Cooling and Manufacturing Method for Concrete Block
CN113216187A (en) * 2021-04-29 2021-08-06 中国水利水电第四工程局有限公司 Concrete-based heat-insulating material for hydraulic engineering and temperature control system
CN114370052A (en) * 2021-12-29 2022-04-19 厦门中宸集团有限公司 System for efficiently controlling large-volume concrete cracks and control method thereof
CN115182602A (en) * 2022-07-05 2022-10-14 中冶检测认证(安徽)有限公司 Mass concrete construction and maintenance system and construction method thereof
CN115450448A (en) * 2022-09-06 2022-12-09 中铁十一局集团有限公司 Mass concrete uniform heat dissipation device and construction method
CN115450448B (en) * 2022-09-06 2023-09-26 中铁十一局集团有限公司 Large-volume concrete uniform heat dissipation device and construction method

Also Published As

Publication number Publication date
JP6482304B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP2016142106A (en) Method and device for cooling concrete
US20140318741A1 (en) Cooling With Liquid Coolant And Bubble Heat Removal
KR102145652B1 (en) A fluid handling device and a method of heating or cooling a fluid flow
JP2016006370A (en) Crystal nucleus forming method in latent heat storage material, and heat storage device
TWI274131B (en) An atomized liquid jet refrigeration system and an associated method
JP5940226B2 (en) Heat exchange surface maintenance method and humid air cooling method
US20120273171A1 (en) Earthen evaporative heat exchanger
JP2009545718A (en) Heat exchanger
JP2014221979A (en) Concrete curing method
JP2017015313A (en) Thermal acoustic cooling device
ES2367205T3 (en) PLATE HEAT EXCHANGER FOR THE REQUEST OF AN INPUT AIR CURRENT WITH REFRIGERATION ENERGY.
RU2578059C1 (en) Control of hot side temperature in thermoelectric cooling system
JP2009192004A (en) Liquefied gas vaporizing equipment
JP6274902B2 (en) Method and apparatus for cooling concrete
JP2019084497A (en) Gas separation device and gas separation method
JP5693284B2 (en) Condensate water treatment equipment for refrigerated warehouses
JP2008045787A (en) Evaporative cooling device
JP6347558B2 (en) Condensation or frost control carrier
JP2009198074A (en) Hot water storage type water heater
KR102585349B1 (en) Indirective evaporative cooling apparatus and cooling system including the same
CN103673413B (en) Evaporation type condenser
JP2024124737A (en) Method and apparatus for cooling concrete materials
JP6569117B2 (en) Cold energy recovery system and cold energy recovery method
JP7565823B2 (en) Refrigerant recovery cylinder cooling device
JP2014196881A (en) Cooling device and cooling method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6482304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150