[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016017729A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016017729A
JP2016017729A JP2014143239A JP2014143239A JP2016017729A JP 2016017729 A JP2016017729 A JP 2016017729A JP 2014143239 A JP2014143239 A JP 2014143239A JP 2014143239 A JP2014143239 A JP 2014143239A JP 2016017729 A JP2016017729 A JP 2016017729A
Authority
JP
Japan
Prior art keywords
pipe
connection pipe
refrigerant
air conditioner
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014143239A
Other languages
Japanese (ja)
Other versions
JP6351409B2 (en
Inventor
裕馬 影山
Yuma Kageyama
裕馬 影山
哲矢 小材
Tetsuya Kozai
哲矢 小材
雅裕 渡邉
Masahiro Watanabe
雅裕 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014143239A priority Critical patent/JP6351409B2/en
Publication of JP2016017729A publication Critical patent/JP2016017729A/en
Application granted granted Critical
Publication of JP6351409B2 publication Critical patent/JP6351409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of suppressing a discharge pressure of a compressor increasing remarkably even for short pipe construction.SOLUTION: In an air conditioner, an outdoor unit 10 which has an outdoor heat exchanger 13, a compressor 11 capable of controlling frequency and an accumulator 15 capable of storing a refrigerant and in which the refrigerant is injected beforehand, and an indoor unit 20 having an indoor heat exchanger 21 are connected by a connection pipe 30, and the air conditioner is formed so that the refrigerant circulates between the outdoor unit 10 and the indoor unit 20 via the connection pipe 30. The air conditioner 1 includes: connection pipe length determination means 201 for determining whether or not the connection pipe 30 is a short pipe; and frequency control means 202 for controlling so as to lower the frequency of the compressor 11, in the case where the connection pipe 30 is determined to be the short pipe by the connection pipe length determination means 201.SELECTED DRAWING: Figure 2

Description

本発明は、空気調和機に関する。さらに詳しくは、本発明は、室外機と室内機とを接続する接続配管の長さによって余剰冷媒が変化する空気調和機に関する。   The present invention relates to an air conditioner. More specifically, the present invention relates to an air conditioner in which surplus refrigerant changes depending on the length of a connection pipe that connects the outdoor unit and the indoor unit.

設置現場における空気調和機の施工を迅速に行うため、予測される最大配管長分の冷媒をあらかじめ室外機に貯留しておき、設置現場において室外機と室内機とを接続配管で接続した後、室外機に貯留されている冷媒を接続配管等の配管中に解放することで施工時の冷媒封入作業を不要化した空気調和機がある。   In order to quickly install the air conditioner at the installation site, store the refrigerant for the predicted maximum pipe length in the outdoor unit in advance, and connect the outdoor unit and the indoor unit with a connection pipe at the installation site. There is an air conditioner that eliminates refrigerant filling work during construction by releasing refrigerant stored in an outdoor unit into a pipe such as a connection pipe.

このような空気調和機では、実際に室外機と室内機とを接続する接続配管の長さが最大配管長よりも短い場合には余剰冷媒が発生するが、この余剰冷媒をタンクに貯留することにより配管内の冷媒量を適正な範囲に制御して冷凍サイクル運転を実現している(例えば、特許文献1参照)。   In such an air conditioner, surplus refrigerant is generated when the length of the connecting pipe that actually connects the outdoor unit and the indoor unit is shorter than the maximum pipe length, but this surplus refrigerant is stored in the tank. Thus, the refrigerant quantity in the pipe is controlled within an appropriate range to realize the refrigeration cycle operation (see, for example, Patent Document 1).

特開2000−292037号公報JP 2000-292037 A

しかしながら、近年、最大配管長の長尺化が求められ、あらかじめ封入される冷媒の量が多くなる傾向にある。その結果、接続配管の長さが設計範囲下限よりも短くなる施工(以下、「短配管施工」ともいう)においては、タンクに溜めきれない余剰冷媒により配管内が冷媒過多となり、始動時の圧縮機の著しい吐出圧力上昇により圧縮機保護装置が作動して緊急停止を引き起こすおそれがある。   However, in recent years, the maximum pipe length has been required to be increased, and the amount of refrigerant that is enclosed in advance tends to increase. As a result, in construction where the length of the connecting piping is shorter than the lower limit of the design range (hereinafter also referred to as “short piping construction”), the refrigerant in the piping becomes excessive due to excess refrigerant that cannot be stored in the tank, and compression at the start The compressor protection device may be activated due to a significant increase in discharge pressure of the machine, causing an emergency stop.

本発明は、以上のような事情に基づいてなされたものであり、その目的は、短配管施工であっても始動時に圧縮機の吐出圧力が著しく上昇することを抑制可能な空気調和機を提供することにある。   The present invention has been made based on the circumstances as described above, and an object thereof is to provide an air conditioner capable of suppressing a significant increase in the discharge pressure of the compressor at the start-up even in short piping construction. There is to do.

上記課題を解決するためになされた発明は、
室外熱交換器、周波数を制御可能な圧縮機、および冷媒を貯留可能なアキュムレータを有しあらかじめ冷媒が注入された室外機と、室内熱交換器を有する室内機とを接続配管で接続し、前記冷媒が前記接続配管を介して前記室外機と室内機との間を循環するように形成された空気調和機(以下、「チャージレス空気調和機」ともいう)において、前記接続配管が短配管であるか否かを判定する接続配管長判定手段と、前記接続配管長判定手段により前記接続配管が短配管であると判定された場合に、前記圧縮機の周波数を下げるように制御する周波数制御手段とを有することを特徴とする空気調和機である。
The invention made to solve the above problems is
An outdoor heat exchanger, a compressor capable of controlling the frequency, and an outdoor unit having an accumulator capable of storing the refrigerant and pre-injected with the refrigerant, and an indoor unit having the indoor heat exchanger connected by a connecting pipe, In an air conditioner (hereinafter also referred to as “chargeless air conditioner”) formed so that a refrigerant circulates between the outdoor unit and the indoor unit via the connection pipe, the connection pipe is a short pipe. A connection pipe length determination means for determining whether or not there is a frequency control means for controlling the frequency of the compressor to be lowered when the connection pipe length determination means determines that the connection pipe is a short pipe It is an air conditioner characterized by having.

なお、本明細書において、「短配管」とは、チャージレス空気調和機において、接続配管の長さが設計範囲下限よりも短い配管を意味する。   In the present specification, the “short pipe” means a pipe in which the length of the connection pipe is shorter than the lower limit of the design range in the chargeless air conditioner.

本発明は、短配管施工であっても、始動時に圧縮機の吐出圧力が著しく上昇することを防止可能な空気調和機を提供することができる。   The present invention can provide an air conditioner that can prevent the discharge pressure of the compressor from significantly increasing during start-up even in the case of short pipe construction.

本発明の空気調和機の構成を示す模式図である。It is a schematic diagram which shows the structure of the air conditioner of this invention. 本発明の空気調和機に係る接続配管長判定手段により短配管であるか否かの判定を行う方法の一例を示す概略図である。It is the schematic which shows an example of the method of determining whether it is a short piping by the connection piping length determination means which concerns on the air conditioner of this invention. 本発明の空気調和機に係る接続配管長判定手段により短配管であるか否かの判定を行う方法の他の例を示す概略図である。It is the schematic which shows the other example of the method of determining whether it is short piping by the connection piping length determination means which concerns on the air conditioner of this invention.

本発明の空気調和機は、室外熱交換器、周波数を制御可能な圧縮機、および冷媒を貯留可能なアキュムレータを有しあらかじめ冷媒が注入された室外機と、室内熱交換器を有する室内機とを接続配管で接続し、上記冷媒が上記接続配管を介して上記室外機と室内機との間を循環するように形成された空気調和機において、上記接続配管が短配管であるか否かを判定する接続配管長判定手段と、上記接続配管長判定手段により上記接続配管が短配管であると判定された場合に、上記圧縮機の周波数を下げるように制御する周波数制御手段とを有することを特徴とする。   The air conditioner of the present invention includes an outdoor heat exchanger, a compressor capable of controlling the frequency, an outdoor unit having an accumulator capable of storing the refrigerant and pre-injected with the refrigerant, and an indoor unit having the indoor heat exchanger. In the air conditioner formed so that the refrigerant circulates between the outdoor unit and the indoor unit through the connection pipe, whether or not the connection pipe is a short pipe. A connecting pipe length determining means for determining, and a frequency control means for controlling to reduce the frequency of the compressor when the connecting pipe length determining means determines that the connecting pipe is a short pipe. Features.

以下、本発明の空気調和機の一実施形態について図を参照して説明する。図1は、本発明の空気調和機の構成を示す模式図である。   Hereinafter, an embodiment of an air conditioner of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of the air conditioner of the present invention.

図1に示すように、本発明の空気調和機1は、室外機10と室内機20とを備え、これら室外機10および室内機20は、接続配管30で接続されている。   As shown in FIG. 1, the air conditioner 1 of the present invention includes an outdoor unit 10 and an indoor unit 20, and the outdoor unit 10 and the indoor unit 20 are connected by a connection pipe 30.

室外機10は、圧縮機11と、四方弁12と、室外熱交換器13と、室外膨張弁14と、アキュムレータ15とを備え、これらは室外冷媒配管16により接続されている。さらに、室外機10は、圧力センサ17および制御器18を備えている。   The outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an outdoor expansion valve 14, and an accumulator 15, which are connected by an outdoor refrigerant pipe 16. Further, the outdoor unit 10 includes a pressure sensor 17 and a controller 18.

圧縮機11は、周波数を制御可能であり、これにより圧縮能力を調整しながら低温低圧ガスの冷媒を高温高圧ガスに圧縮して吐出する。四方弁12は、冷媒の流れを切り替える弁である。室外熱交換器13は、屋外の空気と冷媒との間で熱交換を行う。室外膨張弁14は、暖房運転時に冷媒を減圧して低温にする。アキュムレータ15は、施工時に発生する余剰冷媒を貯留する。   The compressor 11 can control the frequency, and thereby compresses the refrigerant of the low-temperature and low-pressure gas into the high-temperature and high-pressure gas while adjusting the compression capacity, and discharges it. The four-way valve 12 is a valve that switches a refrigerant flow. The outdoor heat exchanger 13 performs heat exchange between outdoor air and the refrigerant. The outdoor expansion valve 14 depressurizes the refrigerant to lower the temperature during heating operation. The accumulator 15 stores surplus refrigerant generated during construction.

圧力センサ17は、圧縮機11の吐出側の冷媒の圧力(吐出圧力P)を測定する。制御器18は、マイコン181、記憶部182(例えばROMなど)および圧縮機保護部183を有する。   The pressure sensor 17 measures the pressure of the refrigerant on the discharge side of the compressor 11 (discharge pressure P). The controller 18 includes a microcomputer 181, a storage unit 182 (such as a ROM) and a compressor protection unit 183.

マイコン181は、リモートコントローラ(不図示)における設定および各センサにより検知された値に基づき各種データの演算を行い、空気調和機1の運転制御を行う。さらに、マイコン181は、接続配管長判定手段201および周波数制御手段202を有している。圧縮機保護部183は、圧力センサ17で測定した吐出圧力が運転適正圧力範囲の上限を超え、保護圧力に達すると圧縮機11を緊急停止させる。なお、運転適正圧力範囲は、圧縮機11が継続して安定的に動作可能な吐出圧力の範囲を意味する。   The microcomputer 181 calculates various data based on settings in a remote controller (not shown) and values detected by the sensors, and controls the operation of the air conditioner 1. Further, the microcomputer 181 includes a connection pipe length determination unit 201 and a frequency control unit 202. The compressor protection unit 183 causes the compressor 11 to stop urgently when the discharge pressure measured by the pressure sensor 17 exceeds the upper limit of the proper operating pressure range and reaches the protection pressure. The proper operating pressure range means a range of discharge pressure at which the compressor 11 can continuously operate stably.

室内機20は、室内熱交換器21と、室内膨張弁22とを備え、これらは室内冷媒配管23により接続されている。さらに、室内機20は、表示手段24を備えている。   The indoor unit 20 includes an indoor heat exchanger 21 and an indoor expansion valve 22, which are connected by an indoor refrigerant pipe 23. Furthermore, the indoor unit 20 includes a display unit 24.

室内熱交換器21は、室内の空気と冷媒との間で熱交換を行う。室内膨張弁22は、冷房運転時に冷媒を減圧して低温にする。   The indoor heat exchanger 21 performs heat exchange between the indoor air and the refrigerant. The indoor expansion valve 22 reduces the refrigerant pressure to a low temperature during the cooling operation.

表示手段24は、接続配管長判定手段201により接続配管30が短配管であると判定された場合に、上記判定の結果を表示する。表示手段24の表示方法としては、特に限定されないが、例えば、LEDを設けて点灯させる方法、ディスプレイを設けて短配管である旨を表示させる方法等が挙げられる。当該空気調和機1が表示手段24を備えていることで、接続配管30が短配管であるか否かを容易かつ確実に認識することができ、施工後におけるメンテナンス性を向上させることができる。   The display unit 24 displays the determination result when the connection pipe length determination unit 201 determines that the connection pipe 30 is a short pipe. The display method of the display means 24 is not particularly limited, and examples thereof include a method of lighting an LED and a method of displaying a short pipe by providing a display. By providing the air conditioner 1 with the display means 24, it is possible to easily and reliably recognize whether the connection pipe 30 is a short pipe, and to improve the maintainability after construction.

空気調和機1の施工の際、室外機10と室内機20とが接続配管30で接続され、冷媒が接続配管30を介して室外機10と室内機20との間を循環するように形成される。   When constructing the air conditioner 1, the outdoor unit 10 and the indoor unit 20 are connected by the connection pipe 30, and the refrigerant is formed to circulate between the outdoor unit 10 and the indoor unit 20 through the connection pipe 30. The

次に、空気調和機1の動作時の冷媒の流れについて説明する。図1中の実線の矢印は、冷房運転時の冷媒の流れ方向を示している。   Next, the flow of the refrigerant during the operation of the air conditioner 1 will be described. The solid arrows in FIG. 1 indicate the flow direction of the refrigerant during the cooling operation.

冷房運転において、四方弁12は、実線で示すように、圧縮機11の吐出側と室外熱交換器13とを連通させる。圧縮機11から吐出される高温高圧のガス冷媒は、四方弁12を通過し、室外熱交換器13側に流れる。室外熱交換器13に流入したガス冷媒は、図示していない室外ファンにより供給される外気と熱交換(放熱)して凝縮され、液冷媒となる。この液冷媒は、全開状態の室外膨張弁14および室外冷媒配管16を通過し、接続配管30を介して室内機20に流入する。室内機20に流入した液冷媒は、室内膨張弁22により減圧されて、低温低圧のガス液混合冷媒となる。この低温低圧のガス液混合媒は、室内熱交換器21に流入して、図示していない室内ファンにより供給される室内の空気と熱交換(吸熱)して蒸発し、ガス冷媒となる。この際、室内の空気は、ガス液混合冷媒中の一部の液冷媒の蒸発潜熱により冷却され、冷風が部屋内に送られる。その後、ガス液混合冷媒は、室内冷媒配管23を通過し、接続配管30を介して室外機10に戻される。室外機10に戻されたガス液混合冷媒は、四方弁12を通過し、アキュムレータ15にて冷媒中の液冷媒が分離され、ガス冷媒のみ圧縮機11に吸入されて再度圧縮機11で圧縮される。これにより一連の冷凍サイクルが形成される。   In the cooling operation, the four-way valve 12 causes the discharge side of the compressor 11 and the outdoor heat exchanger 13 to communicate with each other as indicated by a solid line. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 passes through the four-way valve 12 and flows to the outdoor heat exchanger 13 side. The gas refrigerant that has flowed into the outdoor heat exchanger 13 is condensed by exchanging heat (dissipating heat) with outside air supplied by an outdoor fan (not shown) to become a liquid refrigerant. The liquid refrigerant passes through the fully-expanded outdoor expansion valve 14 and the outdoor refrigerant pipe 16 and flows into the indoor unit 20 through the connection pipe 30. The liquid refrigerant flowing into the indoor unit 20 is decompressed by the indoor expansion valve 22 and becomes a low-temperature and low-pressure gas-liquid mixed refrigerant. This low-temperature and low-pressure gas-liquid mixed medium flows into the indoor heat exchanger 21 and evaporates by exchanging heat (absorbing heat) with indoor air supplied by an indoor fan (not shown) to become a gas refrigerant. At this time, the indoor air is cooled by the latent heat of vaporization of a part of the liquid refrigerant in the gas-liquid mixed refrigerant, and cool air is sent into the room. Thereafter, the gas-liquid mixed refrigerant passes through the indoor refrigerant pipe 23 and is returned to the outdoor unit 10 through the connection pipe 30. The gas-liquid mixed refrigerant returned to the outdoor unit 10 passes through the four-way valve 12, the liquid refrigerant in the refrigerant is separated by the accumulator 15, only the gas refrigerant is sucked into the compressor 11, and compressed again by the compressor 11. The This forms a series of refrigeration cycles.

一方、図1中の破線の矢印は、暖房運転時の冷媒の流れ方向を示している。なお、暖房運転と上述した冷房運転とは、四方弁12を操作することで切り替えることができる。   On the other hand, the dashed arrows in FIG. 1 indicate the flow direction of the refrigerant during the heating operation. The heating operation and the cooling operation described above can be switched by operating the four-way valve 12.

暖房運転において、四方弁12は、破線で示すように、圧縮機11の吐出側と室内熱交換器21とを連通させる。圧縮機11から吐出される高温高圧のガス冷媒は、四方弁12を通過し、室内熱交換器21側に流れる。室内熱交換器21に流入したガス冷媒は、図示していない室内ファンにより供給される空気と熱交換(放熱)して凝縮され、液冷媒となる。この際、室内の空気は、ガス液混合冷媒の凝縮潜熱により加温され、温風が部屋内に送られる。その後、液冷媒は、全開状態の室内膨張弁22および室内冷媒配管23を通過し、接続配管30を介して室外機10に流入する。室外機10に流入した液冷媒は、室外膨張弁14により減圧されて、低温低圧のガス液混合冷媒となる。この低温低圧のガス液混合媒は、室外熱交換器13に流入して、図示していない室外ファンにより供給される外気と熱交換(吸熱)して一部が蒸発する。その後、室外熱交換器13から流出したガス液混合冷媒は、四方弁12を通過し、アキュムレータ15にて冷媒中の液冷媒が分離され、ガス冷媒のみ圧縮機11に吸入されて再度圧縮機11で圧縮される。これにより一連の冷凍サイクルが形成される。   In the heating operation, the four-way valve 12 causes the discharge side of the compressor 11 and the indoor heat exchanger 21 to communicate with each other as indicated by a broken line. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 passes through the four-way valve 12 and flows to the indoor heat exchanger 21 side. The gas refrigerant flowing into the indoor heat exchanger 21 is condensed by exchanging heat (dissipating heat) with air supplied by an indoor fan (not shown) to become a liquid refrigerant. At this time, the indoor air is heated by the condensation latent heat of the gas-liquid mixed refrigerant, and the warm air is sent into the room. Thereafter, the liquid refrigerant passes through the indoor expansion valve 22 and the indoor refrigerant pipe 23 which are fully opened, and flows into the outdoor unit 10 through the connection pipe 30. The liquid refrigerant flowing into the outdoor unit 10 is decompressed by the outdoor expansion valve 14 and becomes a low-temperature and low-pressure gas-liquid mixed refrigerant. This low-temperature and low-pressure gas-liquid mixed medium flows into the outdoor heat exchanger 13, and partly evaporates due to heat exchange (heat absorption) with outside air supplied by an outdoor fan (not shown). Thereafter, the gas-liquid mixed refrigerant that has flowed out of the outdoor heat exchanger 13 passes through the four-way valve 12, and the liquid refrigerant in the refrigerant is separated by the accumulator 15, and only the gas refrigerant is sucked into the compressor 11 and again the compressor 11. It is compressed with. This forms a series of refrigeration cycles.

なお、接続配管30の長さが設計範囲内(短配管施工ではない場合)であれば、余剰冷媒の全てをアキュムレータ15に貯留し、配管内の冷媒量を適正な範囲に維持することができる。   If the length of the connecting pipe 30 is within the design range (in the case of short pipe construction), all of the excess refrigerant can be stored in the accumulator 15 and the refrigerant amount in the pipe can be maintained in an appropriate range. .

接続配管長判定手段201は、接続配管30が短配管であるか否かを判定する。接続配管長判定手段201としては特に限定されないが、圧縮機始動時から所定時間経過後の吐出圧力が設定値以上となった場合に短配管であると判定する手段(以下、「第1の判定手段」ともいう)および圧縮機始動後の吐出圧力の上昇速度が設定値以上となった場合に短配管であると判定する手段(以下、「第2の判定手段」ともいう)が好ましい。   The connection pipe length determination unit 201 determines whether or not the connection pipe 30 is a short pipe. The connection pipe length determination means 201 is not particularly limited, but is a means for determining that the pipe is a short pipe when the discharge pressure after a predetermined time has elapsed from the time of starting the compressor exceeds a set value (hereinafter referred to as “first determination”). And a means for determining that the pipe is a short pipe when the rate of increase in the discharge pressure after starting the compressor exceeds a set value (hereinafter also referred to as “second determination means”) is preferable.

図2および図3は、接続配管長判定手段により短配管であるか否かの判定を行う例を示す概略図であり、図2および図3は、それぞれ第1および第2の判定手段を用いた判定方法を示している。   2 and 3 are schematic diagrams showing an example in which it is determined whether or not the pipe is a short pipe by the connecting pipe length determining means. FIGS. 2 and 3 use the first and second determining means, respectively. Shows the judgment method.

第1の判定手段では、例えば図2に示すように、圧縮機始動時から所定時間(T)経過後の吐出圧力Pが設定値(Pa)以上となった場合に短配管であると判定する。ここで、Tは、吐出圧力Pが過渡状態にあるときの特定の時間を意味する。上記TおよびPaは、空気調和機1の運転条件(例えば、室内空調設定温度、室内設定風量、室外温度など、以下同じ)により適宜選択される。 In the first determination means, for example, as shown in FIG. 2, it is determined that the pipe is a short pipe when the discharge pressure P after a predetermined time (T 1 ) elapses from the time of starting the compressor becomes a set value (Pa) or more. To do. Here, T 1 means a specific time when the discharge pressure P is in a transient state. T 1 and Pa are appropriately selected according to the operating conditions of the air conditioner 1 (for example, indoor air conditioning set temperature, indoor set air volume, outdoor temperature, and so on).

例えば、接続配管30の長さが設計範囲内の場合、図2に一点鎖線で示すように、圧縮機11始動時からT経過後の吐出圧力PがPaよりも低くなるため、接続配管長判定手段201により接続配管30が短配管であると判定されない。一方、接続配管30が短配管の場合、図2に実線または破線で示すように、圧縮機11始動時からT経過後の吐出圧力P(P)がPa以上となり、接続配管長判定手段201により接続配管30が短配管であると判定される。 For example, if in the long design range of the connection pipe 30, as indicated by one-dot chain lines in FIG. 2, since the discharge pressure P after T 1 elapses from the compressor 11 during starting is lower than the Pa, connecting pipe length The determination unit 201 does not determine that the connection pipe 30 is a short pipe. On the other hand, when the connection pipe 30 is a short pipe, as shown by a solid line or a broken line in FIG. 2, the discharge pressure P (P 1 ) after T 1 has elapsed since the start of the compressor 11 becomes Pa or more, and the connection pipe length determination means 201 determines that the connection pipe 30 is a short pipe.

第2の判定手段では、圧縮機始動後の吐出圧力Pの上昇速度Psが設定値(Psa)以上となった場合に短配管であると判定する。具体的には、上昇速度Psは、下記式(1)で算出される速度または特定時間経過時の瞬間速度のいずれであってもよい。
Ps=(P−P)/(T−T)・・・(1)
上記式(1)中、TおよびTは、それぞれ吐出圧力が過渡状態における圧縮機11始動時からの経過時間を意味し、PおよびPは、それぞれTおよびTにおける吐出圧力Pを意味する。ただし、T≠Tである。上記T、TおよびPsaは、空気調和機1の運転条件により適宜選択される。
The second determination means determines that the pipe is a short pipe when the rate of increase Ps of the discharge pressure P after the compressor starts becomes equal to or higher than a set value (Psa). Specifically, the rising speed Ps may be either the speed calculated by the following formula (1) or the instantaneous speed when a specific time has elapsed.
Ps = (P 3 -P 2) / (T 3 -T 2) ··· (1)
In the above formula (1), T 2 and T 3 mean the elapsed time from the start of the compressor 11 when the discharge pressure is in a transient state, and P 2 and P 3 are the discharge pressure at T 2 and T 3 , respectively. P is meant. However, T 2 ≠ T 3 . T 2 , T 3 and Psa are appropriately selected depending on the operating conditions of the air conditioner 1.

例えば、接続配管30の長さが設計範囲内である場合、図3に一点鎖線で示すように、TからTの上昇速度Psは比較的小さい(勾配が小)のに対し、接続配管30が短配管である場合、図3に実線および破線で示すように、TからTの上昇速度Psは、接続配管30の長さが設計範囲内である場合よりも大きく(勾配が大)なる。したがって、これらの上昇速度Psの間にPsaが選択されていれば、その大小関係から接続配管30が短配管であるか否かを判定することができる。 For example, when the length of the connection pipe 30 is within the design range, the rising speed Ps from T 2 to T 3 is relatively small (gradient is small), as shown by a one-dot chain line in FIG. When 30 is a short pipe, as shown by a solid line and a broken line in FIG. 3, the rising speed Ps from T 2 to T 3 is larger than when the length of the connection pipe 30 is within the design range (the gradient is large). )Become. Therefore, if Psa is selected between these ascending speeds Ps, it can be determined from the magnitude relationship whether the connection pipe 30 is a short pipe.

上述したT、TおよびT、並びに設定値PaおよびPsaは、設定温度等の空気調和機1の運転条件ごとに異なるため、それぞれの運転条件に対応した値をデータテーブルとして制御器18の記憶部182にあらかじめ記憶させておくことで、運転条件に見合った値を即時に選択することができる。 The above-described T 1 , T 2 and T 3 , and set values Pa and Psa differ depending on the operating conditions of the air conditioner 1 such as the set temperature, and therefore the controller 18 uses values corresponding to the respective operating conditions as a data table. By storing in advance in the storage unit 182, it is possible to immediately select a value corresponding to the operating condition.

周波数制御手段202は、接続配管長判定手段201により接続配管30が短配管であると判定された場合に、圧縮機11の周波数を下げるように制御する。これにより圧縮機11の圧縮能力が抑制され、図2および図3に実線で示すように、圧縮機11の吐出圧力の上昇速度を抑えて安定時の吐出圧力Pを運転適正圧力範囲の上限Pb内に収めることができる。周波数制御手段202としては、例えば、圧縮機11の駆動に交流モータ(不図示)を用い、インバータ制御により周波数を下げて交流モータの回転速度を遅くし、圧縮能力を抑制する手段等が挙げられる。   The frequency control unit 202 controls the frequency of the compressor 11 to be lowered when the connection pipe length determination unit 201 determines that the connection pipe 30 is a short pipe. As a result, the compression capacity of the compressor 11 is suppressed, and as shown by the solid lines in FIGS. 2 and 3, the discharge pressure P at the stable time is suppressed by suppressing the increase rate of the discharge pressure of the compressor 11, and the upper limit Pb of the proper operating pressure range. Can fit inside. Examples of the frequency control unit 202 include a unit that uses an AC motor (not shown) to drive the compressor 11 and lowers the frequency by inverter control to reduce the rotational speed of the AC motor, thereby suppressing the compression capability. .

なお、接続配管長判定手段201および周波数制御手段202を備えていない空気調和機では、接続配管30が短配管である場合、図2および図3に破線で示すように、吐出圧力Pは、時間の経過と共に上昇し、運転適正圧力範囲の上限Pbを超える。そして保護圧力Pcに達すると圧縮機保護部183の作動により圧縮機11が緊急停止し、強制的な吐出圧力Pの低下と共に空気調和機能が停止する。なお、その後に吐出圧力が運転適正圧力範囲となって圧縮機11が再稼働したとしても、再度の吐出圧力の上昇により緊急停止を繰り返すため、安定的な空気調和が阻害されてユーザの快適性を損ねるおそれがある。   Note that in an air conditioner that does not include the connection pipe length determination unit 201 and the frequency control unit 202, when the connection pipe 30 is a short pipe, the discharge pressure P is the time as shown by the broken line in FIGS. Rises over time and exceeds the upper limit Pb of the proper operating pressure range. When the protection pressure Pc is reached, the compressor 11 is urgently stopped by the operation of the compressor protection unit 183, and the air conditioning function is stopped as the discharge pressure P is forcibly reduced. In addition, even if the discharge pressure subsequently becomes within the proper operating pressure range and the compressor 11 is restarted, the emergency stop is repeated due to the increase of the discharge pressure again, so that stable air conditioning is hindered and user comfort is improved. May be damaged.

短配管であるか否かの判定に用いる圧縮機11の吐出圧力Pは、室外熱交換器13および室内熱交換器21のうちの凝縮器として働く一方の冷媒の液温から推定される圧力であってもよい。これにより、簡便に圧縮機11の吐出圧力を求めることができる。なお、冷房運転時には室外熱交換器13が凝縮器として働き、暖房運転時には室内熱交換器21が凝縮器として働く。かかる場合、圧力センサ17に代えて、冷媒の液温を測定するための液温センサ(不図示)が凝縮器に備えられる。   The discharge pressure P of the compressor 11 used for determining whether or not the pipe is a short pipe is a pressure estimated from the liquid temperature of one of the refrigerants acting as a condenser of the outdoor heat exchanger 13 and the indoor heat exchanger 21. There may be. Thereby, the discharge pressure of the compressor 11 can be calculated | required simply. The outdoor heat exchanger 13 functions as a condenser during the cooling operation, and the indoor heat exchanger 21 functions as a condenser during the heating operation. In such a case, instead of the pressure sensor 17, a liquid temperature sensor (not shown) for measuring the liquid temperature of the refrigerant is provided in the condenser.

このように、空気調和機1は、接続配管30が短配管であるか否かを判定する接続配管長判定手段201と、接続配管長判定手段201により接続配管30が短配管であると判定された場合に、圧縮機11の周波数を下げるように制御する周波数制御手段202とを有するので、接続配管30が短配管であっても、圧縮機11の圧縮能力を抑制することができ、始動時に圧縮機11の吐出圧力が著しく上昇することを防止することができる。   Thus, the air conditioner 1 determines that the connection pipe 30 is a short pipe by the connection pipe length determination means 201 that determines whether or not the connection pipe 30 is a short pipe. If the connecting pipe 30 is a short pipe, the compression capacity of the compressor 11 can be suppressed even when the connection pipe 30 is a short pipe. It is possible to prevent the discharge pressure of the compressor 11 from significantly increasing.

なお、本発明は、上述した実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。   In addition, this invention is not limited to the structure of embodiment mentioned above, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included. Is done.

例えば、上述した実施形態では、吐出圧力Pを求めるために圧力センサ17または液温センサのいずれかを備えている空気調和機1について説明したが、圧力センサ17および液温センサの両者を備え、これら両センサから得られた吐出圧力Pの情報を利用するようにしてもよい。   For example, in the above-described embodiment, the air conditioner 1 including either the pressure sensor 17 or the liquid temperature sensor in order to obtain the discharge pressure P has been described, but both the pressure sensor 17 and the liquid temperature sensor are provided. You may make it utilize the information of the discharge pressure P obtained from these both sensors.

1 空気調和機
10 室外機
11 圧縮機
12 四方弁
13 室外熱交換器
15 アキュムレータ
17 圧力センサ
18 制御器
20 室内機
21 室内熱交換器
24 表示手段
30 接続配管
DESCRIPTION OF SYMBOLS 1 Air conditioner 10 Outdoor unit 11 Compressor 12 Four-way valve 13 Outdoor heat exchanger 15 Accumulator 17 Pressure sensor 18 Controller 20 Indoor unit 21 Indoor heat exchanger 24 Display means 30 Connection piping

Claims (4)

室外熱交換器、周波数を制御可能な圧縮機、および冷媒を貯留可能なアキュムレータを有しあらかじめ冷媒が注入された室外機と、室内熱交換器を有する室内機とを接続配管で接続し、前記冷媒が前記接続配管を介して前記室外機と室内機との間を循環するように形成された空気調和機において、
前記接続配管が短配管であるか否かを判定する接続配管長判定手段と、
前記接続配管長判定手段により前記接続配管が短配管であると判定された場合に、前記圧縮機の周波数を下げるように制御する周波数制御手段とを有することを特徴とする空気調和機。
An outdoor heat exchanger, a compressor capable of controlling the frequency, and an outdoor unit having an accumulator capable of storing the refrigerant and pre-injected with the refrigerant, and an indoor unit having the indoor heat exchanger connected by a connecting pipe, In the air conditioner formed so that the refrigerant circulates between the outdoor unit and the indoor unit through the connection pipe,
Connection pipe length determination means for determining whether or not the connection pipe is a short pipe;
An air conditioner comprising: frequency control means for controlling to reduce the frequency of the compressor when the connection pipe length determination means determines that the connection pipe is a short pipe.
接続配管長判定手段が、圧縮機始動時から所定時間経過後の吐出圧力または圧縮機始動後の吐出圧力の上昇速度が設定値以上となった場合に短配管であると判定する請求項1に記載の空気調和機。   The connection pipe length determination means determines that the pipe is a short pipe when the discharge pressure after a predetermined time has elapsed from the start of the compressor or the increase rate of the discharge pressure after the start of the compressor exceeds a set value. The air conditioner described. 短配管であるか否かの判定に用いる吐出圧力が、室外熱交換器および室内熱交換器のうちの凝縮器として働く一方の冷媒の液温から推定される圧力である請求項2に記載の空気調和機。   The discharge pressure used for determining whether or not the pipe is a short pipe is a pressure estimated from the liquid temperature of one of the refrigerants acting as a condenser of the outdoor heat exchanger and the indoor heat exchanger. Air conditioner. 接続配管長判定手段により接続配管が短配管であると判定された場合に、前記判定の結果を表示する表示手段をさらに有する請求項1から請求項3のいずれか1項に記載の空気調和機。   The air conditioner according to any one of claims 1 to 3, further comprising a display unit that displays a result of the determination when the connection pipe length determination unit determines that the connection pipe is a short pipe. .
JP2014143239A 2014-07-11 2014-07-11 Air conditioner Active JP6351409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014143239A JP6351409B2 (en) 2014-07-11 2014-07-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143239A JP6351409B2 (en) 2014-07-11 2014-07-11 Air conditioner

Publications (2)

Publication Number Publication Date
JP2016017729A true JP2016017729A (en) 2016-02-01
JP6351409B2 JP6351409B2 (en) 2018-07-04

Family

ID=55233065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143239A Active JP6351409B2 (en) 2014-07-11 2014-07-11 Air conditioner

Country Status (1)

Country Link
JP (1) JP6351409B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000922A1 (en) * 2018-06-28 2020-01-02 珠海格力电器股份有限公司 Air conditioning system control method and device and air conditioning system
CN115264928A (en) * 2022-08-30 2022-11-01 宁波奥克斯电气股份有限公司 Frequency regulation and control method and device and air conditioner
CN115264929A (en) * 2022-08-30 2022-11-01 宁波奥克斯电气股份有限公司 A frequency modulation adjustment method, device and air conditioner
CN115342489A (en) * 2022-08-30 2022-11-15 宁波奥克斯电气股份有限公司 Air conditioner frequency control method, device and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719641A (en) * 1993-06-29 1995-01-20 Mitsubishi Electric Corp Air conditioning apparatus
JP2009014268A (en) * 2007-07-04 2009-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2014066465A (en) * 2012-09-27 2014-04-17 Hitachi Appliances Inc Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719641A (en) * 1993-06-29 1995-01-20 Mitsubishi Electric Corp Air conditioning apparatus
JP2009014268A (en) * 2007-07-04 2009-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2014066465A (en) * 2012-09-27 2014-04-17 Hitachi Appliances Inc Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000922A1 (en) * 2018-06-28 2020-01-02 珠海格力电器股份有限公司 Air conditioning system control method and device and air conditioning system
US11639802B2 (en) 2018-06-28 2023-05-02 Gree Electric Appliances, Inc. Of Zhuhai Control method and device of air conditioning system and air conditioning system
CN115264928A (en) * 2022-08-30 2022-11-01 宁波奥克斯电气股份有限公司 Frequency regulation and control method and device and air conditioner
CN115264929A (en) * 2022-08-30 2022-11-01 宁波奥克斯电气股份有限公司 A frequency modulation adjustment method, device and air conditioner
CN115342489A (en) * 2022-08-30 2022-11-15 宁波奥克斯电气股份有限公司 Air conditioner frequency control method, device and air conditioner
CN115342489B (en) * 2022-08-30 2024-06-11 宁波奥克斯电气股份有限公司 Air conditioner frequency control method and device and air conditioner

Also Published As

Publication number Publication date
JP6351409B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
CN204285689U (en) Hot and cold water air conditioning system
JP5404333B2 (en) Heat source system
TWI328100B (en) Refrigerating apparatus
JP5802840B2 (en) Outdoor unit of multi-type air conditioner
WO2009119023A1 (en) Freezing apparatus
CN102725598B (en) Heat pump system
WO2009157200A1 (en) Method for judging amount of refrigerant of air conditioner and air conditioner
CN107429949B (en) Refrigeration cycle device
CN104566649A (en) Air conditioner and control method thereof
JP2010210208A (en) Air conditioning device
JP2007240131A (en) Optimization control of heat source unit and accessory
US10197307B2 (en) Air conditioner with oil level control for both gas and electric heat pump cycles
JP2012141113A (en) Air conditioning/water heating device system
JP6351409B2 (en) Air conditioner
JP6038382B2 (en) Air conditioner
JP2013217577A (en) Air conditioning device
JP2013036631A (en) Air conditioner
JP2018151102A (en) Air-conditioning device
JP2014129986A (en) Refrigeration device
JP5854882B2 (en) Chilling unit
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP2013092293A (en) Refrigerating device
JP2012107790A (en) Air conditioning device
JP2011242097A (en) Refrigerating apparatus
JP6350824B2 (en) Air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180605

R150 Certificate of patent or registration of utility model

Ref document number: 6351409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150