[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016014416A - Electromagnetic proportional valve - Google Patents

Electromagnetic proportional valve Download PDF

Info

Publication number
JP2016014416A
JP2016014416A JP2014135836A JP2014135836A JP2016014416A JP 2016014416 A JP2016014416 A JP 2016014416A JP 2014135836 A JP2014135836 A JP 2014135836A JP 2014135836 A JP2014135836 A JP 2014135836A JP 2016014416 A JP2016014416 A JP 2016014416A
Authority
JP
Japan
Prior art keywords
core
yoke
inner diameter
electromagnetic
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014135836A
Other languages
Japanese (ja)
Inventor
貴広 古野
Takahiro Furuno
貴広 古野
寛之 河原
Hiroyuki Kawahara
寛之 河原
慎 宮武
Shin Miyatake
慎 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2014135836A priority Critical patent/JP2016014416A/en
Publication of JP2016014416A publication Critical patent/JP2016014416A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic proportional valve in which side force is suppressed by constituting a magnetic gap without bringing an outer periphery of a plunger and an inner periphery of a yoke into direct contact by molding a resin sliding part of the plunger in a circumferential direction of the inner circumference of the yoke.SOLUTION: A recessed groove formed on a yoke 15 engages with a large diameter part of a movable core 16. The core, the yoke 15, and a core pin are attached to the mold and are insert molded. In this case, a resin sliding part is formed between the recessed groove and a groove formed on the outer circumference of the core pin, and a magnetic gap is formed between the inner circumference of the yoke 15 and a large diameter part of the movable core 16.

Description

本発明は、電磁比例弁に関し、さらに詳細にはプランジャの摺動構造の低コスト化、耐異物性向上を実現させた電磁比例弁に関する。   The present invention relates to an electromagnetic proportional valve, and more particularly to an electromagnetic proportional valve that realizes cost reduction and improved foreign matter resistance of a plunger sliding structure.

従来、この種の、電磁比例弁のソレノイド部は、一般的にコイルその外周を覆うカップ状の磁性体製のヨークとステータコア、プランジャから成り、ステータコアは磁気吸引コアと摺動コア、磁気遮断部を一体に設けた構造をしている。
プランジャが摺動コア内径を直接摺動するこのようなタイプのソレノイド部は、摺動コア内径に対するプランジャの径方向の偏心によって磁気ギャップが偏り、径方向に押し付けるサイドフォースが発生し、吸引力のヒステリシスや摩耗などの弊害が生じる。
このサイドフォースを抑えるため、プランジャが外径に非磁性体のメッキ層を形成する技術が知られている(例えば、特許文献1第二頁図1参照。)。
Conventionally, the solenoid part of this type of proportional solenoid valve is generally composed of a cup-shaped magnetic yoke, a stator core and a plunger covering the outer periphery of the coil. The stator core is a magnetic attraction core, a sliding core, and a magnetic blocking part. It has a structure that is provided integrally.
In this type of solenoid part where the plunger slides directly on the inner diameter of the sliding core, the magnetic gap is biased due to the eccentricity of the plunger in the radial direction with respect to the inner diameter of the sliding core, and a side force that presses in the radial direction is generated. Detrimental effects such as hysteresis and wear occur.
In order to suppress this side force, a technique is known in which a plunger forms a non-magnetic plating layer on the outer diameter (see, for example, FIG. 1 of the second page of Patent Document 1).

そこで、これらの問題を解決するため、プランジャとシャフト、磁気結合阻害部を一体に設け、第一、第二凸部を摺動穴直接摺動させる技術がある(例えば、特許文献2第二頁図3参照。)。
また、別の構造として、プランジャがシャフトを介してコア内径を転動するベアリングで支持する構造が知られている(例えば、特許文献3参照。)
Therefore, in order to solve these problems, there is a technique in which a plunger, a shaft, and a magnetic coupling inhibition portion are integrally provided, and the first and second convex portions are directly slid into the sliding holes (for example, Patent Document 2 second page). (See FIG. 3).
As another structure, there is known a structure in which a plunger is supported by a bearing that rolls on the inner diameter of a core via a shaft (see, for example, Patent Document 3).

特許第4569371号公報Japanese Patent No. 4569371 特開2013−168425号公報JP2013-168425A 特開2008−157287号公報JP 2008-157287 A

しかしながら、特許文献1においては、プランジャに生じるサイドフォースを抑えるには、メッキの厚みを大きくする必要がり、メッキ処理時間を長くする必要があった。
さらに、プランジャ外径寸法は高精度が要求され、厚膜にしたメッキ層は誤差が大きく、研磨仕上げを施さなければならず、製造コストが高くなっていた。
さらに、特許文献2においては、局部当たりによる摩耗や摺動差性、耐異物性悪化の懸念がある。
また、特許文献3においては、部品の高硬度、高精度加工が必要なため、コストが高くなる。
However, in Patent Document 1, in order to suppress the side force generated in the plunger, it is necessary to increase the plating thickness, and it is necessary to increase the plating processing time.
Furthermore, high precision is required for the outer diameter of the plunger, and the thick plating layer has a large error, and must be polished to increase the manufacturing cost.
Furthermore, in Patent Document 2, there is a concern of wear due to local contact, sliding difference, and deterioration of foreign matter resistance.
Moreover, in patent document 3, since high hardness and high precision processing of components are required, cost becomes high.

そこで、これらの問題を解決するため、本発明においてはヨーク内径の周方向にプランジャ樹脂摺動部を成型することで、プランジャ外径とコア、ヨーク内径を直接接触させることなく、磁気ギャップを構成でき、サイドフォースが抑えられプランジャ外径の非磁性体厚膜を廃止することが可能な電磁比例弁を提供することを目的とする。   Therefore, in order to solve these problems, in the present invention, the plunger resin sliding portion is molded in the circumferential direction of the yoke inner diameter, so that the magnetic gap is configured without directly contacting the plunger outer diameter, the core, and the yoke inner diameter. An object of the present invention is to provide an electromagnetic proportional valve that can suppress the side force and can eliminate the non-magnetic material thick film of the plunger outer diameter.

前記課題を解決するための発明は、
スリーブに摺動自在に嵌挿されたスプールにより油圧供給口を形成する電磁部と、前記調電磁部に一体的に取り付けられた調圧部とを有する電磁弁において、
前記電磁部は
前記スプールに同軸上に位置しコイル組立体に摺動自在に嵌挿された軸部材と、
前記コイル組立体に装着され前記軸部材を摺動自在に支持するコアと、
前記コイル組立体に装着され前記コアに対応して設けられたヨークと、
前記ヨークに摺動自在に嵌挿された稼動鉄芯と
を備え、
前記コア及び前記ヨークの内径にコアピンを嵌挿してインサート成型する際に前記コアの内径及び前記ヨークの内堅の周方向に位置して径方向に指向する断面円弧形状の凹溝と、
前記凹溝に対向して前記コアピンの外周部に形成された深さの浅い断面円弧状の溝と、を形成し、ボビン成型時に前記凹溝及び前記溝に樹脂を充填した際に前記コア及び前記ヨークの内径に樹脂摺動部も同時に成型され、前記コアの内径と前記稼動鉄芯の外径との間に磁気キャップが形成されたことを特徴とする。
The invention for solving the above-mentioned problems is
In an electromagnetic valve having an electromagnetic part that forms a hydraulic pressure supply port by a spool that is slidably inserted into a sleeve, and a pressure adjusting part that is integrally attached to the electromagnetic adjusting part,
The electromagnetic part is coaxially positioned on the spool and is slidably inserted into the coil assembly;
A core mounted on the coil assembly and slidably supporting the shaft member;
A yoke mounted on the coil assembly and provided corresponding to the core;
An operating iron core slidably inserted into the yoke,
A concave groove having an arc-shaped cross section that is located in the circumferential direction of the inner diameter of the core and the inner core of the yoke when insert molding by inserting a core pin into the inner diameter of the core and the yoke, and
A shallow cross-section arc-shaped groove formed on the outer peripheral portion of the core pin so as to face the concave groove, and when the bobbin is molded, the core and the groove and the groove are filled with resin. A resin sliding portion is simultaneously formed on the inner diameter of the yoke, and a magnetic cap is formed between the inner diameter of the core and the outer diameter of the working iron core.

本発明はボビン成型時にコアピン、ヨーク内径の樹脂摺動部を同時に成型することにより、磁気ギャップを確保でき、稼動鉄芯の厚膜及び研磨工程を削減することが可能になり、製造工程を減らすことができ、コストを抑えることができる。
さらに、樹脂摺動部とコア先端内径の同軸を高精度に仕上げ、磁気ギャップの偏りを抑制することができるため、サイドフォースが減り、吸引力ヒシテリシスを抑えることができる。
また、異物が浸入した際にも、異物が流れ込むスペースが確保され、スティックスリップやロックなどに対するリスクが減り、対異物性が向上した。
In the present invention, by simultaneously molding the resin sliding portion of the core pin and the inner diameter of the yoke at the time of bobbin molding, it is possible to secure a magnetic gap, and it is possible to reduce the thick film and polishing process of the operating iron core, thereby reducing the manufacturing process. Can reduce costs.
Furthermore, since the coaxial of the resin sliding portion and the core tip inner diameter can be finished with high accuracy and the bias of the magnetic gap can be suppressed, the side force can be reduced and the suction force hysteresis can be suppressed.
Also, when a foreign object enters, a space for the foreign object to flow in is secured, the risk of stick-slip and lock is reduced, and the foreign object property is improved.

本発明の実施の形態に係る比例電磁弁の概略構造を示す略縦断面図である。1 is a schematic longitudinal sectional view showing a schematic structure of a proportional solenoid valve according to an embodiment of the present invention. 図1に示す電磁部の拡大略縦断面図である。FIG. 2 is an enlarged schematic longitudinal sectional view of an electromagnetic unit shown in FIG. 1. 図1のIII−III線の断面図である。It is sectional drawing of the III-III line of FIG. 図3のP部拡大図である。It is the P section enlarged view of FIG. インサート部品の斜視図である。It is a perspective view of insert parts. インサート部品の断面図である。It is sectional drawing of insert components. インサート部品を金型に装着した断面図である。It is sectional drawing which mounted | wore the insert component with the metal mold | die. 射出成型後のコア組立体の外形図である。It is an external view of the core assembly after injection molding. 図8のVIII−VIII線の断面図である。It is sectional drawing of the VIII-VIII line of FIG.

以下、本発明に係る比例電磁弁につき好適の実施の形態を挙げ、添付図面を参照して詳細に説明する。図1は、本発明に係る比例電磁弁10の構成を示す略縦断面図である。
図2は図1の示す電磁部11の拡大詳細図である。
図1に示すように、比例電磁弁10は、電磁部11、調圧部12から構成され、調圧部12は電磁部11の励磁に応答して軸心方向(図1でX矢視方向及びY矢視方向)に移動する。
先ず、電磁部11について説明する。
電磁弁11は図1及び図2に示すように、スプール31(図1参照)に同軸状に配設されたシャフト(軸部材)13と、シャフト13を摺動自在に支持するコア14と、コア14に対向して軸芯方向に配設されるヨーク15と、ヨーク15に摺動自在に嵌挿された可動鉄芯(プランジャ)16とを、備える。
プランジャ16の一端(図1で左端)はシャフト13の小径部13dに当接している。
Hereinafter, preferred embodiments of a proportional solenoid valve according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic longitudinal sectional view showing a configuration of a proportional solenoid valve 10 according to the present invention.
FIG. 2 is an enlarged detailed view of the electromagnetic unit 11 shown in FIG.
As shown in FIG. 1, the proportional solenoid valve 10 includes an electromagnetic part 11 and a pressure adjusting part 12, and the pressure adjusting part 12 responds to the excitation of the electromagnetic part 11 in the axial direction (the direction of the arrow X in FIG. 1). And the direction of arrow Y).
First, the electromagnetic unit 11 will be described.
As shown in FIGS. 1 and 2, the electromagnetic valve 11 includes a shaft (shaft member) 13 coaxially disposed on a spool 31 (see FIG. 1), a core 14 that slidably supports the shaft 13, A yoke 15 disposed in the axial direction facing the core 14 and a movable iron core (plunger) 16 slidably fitted into the yoke 15 are provided.
One end (the left end in FIG. 1) of the plunger 16 is in contact with the small diameter portion 13d of the shaft 13.

シャフト(ピン)13は、図2に示すように段付形状の軸部に形成されており、軸芯方向に間隔をおいて形成された2箇所の大径部13aと、該大径部13aを連接する中径部13bと、大径部13aに連設する小径部13cと13dとで形成され、大径部13aはコア14の内径部14aに摺動自在嵌挿されている。
そして、図5及び図6に示すように、コア14の内径部14a、ヨーク15の内径部15aには、それぞれコアピン20が嵌挿され、かつコア14及びヨーク15には鍔部14c、15cが設けられている。鍔部14c、15cはコイル17を巻装したボビン18の内径部18aに嵌着され、コア14及びヨーク15の鍔部14c、15cはコイル17の両端面に装着されている。
The shaft (pin) 13 is formed in a stepped shaft portion as shown in FIG. 2, and has two large diameter portions 13a formed at intervals in the axial direction, and the large diameter portion 13a. Are formed by a medium-diameter portion 13b that is connected to the large-diameter portion 13a, and small-diameter portions 13c and 13d that are continuous to the large-diameter portion 13a. The large-diameter portion 13a is slidably fitted into the inner-diameter portion 14a of the core 14.
As shown in FIGS. 5 and 6, the core pin 20 is fitted into the inner diameter portion 14 a of the core 14 and the inner diameter portion 15 a of the yoke 15, and the flange portions 14 c and 15 c are respectively inserted into the core 14 and the yoke 15. Is provided. The flange portions 14 c and 15 c are fitted into the inner diameter portion 18 a of the bobbin 18 around which the coil 17 is wound, and the flange portions 14 c and 15 c of the core 14 and the yoke 15 are mounted on both end surfaces of the coil 17.

さらに、ヨーク15の内径部15aの周方向には直径方向に指向するプランジャ樹脂摺動部の機能を有する断面の円弧形状の凹溝19が複数個設けられている。
なお、ヨーク15に形成される凹溝19は図4に示すように稼動鉄芯16に係合されるようになり、図5及び図6に示すコア14、ヨーク15及びコアピン20を金型24(図7参照)に装着してインサート成型した際に、凹溝19とコアピン20の外周部に形成される溝20aとの間に樹脂摺動部21(図4参照)が形成され、ヨーク15の内径部15aと稼動鉄芯16の間に磁気ギャップ22が生成される。参照符号23はスペーサを示すもので、コア14の端面(図1で右端)に装着されて、稼動鉄芯16とコア14との吸着時の張り付きを防止する機能を有する。
Further, a plurality of arc-shaped concave grooves 19 having a cross-section having a function of a plunger resin sliding portion oriented in the diameter direction are provided in the circumferential direction of the inner diameter portion 15 a of the yoke 15.
The concave groove 19 formed in the yoke 15 is engaged with the working iron core 16 as shown in FIG. 4, and the core 14, the yoke 15 and the core pin 20 shown in FIGS. A resin sliding portion 21 (see FIG. 4) is formed between the concave groove 19 and the groove 20a formed on the outer peripheral portion of the core pin 20 when the insert 15 is mounted and mounted (see FIG. 7), and the yoke 15 A magnetic gap 22 is generated between the inner diameter portion 15 a of the steel and the operating iron core 16. Reference numeral 23 denotes a spacer, which is attached to the end surface of the core 14 (the right end in FIG. 1) and has a function of preventing sticking between the working iron core 16 and the core 14.

次に、コア14、ヨーク15及びコアピン20のインサート成型手順について図7乃至図9により説明する。
図7に示すように、インサート部品であるコア14、ヨーク15には、内径部14a、
内径部15aに凹溝19が形成されており、図5に示すようにコアピン20の外周部には凹溝19に対向する位置に内径方向に指向する断面円弧状浅い溝20aが形成されている。
次いで、図6に示すように、コア14、ヨーク15及びコアピン20を一体にした後に、図7に示すように、金型24にセットする。このため、コアピン20にコア14、ヨーク15を嵌合させることで、同軸精度が確保される。
Next, an insert molding procedure for the core 14, the yoke 15, and the core pin 20 will be described with reference to FIGS.
As shown in FIG. 7, the core 14 and the yoke 15 which are insert parts have an inner diameter portion 14 a,
A concave groove 19 is formed in the inner diameter portion 15a. As shown in FIG. 5, a shallow groove 20a having an arcuate cross section oriented in the inner diameter direction is formed in the outer peripheral portion of the core pin 20 at a position facing the concave groove 19. .
Next, as shown in FIG. 6, the core 14, the yoke 15, and the core pin 20 are integrated, and then set in the mold 24 as shown in FIG. 7. For this reason, the coaxial accuracy is ensured by fitting the core 14 and the yoke 15 to the core pin 20.

次いで、コア14、ヨーク15、コアピン20よりなるインサート部品を一体化にして樹脂成型すると、図9に示すように、コア14、ヨーク15及びコアピン20の嵌合部に樹脂成形が充填され、樹脂成型後、コア14、ヨーク15からコアピン20を取り外すと、ボビン18、樹脂摺動部21を備えるコイル組立体27が形成される。
形成される。
電磁部11を形成するためには、図9に示すようにコア14、ヨーク15を樹脂成型した後にシャフト13をコア14の内径14aに装着し、稼動鉄芯16をヨーク15野内径15aに装着後、ボビン18の外周にコイル17を形成し、ボディ28(図1参照)の内周面28aにコイル組立体27の外周面を嵌挿し、ボディ28の端部28bを加締めて電磁部11が生成される。
Next, when the insert part composed of the core 14, the yoke 15, and the core pin 20 is integrated and resin-molded, as shown in FIG. 9, the resin molding is filled in the fitting portions of the core 14, the yoke 15 and the core pin 20, and the resin is filled. When the core pin 20 is removed from the core 14 and the yoke 15 after molding, the coil assembly 27 including the bobbin 18 and the resin sliding portion 21 is formed.
It is formed.
In order to form the electromagnetic part 11, as shown in FIG. 9, after the core 14 and the yoke 15 are resin-molded, the shaft 13 is attached to the inner diameter 14a of the core 14, and the working iron core 16 is attached to the inner diameter 15a of the yoke 15 field. Thereafter, the coil 17 is formed on the outer periphery of the bobbin 18, the outer peripheral surface of the coil assembly 27 is fitted into the inner peripheral surface 28 a of the body 28 (see FIG. 1), and the end portion 28 b of the body 28 is crimped to tighten the electromagnetic unit 11. Is generated.

このように、ヨーク15の内径部15aの周方向に樹脂摺動部21の機能を有する凹溝19をインサート成型することで、ヨーク15の内径部15aと稼動鉄芯16を直接截接触させることなく、磁気ギャップ22を生成できるので、サイドフォースが抑えられ、稼動鉄芯16の外径部16aの非磁性体厚膜の廃止が可能となった。
さらに、凹溝19を周方向も間隔をおいて複数個配置することで、電磁部11に浸入した際にも異物が逃げて流れ込むスペースができ、耐異物性が向上した。
In this manner, the concave groove 19 having the function of the resin sliding portion 21 is insert-molded in the circumferential direction of the inner diameter portion 15a of the yoke 15 so that the inner diameter portion 15a of the yoke 15 and the working iron core 16 are directly brought into contact with each other. Since the magnetic gap 22 can be generated, the side force is suppressed, and the non-magnetic thick film of the outer diameter portion 16a of the working iron core 16 can be eliminated.
Furthermore, by arranging a plurality of the concave grooves 19 at intervals also in the circumferential direction, a space where foreign matter escapes and flows even when entering the electromagnetic part 11 is created, and foreign matter resistance is improved.

次に調圧部12について説明する。
参照符号29はスリーブで、電磁部11に当接した状態で、コア14の一端の外周部を例えば、図示しない加締めることにより電磁部11と一体化される。前記スリーブ29には、スリーブ孔30が穿設され、該スリーブ孔30にスプール31が摺動自在に嵌挿されている。前記スリーブ29には、電磁部11から順に図示しないタンクとスリーブ孔30とを連通するタンク通路32と、図示しないアクチュエータとスリーブ孔30とを連通する制御通路33と、図示しないポンプとスリーブ孔30とを連通する供給通路34と、を備える。
Next, the pressure adjusting unit 12 will be described.
Reference numeral 29 denotes a sleeve, which is integrated with the electromagnetic unit 11 by, for example, crimping an outer peripheral portion of one end of the core 14 (not shown) in contact with the electromagnetic unit 11. A sleeve hole 30 is formed in the sleeve 29, and a spool 31 is slidably fitted into the sleeve hole 30. In the sleeve 29, a tank passage 32 that communicates a tank (not shown) and a sleeve hole 30, a control passage 33 that communicates an actuator (not shown) and the sleeve hole 30, and a pump and sleeve hole 30 (not shown). A supply passage 34 that communicates with each other.

前記スプール31は、第1のランド部35、第2のランド部36が間隔をおいて軸心方向に沿って形成されており、第1のランド部35によりタンク通路32と制御通路33との連通制御が行われ、第2のランド部36により制御通路33と供給通路34との連通制御が行われる。
スリーブ29の外端部(図1で左端部)には、スリーブ孔30と同軸状に大径の取付孔37が設けられ、該取付孔37にアジャスタ38が嵌挿されている。スプール31の一端(図1で左端)とアジャスタ38との間にはスプール31をシャフト13に当接する方向に付勢するばね部材39が介装されている。
In the spool 31, a first land portion 35 and a second land portion 36 are formed along the axial direction with a space therebetween, and the tank land 32 and the control passage 33 are separated by the first land portion 35. Communication control is performed, and communication control between the control passage 33 and the supply passage 34 is performed by the second land portion 36.
A large-diameter mounting hole 37 is provided coaxially with the sleeve hole 30 at the outer end portion (left end portion in FIG. 1) of the sleeve 29, and an adjuster 38 is fitted into the mounting hole 37. A spring member 39 that urges the spool 31 in a direction to contact the shaft 13 is interposed between one end (the left end in FIG. 1) of the spool 31 and the adjuster 38.

本発明に係る比例電磁弁10は、基本的には以上のように構成されており、次に動作について説明する。
図1において、コイル17の励磁による吸引力により稼動鉄芯16は、シャフト13をガイドにして矢印X方向に移動し、シャフト13を介してスプール31がばね部材39の弾発力に抗して矢印X方向に変位し、該スプール31の変位によりスリーブ29内の通路を連通・遮断する。
コイル17が非励磁になるとばね部材39の弾発力によりスプール31が矢印Y方向に移動し、該スプール31の端面(図1で右端)がシャフト13の先端(図1で左端)に接触し、矢印Y方向に変位する。
The proportional solenoid valve 10 according to the present invention is basically configured as described above. Next, the operation will be described.
In FIG. 1, the working iron core 16 moves in the direction of the arrow X using the shaft 13 as a guide by the attractive force generated by the excitation of the coil 17, and the spool 31 resists the elastic force of the spring member 39 via the shaft 13. It is displaced in the direction of the arrow X, and the passage in the sleeve 29 is communicated / blocked by the displacement of the spool 31.
When the coil 17 is de-energized, the spool 31 moves in the direction of arrow Y due to the elastic force of the spring member 39, and the end surface (right end in FIG. 1) of the spool 31 contacts the tip end (left end in FIG. 1). , It is displaced in the arrow Y direction.

本発明の実施に係る比例電磁弁10は、ヨーク内径の周方向に樹脂摺動部を成型することで、コア及びヨーク内径と、稼動鉄芯の外径を直接接触させることなく、磁気ギャップが構成できる。そのため、サイドフォースが抑えられ、可動鉄芯外径の非磁性体厚膜廃止が可能となった。
さらに、ボビン樹脂成型時にコアとヨークをインサート成型し、同時にヨーク内径に樹脂摺動部も成型することで、工程を減らすことができた。
また、ヨーク内径の周方向に樹脂摺動部を凹溝のような形状とし、周方向に間隔を置いて配置することで、異物が浸入した際にも異物が逃げて流れ込むスペースができ、耐異物性を向上することができた。
The proportional solenoid valve 10 according to the embodiment of the present invention forms a resin sliding portion in the circumferential direction of the inner diameter of the yoke so that the magnetic gap is not directly brought into contact with the inner diameter of the core and the yoke and the outer diameter of the working iron core. Can be configured. Therefore, the side force is suppressed, and the non-magnetic thick film with the outer diameter of the movable iron core can be eliminated.
In addition, the core and yoke were insert-molded at the time of bobbin resin molding, and at the same time, the resin sliding part was molded on the inner diameter of the yoke, thereby reducing the number of processes.
In addition, the resin sliding part is shaped like a concave groove in the circumferential direction of the inner diameter of the yoke, and the circumferential direction is spaced apart to allow space for foreign matter to escape and flow even when foreign matter enters. The foreign matter could be improved.

10 比例電磁弁 11 電磁部
12 調圧部 13 シャフト
14 コア 15 ヨーク
16 稼動鉄芯 17 コイル
18 ボビン 19 凹溝
20 凸部 21 樹脂摺動部
22 磁気ギャップ 23 スペーサ
24 金型 27 コイル組立体
28 ボディ 29 スリーブ
30 スリーブ孔 32 タンク通路
33 制御回路 34 供給回路
35,36 ランド部 37 取付孔
38 アジャスタ 39 ばね部材











DESCRIPTION OF SYMBOLS 10 Proportional solenoid valve 11 Electromagnetic part 12 Pressure regulation part 13 Shaft 14 Core 15 Yoke 16 Operating iron core 17 Coil
18 Bobbin 19 Groove 20 Protrusion 21 Resin sliding part 22 Magnetic gap 23 Spacer 24 Mold 27 Coil assembly 28 Body 29 Sleeve 30 Sleeve hole 32 Tank passage 33 Control circuit 34 Supply circuit 35, 36 Land part 37 Mounting hole 38 Adjuster 39 Spring member











Claims (1)

スリーブに摺動自在に嵌挿されたスプールにより油圧供給口を形成する電磁部と、前記調電磁部に一体的に取り付けられた調圧部とを有する電磁弁において、
前記電磁部は
前記スプールに同軸上に位置しコイル組立体に摺動自在に嵌挿された軸部材と、
前記コイル組立体に装着され前記軸部材を摺動自在に支持するコアと、
前記コイル組立体に装着され前記コアに対応して設けられたヨークと、
前記ヨークに摺動自在に嵌挿された稼動鉄芯と
を備え、
前記コア及び前記ヨークの内径にコアピンを嵌挿してインサート成型する際に前記コアの内径及び前記ヨークの内堅の周方向に位置して径方向に指向する断面円弧形状の凹溝と、
前記凹溝に対向して前記コアピンの外周部に形成された深さの浅い断面円弧状の溝と、を形成し、ボビン成型時に前記凹溝及び前記溝に樹脂を充填した際に前記コア及び前記ヨークの内径に樹脂摺動部も同時に成型され、前記コアの内径と前記稼動鉄芯の外径とのに間に磁気キャップが形成されたことを特徴とする比例電磁弁。


In an electromagnetic valve having an electromagnetic part that forms a hydraulic pressure supply port by a spool that is slidably inserted into a sleeve, and a pressure adjusting part that is integrally attached to the electromagnetic adjusting part,
The electromagnetic part is coaxially positioned on the spool and is slidably inserted into the coil assembly;
A core mounted on the coil assembly and slidably supporting the shaft member;
A yoke mounted on the coil assembly and provided corresponding to the core;
An operating iron core slidably inserted into the yoke,
A concave groove having an arc-shaped cross section that is located in the circumferential direction of the inner diameter of the core and the inner core of the yoke when insert molding by inserting a core pin into the inner diameter of the core and the yoke, and
A shallow cross-section arc-shaped groove formed on the outer peripheral portion of the core pin so as to face the concave groove, and when the bobbin is molded, the core and the groove and the groove are filled with resin. A proportional solenoid valve characterized in that a resin sliding portion is simultaneously formed on the inner diameter of the yoke, and a magnetic cap is formed between the inner diameter of the core and the outer diameter of the working iron core.


JP2014135836A 2014-07-01 2014-07-01 Electromagnetic proportional valve Pending JP2016014416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014135836A JP2016014416A (en) 2014-07-01 2014-07-01 Electromagnetic proportional valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135836A JP2016014416A (en) 2014-07-01 2014-07-01 Electromagnetic proportional valve

Publications (1)

Publication Number Publication Date
JP2016014416A true JP2016014416A (en) 2016-01-28

Family

ID=55230763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135836A Pending JP2016014416A (en) 2014-07-01 2014-07-01 Electromagnetic proportional valve

Country Status (1)

Country Link
JP (1) JP2016014416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107975449A (en) * 2016-10-21 2018-05-01 株式会社电装 Electromagnetic actuators

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107975449A (en) * 2016-10-21 2018-05-01 株式会社电装 Electromagnetic actuators
US10637317B2 (en) 2016-10-21 2020-04-28 Denso Corporation Electromagnetic actuator
CN107975449B (en) * 2016-10-21 2021-08-10 株式会社电装 Electromagnetic actuator

Similar Documents

Publication Publication Date Title
US10139004B2 (en) Solenoid valve
US9945492B2 (en) Normally high solenoid assembly
JP5299499B2 (en) Electromagnetic solenoid
US20190267174A9 (en) Method for Manufacturing a Pole Tube for an Electromagnet
JP2014110372A (en) Linear solenoid and linear solenoid valve, and method of manufacturing linear solenoid
US10107411B2 (en) Hydraulic valve
JP3975941B2 (en) Electromagnetic drive device
JP5891841B2 (en) solenoid valve
JP2016014416A (en) Electromagnetic proportional valve
JP2013170620A (en) Proportional solenoid valve
JP2009275841A (en) Linear solenoid
JP2009174623A (en) Solenoid valve
JP5600844B2 (en) solenoid valve
US20210005369A1 (en) Solenoid
JP5768737B2 (en) Linear solenoid
JP6375185B2 (en) Solenoid and solenoid valve
JP4237114B2 (en) solenoid valve
US10205361B2 (en) Linear solenoid
JP2015055281A (en) Solenoid valve
JP6094059B2 (en) Proportional solenoid valve
JP7302514B2 (en) solenoid valve
JP2021021470A (en) Solenoid valve
JP7383907B2 (en) solenoid valve
JP2011185313A (en) Hydraulic unit
JP2011216739A (en) Linear solenoid and valve device using the same