[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016019401A - Power conversion device integrated motor - Google Patents

Power conversion device integrated motor Download PDF

Info

Publication number
JP2016019401A
JP2016019401A JP2014142104A JP2014142104A JP2016019401A JP 2016019401 A JP2016019401 A JP 2016019401A JP 2014142104 A JP2014142104 A JP 2014142104A JP 2014142104 A JP2014142104 A JP 2014142104A JP 2016019401 A JP2016019401 A JP 2016019401A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
power converter
conversion device
side housing
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014142104A
Other languages
Japanese (ja)
Inventor
康平 松井
Kohei Matsui
康平 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014142104A priority Critical patent/JP2016019401A/en
Publication of JP2016019401A publication Critical patent/JP2016019401A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power conversion device integrated motor which improves the degree of freedom in layout of a power conversion device.SOLUTION: A DC smoothing electrolytic capacitor 17 is connected to a packaging board 12 of a power semiconductor apparatus 16 while being fixed to a power conversion device side housing 3. In that case, the electrolytic capacitor 17 is disposed in such a manner that its length direction becomes parallel with an inner peripheral wall of the power conversion device side housing 3. Therefore, the electrolytic capacitor 17 is firmly fixed, vibration resistance can be improved and heat generated by the electrolytic capacitor 17 is efficiently transferred to the power conversion device side housing 3. The electrolytic capacitor 17 and the packaging board 12 are connected by a twist wire 32, a coaxial wire 33 or a flexible substrate 24, thereby suppressing generation of noise. Further, the electrolytic capacitor 17 is accommodated within a recess 18 formed on the inner peripheral wall of the power conversion device side housing 3, and an insulative sheet member 19 having a heat radiation property is interposed between the electrolytic capacitor 17 and the power conversion device side housing 3.SELECTED DRAWING: Figure 1

Description

本発明は、電動機に電力変換装置が一体的に取付けられた電力変換装置一体型電動機に関し、特に電力変換装置にパワー半導体と直流平滑用の電解コンデンサを用いる場合に好適なものである。   The present invention relates to a power converter integrated motor in which a power converter is integrally attached to a motor, and is particularly suitable when a power semiconductor and a DC smoothing electrolytic capacitor are used in the power converter.

電動パワーステアリング用アシストモータや車載エアコンディショナ用のコンプレッサなど、車載用途の電動機は取付けスペースの省スペース化のために、電力変換装置が一体的に取付けられた電力変換装置一体型電動機が主流になりつつある。また、産業用途でも、省スペース化や盤レス(無制御盤)構造などを目的として、電力変換装置一体型電動機が開発されている。電力変換装置では、一般的に、電動機への電力を調整するためにパワー半導体を用いている。パワー半導体は、扱う電力が大きく、損失による発熱量も大きい。そのため、電力変換装置一体型電動機の小型化には、パワー半導体の冷却構造が重要となる。次に、電力変換装置のレイアウトに大きく影響するのが直流電圧平滑用の電解コンデンサである。電解コンデンサで生じる損失はパワー半導体の損失と比較すると小さいが、電解コンデンサはリプル電流と等価直列抵抗による損失で、自己発熱を生じる。そこで、下記特許文献1では、パワー半導体と共に実装基板に実装された電解コンデンサの発熱を冷却体に逃がす工夫がなされている。   In-vehicle motors such as assist motors for electric power steering and compressors for in-vehicle air conditioners have become mainstream. It is becoming. In industrial applications, electric motors with integrated power conversion devices have been developed for the purpose of space saving and panel-less (non-control panel) structure. In a power conversion device, a power semiconductor is generally used to adjust power to an electric motor. Power semiconductors handle a large amount of power and generate a large amount of heat due to loss. For this reason, a power semiconductor cooling structure is important for miniaturization of the electric power converter integrated motor. Next, the electrolytic capacitor for DC voltage smoothing greatly affects the layout of the power converter. Although the loss caused by the electrolytic capacitor is small compared to the loss of the power semiconductor, the electrolytic capacitor is a loss due to the ripple current and the equivalent series resistance, and generates self-heating. In view of this, in Patent Document 1 described below, a contrivance is made to release heat generated by the electrolytic capacitor mounted on the mounting substrate together with the power semiconductor to the cooling body.

特開2005−527775号公報JP 2005-527775 A

ところで、特許文献1では、電解コンデンサがパワー半導体と共に実装基板に実装されているという点で一般的な基板と変わりなく、依然として電解コンデンサによる電力変換装置のレイアウトが大きく制限されてしまう。
本発明は、上記のような問題点に着目してなされたものであり、電力変換装置のレイアウトに対する自由度が大きい電力変換装置一体型電動機を提供することを目的とするものである。
By the way, in patent document 1, it is not different from a general board | substrate by the point that the electrolytic capacitor is mounted on the mounting board with the power semiconductor, and the layout of the power converter device by an electrolytic capacitor will still be restrict | limited greatly.
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a power converter integrated motor having a high degree of freedom with respect to the layout of the power converter.

上記課題を解決するために、本発明の一態様によれば、電動機と、パワー半導体によって電動機への電力を変換する電力変換装置とが一体的に配置された電力変換装置一体型電動機であって、電動機を収納する電動機側筐体と、電動機側筐体に接続され、電力変換装置を収納する電力変換装置側筐体と、電力変換装置側筐体に固定された状態でパワー半導体の実装基板に接続される直流平滑用の電解コンデンサとを備えた電力変換装置一体型電動機が提供される。   In order to solve the above problems, according to one aspect of the present invention, there is provided a power converter integrated motor in which an electric motor and a power converter that converts power to the motor by a power semiconductor are integrally arranged. A motor-side housing that houses the motor, a power converter-side housing that is connected to the motor-side housing and houses the power converter, and a power semiconductor mounting substrate fixed to the power converter-side housing There is provided a power converter integrated motor including a DC smoothing electrolytic capacitor connected to the DC.

本発明の電力変換装置一体型電動機によれば、直流平滑用の電解コンデンサを、電力変換装置側筐体に固定された状態でパワー半導体の実装基板に接続したことにより、電解コンデンサを効率よく冷却することができると共に、電力変換装置のレイアウトに対する自由度を大きくすることができる。   According to the electric power converter integrated motor of the present invention, the electrolytic capacitor for direct current smoothing is connected to the power semiconductor mounting substrate in a state of being fixed to the power converter side housing, thereby efficiently cooling the electrolytic capacitor. In addition, the degree of freedom with respect to the layout of the power converter can be increased.

本発明の電力変換装置一体型電動機の一実施形態を示す縦断面図である。1 is a longitudinal sectional view showing an embodiment of an electric motor integrated with a power converter according to the present invention. 図1の電力変換装置に用いられるパワー半導体及び電解コンデンサの回路図である。It is a circuit diagram of the power semiconductor and electrolytic capacitor which are used for the power converter device of FIG. 図1の電力変換装置における電解コンデンサの固定構造を示す斜視図である。It is a perspective view which shows the fixation structure of the electrolytic capacitor in the power converter device of FIG. 図1の電力変換装置において電解コンデンサと実装基板を接続するフレキシブル基板の断面図である。It is sectional drawing of the flexible substrate which connects an electrolytic capacitor and a mounting substrate in the power converter device of FIG. フレキシブル基板を実装基板に接続する構造の他の例の説明図である。It is explanatory drawing of the other example of the structure which connects a flexible substrate to a mounting substrate. 電解コンデンサをフレキシブル基板に接続する場合の固定構造の説明図である。It is explanatory drawing of the fixing structure in the case of connecting an electrolytic capacitor to a flexible substrate. 電解コンデンサと実装基板を接続するツイスト線の説明図である。It is explanatory drawing of the twist line which connects an electrolytic capacitor and a mounting substrate. 電解コンデンサと実装基板を接続する同軸線の断面図である。It is sectional drawing of the coaxial line which connects an electrolytic capacitor and a mounting substrate. ツイスト線又は同軸線と実装基板の接続構造の説明図である。It is explanatory drawing of the connection structure of a twist line or a coaxial line, and a mounting board.

以下、本発明の電力変換装置一体型電動機の一実施形態について、図面を引用して説明する。この実施形態の電力変換装置一体型電動機の縦断面を示す図1では、図の左側に電力変換装置1が、図の右側に電動機2が配置されており、それらは一連に連結されている。このうち、電力変換装置1は電力変換装置側筐体3に収納され、電動機2は電動機側筐体4に収納され、電力変換装置側筐体3と電動機側筐体4とは筐体連結部材兼蓋部材5を介して連結されている。これらの筐体3、4や蓋部材5は、凡そ円筒形であり、熱伝導性に優れた金属材料、例えばアルミダイキャストで形成されている。   Hereinafter, an embodiment of an electric motor integrated with a power converter according to the present invention will be described with reference to the drawings. In FIG. 1 which shows the longitudinal cross-section of the electric power converter integrated motor of this embodiment, the electric power converter 1 is arrange | positioned at the left side of the figure, and the electric motor 2 is arrange | positioned at the right side of the figure, and they are connected in series. Among these, the power conversion device 1 is housed in the power conversion device side housing 3, the motor 2 is housed in the motor side housing 4, and the power conversion device side housing 3 and the motor side housing 4 are housing connection members. It is connected via the cum lid member 5. The casings 3 and 4 and the lid member 5 are approximately cylindrical and are formed of a metal material having excellent thermal conductivity, for example, aluminum die casting.

この電力変換装置一体型電動機では、電動機2の回転軸6が図の左右方向に向けて配置されている。電動機側筐体4は、円板状の底板部4aが図1の右方に配置される有底円筒体である。また、筐体連結部材兼蓋部材5は、電動機側筐体4と同じ外径の円筒体であり、その軸方向中央部には蓋部5aが形成されている。電動機側筐体4は、図1の左方端部の開口部が筐体連結部材兼蓋部材5の蓋部5aで覆われ、これにより電動機側筐体4が密閉されている。回転軸6は、電動機側筐体4の底板部4aの中央部及び筐体連結部材兼蓋部材5の蓋部5aの中央部に圧入された軸受7で回転自在に支持されている。この回転軸6は、図1の右方端部、即ち軸方向一端部が電動機側筐体4の底板部4aを貫通して外部に突出しており、ここから出力の取出しが行われる。   In this electric power converter integrated motor, the rotating shaft 6 of the electric motor 2 is arranged in the left-right direction in the figure. The motor-side housing 4 is a bottomed cylindrical body in which a disk-like bottom plate portion 4a is disposed on the right side of FIG. Further, the casing connecting member / lid member 5 is a cylindrical body having the same outer diameter as that of the motor-side casing 4, and a lid portion 5 a is formed in the center portion in the axial direction. The opening at the left end of FIG. 1 is covered with the lid 5a of the casing connecting member / lid member 5 so that the motor-side casing 4 is sealed. The rotating shaft 6 is rotatably supported by a bearing 7 press-fitted into the central portion of the bottom plate portion 4 a of the motor-side housing 4 and the central portion of the lid portion 5 a of the housing connecting member / lid member 5. The rotary shaft 6 has a right end in FIG. 1, that is, one end in the axial direction, protrudes outside through the bottom plate portion 4a of the motor-side casing 4, and outputs are taken out therefrom.

電動機側筐体4と筐体連結部材兼蓋部材5とで囲まれた電動機側内部空間では、回転軸6の外周にロータコア8が一体的に形成され、ロータコア8の径方向外側には、電動機側筐体4に固定されるステータコア9が形成されている。これにより、電動機側筐体4内には電動機2が構成され、例えばステータコア9に電力を供給することで回転軸6が回転される。また、例えばステータコア9への供給電力を調整することにより、回転軸6の回転状態を調整することが可能となる。   In the motor-side internal space surrounded by the motor-side casing 4 and the casing connecting member / lid member 5, the rotor core 8 is integrally formed on the outer periphery of the rotating shaft 6. A stator core 9 fixed to the side housing 4 is formed. Thereby, the electric motor 2 is comprised in the electric motor side housing | casing 4, and the rotating shaft 6 is rotated by supplying electric power to the stator core 9, for example. Further, for example, by adjusting the power supplied to the stator core 9, the rotation state of the rotating shaft 6 can be adjusted.

一方、電力変換装置側筐体3は、円板状の底板部3aが図1の左方に配置される有底円筒体であり、図示右方端部の開口部が筐体連結部材兼蓋部材5の蓋部5aで覆われている。更に、電力変換装置側筐体3の周壁部3bと筐体連結部材兼蓋部材5の周壁部5bの間にはOリング10が介在され、これにより電力変換装置側筐体3が密閉されている。この電力変換装置側筐体3と筐体連結部材兼蓋部材5とで囲まれた電力変換装置側内部空間には、電力変換装置1としての中核をなすインバータモジュール11が収納されている。このインバータモジュール11は、例えば交流電圧を直流電圧に変換する電力変換部や、電動機の回転軸の回転状態を制御する制御部を備えている。制御部は、例えば電力変換部で変換された直流電圧のパルス幅変調などによってステータコア9に供給する電力を調整することで、電動機2の回転軸6の回転状態を制御する。なお、電力変換装置側筐体3の底板部3aの内周壁には、筐体内側に突出する放熱部3cが設けられている。この放熱部3cは、熱伝導性のよい、例えば金属製の個別部材からなり、後述するパワー半導体装置に接触して、その熱を電力変換装置側筐体3に伝熱して逃がすためのものである。   On the other hand, the power conversion device side housing 3 is a bottomed cylindrical body in which a disc-shaped bottom plate portion 3a is disposed on the left side of FIG. 1, and an opening at the right end in the drawing is a housing connecting member / lid. The cover 5 is covered with a member 5. Further, an O-ring 10 is interposed between the peripheral wall portion 3b of the power conversion device side housing 3 and the peripheral wall portion 5b of the housing connecting member / lid member 5, whereby the power conversion device side housing 3 is sealed. Yes. An inverter module 11 that forms the core of the power conversion device 1 is housed in the internal space on the power conversion device side surrounded by the power conversion device side housing 3 and the housing connecting member / lid member 5. The inverter module 11 includes, for example, a power conversion unit that converts AC voltage into DC voltage, and a control unit that controls the rotation state of the rotating shaft of the electric motor. The control unit controls the rotation state of the rotating shaft 6 of the electric motor 2 by adjusting the power supplied to the stator core 9 by, for example, pulse width modulation of the DC voltage converted by the power conversion unit. Note that a heat radiating portion 3c protruding inside the housing is provided on the inner peripheral wall of the bottom plate portion 3a of the power conversion device side housing 3. The heat radiating portion 3c is made of an individual member made of, for example, metal having good thermal conductivity, and contacts the power semiconductor device to be described later to transfer the heat to the power conversion device side housing 3 to release it. is there.

このインバータモジュール11は、実装基板12上に形成されている。この実装基板12は、例えばガラスエポキシなどの樹脂からなる基板の表面に配線パターンが形成されたものである。この実装基板12は、電力変換装置側筐体3の内部に形成されている基板固定部13にビスなどの固定具14を介して固定されている。この実装基板12には、種々の電子部品が実装されているが、それらの電子部品の中には、電力変換部に必要な図示しないダイオード整流装置や、制御部に必要なパワー半導体装置16なども含まれている。例えば電子部品の損失などによって発生する熱は、電力変換装置側筐体3の内部空間から電力変換装置側筐体3自体に伝熱される。電力変換装置側筐体3は外部の空気に触れているので、電力変換装置側筐体3は電子部品の冷却体となる。なお、実装基板12は、表裏両面に配線パターンを形成するようにしても良い。また、2以上の実装基板12を組合せて用いることもできる。   The inverter module 11 is formed on the mounting substrate 12. The mounting substrate 12 is obtained by forming a wiring pattern on the surface of a substrate made of a resin such as glass epoxy. The mounting substrate 12 is fixed to a substrate fixing portion 13 formed inside the power conversion device side housing 3 via a fixing tool 14 such as a screw. Various electronic components are mounted on the mounting substrate 12. Among these electronic components, a diode rectifier (not shown) necessary for the power conversion unit, a power semiconductor device 16 necessary for the control unit, and the like are included. Is also included. For example, heat generated due to loss of electronic components is transferred from the internal space of the power converter side housing 3 to the power converter side housing 3 itself. Since the power conversion device side housing 3 is in contact with outside air, the power conversion device side housing 3 serves as a cooling body for electronic components. The mounting substrate 12 may be formed with wiring patterns on both the front and back surfaces. Also, two or more mounting boards 12 can be used in combination.

ダイオード整流装置は、例えば三相交流電圧を整流する三相全波整流器であり、周知のように、交流電圧を凡そ直流電圧に変換することができる。しかしながら、このダイオード整流装置の出力電圧には、未だ脈動成分が残存しており、この脈動成分を直流平滑用の電解コンデンサ17で平滑化してパワー半導体装置16に供給する。図2に示す電解コンデンサ17及びパワー半導体装置16の回路図では、ダイオード整流装置の出力として得られるプラス極とマイナス極の間に直流平滑用の電解コンデンサ17を接続すると共に、並列接続されたトランジスタ(Insulated Gate Bipolar Transistor:IGBT)TrとダイオードDの組をパワー半導体15として2組一対で直列に接続し、それらのパワー半導体15の対を3対、電解コンデンサ17と並列に接続し、各対におけるパワー半導体15同士の接続部分から三相モータで構成される電動機2の電力を出力する。各パワー半導体15は、例えばパルス幅変調によって電動機2への電力を調整することで、電動機2の回転状態を制御することが可能となる。なお、周知のように、パワー半導体15は扱う電力が大きく、発熱量も大きい。このパワー半導体15を収納したパワー半導体装置16には、前述した放熱部3cが接触しているので、パワー半導体装置16の熱は放熱部3cを介して電力変換装置側筐体3の底板部3aに伝達されて逃がされ、パワー半導体装置16、ひいてはパワー半導体15が冷却される。また、前述のダイオード整流装置も発熱量が大きいので、こちらも図示しない放熱部を介してダイオード整流装置の熱が電力変換装置側筐体3に伝達されて冷却されるようにすることが望ましい。   The diode rectifier is, for example, a three-phase full-wave rectifier that rectifies a three-phase AC voltage, and can convert the AC voltage into a DC voltage as is well known. However, a pulsating component still remains in the output voltage of the diode rectifier, and this pulsating component is smoothed by the DC smoothing electrolytic capacitor 17 and supplied to the power semiconductor device 16. In the circuit diagram of the electrolytic capacitor 17 and the power semiconductor device 16 shown in FIG. 2, the DC smoothing electrolytic capacitor 17 is connected between the positive pole and the negative pole obtained as the output of the diode rectifier, and the transistors connected in parallel are connected. (Insulated Gate Bipolar Transistor: IGBT) A pair of Tr and a diode D is connected in series as a pair of power semiconductors 15 and three pairs of these power semiconductors 15 are connected in parallel with an electrolytic capacitor 17, and each pair The electric power of the electric motor 2 composed of a three-phase motor is output from the connection portion between the power semiconductors 15 in FIG. Each power semiconductor 15 can control the rotation state of the electric motor 2 by adjusting the electric power to the electric motor 2 by pulse width modulation, for example. As is well known, the power semiconductor 15 handles a large amount of power and generates a large amount of heat. Since the power semiconductor device 16 in which the power semiconductor 15 is housed is in contact with the heat radiating portion 3c described above, the heat of the power semiconductor device 16 is transmitted through the heat radiating portion 3c to the bottom plate portion 3a of the power conversion device side body 3. The power semiconductor device 16 and thus the power semiconductor 15 are cooled. Further, since the above diode rectifier also generates a large amount of heat, it is desirable that the heat of the diode rectifier is transmitted to the power converter side housing 3 via a heat radiating unit (not shown) to be cooled.

この実施形態の電解コンデンサ17は、図1に示すように、電力変換装置側筐体3の底板部3aに固定されている。電解コンデンサ17は、周知のように円柱型であり、その長手方向(軸線方向)が電力変換装置側筐体3の底板部3aの内周壁と平行になるように配置され、その状態で底板部3aに固定されている。このように電解コンデンサ17を横向きにして固定することにより、電解コンデンサ17を堅固に固定することができ、対振動性を向上することができる。この電解コンデンサ17の固定構造を示す図3では、電力変換装置側筐体3の底板部3aの内周壁に電解コンデンサ17の長さよりも長い大きさの方形の凹部18が形成され、この凹部18内に収納するようにして電解コンデンサ17が固定されている。冷却体である電力変換装置側筐体3と電解コンデンサ17の間には、放熱性を有する絶縁性のシート部材19が介在され、電解コンデンサ17にバンド状の固定部材20をあてがい、その固定部材20をビスなどの固定具21で電力変換装置側筐体3の底板部3aの内周壁に固定し、これにより電解コンデンサ17を電力変換装置側筐体3に固定している。なお、電力変換装置側筐体3の底板部3aの外周壁には、放熱用のフィン22が多数形成されている。   As shown in FIG. 1, the electrolytic capacitor 17 of this embodiment is fixed to the bottom plate portion 3 a of the power conversion device side housing 3. As is well known, the electrolytic capacitor 17 has a cylindrical shape, and is arranged so that its longitudinal direction (axial direction) is parallel to the inner peripheral wall of the bottom plate portion 3a of the power conversion device side body 3, and in this state, the bottom plate portion It is fixed to 3a. Thus, by fixing the electrolytic capacitor 17 sideways, the electrolytic capacitor 17 can be firmly fixed, and the vibration resistance can be improved. In FIG. 3 showing the fixing structure of the electrolytic capacitor 17, a rectangular recess 18 having a size longer than the length of the electrolytic capacitor 17 is formed on the inner peripheral wall of the bottom plate portion 3 a of the power conversion device side body 3. The electrolytic capacitor 17 is fixed so as to be housed inside. An insulating sheet member 19 having heat dissipation is interposed between the power converter side housing 3 serving as a cooling body and the electrolytic capacitor 17, and a band-shaped fixing member 20 is applied to the electrolytic capacitor 17. 20 is fixed to the inner peripheral wall of the bottom plate portion 3a of the power conversion device side housing 3 by a fixing tool 21 such as a screw, and thereby the electrolytic capacitor 17 is fixed to the power conversion device side housing 3. Note that a large number of heat radiation fins 22 are formed on the outer peripheral wall of the bottom plate portion 3 a of the power conversion device side housing 3.

電解コンデンサ17は、周囲温度によって寿命が決定される部品であり、製品の信頼性に関するボトルネックとなりやすい。電解コンデンサ17の寿命はアレニウスの法則に従うとされ、温度が10℃高くなると寿命が半分になるとされている。従って、温度の高いパワー半導体装置16の直近に配置できないなどの実装制約が大きい部品であり、実装基板12上の部品レイアウトを大きく制約する原因となる。   The electrolytic capacitor 17 is a component whose life is determined by the ambient temperature, and tends to be a bottleneck related to product reliability. The lifetime of the electrolytic capacitor 17 is assumed to follow Arrhenius' law, and the lifetime is halved when the temperature increases by 10 ° C. Therefore, it is a component with a large mounting constraint such as being unable to be placed in the immediate vicinity of the power semiconductor device 16 having a high temperature, which causes a significant limitation on the component layout on the mounting substrate 12.

また、一般的な電機機器では、筐体(FG:Frame Grand)と強電部(三相入力や三相出力)の間で1000Vを超える耐圧試験が型式試験として課される場合が多い。電力変換装置側筐体3と直流平滑用の電解コンデンサ17の間に絶縁性のシート部材がないと、耐圧試験中は電力変換装置側筐体3と電解コンデンサ17の端子との間に電圧が印加されることになる。通常販売されている電解コンデンサ17では、筐体−端子間の耐圧値がカタログに明記されていないことから、絶縁性のシート部材19で端子を保護する必要がある。また、前述のように直流平滑用の電解コンデンサ17は自己発熱するので、その発熱を電力変換装置側筐体3に逃がす必要があり、そのため、放熱性のよい、即ち熱伝導率の高い材料でシート部材19を構成する必要がある。なお、ここでも、電解コンデンサ17を寝かせてシート部材19に接触させることにより、電解コンデンサ17の熱をシート部材19から電力変換装置側筐体3に効率よく伝達することができる。   Further, in general electrical equipment, a withstand voltage test exceeding 1000 V is often imposed as a type test between a casing (FG: Frame Grand) and a high voltage section (three-phase input or three-phase output). If there is no insulating sheet member between the power converter side housing 3 and the DC smoothing electrolytic capacitor 17, a voltage is applied between the power converter side housing 3 and the terminal of the electrolytic capacitor 17 during the withstand voltage test. Will be applied. In the electrolytic capacitor 17 that is normally sold, since the withstand voltage value between the housing and the terminal is not specified in the catalog, it is necessary to protect the terminal with an insulating sheet member 19. Further, as described above, the DC smoothing electrolytic capacitor 17 self-heats, so it is necessary to release the heat generation to the power converter side housing 3, and therefore, it is made of a material having good heat dissipation, that is, high thermal conductivity. The sheet member 19 needs to be configured. In this case, too, the electrolytic capacitor 17 can be laid and brought into contact with the sheet member 19 to efficiently transfer the heat of the electrolytic capacitor 17 from the sheet member 19 to the power conversion device side housing 3.

このように熱伝導率が高く且つ絶縁性に優れたシート部材19の材料としては、例えばシリコーンが挙げられる。なお、シリコーン製のシート部材19を使用する場合、シリコーンシートそのものに接着性があるので、電解コンデンサ17に対する対振動の要求が小さい場合は、シリコーン製のシート部材19だけで直流平滑用の電解コンデンサ17を固定してもよい。また、直流平滑用の電解コンデンサ17の固定のために接着剤を使用してもよい。接着剤の材料としては、エポキシ樹脂やシリコーン樹脂などが挙げられる。また、電解コンデンサ17を電力変換装置側筐体3に固定するための固定部材20としては、前述の耐圧試験を考慮して、絶縁性のある樹脂製が望ましい。導電性を有する材料で固定部材20を構成する場合には、電解コンデンサ17と固定部材20の間に絶縁シートを介在する方法や、固定部材20を電力変換装置側筐体3から絶縁する絶縁スペーサを固定部材20と電力変換装置側筐体3の間に介在する方法がある。   As a material of the sheet member 19 having a high thermal conductivity and excellent insulating properties, for example, silicone can be used. When the silicone sheet member 19 is used, the silicone sheet itself has adhesiveness. Therefore, when the requirement for vibration against the electrolytic capacitor 17 is small, only the silicone sheet member 19 is used for the DC smoothing electrolytic capacitor. 17 may be fixed. An adhesive may be used for fixing the electrolytic capacitor 17 for direct current smoothing. Examples of the adhesive material include an epoxy resin and a silicone resin. In addition, as the fixing member 20 for fixing the electrolytic capacitor 17 to the power conversion device side housing 3, it is desirable to use an insulating resin in consideration of the above-described withstand voltage test. When the fixing member 20 is made of a conductive material, a method of interposing an insulating sheet between the electrolytic capacitor 17 and the fixing member 20, or an insulating spacer for insulating the fixing member 20 from the power conversion device side housing 3. Is interposed between the fixing member 20 and the power conversion device side housing 3.

また、この実施形態では、直流平滑用の円柱型の電解コンデンサ17のうち、長手方向の一方の端部に設けられている圧力弁17aと凹部18の間に圧力弁用スペース23が形成されている。電解コンデンサ17は、異常時に作動する圧力弁17aが、例えば長手方向の一方の端部に設けられている。この圧力弁17aを塞いでしまうと、異常時に圧力弁17aが作動しない可能性がある。そこで、この実施形態では、電解コンデンサ17の圧力弁17aと電解コンデンサ17を収納する凹部18の間に圧力弁用スペース23を形成し、異常時に圧力弁17aが正常に作動するようにしている。   Further, in this embodiment, a pressure valve space 23 is formed between the pressure valve 17 a provided at one end in the longitudinal direction of the cylindrical electrolytic capacitor 17 for DC smoothing and the recess 18. Yes. The electrolytic capacitor 17 is provided with a pressure valve 17a that operates in the event of an abnormality, for example, at one end in the longitudinal direction. If the pressure valve 17a is blocked, there is a possibility that the pressure valve 17a does not operate during an abnormality. Therefore, in this embodiment, a pressure valve space 23 is formed between the pressure valve 17a of the electrolytic capacitor 17 and the recess 18 in which the electrolytic capacitor 17 is accommodated, so that the pressure valve 17a operates normally when an abnormality occurs.

次に、電解コンデンサ17と実装基板12との接続構造について説明する。高電圧、大電流をサブマイクロ秒でスイッチングするパワー半導体装置16を用いた電力変換装置1では、スイッチング時に発生するサージ電圧を抑制する目的や、導線から放射されるノイズを抑制する目的、或いは電圧を安定化する目的のために、パワー半導体装置16と直流平滑用の電解コンデンサ17の間を可能な限り低インダクタンス化する必要がある。そこで、プラス極とマイナス極が互いに沿うように配置される配線構造でインダクタンスを最小化することが望ましい。   Next, a connection structure between the electrolytic capacitor 17 and the mounting substrate 12 will be described. In the power conversion device 1 using the power semiconductor device 16 that switches a high voltage and a large current in submicroseconds, the purpose is to suppress a surge voltage generated at the time of switching, the purpose to suppress noise radiated from the conducting wire, or the voltage Therefore, it is necessary to reduce the inductance between the power semiconductor device 16 and the DC smoothing electrolytic capacitor 17 as much as possible. Therefore, it is desirable to minimize the inductance with a wiring structure in which the positive pole and the negative pole are arranged along each other.

図4は、図1の電力変換装置一体型電動機における電解コンデンサ−実装基板接続構造に用いられたフレキシブル基板24の断面図である。このフレキシブル基板24は、絶縁層24aを介してプラス極24bとマイナス極24cが互いに沿うように配置されており、これにより放射されるノイズを最小化することができる。このフレキシブル基板24を用いた電解コンデンサ−実装基板接続構造では、図1に示すように、フレキシブル基板24に電解コンデンサ17をはんだ付けなどによって接続し、そのフレキシブル基板24の端部を中継基板25に接続し、この中継基板25に取付けられたコネクタ26と実装基板12に取付けられたコネクタ26とを接続する。また、図5に示すように、中継基板25にプラス極パターン27及びマイナス極パターン28を形成すると共に、実装基板12にも同様のプラス極パターン27及びマイナス極パターン28を形成し、プラス極パターン27同士をプラス極接続ねじ29で固定すると共にマイナス極パターン28同士をマイナス極接続ねじ30で固定する方法もある。また、電解コンデンサ17に対振動性が求められる場合は、図6に示すように、フレキシブル基板24と電解コンデンサ17の間を絶縁性の樹脂31でポッティングすることで、対振動性を高めることもできる。   4 is a cross-sectional view of the flexible substrate 24 used in the electrolytic capacitor-mounted substrate connection structure in the electric power converter integrated motor shown in FIG. The flexible substrate 24 is arranged so that the positive pole 24b and the negative pole 24c are along each other via the insulating layer 24a, thereby minimizing radiated noise. In the electrolytic capacitor-mounting substrate connection structure using the flexible substrate 24, as shown in FIG. 1, the electrolytic capacitor 17 is connected to the flexible substrate 24 by soldering or the like, and the end of the flexible substrate 24 is connected to the relay substrate 25. The connector 26 attached to the relay board 25 and the connector 26 attached to the mounting board 12 are connected. Further, as shown in FIG. 5, a positive electrode pattern 27 and a negative electrode pattern 28 are formed on the relay substrate 25, and a similar positive electrode pattern 27 and a negative electrode pattern 28 are formed on the mounting substrate 12. There is also a method in which the negative electrode patterns 28 are fixed to each other with the negative electrode connection screw 30 while the 27 are fixed to each other with the positive electrode connection screw 29. When the electrolytic capacitor 17 is required to have vibration resistance, as shown in FIG. 6, the vibration resistance can be improved by potting between the flexible substrate 24 and the electrolytic capacitor 17 with an insulating resin 31. it can.

また、放射されるノイズを最小化する導線構造としては、例えば図7に示すツイスト線32や図8に示す同軸線33も挙げられる。図7に示すツイスト線32は、周知のように、プラス極が絶縁被覆されたプラス極線32aと、マイナス極が絶縁被覆されたマイナス極線32bを撚り合わせたものであり、隣り合う撚り間で磁束の向きが逆向きとなるため、ノイズを外部に出しにくい。また、図8に示す同軸線33は、周知のように、プラス極を構成する心線33aの外周に絶縁層33bを形成し、その外周に編組線33cで構成されるマイナス極を配置したものであり、編組線33cで構成されるマイナス極がシールドとなり、ノイズを外部に出しにくい。そして、これらツイスト線32や同軸線33を用いる場合の電解コンデンサ−実装基板接続構造としては、例えば図9に示すように、ツイスト線32や同軸線33の端部にコネクタ26を接続し、このコネクタ26と実装基板12に取付けられたコネクタ26とを接続する方法がある。   Further, examples of the conductive wire structure that minimizes radiated noise include the twisted wire 32 shown in FIG. 7 and the coaxial wire 33 shown in FIG. As is well known, the twisted wire 32 shown in FIG. 7 is formed by twisting a positive electrode wire 32a with a positive electrode insulated and a negative electrode wire 32b with a negative electrode covered with an insulation. Since the direction of magnetic flux is reversed, it is difficult to emit noise to the outside. Further, as is well known, the coaxial wire 33 shown in FIG. 8 has an insulating layer 33b formed on the outer periphery of the core wire 33a constituting the positive pole, and a negative pole constituted by the braided wire 33c arranged on the outer periphery thereof. Therefore, the negative pole formed by the braided wire 33c serves as a shield, making it difficult to emit noise to the outside. Then, as an electrolytic capacitor-mounting board connection structure in the case of using these twisted wires 32 and coaxial wires 33, for example, as shown in FIG. 9, a connector 26 is connected to the ends of the twisted wires 32 and coaxial wires 33. There is a method of connecting the connector 26 and the connector 26 attached to the mounting board 12.

以上のように、この実施形態の電力変換装置一体型電動機では、直流平滑用の電解コンデンサ17を、電力変換装置側筐体3に固定した状態でパワー半導体装置16の実装基板12に接続することにより、電解コンデンサ17を効率よく冷却することができると共に、電力変換装置1のレイアウトに対する自由度を大きくすることができる。
また、電解コンデンサ17の長手方向を電力変換装置側筐体3の内周壁と平行な方向に配置したことにより、電解コンデンサ17を堅固に固定して対振動性を向上させることができると共に、電解コンデンサ17の発熱を効率よく電力変換装置側筐体3に伝達して電解コンデンサ17を効率よく冷却することができる。
As described above, in the electric power converter integrated motor of this embodiment, the DC smoothing electrolytic capacitor 17 is connected to the mounting substrate 12 of the power semiconductor device 16 in a state of being fixed to the electric power converter side housing 3. Thus, the electrolytic capacitor 17 can be efficiently cooled, and the degree of freedom with respect to the layout of the power converter 1 can be increased.
Further, by arranging the longitudinal direction of the electrolytic capacitor 17 in a direction parallel to the inner peripheral wall of the power converter side housing 3, the electrolytic capacitor 17 can be firmly fixed to improve the vibration resistance, and the electrolytic capacitor 17 can be improved. The heat generated by the capacitor 17 can be efficiently transmitted to the power converter side housing 3 to cool the electrolytic capacitor 17 efficiently.

また、ツイスト線32又は同軸線33若しくは絶縁層24aを介してプラス極24b及びマイナス極24cが平行に配置されたフレキシブル基板24の何れか1つによって電解コンデンサ17と実装基板12とを接続したことにより、両者間の接続構造を低インダクタンス化すると共に、ノイズの発生を抑制することができる。
また、電力変換装置側筐体3の内周壁に形成された凹部18内に電解コンデンサ17を収納固定することにより、レイアウトの自由度をより一層大きくすることができる。
Further, the electrolytic capacitor 17 and the mounting substrate 12 are connected by any one of the flexible substrate 24 in which the positive electrode 24b and the negative electrode 24c are arranged in parallel via the twisted wire 32, the coaxial wire 33 or the insulating layer 24a. Thus, it is possible to reduce the inductance of the connection structure between them and to suppress the generation of noise.
Further, by storing and fixing the electrolytic capacitor 17 in the recess 18 formed on the inner peripheral wall of the power conversion device-side housing 3, the degree of freedom in layout can be further increased.

また、電解コンデンサ17の圧力弁17aを開放する圧力弁用スペース23を凹部18に形成したことにより、異常時に電解コンデンサ17の圧力弁17aが正常に作動する。
また、電解コンデンサ17と電力変換装置側筐体3との間に、放熱性を有する絶縁性のシート部材19を介在したことにより、電解コンデンサ17を効率よく放熱することができると共に、耐圧試験時に電解コンデンサ17を絶縁することができる。
In addition, since the pressure valve space 23 for opening the pressure valve 17a of the electrolytic capacitor 17 is formed in the concave portion 18, the pressure valve 17a of the electrolytic capacitor 17 operates normally at the time of abnormality.
In addition, since the insulating sheet member 19 having heat dissipation is interposed between the electrolytic capacitor 17 and the power converter side housing 3, the electrolytic capacitor 17 can be efficiently radiated and at the time of a withstand voltage test. The electrolytic capacitor 17 can be insulated.

また、パワー半導体15が収納されたパワー半導体装置16と接触して電力変換装置筐体3にパワー半導体装置16の熱を伝達して逃がすための放熱部3cを電動力変換装置側筐体3の内周壁に設けたことにより、パワー半導体装置16、ひいてはパワー半導体15を効率よく冷却することができる。
なお、先の実施形態では、電力変換装置側筐体3の底板部3aの内周壁に個別の放熱部3cを取付けてパワー半導体装置16の熱が電力変換装置側筐体3に伝達されて逃がされる構成としたが、例えば電力変換装置側筐体3の底板部3aを筐体内側に窪ませて放熱部3cを構成するようにしてもよい。
In addition, a heat radiating portion 3c for contacting the power semiconductor device 16 in which the power semiconductor 15 is accommodated and transferring the heat of the power semiconductor device 16 to the power conversion device casing 3 to release the heat is provided on the electric power conversion device side casing 3. By providing it on the inner peripheral wall, the power semiconductor device 16 and thus the power semiconductor 15 can be efficiently cooled.
In the previous embodiment, the individual heat dissipating part 3c is attached to the inner peripheral wall of the bottom plate part 3a of the power conversion device side housing 3, and the heat of the power semiconductor device 16 is transmitted to the power conversion device side housing 3 to escape. However, for example, the bottom plate portion 3a of the power conversion device side housing 3 may be recessed inside the housing to constitute the heat radiation portion 3c.

1 電力変換装置
2 電動機
3 電力変換装置側筐体
3c 放熱部
4 電動機側筐体
5 筐体連結部材兼蓋部材
6 回転軸
7 軸受
8 ロータコア
9 ステータコア
10 Oリング
11 インバータモジュール
12 実装基板
13 基板固定部
14 固定具
15 パワー半導体
16 パワー半導体装置
17 電解コンデンサ
18 凹部
19 シート部材
20 固定部材
21 固定具
22 フィン
23 圧力弁用スペース
24 フレキシブル基板
25 中継基板
26 コネクタ
27 プラス極パターン
28 マイナス極パターン
29 プラス極接続ねじ
30 マイナス極接続ねじ
31 樹脂
32 ツイスト線
33 同軸線
Tr トランジスタ
D ダイオード
DESCRIPTION OF SYMBOLS 1 Power conversion device 2 Electric motor 3 Power conversion device side housing | casing 3c Heat radiation part 4 Motor side housing | casing 5 Housing | casing connection member and cover member 6 Rotating shaft 7 Bearing 8 Rotor core 9 Stator core 10 O-ring 11 Inverter module 12 Mounting board 13 Board fixing Part 14 Fixing Tool 15 Power Semiconductor 16 Power Semiconductor Device 17 Electrolytic Capacitor 18 Recess 19 Sheet Member 20 Fixing Member 21 Fixing Tool 22 Fin 23 Pressure Valve Space 24 Flexible Board 25 Relay Board 26 Connector 27 Positive Electrode Pattern 28 Negative Electrode Pattern 29 Plus Pole connection screw 30 Negative pole connection screw 31 Resin 32 Twist wire 33 Coaxial wire Tr Transistor D Diode

Claims (7)

電動機と、パワー半導体によって前記電動機への電力を変換する電力変換装置とが一体的に配置された電力変換装置一体型電動機であって、
前記電動機を収納する電動機側筐体と、
前記電動機側筐体に接続され、前記電力変換装置を収納する電力変換装置側筐体と、
前記電力変換装置側筐体に固定された状態で前記パワー半導体の実装基板に接続される直流平滑用の電解コンデンサと
を備えたことを特徴とする電力変換装置一体型電動機。
A power converter integrated motor in which a motor and a power converter that converts power to the motor by a power semiconductor are integrally disposed,
An electric motor side housing for storing the electric motor;
A power converter side casing that is connected to the motor side casing and houses the power converter;
A power converter integrated motor, comprising: a DC smoothing electrolytic capacitor connected to the power semiconductor mounting substrate in a state of being fixed to the power converter side casing.
前記電解コンデンサの長手方向を前記電力変換装置側筐体の内周壁と平行な方向に配置したことを特徴とする請求項1に記載の電力変換装置一体型電動機。   2. The electric power converter integrated motor according to claim 1, wherein a longitudinal direction of the electrolytic capacitor is arranged in a direction parallel to an inner peripheral wall of the power converter side housing. ツイスト線又は同軸線若しくは絶縁層を介してプラス極及びマイナス極が平行に配置されたフレキシブル基板の何れか1つによって前記電解コンデンサと前記実装基板とを接続したことを特徴とする請求項1又は2に記載の電力変換装置一体型電動機。   The electrolytic capacitor and the mounting substrate are connected by any one of a flexible substrate in which a positive electrode and a negative electrode are arranged in parallel via a twisted wire, a coaxial wire, or an insulating layer. The electric power converter integrated motor according to 2. 前記電力変換装置側筐体の内周壁に前記電解コンデンサを収納固定するための凹部が形成されたことを特徴とする請求項1乃至3の何れか一項に記載の電力変換装置一体型電動機。   The electric power converter integrated motor according to any one of claims 1 to 3, wherein a recess for accommodating and fixing the electrolytic capacitor is formed on an inner peripheral wall of the power converter side housing. 前記凹部には、前記電解コンデンサの圧力弁を開放する圧力弁用スペースが設けられていることを特徴とする請求項4に記載の電力変換装置一体型電動機。   5. The electric power converter integrated motor according to claim 4, wherein a pressure valve space for opening the pressure valve of the electrolytic capacitor is provided in the recess. 前記電解コンデンサと前記電力変換装置側筐体との間に、放熱性を有する絶縁性のシート部材を介在したことを特徴とする請求項1乃至5の何れか一項に記載の電力変換装置一体型電動機。   6. The power converter according to claim 1, wherein an insulating sheet member having heat dissipation is interposed between the electrolytic capacitor and the power converter side housing. Body motor. 前記パワー半導体が収納されたパワー半導体装置と接触して前記電力変換装置筐体に前記パワー半導体装置の熱を伝達して逃がすための放熱部を前記電動力変換装置側筐体の内周壁に設けたことを特徴とする請求項1乃至6の何れか一項に記載の電力変換装置一体型電動機。
A heat dissipating part is provided on the inner peripheral wall of the electric power conversion device side housing to contact the power semiconductor device in which the power semiconductor is housed and to transfer the heat of the power semiconductor device to the power conversion device housing The electric motor integrated with an electric power converter according to any one of claims 1 to 6,
JP2014142104A 2014-07-10 2014-07-10 Power conversion device integrated motor Pending JP2016019401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142104A JP2016019401A (en) 2014-07-10 2014-07-10 Power conversion device integrated motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014142104A JP2016019401A (en) 2014-07-10 2014-07-10 Power conversion device integrated motor

Publications (1)

Publication Number Publication Date
JP2016019401A true JP2016019401A (en) 2016-02-01

Family

ID=55234261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142104A Pending JP2016019401A (en) 2014-07-10 2014-07-10 Power conversion device integrated motor

Country Status (1)

Country Link
JP (1) JP2016019401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182031A (en) * 2016-06-29 2016-10-13 株式会社デンソー Rotary electric machine for vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207746A (en) * 1992-01-24 1993-08-13 Toshiba Corp Inverter
JPH05292703A (en) * 1992-04-09 1993-11-05 Toyota Motor Corp Motor for electric vehicle
JP2002345262A (en) * 2001-05-15 2002-11-29 Matsushita Electric Ind Co Ltd Power circuit and motor controller therewith
JP2004350400A (en) * 2003-05-22 2004-12-09 Hitachi Ltd Power converter
JP2006280089A (en) * 2005-03-29 2006-10-12 Jtekt Corp Motor controller
JP2007215299A (en) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd Power converter and power converter integrated motor
JP2010112260A (en) * 2008-11-06 2010-05-20 Sanden Corp Electric compressor integral with inverter
JP2010263728A (en) * 2009-05-08 2010-11-18 Asmo Co Ltd Motor
JP2014020257A (en) * 2012-07-17 2014-02-03 Daikin Ind Ltd Refrigeration device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207746A (en) * 1992-01-24 1993-08-13 Toshiba Corp Inverter
JPH05292703A (en) * 1992-04-09 1993-11-05 Toyota Motor Corp Motor for electric vehicle
JP2002345262A (en) * 2001-05-15 2002-11-29 Matsushita Electric Ind Co Ltd Power circuit and motor controller therewith
JP2004350400A (en) * 2003-05-22 2004-12-09 Hitachi Ltd Power converter
JP2006280089A (en) * 2005-03-29 2006-10-12 Jtekt Corp Motor controller
JP2007215299A (en) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd Power converter and power converter integrated motor
JP2010112260A (en) * 2008-11-06 2010-05-20 Sanden Corp Electric compressor integral with inverter
JP2010263728A (en) * 2009-05-08 2010-11-18 Asmo Co Ltd Motor
JP2014020257A (en) * 2012-07-17 2014-02-03 Daikin Ind Ltd Refrigeration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182031A (en) * 2016-06-29 2016-10-13 株式会社デンソー Rotary electric machine for vehicle

Similar Documents

Publication Publication Date Title
JP4361486B2 (en) Device structure for mounting electric power components and control electronic components for electric motors
JP4054137B2 (en) Power semiconductor element power supply and heat dissipation device
KR101748639B1 (en) Power conversion apparatus
US7848104B2 (en) Power module
JP6129286B1 (en) Electric power supply unit integrated rotating electric machine
US20180191220A1 (en) Electric compressor
US10204872B2 (en) Power module and power conversion apparatus having a warpage suppression portion
JP6361396B2 (en) Electronic control unit and rotating electric machine using the same
JP2020022357A (en) System including bus bar device and power converter housing, production method thereof, power converter for vehicle, and vehicle
JP6312093B2 (en) Rotating electric machine
JP2016042770A (en) Power supply unit integrated electric motor
JP6458131B2 (en) Air conditioner outdoor unit
JP2017017861A (en) Capacitor module
US11464141B2 (en) Power converter device for a vehicle, and vehicle
JP2017229124A (en) Dc brushless motor and ventilation blower
JP7069733B2 (en) Heat dissipation block and power converter
US20170317562A1 (en) Rotating electric machine integrated with controller
JP2016019401A (en) Power conversion device integrated motor
JP2006340555A (en) Motor system
EP3012958B1 (en) Power conversion device
US20230170765A1 (en) System and Method for Cooling Switching Devices in an Integrated Motor Drive
WO2017002693A1 (en) Electric compressor
CN201194373Y (en) Inversion power supply module for frequency conversion electricity generator
JP2016101071A (en) Semiconductor device
JP2017201867A (en) Control device integrated rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181016