[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016037620A - Surface treated galvanized steel plate having excellent corrosion resistance - Google Patents

Surface treated galvanized steel plate having excellent corrosion resistance Download PDF

Info

Publication number
JP2016037620A
JP2016037620A JP2014159971A JP2014159971A JP2016037620A JP 2016037620 A JP2016037620 A JP 2016037620A JP 2014159971 A JP2014159971 A JP 2014159971A JP 2014159971 A JP2014159971 A JP 2014159971A JP 2016037620 A JP2016037620 A JP 2016037620A
Authority
JP
Japan
Prior art keywords
compound
surface treatment
galvanized steel
film
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014159971A
Other languages
Japanese (ja)
Other versions
JP6569194B2 (en
Inventor
土本 和明
Kazuaki Tsuchimoto
和明 土本
三好 達也
Tatsuya Miyoshi
達也 三好
里江 金子
Rie Kaneko
里江 金子
松崎 晃
Akira Matsuzaki
晃 松崎
濱田 悦男
Etsuo Hamada
悦男 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014159971A priority Critical patent/JP6569194B2/en
Publication of JP2016037620A publication Critical patent/JP2016037620A/en
Application granted granted Critical
Publication of JP6569194B2 publication Critical patent/JP6569194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treated galvanized steel plate of which surface treated coating film does not include a chromium compound, is a thin film, and realizes both corrosion resistance and black discoloration resistance.SOLUTION: On a surface of a galvanized steel plate where an Al oxide layer of a predetermined thickness is formed on a galvanized layer, a surface treatment liquid, in which a silane compound (A) having a hydrolyzable group which is obtained from a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2), and phosphonic acid (a3); a zirconium carbonate compound (B); a vanadic acid compound (C); and water are included at a specific rate, is applied, and then dried to form a surface treatment coating film.SELECTED DRAWING: None

Description

本発明は、自動車、家電、建材などに用いられる表面処理溶融亜鉛めっき鋼板であって、表面処理皮膜中に6価クロムなどのクロム化合物を含まず、特に、耐食性および湿潤環境下での耐変色性に優れた表面処理溶融亜鉛めっき鋼板に関する。   The present invention is a surface-treated hot-dip galvanized steel sheet used for automobiles, home appliances, building materials, etc., and does not contain a chromium compound such as hexavalent chromium in the surface-treated film, and is particularly resistant to corrosion and discoloration in a wet environment. The present invention relates to a surface-treated hot-dip galvanized steel sheet having excellent properties.

従来、家電製品用鋼板、建材用鋼板、自動車用鋼板に使用される亜鉛系めっき鋼板の表面に、耐食性(耐白錆性、耐赤錆性)を向上させる目的で、クロム酸、重クロム酸またはその塩類を主要成分とした表面処理液によるクロメート処理を施した鋼板が広く用いられてきた。しかしながら、最近の地球環境問題から、クロメート処理によらない無公害な表面処理鋼板、所謂クロムフリー処理鋼板を採用することへの要請が高まっている。   Conventionally, for the purpose of improving the corrosion resistance (white rust resistance, red rust resistance) on the surface of galvanized steel sheets used for steel sheets for household appliances, steel sheets for building materials, and steel sheets for automobiles, chromic acid, dichromic acid or Steel sheets subjected to chromate treatment with a surface treatment solution containing salts as main components have been widely used. However, due to recent global environmental problems, there is an increasing demand for adopting non-polluted surface-treated steel sheets that do not depend on chromate treatment, so-called chromium-free treated steel sheets.

クロムフリー処理鋼板に関する技術は既に数多く提案されており、クロム酸と同じIVA族に属するモリブデン酸、タングステン酸の不動態化作用を狙った技術、Ti、Zr、V、Mn、Ni、Coなどの遷移金属やLa、Ceなどの希土類元素の金属塩を用いる技術、タンニン酸などの多価フェノールカルボン酸やS、Nを含む化合物などのキレート剤をベースとする技術、シランカップリング剤を用いてポリシロキサン皮膜を形成する技術、或いは、これらを組み合わせた技術などが提案されている。   Many technologies related to chromium-free treated steel sheets have already been proposed. Technologies aiming at the passivating action of molybdic acid and tungstic acid belonging to the same group IVA as chromic acid, such as Ti, Zr, V, Mn, Ni, Co, etc. Using technology using metal salts of rare earth elements such as transition metals and La, Ce, technology based on chelating agents such as polyphenolic carboxylic acids such as tannic acid and compounds containing S and N, using silane coupling agents A technique for forming a polysiloxane film or a technique combining these techniques has been proposed.

具体的に例を挙げると以下の通りである。
(1)ポリビニルフェノール誘導体などの有機樹脂と酸成分とエポキシ化合物とを反応させて得られる被覆剤、シランカップリング剤、およびバナジウム化合物等を配合した処理液から皮膜を形成する技術(特許文献1〜4)
(2)水性樹脂とチオカルボニル基とバナジン酸化合物とリン酸を含む皮膜を形成する技術(特許文献5)
(3)Tiなどの金属化合物と、フッ化物、リン酸化合物等の無機酸および有機酸とを含む処理液から皮膜を形成する技術(特許文献6〜12)
(4)Ce、La、Y等の希土類元素とTi、Zr元素の複合皮膜を形成し、その皮膜中でめっき界面側に酸化物層、表面側に水酸化物層を濃化させる技術(特許文献13)や、CeとSi酸化物の複合皮膜を形成する技術(特許文献14)
Specific examples are as follows.
(1) Technology for forming a film from a treatment liquid containing a coating agent obtained by reacting an organic resin such as a polyvinylphenol derivative, an acid component, and an epoxy compound, a silane coupling agent, and a vanadium compound (Patent Document 1) ~ 4)
(2) Technology for forming a film containing an aqueous resin, a thiocarbonyl group, a vanadic acid compound, and phosphoric acid (Patent Document 5)
(3) Technology for forming a film from a treatment liquid containing a metal compound such as Ti and inorganic and organic acids such as fluoride and phosphate compounds (Patent Documents 6 to 12)
(4) Technology to form a composite film of rare earth elements such as Ce, La, Y, etc. and Ti, Zr elements, and to concentrate the oxide layer on the plating interface side and the hydroxide layer on the surface side in the film (patent Document 13) and technology for forming a composite film of Ce and Si oxide (Patent Document 14)

(5)下層に酸化物を含有するリン酸および/またはリン酸化合物皮膜、その上層に樹脂皮膜からなる有機複合被覆を形成する技術(特許文献15、16)
(6)特定のインヒビター成分とシリカ/ジルコニウム化合物からなる複合皮膜を形成する技術(特許文献17)
(7)水溶性ジルコニウム化合物と、テトラアルコキシシランと、エポキシ基を有する化合物と、キレート剤と、バナジン酸と、所定の金属化合物とからなる複合皮膜を形成する技術(特許文献18)
(8)特定のシラン化合物と、炭酸ジルコニウム化合物と、バナジン酸化合物と、硝酸化合物からなる複合皮膜を形成する技術(特許文献19)
(5) Technology for forming an organic composite coating comprising a phosphoric acid and / or phosphoric acid compound film containing an oxide in the lower layer and a resin film on the upper layer (Patent Documents 15 and 16)
(6) Technology for forming a composite film comprising a specific inhibitor component and a silica / zirconium compound (Patent Document 17)
(7) Technology for forming a composite film comprising a water-soluble zirconium compound, a tetraalkoxysilane, a compound having an epoxy group, a chelating agent, vanadic acid, and a predetermined metal compound (Patent Document 18)
(8) Technology for forming a composite film composed of a specific silane compound, zirconium carbonate compound, vanadic acid compound, and nitric acid compound (Patent Document 19)

特開2003−13252号公報JP 2003-13252 A 特開2001−181860号公報JP 2001-181860 A 特開2004−263252号公報JP 2004-263252 A 特開2003−155452号公報Japanese Patent Laid-Open No. 2003-155542 特許第3549455号公報Japanese Patent No. 3549455 特許第3302677号公報Japanese Patent No. 3302677 特開2002−105658号公報JP 2002-105658 A 特開2004−183015号公報JP 2004-183015 A 特開2003−171778号公報JP 2003-171778 A 特開2001−271175号公報JP 2001-271175 A 特開2006−213958号公報JP 2006-213958 A 特開2005−48199号公報JP 2005-48199 A 特開2001−234358号公報JP 2001-234358 A 特許第3596665号公報Japanese Patent No. 3596665 特開2002−53980号公報JP 2002-53980 A 特開2002−53979号公報JP 2002-53979 A 特開2008−169470号公報JP 2008-169470 A 特開2010−255105号公報JP 2010-255105 A 特開2013−60647号公報JP 2013-60647 A

これらの技術により形成される皮膜は、有機成分または無機成分の複合添加によって亜鉛の白錆発生を抑制することを狙ったものであり、例えば、上記(1)、(2)の技術は、主に有機樹脂を添加することで耐食性を確保している。しかしながら、このような有機樹脂による皮膜は、屋外環境や高温多湿環境下では、樹脂劣化による変色が問題となる。また、皮膜形成には高温焼付が必須であり、板到達温度が30℃以上の乾燥条件が確保できれば足りるような簡易的なドライヤー乾燥で製造した場合には、耐食性が確保できない。   Films formed by these technologies aim to suppress the occurrence of zinc white rust by the combined addition of organic or inorganic components. For example, the technologies (1) and (2) above are mainly used. Corrosion resistance is ensured by adding an organic resin. However, such an organic resin film has a problem of discoloration due to resin deterioration in an outdoor environment or a high-temperature and high-humidity environment. Moreover, high temperature baking is essential for film formation, and corrosion resistance cannot be ensured when it is produced by simple dryer drying that can ensure drying conditions of a plate reaching temperature of 30 ° C. or higher.

上記(3)、(4)の技術では、有機成分を全く含有しない無機単独皮膜が提案されている。しかしながら、これらの金属酸化物・金属水酸化物による複合皮膜では、皮膜を厚くしなければ亜鉛めっき鋼板に十分な耐食性を付与することができない。つまり、簡易的なドライヤー乾燥で製造した場合には、乾燥不十分となり、耐食性が確保できない。
上記(5)の技術では、耐食性を確保するために、上層に樹脂皮膜を用いているため、上記(1)、(2)の技術と同様の問題がある。
In the techniques (3) and (4), an inorganic single film that does not contain any organic component has been proposed. However, these metal oxide / metal hydroxide composite films cannot provide sufficient corrosion resistance to the galvanized steel sheet unless the film is thickened. That is, when manufactured by simple dryer drying, drying becomes insufficient, and corrosion resistance cannot be ensured.
The technique (5) has the same problems as the techniques (1) and (2) because a resin film is used as an upper layer in order to ensure corrosion resistance.

上記(6)の技術では、インヒビター成分としてバナジン酸化合物の不動態化作用およびリン酸化合物による難溶性金属塩を利用し、更に骨格皮膜としてジルコニウム化合物、微粒子シリカ、シランカップリング剤の複合皮膜を形成させることで優れた耐食性を発現している。しかしながら、この技術では、皮膜を厚くしなければ亜鉛めっき鋼板に十分な耐食性を付与することができない。つまり、簡易的なドライヤー乾燥で製造した場合には、乾燥不十分となり、耐食性が確保できない。   In the technique of (6) above, a passivating action of a vanadate compound and a hardly soluble metal salt by a phosphate compound are used as an inhibitor component, and a composite film of a zirconium compound, fine particle silica, and a silane coupling agent is used as a skeleton film. By forming it, excellent corrosion resistance is expressed. However, with this technique, sufficient corrosion resistance cannot be imparted to the galvanized steel sheet unless the film is thickened. That is, when manufactured by simple dryer drying, drying becomes insufficient, and corrosion resistance cannot be ensured.

上記(7)、(8)の技術では、薄膜で耐食性に優れた亜鉛めっき鋼板を提供することが可能であるが、湿潤環境下での耐変色性が得られず、このため優れた耐食性と湿潤環境下での耐変色性を両立できないことが判った。
以上のように、現在までに提案されているクロムフリー処理鋼板では、平板部耐食性と湿潤環境下での耐変色性とを両立できないことが判った。
With the technologies (7) and (8), it is possible to provide a galvanized steel sheet that is thin and excellent in corrosion resistance. However, it is not possible to obtain discoloration resistance in a wet environment. It was found that the resistance to discoloration in a humid environment cannot be achieved.
As described above, it has been found that the chromium-free treated steel plates proposed so far cannot achieve both the corrosion resistance of the flat plate portion and the discoloration resistance in a wet environment.

したがって本発明の目的は、以上のような従来技術の課題を解決し、表面処理皮膜中に6価クロムなどのクロム化合物を含まず、薄膜で耐食性と湿潤環境下での耐変色性を高度に両立させることができるとともに、簡易な設備で製造可能な表面処理溶融亜鉛めっき鋼板を提供することにある。   Therefore, the object of the present invention is to solve the problems of the prior art as described above, and to provide a high corrosion resistance and discoloration resistance in a wet environment with a thin film that does not contain a chromium compound such as hexavalent chromium in the surface treatment film. The object is to provide a surface-treated hot-dip galvanized steel sheet that can be made compatible and can be manufactured with simple equipment.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、亜鉛めっき表層にAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、特定のシラン化合物と、炭酸ジルコニウム化合物と、バナジン酸化合物と、水とを特定の割合で配合した表面処理液による表面処理皮膜を形成することにより、上記問題点を解決できることを見出した。   As a result of intensive studies to solve the above problems, the inventors of the present invention have a specific silane compound, a zirconium carbonate compound, and a surface of a hot-dip galvanized steel sheet in which an Al oxide layer is formed on a galvanized surface layer. The present inventors have found that the above problems can be solved by forming a surface treatment film with a surface treatment liquid in which a vanadic acid compound and water are blended at a specific ratio.

本発明はこのような知見に基づきなされたもので、亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iv)の条件を満足する表面処理液を塗布し、乾燥することにより形成された、片面当たりの付着量が100〜800mg/mの表面処理皮膜を有することを特徴とする表面処理溶融亜鉛めっき鋼板である。
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
The present invention has been made on the basis of such knowledge, and a glycidyl group is formed on the surface of a hot dip galvanized steel sheet in which an Al oxide layer having a thickness of 0.5 nm or more and less than 10.0 nm is formed on the surface of the galvanized layer. Coupling agent (a1), tetraalkoxysilane (a2) and phosphonic acid (a3) having hydrolyzable group, zirconia compound (B), and vanadic acid compound (C) and a surface treatment solution containing water and satisfying the following conditions (i) to (iv) are applied and dried, and the adhesion amount per side is 100 to 800 mg / m 2. A surface-treated hot-dip galvanized steel sheet characterized by having a surface-treated film.
(I) The silane compound (A) is 30 to 70% by mass in the total solid content of the surface treatment liquid.
(Ii) The ratio (B / A) of the mass of the zirconium carbonate compound (B) in terms of ZrO 2 and the mass of the silane compound (A) is 0.3 to 2.0.
(Iii) The ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is from 0.010 to 0.15.

本発明の表面処理溶融亜鉛めっき鋼板は、亜鉛めっき表層のAl酸化物層と特定の成分を含有する表面処理皮膜との複合化により高いバリアー性が得られ、クロメート皮膜に匹敵する耐食性と湿潤環境下での耐変色性を高度に両立させることができ、しかも簡易な設備で製造可能である。   The surface-treated hot-dip galvanized steel sheet of the present invention has a high barrier property obtained by combining the Al oxide layer of the galvanized surface layer and the surface-treated film containing a specific component, and has a corrosion resistance and a wet environment comparable to a chromate film. The color discoloration resistance below can be made highly compatible, and can be manufactured with simple equipment.

本発明で使用する溶融亜鉛めっき鋼板としては、溶融亜鉛めっきで得られるものであれば特に制限はないが、通常、溶融亜鉛めっき鋼板(GI)またはこれを合金化した合金化溶融亜鉛めっき鋼板(GA)が用いられる。
溶融亜鉛めっき鋼板の亜鉛めっき層の表層には、厚さが0.5nm以上10.0nm未満のAl酸化物層が形成されている必要がある。溶融亜鉛めっきでは、めっき浴中に微量Alが含まれため、亜鉛めっき層中には微量のAlが含有されることになるが、亜鉛めっき層中に含有されたAlは酸素との強い親和性を示すため、亜鉛めっき表層にAl酸化物層が形成される。
The hot dip galvanized steel sheet used in the present invention is not particularly limited as long as it can be obtained by hot dip galvanization, but is usually a hot dip galvanized steel sheet (GI) or an alloyed hot dip galvanized steel sheet obtained by alloying it ( GA) is used.
An Al oxide layer having a thickness of 0.5 nm or more and less than 10.0 nm needs to be formed on the surface layer of the galvanized layer of the hot dip galvanized steel sheet. In hot dip galvanization, since a trace amount of Al is contained in the plating bath, a small amount of Al is contained in the galvanized layer, but Al contained in the galvanized layer has a strong affinity for oxygen. Therefore, an Al oxide layer is formed on the galvanized surface layer.

Al酸化物層の厚さが0.5nm未満では十分な耐食性および湿潤環境下での耐変色性が得られず、一方、10.0nmを超えると皮膜との密着性が低下するため、却って耐食性が低下し、また、密着性低下に伴い皮膜形成後の可溶成分が増加するため、湿潤環境下での耐変色性が低下する。
Al酸化物層の厚さは、亜鉛めっき層のAl含有量に影響されるだけでなく、溶融亜鉛めっき鋼板を大気中で放置あるいは数百℃で加熱することで厚くすることができるので、これらの条件(大気中で放置する条件、加熱条件など)を調整することにより、厚めに調整することができる。一方、アルカリ脱脂による化学的なエッチングや表面の研削などにより、Al酸化物層の厚さを薄くすることもできる。したがって、例えば、溶融亜鉛めっき鋼板に表面処理の前処理として施されるアルカリ脱脂において、アルカリ脱脂液の濃度や処理時間を調整することで、Al酸化物層の厚さを調整することができる。
Al酸化物層の厚さは、断面TEM観察により測定することができる。本発明では、無作為に選択された5箇所の測定値の平均値をもって、Al酸化物層の厚さとする。
If the thickness of the Al oxide layer is less than 0.5 nm, sufficient corrosion resistance and discoloration resistance in a wet environment cannot be obtained. On the other hand, if it exceeds 10.0 nm, the adhesion to the film is lowered, so that the corrosion resistance is not. In addition, since the soluble components after the film formation increases as the adhesiveness decreases, the discoloration resistance in a wet environment decreases.
The thickness of the Al oxide layer is not only affected by the Al content of the galvanized layer, but can also be increased by leaving the hot-dip galvanized steel sheet in the air or heating it at several hundred degrees Celsius. By adjusting the above conditions (conditions for leaving in the atmosphere, heating conditions, etc.), the thickness can be adjusted to be thicker. On the other hand, the thickness of the Al oxide layer can be reduced by chemical etching by alkali degreasing or surface grinding. Therefore, for example, in the alkaline degreasing performed as a pretreatment for the surface treatment on the hot-dip galvanized steel sheet, the thickness of the Al oxide layer can be adjusted by adjusting the concentration of the alkaline degreasing solution and the treatment time.
The thickness of the Al oxide layer can be measured by cross-sectional TEM observation. In the present invention, the average value of the measurement values at five randomly selected points is used as the thickness of the Al oxide layer.

本発明の表面処理溶融亜鉛めっき鋼板は、上記の溶融亜鉛めっき鋼板の表面(表層にAl酸化物層が形成された亜鉛めっき層の表面)に、以下に示すような表面処理液を塗布し、乾燥することにより形成された片面当たりの付着量が100〜800mg/mの表面処理皮膜を有する。
本発明で用いる表面処理皮膜形成用の表面処理液は、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有する。なお、この表面処理液は、6価クロムなどのクロム化合物(但し、不可避的不純物として含まれるクロム化合物を除く。)を含有しない。
The surface-treated hot-dip galvanized steel sheet of the present invention is applied to the surface of the hot-dip galvanized steel sheet (the surface of the galvanized layer in which the Al oxide layer is formed on the surface layer) as shown below, It has a surface-treated film with an adhesion amount per side formed by drying of 100 to 800 mg / m 2 .
The surface treatment liquid for forming a surface treatment film used in the present invention is a silane having a hydrolyzable group obtained from a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2) and a phosphonic acid (a3). A compound (A), a zirconium carbonate compound (B), a vanadate compound (C), and water are contained. This surface treatment liquid does not contain a chromium compound such as hexavalent chromium (excluding chromium compounds contained as inevitable impurities).

加水分解性基を有するシラン化合物(A)は、グリシジル基を有するシランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物と、ホスホン酸(a3)とを反応させることにより得られる化合物である。
シラン化合物(A)は、Si元素に直接結合する加水分解性基を有するシラン化合物であって、加水分解性基は水分と反応することによりシラノール基を形成する。シラン化合物(A)は、Si元素に結合する基の全てが加水分解性基であるものでもよいし、Si元素に結合する基の一部が加水分解性基であるものでもよい。
The silane compound (A) having a hydrolyzable group is obtained by reacting a phosphonic acid (a3) with a low condensate of a silane coupling agent (a1) having a glycidyl group and a tetraalkoxysilane (a2). Compound.
The silane compound (A) is a silane compound having a hydrolyzable group directly bonded to Si element, and the hydrolyzable group forms a silanol group by reacting with moisture. The silane compound (A) may be a group in which all of the groups bonded to the Si element are hydrolyzable groups, or a part of the groups bonded to the Si element may be hydrolyzable groups.

グリシジル基を有するシランカップリング剤(a1)は、Siを含む1分子中にグリシジル基および加水分解性基として炭素数が1〜5、好ましくは1〜3である低級アルコキシル基を含有するものであれば、特に限定されず、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリエトキシシランなどが挙げられ、これらの1種以上を用いることができる。   The silane coupling agent (a1) having a glycidyl group contains a glycidyl group and a lower alkoxyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, as a hydrolyzable group in one molecule containing Si. If it exists, it will not specifically limit, For example, 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl triethoxysilane, 3-glycidoxypropylmethyl dimethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyl Examples thereof include triethoxysilane, and one or more of these can be used.

テトラアルコキシシラン(a2)は、加水分解性基として4個の低級アルコキシル基を含有するものであり、一般式Si(OR)(式中、Rは同一のまたは異なる炭素数1〜5のアルキル基を示す)で示されるものであれば、特に限定されず、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランなどが挙げられ、これらの1種以上を用いることができる。
ホスホン酸(a3)としては、ヒドロキシエチレンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、ホスホノブタントリカルボン酸、エチレジアミンテトラ(メチレンホスホン酸)などが挙げられ、これらの1種以上を用いることができる。
The tetraalkoxysilane (a2) contains four lower alkoxyl groups as hydrolyzable groups, and has a general formula Si (OR) 4 (wherein R is the same or different alkyl group having 1 to 5 carbon atoms). Group) is not particularly limited, and examples thereof include tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane, and one or more of these can be used.
Examples of the phosphonic acid (a3) include hydroxyethylene diphosphonic acid, nitrilotris (methylenephosphonic acid), phosphonobutanetricarboxylic acid, and ethylenediaminetetra (methylenephosphonic acid). One or more of these may be used. it can.

加水分解性基を有するシラン化合物(A)は、上記したグリシジル基を有するシランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物を含む。この低縮合物は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)の縮合反応により形成されるポリシロキサン結合を主骨格とするものであり、Si元素に結合する末端の基が加水分解性基であるものでもよいし、Si元素に結合する基の一部が加水分解性であるものでもよい。   The silane compound (A) having a hydrolyzable group includes a low condensate of the above-described silane coupling agent (a1) having a glycidyl group and tetraalkoxysilane (a2). This low condensate has a polysiloxane bond formed by the condensation reaction of the silane coupling agent (a1) and the tetraalkoxysilane (a2) as the main skeleton, and the terminal group bonded to the Si element is hydrolyzed. It may be a functional group, or a part of the group bonded to the Si element may be hydrolyzable.

加水分解性基を有するシラン化合物(A)としては、縮合度が2〜30の化合物が使用可能であり、特に縮合度が2〜10の化合物を使用することが好ましい。縮合度が30以下であれば、白色沈殿を生じることがなく、安定なシラン化合物(A)が得られるからである。
加水分解性基を有するシラン化合物(A)は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物と、ホスホン酸(a3)とを、反応温度1〜80℃で10分間〜20時間程度反応させ、オートクレープ処理を行うことなどにより得ることができる。
As the silane compound (A) having a hydrolyzable group, a compound having a condensation degree of 2 to 30 can be used, and a compound having a condensation degree of 2 to 10 is particularly preferable. This is because if the degree of condensation is 30 or less, no white precipitation occurs and a stable silane compound (A) is obtained.
The silane compound (A) having a hydrolyzable group is prepared by combining a low condensate of a silane coupling agent (a1) and a tetraalkoxysilane (a2) with a phosphonic acid (a3) at a reaction temperature of 1 to 80 ° C. It can be obtained by reacting for about 20 minutes to 20 minutes and performing autoclaving.

加水分解性基を有するシラン化合物(A)は、加水分解性基の特定および縮合状態を、ゲル・パーミッション・クロマトグラフィー(GPC)、NMRおよびIRを用いて測定することができる。
加水分解性基を有するシラン化合物(A)は、グリシジル基を有するシランカップリング剤(a1)と、テトラアルコキシシラン(a2)と、ホスホン酸(a3)とを反応させることにより、シランカップリング剤(a1)と、テトラアルコキシシラン(a2)が、水とホスホン酸(a3)により加水分解されて配位するものと考えられる。この加水分解反応およびホスホン酸(a3)による配位が同時に起こることにより得られたものであり、室温域での安定性が極めて高く、長期の保存に耐えるシラン化合物を生成する。
In the silane compound (A) having a hydrolyzable group, the specific and condensed state of the hydrolyzable group can be measured using gel permission chromatography (GPC), NMR and IR.
The silane compound (A) having a hydrolyzable group is obtained by reacting a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2), and a phosphonic acid (a3). It is considered that (a1) and tetraalkoxysilane (a2) are coordinated by hydrolysis with water and phosphonic acid (a3). This hydrolysis reaction and coordination by phosphonic acid (a3) are obtained at the same time, and a silane compound that has extremely high stability at room temperature and can withstand long-term storage is produced.

また、ホスホン酸(a3)は、耐食性と保管安定性を確保する上でも有効な成分である。その理由は必ずしも明らかではないが、ホスホン酸(a3)は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)に配位すると考えられ、表面処理液中でシラン化合物(A)が高分子化することを抑制する作用を有するものと考えられ、このような作用に起因して表面処理液を調製後長期に亘り保管した場合においても変質することなく、調製時の品質が維持されるものと考えられる。また、ホスホン酸(a3)は、後述するバナジン酸化合物(C)とも配位すると考えられ、腐食環境下でバナジウムが溶解し、再度、ポリシロキサン結合を形成するものと考えられる。   Phosphonic acid (a3) is also an effective component for securing corrosion resistance and storage stability. Although the reason is not necessarily clear, it is considered that the phosphonic acid (a3) coordinates to the silane coupling agent (a1) and the tetraalkoxysilane (a2), and the silane compound (A) is a polymer in the surface treatment liquid. It is thought that it has an action to suppress the formation of the material, and the quality at the time of preparation is maintained without deterioration even when the surface treatment liquid is stored for a long time after preparation due to such action. it is conceivable that. In addition, phosphonic acid (a3) is considered to coordinate with the vanadate compound (C) described later, and it is considered that vanadium dissolves in a corrosive environment to form a polysiloxane bond again.

グリシジル基を有するシランカップリング剤(a1)と、テトラアルコキシシラン(a2)と、ホスホン酸(a3)の配合比率は、耐食性などの観点から、シランカップリング剤(a1)の100質量部に対して、テトラアルコキシシラン(a2)を25〜75質量部、ホスホン酸(a3)を5〜30質量部とすることが好ましい。
表面処理液中でのシラン化合物(A)の含有量は、表面処理液の全固形分中で30〜70質量%とする。シラン化合物(A)の含有量が30質量%未満では耐食性が確保できず、一方、含有量が70質量%を超えると却って耐食性が低下する。
シラン化合物(A)は、炭酸ジルコニウム化合物(B)と混合することにより、一旦乾燥すると再度水には溶解しないバリアー的効果を有する。
The blending ratio of the silane coupling agent (a1) having a glycidyl group, the tetraalkoxysilane (a2), and the phosphonic acid (a3) is based on 100 parts by mass of the silane coupling agent (a1) from the viewpoint of corrosion resistance. The tetraalkoxysilane (a2) is preferably 25 to 75 parts by mass and the phosphonic acid (a3) is preferably 5 to 30 parts by mass.
Content of the silane compound (A) in a surface treatment liquid shall be 30-70 mass% in the total solid of a surface treatment liquid. If the content of the silane compound (A) is less than 30% by mass, the corrosion resistance cannot be ensured. On the other hand, if the content exceeds 70% by mass, the corrosion resistance decreases.
By mixing with the zirconium carbonate compound (B), the silane compound (A) has a barrier effect that once dried, it does not dissolve in water again.

炭酸ジルコニウム化合物(B)としては、例えば、炭酸ジルコニウムのナトリウム、カリウム、リチウム、アンモニウムなどの塩(例えば、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムナトリウム、炭酸ジルコニウムリチウム)が挙げられ、これらの1種以上を用いることができる。なかでも、炭酸ジルコニウムアンモニウムが耐食性などの点から好ましい。   Examples of the zirconium carbonate compound (B) include salts of zirconium carbonate such as sodium, potassium, lithium, and ammonium (for example, zirconium ammonium carbonate, sodium zirconium carbonate, lithium zirconium carbonate), and one or more of these are used. be able to. Of these, ammonium zirconium carbonate is preferable from the viewpoint of corrosion resistance.

炭酸ジルコニウム化合物(B)の含有量は、炭酸ジルコニウム化合物(B)のZrをZrO換算した質量(ZrO換算質量)とシラン化合物(A)の質量との比(B/A)が0.3〜2.0となるようにし、好ましくは0.35〜1.5となるようにする。質量比(B/A)が0.3未満では耐食性が確保できず、一方、質量比(B/A)が2.0を超えると却って耐食性が低下する。また、質量比(B/A)が2.0を超えると、湿潤環境下での耐変色性も低下する。 The content of the zirconium carbonate compound (B) is such that the ratio (B / A) of the mass of ZrO 2 converted to ZrO 2 (ZrO 2 converted mass) of the zirconium carbonate compound (B) and the mass of the silane compound (A) is 0. 3 to 2.0, preferably 0.35 to 1.5. If the mass ratio (B / A) is less than 0.3, corrosion resistance cannot be ensured. On the other hand, if the mass ratio (B / A) exceeds 2.0, the corrosion resistance decreases. Moreover, when mass ratio (B / A) exceeds 2.0, the discoloration resistance in a humid environment will also fall.

バナジン酸化合物(C)は、亜鉛系めっき鋼板表面に形成される皮膜中において、水に溶解し易い形態で均一に分散して存在し、いわゆる亜鉛腐食時のインヒビター効果を発現する。また、バナジン酸化合物(C)は、ホスホン酸(a3)に配位していると考えられ、腐食環境下でバナジン酸化合物(C)の一部がイオン化し、不働態化することにより優れた耐食性を発揮する。
バナジン酸化合物(C)としては、例えば、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、バナジルアセチルアセトネートなどが挙げられ、これらの1種以上を用いることができる。
The vanadic acid compound (C) is present in the film formed on the surface of the zinc-based plated steel sheet, uniformly dispersed in a form that is easily dissolved in water, and exhibits a so-called inhibitor effect during zinc corrosion. In addition, the vanadic acid compound (C) is considered to be coordinated to the phosphonic acid (a3), and the vanadic acid compound (C) is excellent in that it is ionized and passivated in a corrosive environment. Demonstrate corrosion resistance.
Examples of the vanadic acid compound (C) include ammonium metavanadate, sodium metavanadate, vanadyl acetylacetonate, and one or more of these can be used.

バナジン酸化合物(C)の含有量は、バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量との比(C/A)が0.010〜0.15となるようにし、好ましくは0.030〜0.10となるようにする。質量比(C/A)が0.010未満では耐食性が確保できず、一方、質量比(C/A)が0.15を超えると湿潤環境下での耐変色性が低下する。   The content of the vanadic acid compound (C) is such that the ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is 0.010 to 0.15, Preferably it is set to 0.030-0.10. If the mass ratio (C / A) is less than 0.010, corrosion resistance cannot be ensured. On the other hand, if the mass ratio (C / A) exceeds 0.15, discoloration resistance in a wet environment is lowered.

表面処理液には、潤滑性能を向上させるために潤滑剤を添加することができる。潤滑剤としては、ポリエチレンワックス、酸化ポリエチレンワックス、酸化ポリプロピレンワックス、カルナバワックス、パラフィンワックス、モンタンワックス、ライスワックス、テフロン(登録商標)ワックス、2硫化炭素、グラファイトなどが挙げられ、これらの1種以上を用いることができる。
潤滑剤の含有量は、表面処理液の全固形分中で1〜10質量%が好ましく、3〜7質量%がより好ましい。潤滑剤の含有量を1質量%以上とすることで潤滑性能の向上効果が得られ、10質量%以下であれば亜鉛系めっき鋼板の耐食性が低下することはない。
A lubricant can be added to the surface treatment liquid in order to improve the lubricating performance. Examples of the lubricant include polyethylene wax, oxidized polyethylene wax, oxidized polypropylene wax, carnauba wax, paraffin wax, montan wax, rice wax, Teflon (registered trademark) wax, carbon disulfide, and graphite. Can be used.
The content of the lubricant is preferably 1 to 10% by mass, and more preferably 3 to 7% by mass in the total solid content of the surface treatment liquid. When the content of the lubricant is 1% by mass or more, an effect of improving the lubrication performance is obtained, and when it is 10% by mass or less, the corrosion resistance of the galvanized steel sheet is not lowered.

また、表面処理液には、作業性を向上させるための増粘剤、導電性を向上させるための導電性物質、意匠性向上のための着色顔料、造膜性向上のための溶剤等を、必要に応じて適宜添加してもよい。
表面処理液は、上記した成分を脱イオン水、蒸留水などの水中で混合することにより得られる。表面処理液の固形分濃度は適宜選択すればよい。また、表面処理液には、必要に応じてアルコール、ケトン、セロソルブ系の水溶性溶剤、消泡剤、防菌防カビ剤、着色剤などを添加してもよい。ただし、これら(すなわち、成分(A)〜(C)と水と潤滑剤以外の添加成分)は本発明で得られる性能を損なわない程度に添加することが重要であり、添加量は表面処理液の全固形分中で5質量%未満とすることが好ましい。
In addition, the surface treatment liquid contains a thickener for improving workability, a conductive substance for improving conductivity, a color pigment for improving design properties, a solvent for improving film forming property, and the like. You may add suitably as needed.
The surface treatment liquid can be obtained by mixing the above-described components in water such as deionized water or distilled water. What is necessary is just to select the solid content concentration of a surface treatment liquid suitably. Moreover, you may add alcohol, a ketone, a cellosolve-type water-soluble solvent, an antifoamer, a fungicidal agent, a coloring agent, etc. to a surface treatment liquid as needed. However, it is important to add these components (that is, components (A) to (C), water, and an additive component other than the lubricant) to the extent that the performance obtained in the present invention is not impaired. The total solid content is preferably less than 5% by mass.

表面処理皮膜の片面当たりの付着量は100〜800mg/m、好ましくは200〜500mg/mである。片面当たりの皮膜付着量が100mg/m未満では耐食性不足が懸念され、一方、800mg/mを超えると、ドライヤー乾燥などの簡易設備での製造が困難となる。 The adhesion amount per one side of the surface treatment film is 100 to 800 mg / m 2 , preferably 200 to 500 mg / m 2 . If the coating amount per side is less than 100 mg / m 2 , there is a concern about insufficient corrosion resistance. On the other hand, if it exceeds 800 mg / m 2 , production with simple equipment such as dryer drying becomes difficult.

本発明の表面処理溶融亜鉛めっき鋼板は、上述した表面処理液を、亜鉛めっき表層にAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に塗布し、次いで乾燥することにより、乾燥後の片面当たりの付着量が100〜800mg/mとなるように製造される。
表面処理液を溶融亜鉛めっき鋼板の表面に塗布する方法としては、ロールコート法、バーコート法、浸漬法、スプレー塗布法などの任意の方法を採ることができる。処理される溶融亜鉛めっき鋼板の形状等によって適宜最適な方法を選択すればよい。例えば、処理される溶融亜鉛めっき鋼板がシート状であれば、ロールコート法やバーコート法、或いは、表面処理液を溶融亜鉛めっき鋼板表面にスプレーした後、ロール絞りや気体を高圧で吹きかけて塗布量を調整するスプレー塗布法を用いるのが適当である。また、溶融亜鉛めっき鋼板が成型品の場合は、表面処理液に浸漬して引き上げ、必要に応じて圧縮エアーで余分な表面処理液を吹き飛ばして塗布量を調整する方法などが適当である。
The surface-treated hot-dip galvanized steel sheet of the present invention is coated on the surface of the hot-dip galvanized steel sheet in which the Al oxide layer is formed on the surface of the galvanized surface, and then dried, so that one side after drying It is manufactured so that the amount of adhesion per unit is 100 to 800 mg / m 2 .
As a method for applying the surface treatment liquid to the surface of the hot-dip galvanized steel sheet, any method such as a roll coating method, a bar coating method, a dipping method, a spray coating method, or the like can be employed. What is necessary is just to select an optimal method suitably according to the shape etc. of the hot dip galvanized steel plate to be processed. For example, if the hot dip galvanized steel sheet to be processed is a sheet, then roll coating or bar coating, or spraying a surface treatment solution on the surface of the hot dip galvanized steel sheet, and then spraying with a roll squeezing or gas at a high pressure. It is appropriate to use a spray coating method that adjusts the amount. Moreover, when the hot dip galvanized steel sheet is a molded product, a method of adjusting the coating amount by immersing it in a surface treatment liquid and pulling it up and blowing off excess surface treatment liquid with compressed air as necessary is suitable.

また、溶融亜鉛めっき鋼板に表面処理液を塗布する前に、必要に応じて、溶融亜鉛めっき鋼板表面の油分や汚れを除去することを目的とした前処理を施してもよい。前処理の方法は、特に限定されないが、例えば、湯洗、溶剤洗浄、アルカリ脱脂洗浄などの方法が挙げられる。溶融亜鉛めっき鋼板は、防錆目的で防錆油が塗られている場合が多く、また、防錆油が塗油されていない場合でも、表面には作業中に付着した油分や汚れなどがある。上記の前処理を施すことにより、亜鉛めっき層の表面が清浄化され、均一に濡れやすくなる。溶融亜鉛めっき鋼板表面上で表面処理液が均一に濡れる場合は、前処理は特に必要でない。   In addition, before applying the surface treatment liquid to the hot dip galvanized steel sheet, pretreatment for the purpose of removing oil and dirt on the hot dip galvanized steel sheet surface may be performed as necessary. The pretreatment method is not particularly limited, and examples thereof include hot water washing, solvent washing, and alkaline degreasing washing. Hot-dip galvanized steel sheets are often coated with rust-preventive oil for the purpose of rust-prevention, and even when rust-preventive oil is not applied, the surface has oil or dirt attached during work. . By performing the above pretreatment, the surface of the galvanized layer is cleaned and easily wetted uniformly. When the surface treatment liquid gets wet uniformly on the surface of the hot dip galvanized steel sheet, pretreatment is not particularly necessary.

表面処理液を塗布した後、乾燥する際の加熱温度(最高到達板温)は、特に制限はないが、通常、30〜200℃程度である。加熱温度が30℃以上であれば皮膜中に水分が残存しないため、また、加熱温度が200℃以下であれば皮膜のクラック発生が抑制されるため、表面処理溶融亜鉛めっき鋼板の耐食性低下等の問題を生じることがないからである。また、加熱時間は、使用される溶融亜鉛めっき鋼板の種類などによって適宜最適な条件が選択される。なお、生産性などの観点からは、0.1〜60秒程度が好ましく、1〜30秒程度がより好ましい。   Although there is no restriction | limiting in particular in the heating temperature at the time of drying after apply | coating a surface treatment liquid (maximum ultimate board temperature), Usually, it is about 30-200 degreeC. If the heating temperature is 30 ° C. or higher, no moisture remains in the film, and if the heating temperature is 200 ° C. or lower, the generation of cracks in the film is suppressed. This is because there is no problem. The heating time is appropriately selected depending on the type of hot-dip galvanized steel sheet used. From the viewpoint of productivity and the like, about 0.1 to 60 seconds is preferable, and about 1 to 30 seconds is more preferable.

本発明の表面処理溶融亜鉛めっき鋼板は、表面処理皮膜がクロム化合物を含有することなく、優れた耐食性と湿潤環境下での耐変色性を有し、しかも簡易設備で製造可能である利点がある。このように優れた性能を有する理由は必ずしも明らかではないが、以下のような作用効果によるものであると考えられる。   The surface-treated hot-dip galvanized steel sheet of the present invention has the advantage that the surface-treated film does not contain a chromium compound, has excellent corrosion resistance and resistance to discoloration in a wet environment, and can be manufactured with simple equipment. . The reason for such excellent performance is not necessarily clear, but is considered to be due to the following effects.

本発明においては、亜鉛めっき表層に存在するAl酸化物層と表面処理皮膜の複合化による効果で高いバリアー性が得られるものと考えられる。従来のクロメート皮膜では、クロム酸が亜鉛と反応することで皮膜を形成するため、めっき表層にAl酸化物層が存在しない方が高い耐食性が得られる。これに対して、本発明のようにクロメートフリー皮膜、特に亜鉛との反応層を多く形成しない表面処理皮膜を有するものでは、めっき表層にAl酸化物層が一定厚さ以上存在すると、Al酸化物層そのものが持つバリアー効果と、特定の表面処理液により形成される表面処理皮膜による下記のような効果が複合化され、優れた耐食性が得られるものと考えられる。また、Al酸化物層の厚さが過剰であれば、化成処理液との反応性が低下するため皮膜形成後の可溶成分が増加し、湿潤環境下での耐変色性が低下すると考えられる。   In the present invention, it is considered that a high barrier property can be obtained by the effect of combining the Al oxide layer present on the surface layer of the galvanized surface and the surface treatment film. In the conventional chromate film, a film is formed by the reaction of chromic acid with zinc, so that a higher corrosion resistance is obtained when the Al oxide layer is not present on the plating surface layer. On the other hand, in the case of having a chromate-free film, particularly a surface-treated film that does not form many reaction layers with zinc as in the present invention, if the Al oxide layer is present on the plating surface layer with a certain thickness or more, the Al oxide It is considered that the barrier effect possessed by the layer itself and the following effects by the surface treatment film formed by the specific surface treatment liquid are combined to provide excellent corrosion resistance. Moreover, if the thickness of the Al oxide layer is excessive, the reactivity with the chemical conversion solution decreases, so the soluble components after film formation increase, and the discoloration resistance in a wet environment is considered to decrease. .

まず、表面処理液の成分のうち、シラン化合物(A)と炭酸ジルコニウム化合物(B)により、亜鉛めっき層の表面に形成される皮膜の骨格が構成される。シラン化合物(A)の加水分解性基は、亜鉛めっき層の表面と反応することにより皮膜成分を固定化するとともに、炭酸ジルコニウム化合物(B)と三次元架橋すると考えられる。さらに、シランカップリング剤(a1)のグリシジル基も亜鉛めっき層表面と反応し、皮膜の結合力がより強固になるものと考えられる。このようにして形成された表面処理皮膜は、一旦乾燥すると再度水には溶解せずバリアー的効果を有するため、上記Al酸化物層によるバリアー効果と相俟って優れた耐食性が得られる。また、樹脂のように温度が必要な架橋反応による皮膜形成ではないため、ドライヤー乾燥などのような簡易な乾燥手段でも適切に皮膜形成ができる。   First, among the components of the surface treatment liquid, the skeleton of the coating formed on the surface of the galvanized layer is constituted by the silane compound (A) and the zirconium carbonate compound (B). The hydrolyzable group of the silane compound (A) is considered to fix the coating component by reacting with the surface of the galvanized layer and three-dimensionally crosslink with the zirconium carbonate compound (B). Furthermore, it is considered that the glycidyl group of the silane coupling agent (a1) also reacts with the surface of the galvanized layer, and the bond strength of the film becomes stronger. The surface treatment film formed in this way, once dried, does not dissolve in water again and has a barrier effect, so that excellent corrosion resistance is obtained in combination with the barrier effect of the Al oxide layer. Further, since the film is not formed by a crosslinking reaction that requires a temperature like a resin, the film can be appropriately formed even by a simple drying means such as dryer drying.

また、表面処理液の成分のうち、バナジン酸化合物(C)は、皮膜中において水に溶け易い形態で均一に分散して存在し、いわゆる亜鉛腐食時のインヒビター効果を発現する。すなわち、バナジン酸化合物(C)は、腐食環境下で一部がイオン化し、不動態化することにより、亜鉛の腐食自体を抑制するものと考えられる。また、ホスホン酸(a3)に配位するため、イオン化した後に、シラン化合物(A)の加水分解性基が三次元架橋することにより、皮膜欠陥部を補修し、亜鉛の腐食を抑制するものと考えられる。   Among the components of the surface treatment liquid, the vanadic acid compound (C) is present in the film in a form that is easily dispersed in a form that is easily soluble in water, and exhibits a so-called inhibitory effect during zinc corrosion. That is, it is considered that the vanadic acid compound (C) is partially ionized and passivated in a corrosive environment, thereby suppressing zinc corrosion itself. Moreover, since it coordinates to phosphonic acid (a3), after ionization, the hydrolyzable group of the silane compound (A) is three-dimensionally cross-linked, thereby repairing a film defect portion and suppressing corrosion of zinc. Conceivable.

すなわち、表面処理液は、シラン化合物(A)と炭酸ジルコニウム化合物(B)により緻密な皮膜を形成して、高い耐食性を得るとともに、腐食インヒビターとしてバナジン酸化合物(C)を皮膜中に含有させることにより、溶融亜鉛めっき鋼板に追従した緻密な皮膜を形成することができる。
本発明の溶融亜鉛めっき鋼板は種々の用途に適用することができ、例えば、建築、電気、自動車等の各種分野で使用される材料などに好適に用いられる。
That is, the surface treatment liquid forms a dense film with the silane compound (A) and the zirconium carbonate compound (B) to obtain high corrosion resistance, and contains a vanadate compound (C) as a corrosion inhibitor in the film. Thus, a dense film following the hot dip galvanized steel sheet can be formed.
The hot-dip galvanized steel sheet of the present invention can be applied to various uses, and is suitably used for materials used in various fields such as architecture, electricity, and automobiles.

(1)供試板(溶融亜鉛めっき鋼板)
下記の市販の溶融亜鉛めっき鋼板を供試板として用いた。
(i)溶融亜鉛めっき鋼板(GI):板厚0.8mm、めっき目付量60/60(g/m
(ii)合金化溶融亜鉛めっき鋼板(GA):板厚0.8mm、めっき目付量40/40(g/m
なお、めっき目付量は鋼板両面の各めっき付着量であり、例えば、めっき目付量60/60(g/m)とは、鋼板の両面のそれぞれに60g/mのめっき層を有することを意味する。
なお、めっき表層のAl酸化物層の厚さは、下記するように前処理のアルカリ脱脂液濃度および処理時間を調整することにより調整した。
(1) Test plate (hot dip galvanized steel plate)
The following commercially available galvanized steel sheets were used as test plates.
(I) Hot-dip galvanized steel sheet (GI): Plate thickness 0.8 mm, plating basis weight 60/60 (g / m 2 )
(Ii) Alloyed hot-dip galvanized steel sheet (GA): plate thickness 0.8 mm, plating basis weight 40/40 (g / m 2 )
In addition, the plating basis weight is each plating adhesion amount on both surfaces of the steel sheet. For example, the plating basis weight 60/60 (g / m 2 ) means that each of both surfaces of the steel sheet has a plating layer of 60 g / m 2. means.
In addition, the thickness of the Al oxide layer on the plating surface layer was adjusted by adjusting the pretreatment alkaline degreasing solution concentration and the treatment time as described below.

(2)供試板の前処理(洗浄)
上記供試板(溶融亜鉛めっき鋼板)の表面にアルカリ脱脂(日本パーカライジング(株)製「ファインクリーナーE6406」を使用説明書に基づいて処理)を施し、表面の油分や汚れを取り除くとともに、Al酸化物層の厚さを調整した。具体的には、めっき表層にAl酸化物層が形成されためっき鋼板をアルカリ脱脂するに当たり、アルカリ脱脂液濃度が高いほど、また処理時間が長いほど、Al酸化物層の厚さは小さくなるので、表3の条件でアルカリ脱脂を行い、Al酸化物層の厚さを調整した。次に、水道水で水洗して供試板の表面が水で100%濡れることを確認した後、純水(脱イオン水)を流しかけ、次いで、100℃雰囲気のオーブンで水分を乾燥し、これを試験板として使用した。
(2) Pretreatment of test plate (cleaning)
Alkali degreasing (treated with “Fine Cleaner E6406” manufactured by Nihon Parkerizing Co., Ltd. according to the instruction manual) is applied to the surface of the above test plate (hot dip galvanized steel plate) to remove oil and dirt on the surface, and Al oxidation The thickness of the material layer was adjusted. Specifically, when alkali degreasing a plated steel sheet having an Al oxide layer formed on the plating surface layer, the higher the alkali degreasing solution concentration and the longer the treatment time, the smaller the thickness of the Al oxide layer. Then, alkali degreasing was performed under the conditions shown in Table 3 to adjust the thickness of the Al oxide layer. Next, after rinsing with tap water and confirming that the surface of the test plate is 100% wet with water, pour pure water (deionized water), and then dry the moisture in an oven at 100 ° C., This was used as a test plate.

(3)表面処理液用の化合物
表面処理液用の化合物としては、以下のものを用いた。
(3-1)シラン化合物(A)の製造
・製造例1(シラン化合物A1)
3−グリシドキシプロピルトリメトキシシランとテトラエトキシシランと脱イオン水とを混合し、アンモニア水を滴下し、シラン化合物を沈殿させた。脱イオン水で洗浄後、ホスホン酸としてニトリロトリス(メチレンスルホン酸)を加えてかき混ぜ、シラン化合物A1を得た。
(3) Compound for surface treatment liquid The following were used as the compound for the surface treatment liquid.
(3-1) Production / Production Example 1 of Silane Compound (A) (Silane Compound A1)
3-Glycidoxypropyltrimethoxysilane, tetraethoxysilane, and deionized water were mixed, and ammonia water was added dropwise to precipitate a silane compound. After washing with deionized water, nitrilotris (methylene sulfonic acid) was added as phosphonic acid and stirred to obtain silane compound A1.

・製造例2(シラン化合物A2)
3−グリシドキシプロピルトリメトキシシランとテトラエトキシシランの混合物を、脱イオン水にホスホン酸としてヒドリキシエチレンジホスホン酸を混合した混合液中に、20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し、シラン化合物A2を得た。
・製造例3(シラン化合物A3)
製造例2のシラン化合物A2を、さらに80℃で1時間熟成し、シラン化合物A3を得た。
Production Example 2 (Silane Compound A2)
A mixture of 3-glycidoxypropyltrimethoxysilane and tetraethoxysilane was added dropwise to a mixture of deionized water and hydroxyethylene diphosphonic acid as phosphonic acid with stirring at 20 ° C. over 1 hour. . Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a silane compound A2.
Production Example 3 (Silane Compound A3)
Silane compound A2 of Production Example 2 was further aged at 80 ° C. for 1 hour to obtain silane compound A3.

(3-2)炭酸ジルコニウム化合物(B)
B1:炭酸ジルコニウムアンモニウム
B2:炭酸ジルコニウムナトリウム
(3-3)バナジン酸化合物(C)
C1:メタバナジン酸アンモニウム
C2:バナジルアセチルアセトネート(V:19.2質量%)
(3-2) Zirconium carbonate compound (B)
B1: Ammonium zirconium carbonate B2: Sodium zirconium carbonate (3-3) Vanadate compound (C)
C1: ammonium metavanadate C2: vanadyl acetylacetonate (V: 19.2% by mass)

(4)表面処理液の調製
上記化合物を表1および表2に示す割合にて水中で混合し、固形分が15質量%の表面処理液を得た。
(4) Preparation of surface treatment liquid The above compounds were mixed in water at the ratios shown in Tables 1 and 2 to obtain a surface treatment liquid having a solid content of 15% by mass.

(5)表面処理方法
上記の表面処理液をバーコート処理またはスプレー処理により各試験板に塗布し、その後、水洗することなく、そのまま熱風炉で乾燥させ、皮膜を形成させた。乾燥条件は、炉雰囲気温度と炉に入れている時間により調節した。
バーコート処理とスプレー処理は、以下のように行った。
・バーコート処理:表面処理液を試験板に滴下して、#3〜5バーコーターで処理した。使用したバーコーターの番手と表面処理液の固形分濃度を変化させることにより、所定の皮膜付着量となるように調整した。
・スプレー処理:表面処理液を試験板にスプレー処理し、ロールコーターにて皮膜付着量の調整を行った。ロールコーターの条件と表面処理液の固形分濃度を変化させることにより、所定の皮膜付着量となるように調整した。
(5) Surface treatment method The above surface treatment solution was applied to each test plate by bar coating or spraying, and then dried in a hot air oven as it was without washing with water to form a film. The drying conditions were adjusted according to the furnace atmosphere temperature and the time in the furnace.
The bar coat treatment and spray treatment were performed as follows.
Bar coating treatment: The surface treatment solution was dropped onto the test plate and treated with a # 3-5 bar coater. By adjusting the count of the bar coater used and the solid content concentration of the surface treatment liquid, the coating amount was adjusted to be a predetermined amount.
-Spray treatment: The surface treatment solution was sprayed on the test plate, and the amount of the film was adjusted with a roll coater. By adjusting the conditions of the roll coater and the solid content concentration of the surface treatment liquid, adjustment was made so as to obtain a predetermined coating amount.

(6)評価試験の方法
(6-1)耐食性
上記表面処理皮膜を形成した試験板から70mm×150mmのサイズの試験片を切り出し、この試験片の裏面と端部をビニールテープでシールして、JIS−Z−2371−2000に準拠した塩水噴霧試験(SST)を実施した。塩水噴霧試験における白錆発生面積率が5%となるまでの時間を測定し、耐食性を以下のように評価した。
◎:白錆発生面積率が5%となるまでの時間が240時間以上
○:白錆発生面積率が5%となるまでの時間が120時間以上、240時間未満
△:白錆発生面積率が5%となるまでの時間が72時間以上、120時間未満
×:白錆発生面積率が5%となるまでの時間が72時間未満
(6) Method of evaluation test (6-1) Corrosion resistance A test piece having a size of 70 mm × 150 mm was cut out from the test plate on which the surface treatment film was formed, and the back and end portions of the test piece were sealed with vinyl tape, A salt spray test (SST) based on JIS-Z-2371-2000 was performed. The time until the white rust occurrence area ratio in the salt spray test was 5% was measured, and the corrosion resistance was evaluated as follows.
◎: Time until white rust generation area ratio reaches 5% or more 240 hours ○: Time until white rust generation area ratio reaches 5% 120 hours or more, less than 240 hours △: White rust generation area ratio Time until 5% is 72 hours or more and less than 120 hours ×: Time until white rust occurrence area ratio is 5% is less than 72 hours

(6-2)湿潤環境下での耐変色性
上記表面処理皮膜を形成した試験板から70mm×150mmのサイズの試験片を2枚切り出し、対象面を重ね合わせてトルク強度20kgfで締め付けたものを、50℃、98%RHの恒温槽に4週間保持し、保持前後の試験片の色調を評価した。保持前後の試験片の色調を分光色彩計で測定し、その色調をLab表色系のL値で表し、保持前後のL値の差ΔLで耐変色性を以下のように評価した。
◎:ΔL≧−2
○:−2>ΔL≧−5
△:−5>ΔL≧−10
×:ΔL<−10
(6-2) Discoloration resistance in a wet environment Two test pieces having a size of 70 mm × 150 mm were cut out from the test plate on which the surface treatment film was formed, and the target surfaces were overlapped and tightened with a torque strength of 20 kgf. The specimen was held in a constant temperature bath at 50 ° C. and 98% RH for 4 weeks, and the color tone of the test piece before and after holding was evaluated. The color tone of the test piece before and after holding was measured with a spectrocolorimeter, the color tone was expressed by the L value of the Lab color system, and the resistance to discoloration was evaluated by the difference ΔL between the L values before and after holding as follows.
A: ΔL ≧ −2
○: −2> ΔL ≧ −5
Δ: −5> ΔL ≧ −10
×: ΔL <−10

(7)Al酸化物層の厚さの測定
試験板の断面をTEMで観察してAl酸化物層の厚さを測定し、無作為に選択された5箇所の測定値の平均値をもって、Al酸化物層の厚さとした。
(7) Measurement of the thickness of the Al oxide layer The cross section of the test plate is observed with a TEM to measure the thickness of the Al oxide layer, and the average value of the measurement values at five randomly selected points is used as the Al oxide layer. The thickness of the oxide layer.

以上の評価試験の結果を、表面処理液の組成、溶融亜鉛めっき鋼板の種類・構成、表面処理条件とともに表1および表2に示す。なお、乾燥温度は試験板表面の到達温度である。
本発明条件を満足しない比較例は、耐食性、湿潤環境下での耐変色性のいずれかが不十分である。これに対して本発明例は、表面処理皮膜中にクロム化合物を含有することなく、優れた耐食性および湿潤環境下での耐変色性が得られている。
The results of the above evaluation tests are shown in Table 1 and Table 2 together with the composition of the surface treatment liquid, the type and configuration of the hot dip galvanized steel sheet, and the surface treatment conditions. The drying temperature is the temperature reached on the surface of the test plate.
In the comparative example that does not satisfy the conditions of the present invention, either corrosion resistance or discoloration resistance in a wet environment is insufficient. On the other hand, the examples of the present invention have excellent corrosion resistance and discoloration resistance in a wet environment without containing a chromium compound in the surface treatment film.

Figure 2016037620
Figure 2016037620

Figure 2016037620
Figure 2016037620

Figure 2016037620
Figure 2016037620

Claims (1)

亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iv)の条件を満足する表面処理液を塗布し、乾燥することにより形成された、片面当たりの付着量が100〜800mg/mの表面処理皮膜を有することを特徴とする表面処理溶融亜鉛めっき鋼板。
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
A silane coupling agent (a1) having a glycidyl group, tetraalkoxysilane (on the surface of a hot dip galvanized steel sheet on which an Al oxide layer having a thickness of 0.5 nm or more and less than 10.0 nm is formed on the surface layer of the galvanized layer, a hydrolyzable silane compound (A) obtained from a2) and phosphonic acid (a3), a zirconium carbonate compound (B), a vanadic acid compound (C), and water; A surface treatment melt characterized by having a surface treatment film of 100 to 800 mg / m 2 formed by applying a surface treatment liquid satisfying the conditions of (iv) and drying. Galvanized steel sheet.
(I) The silane compound (A) is 30 to 70% by mass in the total solid content of the surface treatment liquid.
(Ii) The ratio (B / A) of the mass of the zirconium carbonate compound (B) in terms of ZrO 2 and the mass of the silane compound (A) is 0.3 to 2.0.
(Iii) The ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is from 0.010 to 0.15.
JP2014159971A 2014-08-06 2014-08-06 Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance Active JP6569194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014159971A JP6569194B2 (en) 2014-08-06 2014-08-06 Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014159971A JP6569194B2 (en) 2014-08-06 2014-08-06 Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2016037620A true JP2016037620A (en) 2016-03-22
JP6569194B2 JP6569194B2 (en) 2019-09-04

Family

ID=55528973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014159971A Active JP6569194B2 (en) 2014-08-06 2014-08-06 Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP6569194B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014594A (en) * 2015-07-03 2017-01-19 Jfeスチール株式会社 Galvanized steel plate excellent in corrosion resistance
JP2018012858A (en) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 Metal surface treatment agent for electrolytic treatment, manufacturing method of metal surface treatment agent for electrolytic treatment and surface treatment method of metal material
JP2018012857A (en) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 Metal surface treatment agent for electrolytic treatment, manufacturing method of metal surface treatment agent for electrolytic treatment and surface treatment method of metal material
WO2018070350A1 (en) 2016-10-11 2018-04-19 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, method for producing galvanized steel sheet having surface treatment film, and galvanized steel sheet having surface treatment film
CN112553609A (en) * 2019-09-10 2021-03-26 天津大学 Carbon steel surface phosphonic acid-silane composite membrane and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293760A (en) * 1991-03-23 1992-10-19 Sumitomo Metal Ind Ltd Production of hot dip galvanized steel sheet having superior weldability
JP2008285706A (en) * 2007-05-16 2008-11-27 Jfe Steel Kk Galvannealed steel sheet
JP2009256781A (en) * 2008-03-27 2009-11-05 Kobe Steel Ltd Hot-dip galvanized steel sheet having chromate-free coating excellent in corrosion resistance
JP2010255105A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp Zinc coated steel sheet
JP2011117070A (en) * 2009-10-27 2011-06-16 Jfe Steel Corp Zinc-coated steel plate
JP2013060647A (en) * 2011-09-14 2013-04-04 Jfe Steel Corp Surface-treating liquid for zinc-plated steel sheet, and the zinc-plated steel sheet and method of manufacturing the same
WO2014112347A1 (en) * 2013-01-16 2014-07-24 Jfeスチール株式会社 Manufacturing method for zinc-plated steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293760A (en) * 1991-03-23 1992-10-19 Sumitomo Metal Ind Ltd Production of hot dip galvanized steel sheet having superior weldability
JP2008285706A (en) * 2007-05-16 2008-11-27 Jfe Steel Kk Galvannealed steel sheet
JP2009256781A (en) * 2008-03-27 2009-11-05 Kobe Steel Ltd Hot-dip galvanized steel sheet having chromate-free coating excellent in corrosion resistance
JP2010255105A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp Zinc coated steel sheet
JP2011117070A (en) * 2009-10-27 2011-06-16 Jfe Steel Corp Zinc-coated steel plate
JP2013060647A (en) * 2011-09-14 2013-04-04 Jfe Steel Corp Surface-treating liquid for zinc-plated steel sheet, and the zinc-plated steel sheet and method of manufacturing the same
WO2014112347A1 (en) * 2013-01-16 2014-07-24 Jfeスチール株式会社 Manufacturing method for zinc-plated steel sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014594A (en) * 2015-07-03 2017-01-19 Jfeスチール株式会社 Galvanized steel plate excellent in corrosion resistance
JP2018012858A (en) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 Metal surface treatment agent for electrolytic treatment, manufacturing method of metal surface treatment agent for electrolytic treatment and surface treatment method of metal material
JP2018012857A (en) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 Metal surface treatment agent for electrolytic treatment, manufacturing method of metal surface treatment agent for electrolytic treatment and surface treatment method of metal material
WO2018016251A1 (en) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 Eletrolytic treatment metal surface treatment agent
WO2018016250A1 (en) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 Metal surface treatment agent for electrolytic treatment
CN109415835A (en) * 2016-07-21 2019-03-01 日本帕卡濑精株式会社 Metal conditioner is used in electrolysis processing
CN109415835B (en) * 2016-07-21 2021-07-23 日本帕卡濑精株式会社 Metal surface treatment agent for electrolytic treatment
WO2018070350A1 (en) 2016-10-11 2018-04-19 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, method for producing galvanized steel sheet having surface treatment film, and galvanized steel sheet having surface treatment film
CN109804103A (en) * 2016-10-11 2019-05-24 杰富意钢铁株式会社 Electrogalvanized steel plate surface treatment liquid, the manufacturing method of the electrogalvanized steel plate with surface treatment epithelium and the electrogalvanized steel plate with surface treatment epithelium
KR20190061068A (en) 2016-10-11 2019-06-04 제이에프이 스틸 가부시키가이샤 A method for producing a zinc-base plated steel sheet having a surface-treated film, and a zinc-based plated steel sheet having a surface-
US11174556B2 (en) 2016-10-11 2021-11-16 Jfe Steel Corporation Surface-treatment solution for zinc or zinc alloy coated steel sheet, method of producing zinc or zinc alloy coated steel sheet with surface-coating layer, and zinc or zinc alloy coated steel sheet with surface-coating layer
CN112553609A (en) * 2019-09-10 2021-03-26 天津大学 Carbon steel surface phosphonic acid-silane composite membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP6569194B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6806892B2 (en) A surface-treated solution composition containing trivalent chromium and an inorganic compound, a galvanized steel sheet surface-treated using the same, and a method for producing the same.
JP4683582B2 (en) Water-based metal material surface treatment agent, surface treatment method and surface treatment metal material
KR101146156B1 (en) Aqueous fluid for surface treatment of zinc-plated steel sheets and zinc-plated steel sheets
US9856380B2 (en) Surface treatment composition for galvanized steel sheet, surface treatment method for galvanized steel sheet, and galvanised steel sheet
TWI529261B (en) Surface-treatment liquid for zinc or zinc alloy coated steel sheet, and zinc or zinc alloy coated steel sheet and method for manufacturing the same
JP6653026B2 (en) Solution composition for surface treatment of steel sheet, galvanized steel sheet surface-treated using the same, and method for producing the same
JP6569194B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
WO2010070729A1 (en) Surface treating agent for metallic materials, method for surface treating metallic materials using the surface treating agent, and surface treated metallic materials
TWI550099B (en) Galvanized steel sheet containing aluminum and its manufacturing method
JP6242010B2 (en) Aqueous metal surface treatment composition
TW201422845A (en) Metal surface treatment agent, surface-treated steel and method for surface treatment of the same, and painted steel and method for producing the same
KR20190076099A (en) Coating composition for hot dip galvanized steel sheet having excellent corrosion-resistance and blackening-resistance the surface treated hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet
JP2011068996A (en) Composition for surface treatment of metallic material, and treatment method
KR101696604B1 (en) Organic-inorganic hybrid coating composition for plated steel sheet
JP6056792B2 (en) Surface treatment liquid for galvanized steel sheet, surface-treated galvanized steel sheet and method for producing the same
JP6510670B2 (en) Water-based surface treatment agent for galvanized steel or zinc-based alloy plated steel, coating method and coated steel
JP2014156615A (en) Aqueous metal surface treatment agent
JP6098579B2 (en) Regular spangled galvanized steel sheet with surface treatment film
JP6112148B2 (en) Galvanized steel sheet with excellent corrosion resistance
JP2013170312A (en) Aqueous binder composition for metal surface treatment agent
JP6323424B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
CN107250434A (en) Galvanized steel with or plate golding zincio alloy steel metal conditioner, coating method and coated steel
JP2017087501A (en) Surface-treated steel plate
JP2014156616A (en) Aqueous metal surface treatment agent
JP5528925B2 (en) Metal surface treatment agent, surface treatment metal material, and metal surface treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6569194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250