[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016020757A - Manufacturing method for refrigeration cycle device and cross fin tube type heat exchanger used for the same - Google Patents

Manufacturing method for refrigeration cycle device and cross fin tube type heat exchanger used for the same Download PDF

Info

Publication number
JP2016020757A
JP2016020757A JP2014143892A JP2014143892A JP2016020757A JP 2016020757 A JP2016020757 A JP 2016020757A JP 2014143892 A JP2014143892 A JP 2014143892A JP 2014143892 A JP2014143892 A JP 2014143892A JP 2016020757 A JP2016020757 A JP 2016020757A
Authority
JP
Japan
Prior art keywords
fin
heat transfer
heat exchanger
transfer tube
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014143892A
Other languages
Japanese (ja)
Other versions
JP2016020757A5 (en
Inventor
坪江 宏明
Hiroaki Tsuboe
宏明 坪江
大木 長斗司
Nagatoshi Ooki
長斗司 大木
佐藤 英治
Eiji Sato
英治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014143892A priority Critical patent/JP2016020757A/en
Priority to PCT/JP2015/063988 priority patent/WO2016009713A1/en
Publication of JP2016020757A publication Critical patent/JP2016020757A/en
Publication of JP2016020757A5 publication Critical patent/JP2016020757A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/50Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow with outlet air in upward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/54Inlet and outlet arranged on opposite sides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve performance improvement of a heat exchanger by reducing contact thermal resistance between a fin and a heat transfer pipe while suppressing crush of a crest part of a fin groove provided inside the heat transfer pipe, and to facilitate assembly work of the heat exchanger.SOLUTION: A refrigeration cycle device is configured by sequentially connecting a compressor, a heat source side heat exchanger 7, an expansion device and a utilization side heat exchanger by refrigerant piping. The heat source side heat exchanger is a cross fin tube type heat exchanger which includes: a heat transfer pipe 30 which is configured by an aluminum-based material and in which a fin groove is formed on an inner surface; and a fin 20 configured by an aluminum-based material and in which a through-hole 20a for passing the heat transfer pipe is formed. The through-hole is formed to have a diameter larger than an outer diameter of the heat transfer pipe, and after the heat transfer pipe is passed through the through-hole, the heat transfer pipe is expanded and joined so that the outer diameter of the heat transfer pipe is larger than the diameter of the through-hole, and a pipe expansion rate becomes below 1.5%, and the joint portion is brazed.SELECTED DRAWING: Figure 2

Description

本発明は、冷凍サイクルを利用した空気調和機や冷凍機などの冷凍サイクル装置及びこれに使用されるクロスフィンチューブ型熱交換器の製造方法に関し、特に、アルミニウム製の伝熱管を使用したクロスフィンチューブ型熱交換器を搭載した冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus such as an air conditioner or a refrigerator using a refrigeration cycle, and a method of manufacturing a cross fin tube heat exchanger used therefor, and in particular, a cross fin using an aluminum heat transfer tube. The present invention relates to a refrigeration cycle apparatus equipped with a tube heat exchanger.

空気調和機などの冷凍サイクル装置に使用されている従来の熱交換器としては、複数枚のアルミニウム(以下、単にアルミともいう)製フィンと複数本の銅製伝熱管から構成されたクロスフィンチューブ型熱交換器が一般に使用されている。このクロスフィンチューブ型熱交換器の性能向上のためには、フィンと伝熱管との密着性を向上してフィンと伝熱管との熱抵抗(接触熱抵抗)を低減することが効果的である。また、前記クロスフィンチューブ型熱交換器は、その性能向上のために、伝熱管の内面にフィン溝を設けて、冷媒側の熱交換量を増加させるようにしている。   As a conventional heat exchanger used in a refrigeration cycle apparatus such as an air conditioner, a cross fin tube type composed of a plurality of aluminum (hereinafter also simply referred to as aluminum) fins and a plurality of copper heat transfer tubes Heat exchangers are commonly used. In order to improve the performance of this cross fin tube heat exchanger, it is effective to improve the adhesion between the fin and the heat transfer tube and reduce the thermal resistance (contact heat resistance) between the fin and the heat transfer tube. . Further, the cross fin tube type heat exchanger is provided with fin grooves on the inner surface of the heat transfer tube to improve the performance, thereby increasing the heat exchange amount on the refrigerant side.

一方、前記クロスフィンチューブ型熱交換器の軽量化やコスト低減のため、伝熱管の材質を銅からアルミに変更した熱交換器も知られている。このアルミ製フィンとアルミ製伝熱管から構成されたクロスフィンチューブ型熱交換器においては、フィンと伝熱管との密着性を確保するため、フィンに伝熱管の外径よりも大きい断面積を有する貫通孔を形成し、この貫通孔に前記伝熱管を通した後、前記伝熱管の内側に、伝熱管内径より大きな径の球部を通過させて機械的な圧力をかけて前記伝熱管を拡管し、その外径を大きくすることにより、前記フィンと前記伝熱管とを密着させる方法が知られている。この種公知例としては、例えば、特開2001−289585号公報(特許文献1)や特開2011−153823号公報(特許文献2)に記載されたものなどがある。   On the other hand, a heat exchanger is also known in which the material of the heat transfer tube is changed from copper to aluminum in order to reduce the weight and cost of the cross fin tube heat exchanger. In the cross fin tube heat exchanger composed of the aluminum fins and the aluminum heat transfer tubes, the fins have a cross-sectional area larger than the outer diameter of the heat transfer tubes in order to ensure adhesion between the fins and the heat transfer tubes. A through hole is formed, and the heat transfer tube is passed through the through hole. Then, a ball portion having a diameter larger than the inner diameter of the heat transfer tube is passed inside the heat transfer tube to apply mechanical pressure to expand the heat transfer tube. And the method of sticking the said fin and the said heat exchanger tube by enlarging the outer diameter is known. Examples of this kind of publicly known example include those described in Japanese Patent Application Laid-Open No. 2001-289585 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2011-153823 (Patent Document 2).

また、従来の熱交換器としては特開平8−247678号公報(特許文献3)に記載されたものも知られている。この特許文献3に記載のものは、複数のアルミニウム製フィンと複数のアルミニウム製偏平伝熱管で構成されたアルミニウム製熱交換器であって、フィンには扁平伝熱管の断面積よりもやや小さく設定したスリット部を形成し、このスリット部に前記扁平伝熱管を圧入して通すことで、フィンの弾性力により前記扁平伝熱管とフィンとの密着性を確保するようにしている。そして、更に密着性が必要な場合には、扁平伝熱管をフィンに圧入した後、フィンと伝熱管をろう付け或いは接着することが記載されている。   Moreover, what was described in Unexamined-Japanese-Patent No. 8-247678 (patent document 3) is also known as a conventional heat exchanger. The one described in Patent Document 3 is an aluminum heat exchanger composed of a plurality of aluminum fins and a plurality of aluminum flat heat transfer tubes, and the fins are set slightly smaller than the cross-sectional area of the flat heat transfer tubes. The flat heat transfer tube is press-fitted and passed through the slit portion, thereby ensuring the adhesion between the flat heat transfer tube and the fin by the elastic force of the fin. And when adhesiveness is further required, after press-fitting a flat heat exchanger tube into a fin, brazing or adhere | attaching a fin and a heat exchanger tube is described.

特開2001−289585号公報JP 2001-289585 A 特開2011−153823号公報JP 2011-153823 A 特開平8−247678号公報JP-A-8-247678

上記特許文献1や特許文献2のものでは、アルミ製伝熱管の内部のフィン溝の形状を工夫することにより、機械的圧力による拡管であってもフィン溝の潰れによる性能低下を最小限に留めることができるようにしている。   In the above-mentioned Patent Document 1 and Patent Document 2, by devising the shape of the fin groove inside the aluminum heat transfer tube, even if the pipe is expanded by mechanical pressure, the performance degradation due to the collapse of the fin groove is minimized. To be able to.

しかし、フィンと伝熱管との接触熱抵抗を十分に低減するためには、フィンと伝熱管とを十分に密着させることのできる拡管率に設定する必要がある。ここで、拡管率とは、「(拡管後のフィンに設けた伝熱管を通す貫通孔の径/拡管前のフィンに設けた伝熱管を通す貫通孔の径−1)×100[%]」である。伝熱管内部にかける圧力が大きくなるほど拡管率を大きくできるが、伝熱管内部にかける圧力が大きくなるほど伝熱管の内面に設けたフィン溝の山部の潰れが大きくなる。   However, in order to sufficiently reduce the contact thermal resistance between the fin and the heat transfer tube, it is necessary to set the tube expansion rate so that the fin and the heat transfer tube can be sufficiently adhered to each other. Here, the tube expansion rate is “(diameter of through-hole through which heat transfer tube provided in fin after tube expansion passes / diameter of through-hole through heat transfer tube provided in fin before tube expansion) × 100 [%]” It is. As the pressure applied to the inside of the heat transfer tube increases, the tube expansion rate can be increased. However, as the pressure applied to the inside of the heat transfer tube increases, the crush of the peak portion of the fin groove provided on the inner surface of the heat transfer tube increases.

接触熱抵抗を小さく設定することは拡管率を大きく設定することであり、接触熱抵抗を十分に低減するためには前記拡管率を1.5%から3.5%に設定することが望ましいが、このような拡管率にすると、前記フィン溝の山部の潰れが大きくなる傾向にある。即ち、フィンと伝熱管との接触熱抵抗を低減することは期待できるが、伝熱管の内面に設けたフィン溝の山部の潰れが大きくなり、伝熱管内を流れる冷媒側の熱交換量の低下が生じるので、全体として熱交換器の性能を十分に向上することはできないという課題があった。   Setting the contact thermal resistance to a small value means setting the pipe expansion rate to a large value. In order to sufficiently reduce the contact thermal resistance, it is desirable to set the pipe expansion rate from 1.5% to 3.5%. When such a tube expansion ratio is used, the crushing of the peak portion of the fin groove tends to increase. That is, it can be expected to reduce the contact thermal resistance between the fin and the heat transfer tube, but the crest of the fin groove provided on the inner surface of the heat transfer tube becomes larger, and the amount of heat exchange on the refrigerant side flowing in the heat transfer tube is reduced. Since the reduction occurs, there is a problem that the performance of the heat exchanger cannot be sufficiently improved as a whole.

上記特許文献3のものには、フィンに扁平伝熱管の断面積よりもやや小さく設定したスリット部を形成し、このスリット部に前記扁平伝熱管を圧入して通すことで、フィンの弾性力により前記扁平伝熱管とフィンとの密着性を確保することが記載されている。しかし、この特許文献3のものでは、熱交換器を製造する際、複数枚のフィンに形成した断面積がやや小さく設定された前記スリット部に、前記扁平伝熱管を圧入して通すことが必要であり、熱交換器の組立作業に多くの時間を要し、製造性が劣るという課題がある。   In the thing of the said patent document 3, the slit part set slightly smaller than the cross-sectional area of a flat heat exchanger tube is formed in a fin, and the said flat heat exchanger tube is press-fitted through this slit part, By the elastic force of a fin It is described to ensure the adhesion between the flat heat transfer tube and the fin. However, in this Patent Document 3, when manufacturing a heat exchanger, it is necessary to press-fit the flat heat transfer tube through the slit portion in which the cross-sectional area formed in the plurality of fins is set to be slightly small. Therefore, it takes a lot of time to assemble the heat exchanger, and there is a problem that the manufacturability is poor.

本発明の目的は、伝熱管内部に設けたフィン溝の山部の潰れを抑えつつ、フィンと伝熱管との接触熱抵抗を小さくして、熱交換器の性能向上を図ると共に、熱交換器の組立作業も容易に行うことのできる製造性の良い熱交換器を搭載した冷凍サイクル装置及びこれに使用されるクロスフィンチューブ型熱交換器の製造方法を得ることにある。   An object of the present invention is to improve the performance of the heat exchanger by reducing the contact thermal resistance between the fin and the heat transfer tube while suppressing the crushing of the peak portion of the fin groove provided in the heat transfer tube, and the heat exchanger It is an object of the present invention to obtain a refrigeration cycle apparatus equipped with a heat exchanger with good manufacturability that can be easily assembled, and a method for producing a cross fin tube heat exchanger used therefor.

上記課題を解決するために、本発明は、圧縮機、熱源側熱交換器、膨張装置、利用側熱交換器を冷媒配管で順次連結して構成されている冷凍サイクル装置において、前記熱源側熱交換器は、アルミニウム系材料で構成され内面にはフィン溝が形成されている伝熱管と、アルミニウム系材料で構成され前記伝熱管を通すための貫通孔が形成されているフィンとを備えたクロスフィンチューブ型熱交換器であって、前記フィンの貫通孔は前記伝熱管の外径よりも大きな径に形成され、前記伝熱管を前記貫通孔に通した後、前記伝熱管の外径が前記貫通孔の前記径よりも大きく且つ拡管率が1.5%未満となるように該伝熱管を拡管して接合し、この接合部分をろう付けして構成されていることを特徴とする。   In order to solve the above problems, the present invention provides a refrigeration cycle apparatus configured by sequentially connecting a compressor, a heat source side heat exchanger, an expansion device, and a use side heat exchanger with refrigerant pipes, and the heat source side heat The exchanger includes a heat transfer tube made of an aluminum-based material and having fin grooves formed on the inner surface thereof, and a cross comprising a fin made of an aluminum-based material and having a through hole for passing the heat transfer tube In the fin tube heat exchanger, the through hole of the fin is formed to have a larger diameter than the outer diameter of the heat transfer tube, and after passing the heat transfer tube through the through hole, the outer diameter of the heat transfer tube is The heat transfer tube is expanded and joined so as to be larger than the diameter of the through hole and the tube expansion rate is less than 1.5%, and this joined portion is brazed.

本発明の他の特徴は、冷凍サイクル装置に使用されるクロスフィンチューブ型熱交換器の製造方法において、アルミニウム系材料で構成され内面にはフィン溝が形成されている伝熱管と、アルミニウム系材料で構成され前記伝熱管の外径よりも大きい径の貫通孔が形成されているフィンとを用意し、前記伝熱管を前記フィンの貫通孔に通した後、前記伝熱管を、その外径が前記貫通孔の前記径よりも大きく且つ拡管率が1.5%未満となるように拡管し、その後、前記フィンと伝熱管をろう付けして接合することにある。   Another feature of the present invention is a method of manufacturing a cross fin tube heat exchanger used in a refrigeration cycle apparatus, a heat transfer tube that is made of an aluminum material and has fin grooves formed on the inner surface, and an aluminum material. And a fin in which a through-hole having a diameter larger than the outer diameter of the heat transfer tube is formed, and after passing the heat transfer tube through the through-hole of the fin, the outer diameter of the heat transfer tube is increased. The pipe is expanded so that the diameter of the through hole is larger than the diameter and the expansion ratio is less than 1.5%, and then the fin and the heat transfer pipe are brazed and joined.

本発明によれば、伝熱管内部に設けたフィン溝の山部の潰れを抑えつつ、フィンと伝熱管との接触熱抵抗を小さくして、熱交換器の性能向上を図ると共に、熱交換器の組立作業も容易に行うことのできる製造性の良い熱交換器を搭載した冷凍サイクル装置及びこれに使用されるクロスフィンチューブ型熱交換器の製造方法を得ることができる効果がある。   According to the present invention, it is possible to improve the performance of the heat exchanger while reducing the contact thermal resistance between the fin and the heat transfer tube while suppressing the crushing of the peak portion of the fin groove provided in the heat transfer tube. There is an effect that it is possible to obtain a refrigeration cycle apparatus equipped with a heat exchanger with good manufacturability that can be easily assembled, and a method of manufacturing a cross fin tube heat exchanger used therefor.

本発明の冷凍サイクル装置の実施例1を示す冷凍サイクル系統図。The refrigeration cycle system | strain diagram which shows Example 1 of the refrigeration cycle apparatus of this invention. 図1の室外側熱交換器に使用されているクロスフィンチューブ型熱交換器の要部斜視図。FIG. 2 is a perspective view of a main part of a cross fin tube type heat exchanger used in the outdoor heat exchanger of FIG. 拡管のみで接合したフィンと伝熱管との接触熱抵抗と拡管率との関係を示す線図。The diagram which shows the relationship between the contact thermal resistance of the fin and heat exchanger tube which were joined only by the pipe expansion, and the pipe expansion rate. 拡管のみで接合したフィンと伝熱管との接合状態を説明する図。The figure explaining the joining state of the fin and heat transfer tube which were joined only by the pipe expansion. 本発明の実施例1におけるクロスフィンチューブ型熱交換器の要部を示す断面図で、伝熱管を拡管する前の状態を示す図。It is sectional drawing which shows the principal part of the cross fin tube type heat exchanger in Example 1 of this invention, and is a figure which shows the state before expanding a heat exchanger tube. 本発明の実施例1におけるクロスフィンチューブ型熱交換器の要部を示す断面図で、伝熱管を拡管した後の状態を示す図。It is sectional drawing which shows the principal part of the cross fin tube type heat exchanger in Example 1 of this invention, and is a figure which shows the state after expanding a heat exchanger tube. 本発明の実施例1におけるクロスフィンチューブ型熱交換器の要部を示す断面図で、フィンと伝熱管をろう付けした後の状態を示す図。It is sectional drawing which shows the principal part of the cross fin tube type heat exchanger in Example 1 of this invention, and is a figure which shows the state after brazing a fin and a heat exchanger tube. 本発明の実施例2におけるクロスフィンチューブ型熱交換器の要部を説明する要部断面図。The principal part sectional drawing explaining the principal part of the cross fin tube type heat exchanger in Example 2 of this invention. クロスフィンチューブ型熱交換器のフィン表面に水滴が付着した状態を説明する図。The figure explaining the state which the water droplet adhered to the fin surface of a cross fin tube type heat exchanger.

以下、本発明の具体的実施例を図面を用いて詳細に説明する。なお、各図において、同一符号を付した部分は同一或いは相当する部分を示している。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. Note that, in each drawing, the portions denoted by the same reference numerals indicate the same or corresponding portions.

本発明の冷凍サイクル装置の実施例1を図1〜図7を用いて説明する。
図1は本実施例1の冷凍サイクル装置を示す冷凍サイクル系統図であり、この図1において、1は室外機、2は室内機で、これら室外機1と室内機2とは冷媒配管(液側接続配管3とガス側接続配管4)により接続されている。
A first embodiment of the refrigeration cycle apparatus of the present invention will be described with reference to FIGS.
FIG. 1 is a refrigeration cycle system diagram showing the refrigeration cycle apparatus of the first embodiment. In FIG. 1, 1 is an outdoor unit, 2 is an indoor unit, and these outdoor unit 1 and indoor unit 2 are refrigerant pipes (liquid The side connection pipe 3 and the gas side connection pipe 4) are connected.

前記室外機1には、圧縮機(密閉型圧縮機)5、四方弁6、室外側熱交換器7、第1の膨張装置8、アキュムレータ9などが備えられている。また、前記液側接続配管3と接続される液阻止弁10及び前記ガス側接続配管4と接続されるガス阻止弁11が設けられている。   The outdoor unit 1 is provided with a compressor (sealed compressor) 5, a four-way valve 6, an outdoor heat exchanger 7, a first expansion device 8, an accumulator 9, and the like. Further, a liquid blocking valve 10 connected to the liquid side connecting pipe 3 and a gas blocking valve 11 connected to the gas side connecting pipe 4 are provided.

前記室内機2には、利用側熱交換器12及び第2の膨張装置13などが備えられている。   The indoor unit 2 includes a use-side heat exchanger 12 and a second expansion device 13.

冷房運転を行う場合には次のように動作する。即ち、圧縮機5で圧縮された高温高圧のガス冷媒は冷凍機油と共に前記圧縮機1から吐出され、その後四方弁6を経て、熱源側熱交換器7へと流入し、ここで室外空気或いは冷却水などと熱交換して凝縮液化する。凝縮液化した冷媒は全開とされた第1の膨張装置8を通り、液阻止弁10及び液側接続配管3を経て、室内機2へ送られる。室内機2に流入した液冷媒は、第2の膨張装置13で減圧されて膨張し、低温・低圧の気液二相流となって、利用側熱交換器12に入り、ここで室内空気等の利用側媒体と熱交換して利用側媒体を冷却すると共に、自らは蒸発・ガス化する。その後、ガス冷媒はガス側接続配管4を通り、ガス阻止弁11、四方弁6、アキュムレータ9を経て前記圧縮機1へ戻るという冷凍サイクルを構成する。冷凍サイクルの余剰冷媒は前記アキュムレータ9に貯留され、冷凍サイクルの運転圧力、温度が正常な状態に保たれるように構成されている。   When performing cooling operation, it operates as follows. That is, the high-temperature and high-pressure gas refrigerant compressed by the compressor 5 is discharged from the compressor 1 together with the refrigerating machine oil, and then flows into the heat source side heat exchanger 7 through the four-way valve 6 where outdoor air or cooling is performed. Heat-condensed with water to condense into liquid. The condensed and liquefied refrigerant passes through the fully expanded first expansion device 8 and is sent to the indoor unit 2 through the liquid blocking valve 10 and the liquid side connection pipe 3. The liquid refrigerant flowing into the indoor unit 2 is decompressed and expanded by the second expansion device 13 and becomes a low-temperature / low-pressure gas-liquid two-phase flow and enters the use-side heat exchanger 12 where indoor air or the like The user-side medium is cooled by exchanging heat with the user-side medium, and evaporates and gasifies itself. Thereafter, the gas refrigerant constitutes a refrigeration cycle in which the gas refrigerant passes through the gas side connection pipe 4 and returns to the compressor 1 through the gas blocking valve 11, the four-way valve 6 and the accumulator 9. Excess refrigerant in the refrigeration cycle is stored in the accumulator 9 so that the operating pressure and temperature of the refrigeration cycle are maintained in a normal state.

暖房運転を行う場合には次のように動作する。即ち、圧縮機1で圧縮された高温高圧のガス冷媒は冷凍機油と共に圧縮機1から吐出され、四方弁6、ガス阻止弁11、ガス側接続配管4を経て室内機2の利用側熱交換器12へ流入し、ここで室内空気等の利用側媒体と熱交換して利用側媒体を加熱し、自らは凝縮液化する。凝縮液化した冷媒は、液側接続配管3、液阻止弁10を経て、第1の膨張装置4で減圧され、熱源側熱交換器7で室外空気或いは水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁6、アキュムレータ9を経て前記圧縮機1へ戻るという冷凍サイクルを構成する。   When heating operation is performed, the operation is as follows. That is, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigerating machine oil, and passes through the four-way valve 6, the gas blocking valve 11, and the gas side connection pipe 4, and the use side heat exchanger of the indoor unit 2. 12, and heat-exchanges with the use side medium such as room air to heat the use side medium, and condensates itself. The condensed and liquefied refrigerant is reduced in pressure by the first expansion device 4 via the liquid side connection pipe 3 and the liquid blocking valve 10, and is evaporated by exchanging heat with a heat source medium such as outdoor air or water in the heat source side heat exchanger 7.・ Gasify. The evaporated and gasified refrigerant constitutes a refrigeration cycle in which the refrigerant returns to the compressor 1 through the four-way valve 6 and the accumulator 9.

図1に示す冷凍サイクル装置における前記熱源側熱交換器7は、本実施例では、アルミニウム系材料で構成され内面にはフィン溝が形成されている複数本の伝熱管と、アルミニウム系材料で構成され前記伝熱管を通すための貫通孔が形成されている複数枚のフィンとを備えたクロスフィンチューブ型熱交換器で構成されている。なお、アルミニウム系材料とは、アルミニウムまたはアルミニウム合金である。   In the present embodiment, the heat source side heat exchanger 7 in the refrigeration cycle apparatus shown in FIG. 1 is composed of a plurality of heat transfer tubes that are made of an aluminum-based material and have fin grooves formed on the inner surface, and an aluminum-based material. And a cross fin tube type heat exchanger provided with a plurality of fins in which through holes for passing the heat transfer tubes are formed. The aluminum material is aluminum or an aluminum alloy.

この室外側熱交換器7に使用されているクロスフィンチューブ型熱交換器の構成を図2により説明する。図2は前記クロスフィンチューブ型熱交換器の要部斜視図である。
この図2により、前記クロスフィンチューブ型熱交換器の構成を説明する。図2において、20はアルミニウム系材料で構成された複数枚のフィン、30は同じくアルミニウム系材料で構成された複数本の伝熱管である。前記各フィン20には前記伝熱管30を通すための貫通孔20aがそれぞれ形成されており、この貫通孔20aは前記伝熱管30の外径よりも大きな径に形成されている。
The configuration of the cross fin tube type heat exchanger used in the outdoor heat exchanger 7 will be described with reference to FIG. FIG. 2 is a perspective view of an essential part of the cross fin tube type heat exchanger.
The configuration of the cross fin tube heat exchanger will be described with reference to FIG. In FIG. 2, 20 is a plurality of fins made of an aluminum-based material, and 30 is a plurality of heat transfer tubes also made of an aluminum-based material. Each fin 20 is formed with a through-hole 20a through which the heat transfer tube 30 passes, and the through-hole 20a is formed to have a diameter larger than the outer diameter of the heat transfer tube 30.

このクロスフィンチューブ型熱交換器の組立ては、まず前記伝熱管30を前記フィン20の貫通孔20aに通すことで、複数枚のフィン20が積層された状態で伝熱管30にセットする。その後、前記伝熱管30の外径が前記貫通孔20aの前記径よりも大きく且つ拡管率が1.5%未満となるように該伝熱管30を拡管して、前記伝熱管30と積層された複数枚のフィン20と接合させる。この接合後、該接合部分をろう付けすることにより、フィン20と伝熱管30とを密着固定する。これにより、前記フィン20と伝熱管30の密着性を向上させたクロスフィンチューブ型熱交換器を得ることができる。   The cross fin tube heat exchanger is assembled by first passing the heat transfer tube 30 through the through hole 20a of the fin 20 and setting the heat transfer tube 30 in a state where a plurality of fins 20 are laminated. Thereafter, the heat transfer tube 30 was expanded so that the outer diameter of the heat transfer tube 30 was larger than the diameter of the through-hole 20a and the tube expansion rate was less than 1.5%, and the heat transfer tube 30 was laminated. The plurality of fins 20 are joined. After this joining, the fins 20 and the heat transfer tubes 30 are tightly fixed by brazing the joined parts. Thereby, the cross fin tube type heat exchanger which improved the adhesiveness of the said fin 20 and the heat exchanger tube 30 can be obtained.

前記伝熱管30の拡管方式としては、伝熱管30の内径よりも大きい外径を有する球部を備えたロッドを伝熱管30の内部を通過させることで、伝熱管30を内部から押し広げて拡管する機械的拡管方式、伝熱管30の内径よりも大きい外径を有する球部を流体液圧により押し込む液圧拡管方式などがある。
なお、図2において、14は室外機1の底ベース、15は室外側熱交換器7と前記底ベース14との間に設けられた絶縁材料である。また、前記伝熱管30の電位よりも、前記フィン20の電位の方が低くなるように、前記伝熱管30と前記フィン20とは異なるアルミニウム系材料で構成しており、伝熱管30よりもフィン20の方が先に腐食するようにして、伝熱管30の腐食を遅らせるようにしている。
As the expansion method of the heat transfer tube 30, the rod provided with a sphere having an outer diameter larger than the inner diameter of the heat transfer tube 30 is passed through the heat transfer tube 30 to expand the heat transfer tube 30 from the inside. There are a mechanical pipe expanding system, a hydraulic pipe expanding system in which a spherical portion having an outer diameter larger than the inner diameter of the heat transfer tube 30 is pushed by a fluid hydraulic pressure.
In FIG. 2, 14 is a bottom base of the outdoor unit 1, and 15 is an insulating material provided between the outdoor heat exchanger 7 and the bottom base 14. In addition, the heat transfer tube 30 and the fin 20 are made of different aluminum materials so that the potential of the fin 20 is lower than the potential of the heat transfer tube 30, and the fin 20 is corroded first, so that the corrosion of the heat transfer tube 30 is delayed.

次に、前記拡管率と、フィンと伝熱管の接触熱抵抗との関係を、図3及び図4を用いて説明する。図3は拡管のみで接合したフィンと伝熱管との接触熱抵抗と拡管率との関係を示す線図、図4は拡管のみで接合したフィンと伝熱管との接合状態を説明する図である。   Next, the relationship between the said pipe expansion rate and the contact thermal resistance of a fin and a heat exchanger tube is demonstrated using FIG.3 and FIG.4. FIG. 3 is a diagram showing the relationship between the contact thermal resistance between the fin and the heat transfer tube joined only by the tube expansion and the tube expansion rate, and FIG. 4 is a diagram for explaining the joining state of the fin and the heat transfer tube joined only by the tube expansion. .

まず、図3により、接触熱抵抗と拡管率との関係を説明する。拡管率とは、前述した通り、「(拡管後のフィンに設けた伝熱管を通す貫通孔の径/拡管前のフィンに設けた伝熱管を通す貫通孔の径−1)×100[%]」である。即ち、図3は、フィン20の貫通孔20aの径(カラー部20bの内径も含む)を基準とした拡管率と、フィン20と伝熱管30との間の接触熱抵抗との関係を示すものである。   First, the relationship between the contact thermal resistance and the tube expansion rate will be described with reference to FIG. As described above, the expansion rate is “(the diameter of the through hole through which the heat transfer tube provided in the fin after the expansion passes / the diameter of the through hole through which the heat transfer tube provided in the fin before the expansion is expanded−1) × 100 [%] Is. That is, FIG. 3 shows the relationship between the tube expansion ratio based on the diameter of the through hole 20a of the fin 20 (including the inner diameter of the collar portion 20b) and the contact thermal resistance between the fin 20 and the heat transfer tube 30. It is.

この図3に示すように、拡管率を大きく設定するほど接触熱抵抗を小さくすることができるので、フィン側(空気側)の熱交換性能を上昇させる方向に作用する。また、伝熱管30の拡管により接触熱抵抗を十分に低減させるためには拡管率を1.5%以上に設定することが望ましい。しかし、前記拡管率が3.5%を超えると、伝熱管30に対して垂直に設置されたフィン20が倒れて、室外側熱交換器7の通風抵抗が増え、該室外側熱交換器7の性能が低下する。このため、従来のものでは拡管率を1.5〜3.5%に設定することが知られている。   As shown in FIG. 3, the larger the tube expansion ratio, the smaller the contact thermal resistance. Therefore, the heat exchange performance on the fin side (air side) is increased. In order to sufficiently reduce the contact thermal resistance by expanding the heat transfer tube 30, it is desirable to set the tube expansion rate to 1.5% or more. However, if the tube expansion rate exceeds 3.5%, the fins 20 installed perpendicular to the heat transfer tubes 30 fall down, increasing the ventilation resistance of the outdoor heat exchanger 7, and the outdoor heat exchanger 7. The performance of is reduced. For this reason, it is known that the tube expansion ratio is set to 1.5 to 3.5% in the conventional one.

しかし、拡管率を大きく取るほど伝熱管30内面に設けたフィン溝の山部の潰れ(以下単にフィン溝の潰れということもある)が大きくなる傾向があり、このフィン溝の潰れにより、伝熱管30内面を流れる冷媒側の熱交換量が低下するため、拡管率を大きく取るほど冷媒側の熱交換性能を低下させる方向に作用する。   However, as the tube expansion ratio is increased, the crest of the fin groove provided on the inner surface of the heat transfer tube 30 tends to increase (hereinafter sometimes referred to simply as the fin groove crush). Since the amount of heat exchange on the refrigerant side flowing through the inner surface of the refrigerant 30 decreases, the larger the pipe expansion rate, the more the heat exchange performance on the refrigerant side decreases.

特に、アルミニウム系材料は銅よりも機械的特性が劣ることから、伝熱管30をアルミニウム系材料とした場合、伝熱管30の肉厚を銅製伝熱管の場合よりも大きく設定する必要があり、拡管率を大きくするほど伝熱管30を拡管するための荷重が大きくなる傾向にある。そのため、拡管率を大きくするほど伝熱管30を拡管する製造装置も大きくなり、設備コストも増大する。   In particular, since the aluminum-based material is inferior in mechanical properties to copper, when the heat transfer tube 30 is made of an aluminum-based material, it is necessary to set the wall thickness of the heat transfer tube 30 to be larger than that of the copper heat transfer tube. As the rate increases, the load for expanding the heat transfer tube 30 tends to increase. Therefore, the larger the tube expansion rate, the larger the manufacturing apparatus for expanding the heat transfer tube 30 and the equipment cost.

図4は拡管のみで接合したフィン20と伝熱管30との接合状態を説明する図で、(a)図は伝熱管30に、拡管により接合された1枚のフィン20の部分を示す図、(b)図は(a)図におけるA部の拡大図である。   FIG. 4 is a diagram for explaining a joined state of the fin 20 and the heat transfer tube 30 that are joined only by the pipe expansion. FIG. 4A is a diagram showing a part of one fin 20 joined to the heat transfer pipe 30 by the pipe expansion. (B) The figure is an enlarged view of the A section in (a) figure.

伝熱管30内側を通過させる球部(拡管玉)により伝熱管30は拡管されるが、この拡管する圧力(伝熱管内面に作用する面圧)が大きくなるほど拡管率は大きくなる。しかし、前記拡管するための圧力が大きくなるほど、伝熱管30内部に設置したフィン溝の山部に作用する面圧が大きくなり、フィン溝山部の潰れが大きくなる。   The heat transfer tube 30 is expanded by a ball portion (expanded ball) that passes through the inside of the heat transfer tube 30, but the tube expansion rate increases as the pressure to expand (surface pressure acting on the inner surface of the heat transfer tube) increases. However, as the pressure for expanding the pipe increases, the surface pressure acting on the peak of the fin groove installed in the heat transfer tube 30 increases, and the collapse of the fin groove peak increases.

また、伝熱管30を拡管することで、フィン20と伝熱管30とを接合することができるが、伝熱管30を拡管することでフィン20のカラー部20bも半径方向外側に拡がる。そのとき、フィン20のカラー部20bは薄いので、伝熱管30の外表面に完全に密着して拡がるのではなく、上記(b)図に示すように、接合面を拡大すると、若干波打つ形状となる。このため、フィン20と伝熱管30とが接していない空間(空気層)16が生じ、この空間16には空気が存在する。空気の熱伝導率は0.024[W/m・K]であり著しく小さいので、前記空間16はフィン20と伝熱管30との伝熱を阻害する熱抵抗になる。   Moreover, although the fin 20 and the heat transfer tube 30 can be joined by expanding the heat transfer tube 30, the collar part 20b of the fin 20 also expands radially outward by expanding the heat transfer tube 30. At that time, since the collar portion 20b of the fin 20 is thin, it does not completely stick to the outer surface of the heat transfer tube 30 and expands. As shown in FIG. Become. For this reason, a space (air layer) 16 in which the fins 20 and the heat transfer tubes 30 are not in contact is formed, and air exists in the space 16. Since the thermal conductivity of air is 0.024 [W / m · K], which is extremely small, the space 16 has a thermal resistance that hinders heat transfer between the fins 20 and the heat transfer tubes 30.

以上のことから、前記拡管率はできるだけ小さく設定することが好ましい。
そこで、本実施例では、伝熱管30の外径がフィン20に設けた前記貫通孔20aの径よりも大きくなるように拡管すると共に、前記拡管率が1.5%未満、好ましくは、1.0%を若干上回る程度(例えば1.1〜1.3%)に拡管して、前記フィン20と伝熱管30を接合し、この接合部分をろう付けするようにしたものである。このようにすることにより、伝熱管30内面に設けたフィン溝の山部の潰れを最小限に抑え、また拡管率を小さくしているので、伝熱管30を拡管する製造装置も小型化でき、フィンカラー部20bが波打つ形状となるのも抑えることができる。更に、本実施例では、前記フィン20と伝熱管30の接合部分を拡管後にろう付けするので、フィン20と伝熱管30との間に十分なろう材を充填させることができ、前述した空間16が仮に発生しても、この空間16にはろう付け時にろう材が充填される。この結果、本実施例によれば、フィン20と伝熱管30との間に空気層が生じるのを防止してそれらを密着固定できるから、接触熱抵抗も大幅に低減することができる。
From the above, it is preferable to set the tube expansion rate as small as possible.
Therefore, in this embodiment, the tube is expanded so that the outer diameter of the heat transfer tube 30 is larger than the diameter of the through hole 20a provided in the fin 20, and the tube expansion rate is less than 1.5%, preferably 1. The pipes are expanded to a degree slightly exceeding 0% (for example, 1.1 to 1.3%), the fins 20 and the heat transfer tubes 30 are joined, and the joined portions are brazed. By doing in this way, since the crush of the peak part of the fin groove provided in the inner surface of the heat transfer tube 30 is minimized and the tube expansion rate is reduced, the manufacturing apparatus for expanding the heat transfer tube 30 can be reduced in size, It can also be suppressed that the fin collar portion 20b has a wavy shape. Furthermore, in this embodiment, since the joint portion of the fin 20 and the heat transfer tube 30 is brazed after the expansion, a sufficient amount of brazing material can be filled between the fin 20 and the heat transfer tube 30, and the space 16 described above. Even if this occurs, the space 16 is filled with a brazing material during brazing. As a result, according to the present embodiment, since an air layer can be prevented from being generated between the fins 20 and the heat transfer tubes 30 and they can be closely fixed, the contact thermal resistance can be greatly reduced.

次に、上述した冷凍サイクル装置に使用される前記クロスフィンチューブ型熱交換器の製造方法の一例を、図5〜図7を用いて説明する。図5は図2に示すクロスフィンチューブ型熱交換器の要部断面図で、伝熱管を拡管する前の状態を示す図、図6は同じくクロスフィンチューブ型熱交換器の要部断面図で、伝熱管を拡管後の状態を示す図、図7は同じくクロスフィンチューブ型熱交換器の要部断面図で、フィンと伝熱管をろう付けした後の状態を示す図である。   Next, an example of the manufacturing method of the said cross fin tube type heat exchanger used for the refrigeration cycle apparatus mentioned above is demonstrated using FIGS. 5 is a cross-sectional view of the main part of the cross fin tube type heat exchanger shown in FIG. 2, showing a state before the heat transfer tube is expanded, and FIG. 6 is a cross sectional view of the main part of the cross fin tube type heat exchanger. FIG. 7 is a cross-sectional view of an essential part of the cross fin tube heat exchanger, and shows a state after the fins and the heat transfer tubes are brazed.

まず、アルミニウム系材料で構成されている複数本の伝熱管30(拡管前の伝熱管30a)と、アルミニウム系材料で構成された複数枚のフィン20を用意する。前記複数本の伝熱管30の内面にはフィン溝(図示せず)が形成されており、前記複数枚のフィン20には前記拡管前の伝熱管30aの外径よりも大きい径の貫通孔20aとこの貫通孔20aを形成しているカラー部20bが設けられている。   First, a plurality of heat transfer tubes 30 (heat transfer tubes 30a before being expanded) made of an aluminum material and a plurality of fins 20 made of an aluminum material are prepared. Fin grooves (not shown) are formed on the inner surfaces of the plurality of heat transfer tubes 30, and the plurality of fins 20 have through holes 20a having a diameter larger than the outer diameter of the heat transfer tubes 30a before the tube expansion. And a collar portion 20b forming the through hole 20a.

前記フィン20は、図5に示すように、アルミニウム或いはアルミニウム合金で構成されたフィン心材21の表面に、前記心材21よりも融点の低いアルミニウム合金で構成されたろう材層22を貼り合わせたブレージングシートを使用し、これをプレス加工して貫通孔20aを有するフィンに形成されている。なお、前記ブレージングシートは日本工業規格JIS Z3263に規格化されている。   As shown in FIG. 5, the fin 20 is a brazing sheet in which a brazing material layer 22 made of an aluminum alloy having a melting point lower than that of the core material 21 is bonded to the surface of a fin core material 21 made of aluminum or an aluminum alloy. And is formed into a fin having a through hole 20a by pressing. The brazing sheet is standardized in Japanese Industrial Standard JIS Z3263.

次に、図5に示すように、前記伝熱管30aを前記フィン20の貫通孔20aに通し、複数枚のフィン20が前記カラー部20bにより一定間隔で積層された状態で拡管前の伝熱管30aにセットする。この状態では、前記フィン20の貫通孔20aと前記伝熱管30aとの間には隙間17が形成されている。   Next, as shown in FIG. 5, the heat transfer tubes 30a are passed through the through holes 20a of the fins 20, and a plurality of fins 20 are stacked at a predetermined interval by the collar portions 20b before the heat transfer tubes 30a are expanded. Set to. In this state, a gap 17 is formed between the through hole 20a of the fin 20 and the heat transfer tube 30a.

その後、前述した機械的拡管方式などにより、図6に示すように、前記伝熱管30の外径が前記貫通孔20aの前記径よりも大きくなるように拡管することで、前記フィン20は弾性変形して、拡管後の伝熱管30bと接合される。本実施例では、前記伝熱管30の拡管率が1.5%未満になるように、伝熱管30を拡管して、前記積層された複数枚のフィン20と接合するようにしている。   Thereafter, the fin 20 is elastically deformed by expanding the tube so that the outer diameter of the heat transfer tube 30 is larger than the diameter of the through hole 20a as shown in FIG. And it joins with the heat exchanger tube 30b after a pipe expansion. In this embodiment, the heat transfer tube 30 is expanded so that the expansion rate of the heat transfer tube 30 is less than 1.5%, and is joined to the plurality of stacked fins 20.

このようにすることにより、前記伝熱管30の内面に形成されている前記フィン溝の山部が拡管時に潰れるのを小さく抑えることができ、伝熱管内部を流れる冷媒側の熱交換量の低下を抑制することができる。   By doing in this way, it can suppress small that the peak part of the said fin groove formed in the inner surface of the said heat exchanger tube 30 is crushed at the time of pipe expansion, and the fall of the heat exchange amount by the side of the refrigerant | coolant which flows through the inside of a heat exchanger tube is reduced. Can be suppressed.

次に、図6に示す状態の熱交換器全体を加熱炉(図示せず)に入れて加熱すると、フィン心材21表面のろう材層22が溶融して、図7に示すように、フィン20と伝熱管30とを溶融したしたろう材22aで密着固定することができる。   Next, when the entire heat exchanger in the state shown in FIG. 6 is placed in a heating furnace (not shown) and heated, the brazing filler metal layer 22 on the surface of the fin core material 21 melts, and as shown in FIG. And the heat transfer tube 30 can be tightly fixed with a molten brazing material 22a.

即ち、本実施例では、前述したように前記拡管率を小さくして前記フィン20と伝熱管30の接合部分をろう付けするので、ろう材22aは、加熱されることにより溶けて粘度が低下すると、フィン20の弾性力によりフィン20と伝熱管30の間から押し出される。これにより、フィン20と伝熱管30とは密着し、図4(b)に示すように、フィン20と拡管後の伝熱管30bとの間に前記空間16が発生した場合であっても、この空間16にはろう材22aが充填されるので、伝熱を阻害する空気層を無くすことができる。   That is, in the present embodiment, as described above, since the tube expansion rate is reduced and the joining portion of the fin 20 and the heat transfer tube 30 is brazed, the brazing material 22a is melted by heating and decreases in viscosity. It is pushed out from between the fin 20 and the heat transfer tube 30 by the elastic force of the fin 20. Thereby, the fin 20 and the heat transfer tube 30 are in close contact with each other, as shown in FIG. 4B, even when the space 16 is generated between the fin 20 and the heat transfer tube 30b after the expansion. Since the space 16 is filled with the brazing material 22a, an air layer that hinders heat transfer can be eliminated.

空気の熱伝導率が0.024[W/m・K]であるのに対し、アルミニウム合金のろう材22aの熱伝達率は一般に100[W/m・K]以上であるから、空気の熱伝導率よりもろう材22aの熱伝導率の方が著しく大きい。従って、本実施例によれば、フィン20と伝熱管30との接触熱抵抗を著しく小さくすることができる。   The heat conductivity of air is 0.024 [W / m · K], whereas the heat transfer coefficient of the brazing material 22a made of aluminum alloy is generally 100 [W / m · K] or more. The thermal conductivity of the brazing material 22a is significantly larger than the conductivity. Therefore, according to the present embodiment, the contact thermal resistance between the fin 20 and the heat transfer tube 30 can be remarkably reduced.

これにより、複数枚のフィン20を拡管後の伝熱管30bに対して垂直になるように密着固定でき、フィン20のカラー部20bにより、前記複数枚のフィン20が一定間隔に配列されたクロスフィンチューブ型熱交換器を得ることができる。   As a result, the plurality of fins 20 can be tightly fixed so as to be perpendicular to the heat transfer tube 30b after the tube expansion, and the collar portion 20b of the fin 20 is a cross fin in which the plurality of fins 20 are arranged at regular intervals. A tube heat exchanger can be obtained.

このように、本実施例では、拡管前の伝熱管30aをフィン20の貫通孔20aに通した後、前記伝熱管30aを、その外径が前記貫通孔20aの径よりも大きく且つ拡管率が1.5%未満となるように、即ちフィン20と伝熱管30とが接する程度に拡管し、その後、この拡管した伝熱管30bと前記フィン20とを炉中ろう付けして接合するので、伝熱管内部に設けたフィン溝の山部の潰れを抑えつつ、フィンと伝熱管との接触熱抵抗を小さくして、熱交換器の性能向上を図ることができる。   Thus, in this embodiment, after passing the heat transfer tube 30a before the tube expansion through the through hole 20a of the fin 20, the heat transfer tube 30a has an outer diameter larger than the diameter of the through hole 20a and a tube expansion rate. Since the pipe is expanded so that it becomes less than 1.5%, that is, the fin 20 and the heat transfer tube 30 are in contact with each other, the expanded heat transfer tube 30b and the fin 20 are then brazed in the furnace and joined. It is possible to improve the performance of the heat exchanger by reducing the contact thermal resistance between the fins and the heat transfer tubes while suppressing the crushing of the peak portions of the fin grooves provided in the heat tubes.

また、本実施例では、組立て時には、前記伝熱管30を、拡管前の伝熱管30aの外径よりも大きい径の貫通孔20aを有するフィン20に通すようにしているので、熱交換器の組立作業も容易に行うことのできる効果が得られる。   Further, in this embodiment, at the time of assembly, the heat transfer tube 30 is passed through the fins 20 having the through holes 20a having a diameter larger than the outer diameter of the heat transfer tube 30a before the expansion, so that the heat exchanger is assembled. The effect that the work can be easily performed is obtained.

上述した構成のクロスフィンチューブ型熱交換器は、室外側熱交換器7として屋外に設置して使用される。この室外側熱交換器7は、暖房運転時には蒸発器として作用し、そのため前記フィン20の温度は外気温度よりも低くなる。フィン20の温度が外気の露点以下になると、外気中の水分が室外側熱交換器7のフィン20表面に結露する。更に、前記フィン20の表面温度が下がり、0℃以下になると、フィン20の表面に結露した水分は凝固し、氷や霜へと変化する。   The cross fin tube heat exchanger having the above-described configuration is used as an outdoor heat exchanger 7 installed outdoors. The outdoor heat exchanger 7 acts as an evaporator during heating operation, and therefore the temperature of the fin 20 is lower than the outside air temperature. When the temperature of the fin 20 falls below the dew point of the outside air, moisture in the outside air is condensed on the surface of the fin 20 of the outdoor heat exchanger 7. Further, when the surface temperature of the fin 20 is lowered to 0 ° C. or less, the moisture condensed on the surface of the fin 20 is solidified and changed to ice or frost.

フィン20の温度が0℃以下の状態で一定時間運転を継続すると、室外側熱交換器7のフィン20の表面全体に霜が生成され、この霜が熱抵抗となるため室外側熱交換器7の伝熱性能が低下する。また、フィン20間の隙間も霜で狭くなるので、室外側熱交換器7を流れる空気の流動抵抗が増加し、室外側熱交換器7を流れる空気の流量も減少するため、室外側熱交換器7の伝熱性能が低下する。このため、蒸発圧力が低下し、圧縮機5の吸入側の圧力が低下するので、圧縮機5吸入側の密度も低下する。この結果、冷凍サイクル装置を流れる冷媒循環量が減少するから、室内機2側の暖房能力が低下する。   When the operation of the fin 20 is continued for a certain time in a state where the temperature of the fin 20 is 0 ° C. or less, frost is generated on the entire surface of the fin 20 of the outdoor heat exchanger 7, and this frost becomes a thermal resistance. The heat transfer performance is reduced. Further, since the gap between the fins 20 is also narrowed by frost, the flow resistance of the air flowing through the outdoor heat exchanger 7 is increased, and the flow rate of the air flowing through the outdoor heat exchanger 7 is also reduced. The heat transfer performance of the vessel 7 is reduced. For this reason, the evaporation pressure is reduced, and the pressure on the suction side of the compressor 5 is reduced, so that the density on the suction side of the compressor 5 is also reduced. As a result, the amount of refrigerant circulating through the refrigeration cycle apparatus is reduced, so that the heating capacity on the indoor unit 2 side is reduced.

従って、冷凍サイクル装置においては、外気温度が低くフィン20の温度が0℃以下となるような状態で暖房運転を一定時間継続した場合、室外側熱交換器7のフィン20に付着した霜を取り除くための除霜運転を実施するようになっている。この除霜運転では、フィン20の温度を0℃以上になるように運転して付着した霜を取り除く。   Therefore, in the refrigeration cycle apparatus, when the heating operation is continued for a certain time in a state where the outside air temperature is low and the temperature of the fin 20 is 0 ° C. or less, frost attached to the fin 20 of the outdoor heat exchanger 7 is removed. For this purpose, a defrosting operation is performed. In this defrosting operation, the operation is performed so that the temperature of the fin 20 is 0 ° C. or higher, and the attached frost is removed.

例えば、外気温度が0℃を超える場合であれば圧縮機5を停止し、室外側熱交換器7に流れる冷媒を止めることで蒸発圧力を上昇させ、室外側熱交換器7の温度が0℃以上となるようにして、フィン20に付着した霜を溶かす。   For example, if the outside air temperature exceeds 0 ° C., the compressor 5 is stopped, the refrigerant flowing in the outdoor heat exchanger 7 is stopped, the evaporation pressure is increased, and the temperature of the outdoor heat exchanger 7 is 0 ° C. As described above, the frost attached to the fins 20 is melted.

また、別の除霜方式として逆サイクル除霜方式がある。これは、冷凍サイクルを一次的に逆サイクル、即ち冷房運転に切り替えることで、圧縮機1から吐出された高圧高温の冷媒を室外側熱交換器7に流して、室外側熱交換器7を凝縮器として作用させ、この室外側熱交換器7に付着した霜を溶かすものである。この除霜方式は外気温度が0℃以下の場合であっても有効である。   Moreover, there exists a reverse cycle defrost system as another defrost system. This is because the refrigeration cycle is temporarily switched to the reverse cycle, that is, the cooling operation, whereby the high-pressure and high-temperature refrigerant discharged from the compressor 1 is caused to flow to the outdoor heat exchanger 7 to condense the outdoor heat exchanger 7. The frost attached to the outdoor heat exchanger 7 is melted. This defrosting method is effective even when the outside air temperature is 0 ° C. or lower.

前記除霜運転を実施すると、室外側熱交換器3に付着した霜は溶けて水に変化するが、この水はフィン20を伝わって重力により下方に落下し、室外側熱交換器3を設置している室外機1の底ベース14(図2参照)に流れ、この底ベース14に設けた水受け(図示せず)を介して、底ベース14に設けた排水孔から室外機1外に排出される。このとき、前記水の量が多いと、底ベース14に設けた前記水受けに水が溜まり、室外側熱交換器7と底ベース14とが水を介して電気的に接続される。   When the defrosting operation is performed, the frost adhering to the outdoor heat exchanger 3 melts and changes to water, but this water travels down the fins 20 and falls downward due to gravity, and the outdoor heat exchanger 3 is installed. The outdoor unit 1 flows to the bottom base 14 (see FIG. 2) of the outdoor unit 1 and passes through a water receiver (not shown) provided on the bottom base 14 to the outside of the outdoor unit 1 through a drain hole provided on the bottom base 14. Discharged. At this time, if the amount of the water is large, the water is collected in the water receiver provided on the bottom base 14, and the outdoor heat exchanger 7 and the bottom base 14 are electrically connected through the water.

底ベース14の材質は鉄であり、室外側熱交換器7に使用する伝熱管30はアルミニウム系材料であるため、鉄とアルミ製伝熱管30とが水を介して電気的に接続される。即ち、電位の異なる異種金属が水を介して接続された状態となるので、イオン化傾向の大きいアルミ製伝熱管30が水にイオンとなって溶け出すので、前記アルミ製伝熱管30の肉厚が薄くなり、最終的にはアルミ製伝熱管30に穴が開き、伝熱管30の内部を流れる冷媒が冷凍サイクル装置の外に放出されてしまうことになる。   Since the material of the bottom base 14 is iron and the heat transfer tube 30 used for the outdoor heat exchanger 7 is an aluminum material, the iron and the aluminum heat transfer tube 30 are electrically connected through water. That is, since dissimilar metals having different potentials are connected via water, the aluminum heat transfer tube 30 having a high ionization tendency is dissolved into water, so that the thickness of the aluminum heat transfer tube 30 is reduced. As a result, the aluminum heat transfer tube 30 is thinned, and eventually, the refrigerant flowing through the heat transfer tube 30 is discharged outside the refrigeration cycle apparatus.

この問題解決のために、本実施例では図2で説明したように、室外機1の底ベース14とアルミ製のクロスフィンチューブ型熱交換器(室外側熱交換器7)とが水を介して接続しないように、前記底ベース14と室外側熱交換器7との間に絶縁材料15を配設している。   In order to solve this problem, in this embodiment, as described with reference to FIG. 2, the bottom base 14 of the outdoor unit 1 and the aluminum cross fin tube heat exchanger (outdoor heat exchanger 7) pass water. Insulating material 15 is disposed between bottom base 14 and outdoor heat exchanger 7 so as not to connect.

また、室外側熱交換器7や室内側熱交換器12の性能向上のため、フィン20に、空気の流れに対して垂直方向に、フィン20の一部を切り起こして多数のスリットを形成する場合がある。即ち、空気の流れに対するフィン20表面の温度境界層の厚さが、各スリットの前縁部で最小になるように該スリットを配置することで、スリット前縁部での熱伝達率を上昇させ、熱交換器の性能が向上するようにしている。   Further, in order to improve the performance of the outdoor heat exchanger 7 and the indoor heat exchanger 12, a part of the fin 20 is cut and raised in the fin 20 in a direction perpendicular to the air flow to form a large number of slits. There is a case. That is, by arranging the slits so that the thickness of the temperature boundary layer on the surface of the fin 20 with respect to the air flow is minimized at the front edge of each slit, the heat transfer coefficient at the front edge of the slit is increased. The heat exchanger performance is improved.

しかし、暖房運転時に蒸発器として作用する室外側熱交換器7においては、フィン20付着した霜は除霜運転で水に変わり、空気の流れに対して垂直方向にフィン20を切り起こしてスリットを設けると、水の表面張力によってスリット内に水が残留する。除霜運転を長い時間継続すれば、スリット内に残留した前記水を蒸発させ、室外側熱交換器7表面の水は除去される。   However, in the outdoor heat exchanger 7 that acts as an evaporator during the heating operation, the frost attached to the fins 20 is changed to water in the defrosting operation, and the fins 20 are cut and raised in the direction perpendicular to the air flow. When provided, water remains in the slit due to the surface tension of the water. If the defrosting operation is continued for a long time, the water remaining in the slit is evaporated, and the water on the surface of the outdoor heat exchanger 7 is removed.

しかし、除霜運転中は、室内機2側では十分な暖房運転ができないため、室内機2を設置した室内の温度が低下し快適性が低下する。そのため、除霜運転はできるだけ短く設定することが望ましく、室外側熱交換器7の表面に付着した霜が溶け、スリット内を除くフィン20表面の水が重力によって下方に排出されれば、スリット内に水が残留した状態であっても除霜運転を終了し暖房運転に切り替える場合がある。   However, since sufficient heating operation cannot be performed on the indoor unit 2 side during the defrosting operation, the temperature in the room in which the indoor unit 2 is installed is lowered and comfort is reduced. Therefore, it is desirable to set the defrosting operation as short as possible. If the frost adhering to the surface of the outdoor heat exchanger 7 melts and the water on the surface of the fin 20 except the inside of the slit is discharged downward by gravity, the inside of the slit is removed. Even if water remains, there is a case where the defrosting operation is terminated and switched to the heating operation.

スリット内に水が残留した状態で暖房運転に切り替わり、室外側熱交換器7が蒸発器として作用すると、フィン20の温度が0℃以下になった場合、前記スリット内に残留していた水が氷結し、前記スリット内が目詰まり状態になってしまう。除霜運転から暖房運転に切り替わった初期の段階で、空気が流れるべきスリット内が目詰まりしていると、室外側熱交換器7に流れる空気風量が減少するので、室外側熱交換器7の熱交換量は減少し、蒸発圧力が低下する。このため、圧縮機1の吸入側の冷媒の密度が低下し、冷媒循環量が減少するので、暖房能力が低下する。   When the outdoor heat exchanger 7 acts as an evaporator when the water remains in the slit and the outdoor heat exchanger 7 acts as an evaporator, the water remaining in the slit is reduced when the temperature of the fin 20 becomes 0 ° C. or lower. It freezes and the inside of the slit becomes clogged. In the initial stage when switching from the defrosting operation to the heating operation, if the inside of the slit through which air flows is clogged, the amount of air flow flowing to the outdoor heat exchanger 7 is reduced. The amount of heat exchange decreases and the evaporation pressure decreases. For this reason, since the density of the refrigerant | coolant by the side of the suction of the compressor 1 falls and a refrigerant | coolant circulation amount reduces, a heating capability falls.

そこで、室外側熱交換器7が蒸発器として作用する場合、室外側熱交換器7のフィン20はスリットレスフィンとすることが有効である。ここで、スリットレスフィンとは、前記フィン20の一部を切り起こして形成したスリット(空気の向きに対して略垂直方向に形成されたスリット)を有していないフィンのことである。なお、空気の流れに対して平行に設けた切り欠きやスリットをもつフィンは、除霜運転時に、前記切り欠きやスリットに水が残留しスリット内が目詰まりしても、室外側熱交換器7の通風抵抗の上昇はほとんどないので、前記スリットレスフィンと同様の性能をもつから、このようなフィンも、本実施例では、スリットレスフィンの範疇に含まれるものとする。   Therefore, when the outdoor heat exchanger 7 acts as an evaporator, it is effective that the fins 20 of the outdoor heat exchanger 7 are slitless fins. Here, the slitless fin is a fin that does not have a slit formed by cutting and raising a part of the fin 20 (a slit formed in a direction substantially perpendicular to the direction of air). Note that fins with notches and slits provided parallel to the air flow can be used for outdoor heat exchangers even if water remains in the notches or slits and the inside of the slits becomes clogged during defrosting operation. 7 has almost the same increase in ventilation resistance, and therefore has the same performance as the slitless fin. Such a fin is also included in the category of the slitless fin in this embodiment.

図8及び図9により、本発明の実施例2を説明する。図8は本実施例2におけるクロスフィンチューブ型熱交換器の要部を説明する要部断面図で、フィンと伝熱管をろう付けした後の接合状態を示す図、図9はクロスフィンチューブ型熱交換器のフィン表面に水滴が付着した状態を説明する図である。   A second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a cross-sectional view of the main part for explaining the main part of the cross fin tube type heat exchanger according to the second embodiment, and shows a joined state after brazing the fin and the heat transfer tube. FIG. 9 is a cross fin tube type. It is a figure explaining the state which the water droplet adhered to the fin surface of a heat exchanger.

図8は本実施例2の冷凍サイクル装置に使用されるクロスフィンチューブ型熱交換器の一部を示しており、複数枚のフィンのうちの1枚の部分のみを取り出して示している図である。図8において、23はフィン、31は伝熱管であり、上記実施例1と同様に、フィン23の貫通孔23aに伝熱管31を通した後、前記伝熱管31を前記貫通孔23aの径よりも大きく且つ拡管率が1.5%未満の範囲で拡管し、その後炉中ろう付けしてフィン23と伝熱管31を密着固定している。なお、22aはろう材、23bはフィンカラー部である。   FIG. 8 shows a part of a cross fin tube type heat exchanger used in the refrigeration cycle apparatus of the second embodiment, and is a view showing only one part out of a plurality of fins. is there. In FIG. 8, 23 is a fin, and 31 is a heat transfer tube. Like the first embodiment, after passing the heat transfer tube 31 through the through hole 23a of the fin 23, the heat transfer tube 31 is moved from the diameter of the through hole 23a. And the expansion ratio is less than 1.5%, and then, brazing is performed in a furnace to fix the fins 23 and the heat transfer tubes 31 tightly. In addition, 22a is a brazing material and 23b is a fin collar part.

従来の銅製伝熱管、アルミ製フィンを使用したクロスフィンチューブ型熱交換器においては、前記フィンとして、アルミニウムの母材表面にコーティングを実施したプレコート材を使用するのが一般的である。プレコート材を使用する目的は耐食性の向上と親水性の向上のためである。   In a cross fin tube type heat exchanger using conventional copper heat transfer tubes and aluminum fins, a precoat material in which the surface of an aluminum base material is coated is generally used as the fin. The purpose of using the precoat material is to improve corrosion resistance and hydrophilicity.

しかし、伝熱管としてアルミニウム系材料を使用した場合、アルミ製伝熱管は銅よりも電位が低いため、腐食し易くなる。伝熱管が腐食すると伝熱管の内部を流れる冷媒が伝熱管外に放出されてしまうので、フィン20の方を先に腐食させ、伝熱管31の腐食を遅らせるように設計することが好ましい。従来のように、フィンとして前記プレコート材を使用すると耐食性が向上して腐食し難くなるから、アルミ製伝熱管の腐食進行が早くなってしまう。   However, when an aluminum-based material is used as the heat transfer tube, the aluminum heat transfer tube has a lower potential than copper and thus is easily corroded. When the heat transfer tube is corroded, the refrigerant flowing inside the heat transfer tube is discharged to the outside of the heat transfer tube. Therefore, it is preferable to design the fin 20 to corrode first and to delay the corrosion of the heat transfer tube 31. If the precoat material is used as a fin as in the prior art, corrosion resistance is improved and corrosion is difficult, so that the corrosion progress of the aluminum heat transfer tube is accelerated.

そこで、本実施例2では、前記フィン23は、プレコート材ではなくプレコートレスとしたフィンを採用している。また、電位の低い材料の方が先に腐食するので、フィン23と伝熱管31との電位は、伝熱管31よりもフィン23の方が低くなるような材料で構成されている。   Therefore, in the second embodiment, the fin 23 is not a precoat material but a precoatless fin. Further, since the material having a lower potential corrodes first, the potential of the fin 23 and the heat transfer tube 31 is made of a material such that the fin 23 is lower than the heat transfer tube 31.

更に、本実施例2では、前記伝熱管31の空気側の耐食性を向上させるために、アルミ製の伝熱管部31aの外表面に亜鉛の犠牲層31bを溶射したアルミ製伝熱管(クラッド管)31を使用している。前記亜鉛の犠牲層(亜鉛リッチ層)31bは、母材であるアルミ製の伝熱管部(アルミリッチ層)31aよりも電位が低くなるので、亜鉛の犠牲層31bが選択的に腐食され、これにより母材であるアルミ製の伝熱管部31aの腐食を遅らせることができる。   Further, in the second embodiment, in order to improve the corrosion resistance of the heat transfer tube 31 on the air side, an aluminum heat transfer tube (clad tube) in which a zinc sacrificial layer 31b is sprayed on the outer surface of the aluminum heat transfer tube portion 31a. 31 is used. The zinc sacrificial layer (zinc rich layer) 31b has a lower potential than the aluminum heat transfer tube portion (aluminum rich layer) 31a, which is the base material, so that the zinc sacrificial layer 31b is selectively corroded. Thus, the corrosion of the aluminum heat transfer tube 31a, which is the base material, can be delayed.

しかし、本実施例2では、プレコートをしていないプレコートレスフィンを使用しているので、フィン23表面の親水性がプレコートフィンよりも劣る。親水性が劣ると図9(a)に示すように、フィン23の表面に結露した水滴(結露水)18が生じた時、その水滴18の接触角θcが大きくなってしまう。このため、複数枚のフィン23間に大きな水滴18が留まり、フィン23の水はけ性が悪くなり、前記水滴18が空気の流れの抵抗となり、通風抵抗が大きくなるという課題がある。   However, in this Example 2, since the precoatless fin which has not been precoated is used, the hydrophilicity of the fin 23 surface is inferior to that of the precoated fin. If the hydrophilicity is inferior, as shown in FIG. 9A, when a water droplet (condensed water) 18 is condensed on the surface of the fin 23, the contact angle θc of the water droplet 18 is increased. For this reason, the big water droplet 18 stays between the several fin 23, the drainage property of the fin 23 worsens, the said water droplet 18 becomes resistance of an air flow, and there exists a subject that ventilation resistance becomes large.

しかし、本実施例では、前記フィン23は、上記実施例1と同様に、フィン心材にろう材層を設けたフィンを使用し、このフィン23の貫通孔に、アルミ製の伝熱管部31aの表面に亜鉛の犠牲層31bを溶射した前記伝熱管31を通して、該伝熱管31を拡管し、前記フィンと伝熱管31を接合した後炉中ろう付けをして、フィン23と伝熱管31を密着固定するようにしているので、以下の効果が得られる。   However, in the present embodiment, the fin 23 uses a fin provided with a brazing filler metal layer on the fin core as in the first embodiment, and the heat transfer tube portion 31a made of aluminum is inserted into the through hole of the fin 23. The heat transfer tube 31 is expanded through the heat transfer tube 31 sprayed with a sacrificial zinc layer 31b on the surface, the fin and the heat transfer tube 31 are joined, and then brazed in a furnace, so that the fin 23 and the heat transfer tube 31 are in close contact with each other. Since it is fixed, the following effects can be obtained.

即ち、本実施例2で製作された熱交換器は、加熱炉で炉中ろう付けして製作されるため、フィン23の表面状態は、図9(b)に示すようになる。つまり、フィン23を加熱することで、フィン23の表面のろう材層は溶けるが、そのろう材層の一部はフィン23の表面に残留する。22bはフィン23表面に残留したろう材(残留ろう材)である。この残留ろう材22bは、図9(b)ではフィン23の一部分にしか表示していないが、フィン23の表面全体に点在している。そして、この残留ろう材22bを有するフィン23の表面は粗い面となっている。   That is, since the heat exchanger manufactured in the second embodiment is manufactured by brazing in a furnace in a heating furnace, the surface state of the fins 23 is as shown in FIG. 9B. That is, by heating the fin 23, the brazing material layer on the surface of the fin 23 is melted, but a part of the brazing material layer remains on the surface of the fin 23. 22 b is a brazing material (residual brazing material) remaining on the surface of the fin 23. Although the residual brazing filler metal 22 b is shown only on a part of the fin 23 in FIG. 9B, it is scattered over the entire surface of the fin 23. And the surface of the fin 23 which has this residual brazing material 22b is a rough surface.

平坦な面における水滴18の接触角θに対する粗い面における水滴18の接触角θcは、次のWenzelの式から、求めることができる。
cosθc=r・cosθ
ここで、θcは粗い面上での接触角、rは平面に対する粗い面の面積比(r≧1)、θは平坦面での接触角である。
The contact angle θc of the water droplet 18 on the rough surface with respect to the contact angle θ of the water droplet 18 on the flat surface can be obtained from the following Wenzel equation.
cos θc = r · cos θ
Here, θc is the contact angle on the rough surface, r is the area ratio of the rough surface to the plane (r ≧ 1), and θ is the contact angle on the flat surface.

平坦なアルミ表面での接触角θは80°程度である。上記の式からθ<90°でr>1であれば、θc<θとなるので、粗い面であるほどその接触角θcは小さくなり、フィン23表面の濡れ性を向上でき、親水性が向上する。本実施例によれば、フィン23表面に点在する前記残留ろう材22bの効果により、フィン23表面の水滴18の接触角θcはプレコート材の接触角10°〜20°以下にすることが可能となり、フィン23の親水性を向上できるから、フィン23管の通風抵抗の小さい熱交換器を得ることができる。   The contact angle θ on the flat aluminum surface is about 80 °. From the above equation, if θ <90 ° and r> 1, then θc <θ. Therefore, the rougher the surface, the smaller the contact angle θc, the wettability of the fin 23 surface can be improved, and the hydrophilicity is improved. To do. According to the present embodiment, due to the effect of the residual brazing material 22b scattered on the surface of the fin 23, the contact angle θc of the water droplet 18 on the surface of the fin 23 can be set to a contact angle of 10 ° to 20 ° or less of the precoat material. Thus, since the hydrophilicity of the fins 23 can be improved, a heat exchanger having a small ventilation resistance of the fin 23 pipe can be obtained.

次に、上述した実施例2の変形例を説明する。上述した実施例2では、アルミ製の伝熱管部31aの表面に亜鉛の犠牲層31bを溶射したアルミ製伝熱管(クラッド管)31を使用した例を説明した。これに対し、この変形例は、伝熱管31としてクラッド管を採用する点では同じであるが、この変形例の伝熱管31は、冷媒が流動する伝熱管31の内側を構成する伝熱管部(31a)は銅系材料とし、伝熱管31の外側の部材(31b)をアルミニウム系材料としたクラッド管として構成しているものである。この伝熱管は次のような場合に有効である。   Next, a modification of the above-described second embodiment will be described. In the above-described second embodiment, the example in which the aluminum heat transfer tube (clad tube) 31 in which the zinc sacrificial layer 31b is sprayed on the surface of the aluminum heat transfer tube portion 31a has been described. On the other hand, this modified example is the same in that a clad tube is adopted as the heat transfer tube 31, but the heat transfer tube 31 of this modified example is a heat transfer tube portion (inside the heat transfer tube 31 in which the refrigerant flows) 31a) is made of a copper-based material, and the outer member (31b) of the heat transfer tube 31 is configured as a clad tube made of an aluminum-based material. This heat transfer tube is effective in the following cases.

図1に示すように、冷凍サイクル装置には、銅製の接続配管3,4が使用されるが、この銅製の接続配管3,4を加工した際に発生する銅片や、前記接続配管3,4をろう付けにより接続した場合に発生する酸化スケール(酸化銅)などの異物が冷凍サイクル装置内に混入することがある。冷凍サイクル内に混入した前記銅片や酸化スケールは、冷凍サイクル内を循環する冷媒と共に冷凍サイクル内を循環し、室外側熱交換器7の伝熱管30内部に流入する。伝熱管30にはその内部にフィン溝が形成されているため、伝熱管30に流入した異物はフィン溝に残留する場合がある。伝熱管30内部に流れる冷媒は、液相の状態では電気が流れるので、アルミ製伝熱管30を採用した場合、液相状態の冷媒を介して異物である銅と接触する。アルミと銅とではアルミの方がイオン化傾向は大きいのでアルミ製伝熱管が腐食し、該伝熱管に穴が開き、冷凍サイクル装置に封入されている冷媒が冷媒サイクル装置外に放出されてしまう可能性がある。   As shown in FIG. 1, the copper connection pipes 3 and 4 are used in the refrigeration cycle apparatus. However, the copper pieces generated when the copper connection pipes 3 and 4 are processed and the connection pipes 3 and 4 are used. Foreign matter such as oxide scale (copper oxide) generated when 4 is connected by brazing may be mixed in the refrigeration cycle apparatus. The copper pieces and oxide scale mixed in the refrigeration cycle circulate in the refrigeration cycle together with the refrigerant circulating in the refrigeration cycle, and flow into the heat transfer tube 30 of the outdoor heat exchanger 7. Since the fin groove is formed in the heat transfer tube 30, foreign matter that has flowed into the heat transfer tube 30 may remain in the fin groove. Since electricity flows in the liquid phase state of the refrigerant flowing inside the heat transfer tube 30, when the aluminum heat transfer tube 30 is adopted, it contacts copper, which is a foreign substance, through the liquid phase state of the refrigerant. Since aluminum and copper have a higher ionization tendency, aluminum heat transfer tubes corrode, holes are formed in the heat transfer tubes, and the refrigerant sealed in the refrigeration cycle device can be discharged outside the refrigerant cycle device. There is sex.

また、冷凍サイクル装置をリニューアル施工する場合、旧機で使用していた既設配管を利用して新しい室外機1と室内機2に変更する。この場合、旧機で使用していた冷媒として例えばR22等の塩素を含む冷媒であった場合、冷媒中の塩素には極圧作用があるので、この塩素は、圧縮機5の摺動部である軸受部などの鉄と結合し塩化鉄を生成する。経年劣化により、圧縮機1の摺動部で生成された前記塩化鉄が摩耗分となって既設の接続配管3,4に残留していることがある。このため、リニューアル施行をすると、塩素系化合物が冷凍サイクル装置に混入し、室外側熱交換器7の伝熱管30に流入する。銅は塩素系化合物に強いが、アルミは弱いので、アルミ製伝熱管を使用した場合、アルミ製伝熱管は前記塩素系化合物と反応して腐食し、上記した例と同様に伝熱管に穴が開く可能性がある。   Further, when the refrigerating cycle apparatus is renewed, the existing outdoor unit 1 and the indoor unit 2 are changed using the existing piping used in the old unit. In this case, if the refrigerant used in the old machine is, for example, a refrigerant containing chlorine such as R22, the chlorine in the refrigerant has an extreme pressure action, so that this chlorine is generated at the sliding portion of the compressor 5. Combines with certain bearings and iron to produce iron chloride. Due to deterioration over time, the iron chloride generated at the sliding portion of the compressor 1 may become worn and remain in the existing connection pipes 3 and 4. For this reason, when the renewal is performed, the chlorine-based compound is mixed into the refrigeration cycle apparatus and flows into the heat transfer tube 30 of the outdoor heat exchanger 7. Copper is strong against chlorinated compounds, but aluminum is weak, so when aluminum heat transfer tubes are used, the aluminum heat transfer tubes react with the chlorinated compounds and corrode, and there are holes in the heat transfer tubes as in the above example. May open.

このような場合、前述した本変形例の内側(冷媒側)を銅(銅系材料)、外側(空気側)をアルミニウム(アルミニウム系材料)としたクラッド管を前記伝熱管として採用することにより、伝熱管の腐食を防止できる効果が得られる。   In such a case, by adopting a clad tube with copper (copper-based material) on the inner side (refrigerant side) and aluminum (aluminum-based material) on the outer side (air side) of the modified example described above as the heat transfer tube, The effect which can prevent corrosion of a heat exchanger tube is acquired.

以上説明した、本発明の各実施例によれば、図1、図2に示す室外側熱交換器のフィン及び伝熱管をアルミニウム系材料で構成しているので、伝熱管として銅材を採用した場合と比較して軽量化でき、室外側熱交換器が大型となるような冷凍サイクル装置に特に有効である。例えば、図1に示す室外側熱交換器に通風する空気を地面に対して平行(水平方向)に吹く横吹きタイプの室外機で且つその通風するためのファン(通風装置)が垂直方向に2個(複数台)有するような大型の室外機に有効である。また、室内機で発生する熱交換量が大きく、室外側熱交換器の熱交換量を大きくする必要のある冷凍サイクル装置では、室外側熱交換器の伝熱面積を大きく取り且つ室外側熱交換器に流す空気の風量も大きくする必要があるので、大容量の送風機(通風装置)を室外機の筐体上部に設け、空気を上方に吹き出すような上吹きタイプの室外機など(室内機を多数有するビル用マルチエアコンの室外機など)にも好適である。   According to each embodiment of the present invention described above, the fins and heat transfer tubes of the outdoor heat exchanger shown in FIG. 1 and FIG. 2 are made of an aluminum-based material, so a copper material is adopted as the heat transfer tube. It is particularly effective for a refrigeration cycle apparatus that can be reduced in weight as compared with the case and has a large outdoor heat exchanger. For example, it is a horizontal blow type outdoor unit that blows air that is passed through the outdoor heat exchanger shown in FIG. 1 in parallel (horizontal direction) to the ground, and there are two fans (ventilators) in the vertical direction. This is effective for large outdoor units that have multiple units. Further, in a refrigeration cycle apparatus that generates a large amount of heat in the indoor unit and requires a large amount of heat exchange in the outdoor heat exchanger, the heat transfer area of the outdoor heat exchanger is increased and the outdoor heat exchange is performed. It is necessary to increase the air volume of the air flowing through the unit, so a large-capacity blower (ventilation device) is installed at the top of the outdoor unit housing, and the top-blowing type outdoor unit that blows air upward (such as the indoor unit) It is also suitable for an outdoor unit of a multi-air conditioner for buildings having a large number.

また、本実施例では、前記フィンの貫通孔は前記伝熱管の外径よりも大きな径に形成され、前記伝熱管を前記貫通孔に通した後、前記伝熱管の外径が前記貫通孔の前記径よりも大きく且つ拡管率が1.5%未満となるように該伝熱管を拡管して接合し、この接合部分を炉中ろう付けして構成しているので、フィンと伝熱管とが最低限接する拡管率に設定できる。これにより、拡管による伝熱管内部のフィン溝の山部の潰れを最小限に抑えると共に、接触熱抵抗も極めて小さくできるので、熱交換器の性能を大幅に向上することが可能となる。また、フィンに伝熱管を通した後に伝熱管を拡管することから、フィンに設けた貫通孔(伝熱管通過部)の断面積を伝熱管の断面積よりも大きく設定できる。従って、複数枚のフィンを簡単に伝熱管に通すことができるので、熱交換器の組立作業も容易に行うことのできる製造性の良い、且つ高性能な熱交換器を搭載した冷凍サイクル装置を得ることができる。   Further, in this embodiment, the through hole of the fin is formed to have a larger diameter than the outer diameter of the heat transfer tube, and after passing the heat transfer tube through the through hole, the outer diameter of the heat transfer tube is equal to the through hole. Since the heat transfer tube is expanded and joined so that the tube expansion ratio is less than 1.5% larger than the diameter, and this joined portion is brazed in the furnace, the fin and the heat transfer tube are It can be set to the minimum expansion ratio. As a result, it is possible to minimize the crushing of the ridges of the fin groove inside the heat transfer tube due to the expansion, and to make the contact thermal resistance extremely small, so that the performance of the heat exchanger can be greatly improved. Moreover, since the heat transfer tube is expanded after passing the heat transfer tube through the fin, the cross-sectional area of the through hole (heat transfer tube passage portion) provided in the fin can be set larger than the cross-sectional area of the heat transfer tube. Accordingly, since a plurality of fins can be easily passed through the heat transfer tube, a refrigeration cycle apparatus equipped with a highly manufacturable and high-performance heat exchanger that can easily perform heat exchanger assembly work is provided. Can be obtained.

なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。
更に、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
In addition, this invention is not limited to the Example mentioned above, Various modifications are included. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
Further, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.

1…室外機、2…室内機、3…液側接続配管、4…ガス側接続配管、
5…圧縮機、6…四方弁、7…熱源機側熱交換器、8…第1の膨張装置、
9…アキュムレータ、10…液阻止弁、11…ガス阻止弁、
12…利用側熱交換器、13…第2の膨張装置、
14…底ベース、15…絶縁材料、
16…空間(空気層)、17…隙間、18…水滴(結露水)、
20,23…フィン、20a,23a…貫通孔、20b,23b…カラー部、
21…フィン心材、22…ろう材層、22a…ろう材、22b…残留ろう材、
30…伝熱管、30a…拡管前の伝熱管、30b…拡管後の伝熱管、
31…伝熱管(クラッド管)、
31a…伝熱管部(アルミリッチ層)、31b…犠牲層(亜鉛リッチ層)。
DESCRIPTION OF SYMBOLS 1 ... Outdoor unit, 2 ... Indoor unit, 3 ... Liquid side connection piping, 4 ... Gas side connection piping,
5 ... Compressor, 6 ... Four-way valve, 7 ... Heat source machine side heat exchanger, 8 ... First expansion device,
9 ... Accumulator, 10 ... Liquid blocking valve, 11 ... Gas blocking valve,
12 ... user-side heat exchanger, 13 ... second expansion device,
14 ... bottom base, 15 ... insulating material,
16 ... space (air layer), 17 ... gap, 18 ... water droplets (condensed water),
20, 23 ... fins, 20a, 23a ... through holes, 20b, 23b ... collar portions,
21 ... Fin core material, 22 ... Brazing material layer, 22a ... Brazing material, 22b ... Residual brazing material,
30 ... Heat transfer tube, 30a ... Heat transfer tube before expansion, 30b ... Heat transfer tube after expansion,
31 ... Heat transfer tube (clad tube),
31a ... Heat transfer tube portion (aluminum rich layer), 31b ... Sacrificial layer (zinc rich layer).

Claims (10)

圧縮機、熱源側熱交換器、膨張装置、利用側熱交換器を冷媒配管で順次連結して構成されている冷凍サイクル装置において、
前記熱源側熱交換器は、アルミニウム系材料で構成され内面にはフィン溝が形成されている伝熱管と、アルミニウム系材料で構成され前記伝熱管を通すための貫通孔が形成されているフィンとを備えたクロスフィンチューブ型熱交換器であって、前記フィンの貫通孔は前記伝熱管の外径よりも大きな径に形成され、前記伝熱管を前記貫通孔に通した後、前記伝熱管の外径が前記貫通孔の前記径よりも大きく且つ拡管率が1.5%未満となるように該伝熱管を拡管して接合し、この接合部分をろう付けして構成されている
ことを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus configured by sequentially connecting a compressor, a heat source side heat exchanger, an expansion device, and a use side heat exchanger with refrigerant piping,
The heat source side heat exchanger includes a heat transfer tube made of an aluminum-based material and having fin grooves formed on the inner surface thereof, and a fin formed of an aluminum-based material and formed with a through hole for passing the heat transfer tube. The fin through hole is formed with a diameter larger than the outer diameter of the heat transfer tube, and after passing the heat transfer tube through the through hole, the heat transfer tube The heat transfer tube is expanded and joined so that the outer diameter is larger than the diameter of the through-hole and the expansion rate is less than 1.5%, and the joined portion is brazed. A refrigeration cycle device.
請求項1に記載の冷凍サイクル装置において、
前記熱源側熱交換器における前記伝熱管の電位よりも、前記フィンの電位の方が低くなるように、前記伝熱管と前記フィンを異なるアルミニウム系材料で構成していることを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1,
The refrigeration cycle, wherein the heat transfer tube and the fin are made of different aluminum materials so that the potential of the fin is lower than the potential of the heat transfer tube in the heat source side heat exchanger. apparatus.
請求項1に記載の冷凍サイクル装置において、
前記熱源側熱交換器は室外機の筐体内の底ベースの上に設置されると共に、前記室外側熱交換器と前記底ベースとの間には絶縁材料を配置していることを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1,
The heat source side heat exchanger is installed on a bottom base in a casing of an outdoor unit, and an insulating material is disposed between the outdoor heat exchanger and the bottom base. Refrigeration cycle equipment.
請求項1〜3の何れか1項に記載の冷凍サイクル装置において、
前記熱源側熱交換器の前記フィンは、スリットが形成されていないスリットレスフィンであることを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus according to any one of claims 1 to 3,
The refrigeration cycle apparatus, wherein the fin of the heat source side heat exchanger is a slitless fin in which no slit is formed.
請求項1〜3の何れか1項に記載の冷凍サイクル装置において、
前記熱源側熱交換器の前記フィンは、その表面にプレコートされていないプレコートレスのもので構成されていることを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus according to any one of claims 1 to 3,
The fin of the heat source side heat exchanger is composed of a precoat-less fin that is not precoated on the surface thereof.
請求項1〜3の何れか1項に記載の冷凍サイクル装置において、
前記熱源側熱交換器の前記伝熱管は、アルミニウム製の伝熱管部の外表面に亜鉛の犠牲層を溶射したクラッド管で構成されていることを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus according to any one of claims 1 to 3,
The refrigeration cycle apparatus, wherein the heat transfer tube of the heat source side heat exchanger is configured by a clad tube in which a sacrificial layer of zinc is sprayed on an outer surface of an aluminum heat transfer tube portion.
請求項1〜3の何れか1項に記載の冷凍サイクル装置において、
前記熱源側熱交換器の前記伝熱管は、冷媒側が銅系材料、空気側がアルミニウム系材料のクラッド管で構成されていることを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus according to any one of claims 1 to 3,
The refrigeration cycle apparatus characterized in that the heat transfer tube of the heat source side heat exchanger is constituted by a clad tube made of a copper-based material on the refrigerant side and an aluminum-based material on the air side.
請求項1〜3の何れか1項に記載の冷凍サイクル装置において、
前記熱源側熱交換器は室外機に設置され、この室外機には前記熱源側熱交換器に通風させるための通風装置を前記熱源側熱交換器の垂直方向に複数台備え、前記通風装置は水平方向に空気を吹き出す構成としていることを特徴とする冷凍サイクル装置。
In the refrigerating cycle device according to any one of claims 1 to 3,
The heat source side heat exchanger is installed in an outdoor unit, and the outdoor unit includes a plurality of ventilation devices for passing the heat source side heat exchanger in the vertical direction of the heat source side heat exchanger. A refrigeration cycle apparatus characterized in that air is blown out horizontally.
請求項1〜3の何れか1項に記載の冷凍サイクル装置において、
前記熱源側熱交換器は室外機に設置され、この室外機には前記熱源側熱交換器に通風させるための通風装置を備え、前記通風装置は上方に空気を吹き出す構成としていることを特徴とする冷凍サイクル装置。
In the refrigerating cycle device according to any one of claims 1 to 3,
The heat source side heat exchanger is installed in an outdoor unit, and the outdoor unit is provided with a ventilating device for ventilating the heat source side heat exchanger, and the ventilating device blows air upward. Refrigeration cycle equipment.
冷凍サイクル装置に使用されるクロスフィンチューブ型熱交換器の製造方法において、
アルミニウム系材料で構成され内面にはフィン溝が形成されている伝熱管と、アルミニウム系材料で構成され前記伝熱管の外径よりも大きい径の貫通孔が形成されているフィンとを用意し、
前記伝熱管を前記フィンの貫通孔に通した後、前記伝熱管を、その外径が前記貫通孔の前記径よりも大きく且つ拡管率が1.5%未満となるように拡管し、
その後、前記フィンと伝熱管をろう付けして接合する
ことを特徴とする冷凍サイクル装置に使用されるクロスフィンチューブ型熱交換器の製造方法。
In the manufacturing method of the cross fin tube type heat exchanger used in the refrigeration cycle apparatus,
Preparing a heat transfer tube made of an aluminum-based material and having fin grooves formed on the inner surface, and a fin made of an aluminum-based material and having a through-hole having a diameter larger than the outer diameter of the heat transfer tube;
After passing the heat transfer tube through the through hole of the fin, the heat transfer tube is expanded so that the outer diameter is larger than the diameter of the through hole and the expansion rate is less than 1.5%.
Then, the said fin and a heat exchanger tube are brazed and joined. The manufacturing method of the cross fin tube type heat exchanger used for the refrigerating cycle apparatus characterized by the above-mentioned.
JP2014143892A 2014-07-14 2014-07-14 Manufacturing method for refrigeration cycle device and cross fin tube type heat exchanger used for the same Pending JP2016020757A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014143892A JP2016020757A (en) 2014-07-14 2014-07-14 Manufacturing method for refrigeration cycle device and cross fin tube type heat exchanger used for the same
PCT/JP2015/063988 WO2016009713A1 (en) 2014-07-14 2015-05-15 Refrigeration cycle device and manufacturing method for cross fin tube-type heat exchanger used by refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143892A JP2016020757A (en) 2014-07-14 2014-07-14 Manufacturing method for refrigeration cycle device and cross fin tube type heat exchanger used for the same

Publications (2)

Publication Number Publication Date
JP2016020757A true JP2016020757A (en) 2016-02-04
JP2016020757A5 JP2016020757A5 (en) 2017-03-23

Family

ID=55078217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143892A Pending JP2016020757A (en) 2014-07-14 2014-07-14 Manufacturing method for refrigeration cycle device and cross fin tube type heat exchanger used for the same

Country Status (2)

Country Link
JP (1) JP2016020757A (en)
WO (1) WO2016009713A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110138A1 (en) * 2016-12-12 2018-06-21 株式会社デンソー Cold air device
WO2018116408A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Heat exchanger, method for manufacturing same, and refrigeration cycle device
EP3617603A4 (en) * 2017-04-28 2021-02-10 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner
WO2022018827A1 (en) 2020-07-21 2022-01-27 三菱電機株式会社 Heat exchanger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216554A (en) * 2016-08-15 2016-12-14 安徽天祥空调科技有限公司 A kind of air-conditioning heat exchanger technique
WO2019021461A1 (en) * 2017-07-28 2019-01-31 三菱電機株式会社 Heat exchanger, air conditioner, and method for manufacturing heat exhanger
CN108344322B (en) * 2018-03-28 2023-12-15 长沙格力暖通制冷设备有限公司 Fin heat exchanger and air conditioner
JP7386963B2 (en) * 2020-02-19 2023-11-27 株式会社巴川製紙所 Heat exchanger

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247678A (en) * 1995-03-10 1996-09-27 Nagano Haruo Heat-exchanger made of aluminum
JPH09303985A (en) * 1996-05-13 1997-11-28 Kobe Steel Ltd Copper tube for heat exchanger excellent in tube expansion
JP2001021284A (en) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd Heat exchanger
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2008175404A (en) * 2007-01-16 2008-07-31 Daikin Ind Ltd Heat exchanger
JP2010151387A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Outdoor unit of air conditioner
WO2010095419A1 (en) * 2009-02-23 2010-08-26 三菱重工業株式会社 Gas cooler
JP2011153823A (en) * 2008-04-24 2011-08-11 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
JP2011257084A (en) * 2010-06-10 2011-12-22 Sumitomo Light Metal Ind Ltd All-aluminum heat exchanger
WO2012043492A1 (en) * 2010-09-27 2012-04-05 古河スカイ株式会社 Aluminum-alloy-made heat-transfer pipe with inner-surface grooves
JP2014074563A (en) * 2012-10-05 2014-04-24 Mitsubishi Electric Corp Outdoor unit and refrigeration cycle device
US20140151011A1 (en) * 2012-11-30 2014-06-05 Juhyok Kim Heat exchanger and method of manufacturing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247678A (en) * 1995-03-10 1996-09-27 Nagano Haruo Heat-exchanger made of aluminum
JPH09303985A (en) * 1996-05-13 1997-11-28 Kobe Steel Ltd Copper tube for heat exchanger excellent in tube expansion
JP2001021284A (en) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd Heat exchanger
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2008175404A (en) * 2007-01-16 2008-07-31 Daikin Ind Ltd Heat exchanger
JP2011153823A (en) * 2008-04-24 2011-08-11 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
JP2010151387A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Outdoor unit of air conditioner
WO2010095419A1 (en) * 2009-02-23 2010-08-26 三菱重工業株式会社 Gas cooler
JP2011257084A (en) * 2010-06-10 2011-12-22 Sumitomo Light Metal Ind Ltd All-aluminum heat exchanger
WO2012043492A1 (en) * 2010-09-27 2012-04-05 古河スカイ株式会社 Aluminum-alloy-made heat-transfer pipe with inner-surface grooves
JP2014074563A (en) * 2012-10-05 2014-04-24 Mitsubishi Electric Corp Outdoor unit and refrigeration cycle device
US20140151011A1 (en) * 2012-11-30 2014-06-05 Juhyok Kim Heat exchanger and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110138A1 (en) * 2016-12-12 2018-06-21 株式会社デンソー Cold air device
WO2018116408A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Heat exchanger, method for manufacturing same, and refrigeration cycle device
EP3617603A4 (en) * 2017-04-28 2021-02-10 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner
WO2022018827A1 (en) 2020-07-21 2022-01-27 三菱電機株式会社 Heat exchanger

Also Published As

Publication number Publication date
WO2016009713A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
WO2016009713A1 (en) Refrigeration cycle device and manufacturing method for cross fin tube-type heat exchanger used by refrigeration cycle device
JP4738401B2 (en) Air conditioner
US20190383567A1 (en) Heat exchanger and refrigeration cycle apparatus
JP6790077B2 (en) Heat exchanger
WO2014147788A1 (en) Heat exchanger, refrigeration cycle device, and production method for heat exchanger
WO2017221400A1 (en) Refrigerating cycle device and outdoor heat exchanger used in same
US10557652B2 (en) Heat exchanger and air conditioner
US10914499B2 (en) Outdoor unit and refrigeration cycle apparatus including the same
JPWO2018078800A1 (en) Heat exchanger and refrigeration cycle device
WO2017017789A1 (en) Heat exchanger and refrigeration cycle apparatus
JP6692495B2 (en) Heat exchanger and refrigeration cycle device
JP6318371B2 (en) Outdoor unit and refrigeration cycle apparatus using the same
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
JP6415600B2 (en) Refrigeration cycle equipment
JPWO2020044391A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
WO2013094084A1 (en) Air conditioner
JPWO2020178977A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
JP7130116B2 (en) air conditioner
JP6621928B2 (en) Heat exchanger and air conditioner
JP6921323B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
JP2018009742A (en) Heat exchanger of refrigeration cycle device
WO2020012548A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2008309442A (en) Heat transfer pipe and heat exchanger
JP2018185098A (en) Heat exchanger
JP2010145021A (en) Underground heat exchanger

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180522