[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016010717A - Concentration quantification apparatus - Google Patents

Concentration quantification apparatus Download PDF

Info

Publication number
JP2016010717A
JP2016010717A JP2015175942A JP2015175942A JP2016010717A JP 2016010717 A JP2016010717 A JP 2016010717A JP 2015175942 A JP2015175942 A JP 2015175942A JP 2015175942 A JP2015175942 A JP 2015175942A JP 2016010717 A JP2016010717 A JP 2016010717A
Authority
JP
Japan
Prior art keywords
light
time
unit
irradiation
observation target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015175942A
Other languages
Japanese (ja)
Inventor
天野 和彦
Kazuhiko Amano
和彦 天野
孝一 清水
Koichi Shimizu
孝一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015175942A priority Critical patent/JP2016010717A/en
Publication of JP2016010717A publication Critical patent/JP2016010717A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a concentration quantification apparatus, a concentration quantification method, and a program capable of noninvasively and accurately quantifying the concentration of target components in an arbitrary layer by accurately measuring and ensuring a close contact state between an irradiation unit and an observation object.SOLUTION: A concentration quantification apparatus 100 according to the present invention comprises: an irradiation part 106; a light reception part 107; an optical path length distribution storage part 103; an optical path length acquisition part 108; a time resolution waveform storage part 105; a close contact determination part 111 for determining whether or not the irradiation part 106 and an observation object is in a close contact state; a measurement light intensity acquisition part 113 for, when the close contact determination part 111 determined that the irradiation part 106 and the observation object is in a close contact state, acquiring the intensity of the light received by the light reception part 107; a light absorption coefficient calculation part 117 for calculating the light absorption coefficient of target components of an arbitrary layer; and a concentration calculation part 120 for calculating the concentration of the target components of the arbitrary layer on the basis of the light absorption coefficient acquired by the light absorption coefficient calculation part 117.

Description

本発明は、複数の層により構成される観測対象のうち、任意の層における目的成分の濃度を、非侵襲的にかつ精度良く定量する濃度定量装置及び濃度定量方法並びにプログラムに関するものである。   The present invention relates to a concentration quantification apparatus, a concentration quantification method, and a program for non-invasively and accurately quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of layers.

近年、我が国は飽食の時代にあって、糖尿病の患者が毎年増加し続けている。そのために、糖尿病性腎炎の患者も毎年増加し続けることとなり、その結果、慢性腎不全の患者も毎年1万人もの増加を続け、患者数は28万人を超えるようになってきている。
一方、高齢化社会の到来により、予防医学に対する要求の高まりを受けて、個人における代謝量管理の重要性が急速に増大している。中でも、血糖値測定は、食前や食後の血糖値を測定することで糖代謝の反応が分かることが知られており、糖尿病のごく初期段階での糖代謝の反応を評価することで、糖尿病の早期診断に基づく早期治療が可能になる。
In recent years, Japan is in the age of satiety, and the number of diabetic patients continues to increase every year. For this reason, the number of patients with diabetic nephritis will continue to increase every year. As a result, the number of patients with chronic renal failure continues to increase by 10,000 each year, and the number of patients exceeds 280,000.
On the other hand, with the arrival of an aging society, the importance of metabolic rate management in individuals is rapidly increasing in response to increasing demand for preventive medicine. Among them, blood glucose level measurement is known to be able to understand the reaction of glucose metabolism by measuring the blood glucose level before and after meals, and by evaluating the reaction of glucose metabolism at the very early stage of diabetes, Early treatment based on early diagnosis becomes possible.

従来、血糖値の測定は、腕あるいは指先等の静脈から採血を行い、この血液中のグルコースに対する酵素活性を測定することで行っている。しかし、このような血糖値の測定方法では、採血が煩雑であり、しかも採血に痛みを伴い、さらには感染症の危険性を伴う等の様々な問題がある。
また、血糖値を連続的に測定する方法としては、静脈に注射針を刺した状態で連続的に血糖値相応のグルコースの定量を行う機器が米国にて開発されており、現在臨床試験中である。しかし、静脈に注射針を刺したままにしているために、血糖値の測定中に針が抜ける危険性や感染症の危険性がある。
そこで、採血無しに頻繁に血糖値を測定することができ、しかも感染症の危険性が無い血糖値の測定装置の開発が求められている。さらには、簡単にかつ常時装着可能であり、小型化可能な血糖値の測定装置の開発が求められている。
Conventionally, the blood sugar level is measured by collecting blood from a vein such as an arm or a fingertip and measuring the enzyme activity for glucose in the blood. However, such a blood glucose level measurement method has various problems such as complicated blood collection, pain associated with blood collection, and risk of infection.
In addition, as a method for continuously measuring blood glucose level, an instrument that continuously measures glucose corresponding to blood glucose level with a needle inserted into a vein has been developed in the United States. is there. However, since the injection needle is left pierced in the vein, there is a risk that the needle may come off during the measurement of the blood glucose level and a risk of infection.
Therefore, development of a blood glucose level measuring apparatus that can measure blood glucose level frequently without blood collection and that is free from the risk of infectious diseases is demanded. Furthermore, there is a demand for the development of a blood glucose level measuring device that can be easily and always worn and can be miniaturized.

近赤外の連続光を用いて非侵襲的に血糖値を測定する装置としては、分子吸光の原理を用いた一般的な分光分析測定の原理を適用した装置が提案されている(例えば、特許文献1、2参照)。
この装置は、皮膚の赤外スペクトルを用いて生体成分濃度の定量をおこなう場合に、皮下脂肪の影響を受けて生体成分濃度の定量に誤差が生じることに対応したもので、より具体的には、皮膚に近赤外の連続光を照射し、その光吸収量からグルコースの濃度を算出する装置である。
この装置では、予めグルコース濃度と照射する近赤外光の波長と光の吸収量との関係を示す検量線を作成しておき、皮膚に近赤外の連続光を照射し、この皮膚からの戻り光をモノクロメーター等を用いてある波長域を走査し、その波長域の各波長に対する光の吸収量を求め、この各波長における光の吸収量と検量線とを比較することで、血液中のグルコース濃度、すなわち血糖値を算出している。
As a device for non-invasively measuring blood glucose levels using near-infrared continuous light, a device applying a general spectroscopic measurement principle using the principle of molecular absorption has been proposed (for example, a patent) References 1 and 2).
This device corresponds to the fact that when the biological component concentration is quantified using the infrared spectrum of the skin, there is an error in the quantification of the biological component concentration due to the influence of subcutaneous fat. More specifically, It is an apparatus that irradiates the skin with near-infrared continuous light and calculates the glucose concentration from the amount of light absorption.
In this device, a calibration curve indicating the relationship between the glucose concentration, the wavelength of near infrared light to be irradiated and the amount of light absorbed is prepared in advance, and the skin is irradiated with continuous light of near infrared, The return light is scanned in a certain wavelength range using a monochromator, etc., the amount of light absorbed for each wavelength in the wavelength range is obtained, and the amount of light absorbed at each wavelength is compared with a calibration curve, thereby Glucose concentration, that is, blood glucose level is calculated.

また、1700nm〜1800nmの波長範囲から選択した皮下脂肪の特異吸収波長での吸光度から、皮膚の性状の分類を行い、「皮膚厚さ」の代用特性として検量式を選択している。
さらには、予備的に近赤外の受光部と発光部との間隔を650μmとして推定した「皮膚厚さ」を1.2mm以上、1.2mm未満のいずれかに判断し、受光部と発光部との間隔を650μm、300μmのいずれかに選択した後に検量式を選択している。
Further, skin properties are classified from the absorbance at the specific absorption wavelength of subcutaneous fat selected from the wavelength range of 1700 nm to 1800 nm, and a calibration formula is selected as a substitute characteristic of “skin thickness”.
Further, the “skin thickness” estimated as a preliminary distance between the near-infrared light receiving portion and the light emitting portion is 650 μm is determined to be 1.2 mm or more and less than 1.2 mm, and the light receiving portion and the light emitting portion are determined. The calibration formula is selected after selecting the interval between 650 μm and 300 μm.

一方、近赤外光を用いた生体診断としては、例えば、時間分解計測法を用いた生体組織イメージングにより皮膚主成分における近赤外光の吸収量を測定し、この吸収量を基に皮膚主成分の各割合、例えば、血糖相応のグルコース濃度を求める方法が知られている。
この皮膚主成分の吸収量には波長依存性があるので、通常、予め皮膚主成分の定量に影響を及ぼす変動要因を多変量解析で複数の割合で変化させた複数のスペクトラムを作製しておき、皮膚主成分における近赤外光の吸収量の測定結果のスペクトルを上記の複数のスペクトラムと比較し、これらのスペクトラムから一致するスペクトラムを選ぶことにより、皮膚主成分の各割合を推定する方法が採られている。
On the other hand, for biodiagnosis using near-infrared light, for example, the amount of absorption of near-infrared light in the main component of skin is measured by biological tissue imaging using a time-resolved measurement method, and the main skin is determined based on this absorption amount. Methods are known for determining the proportion of each component, for example, the glucose concentration corresponding to blood sugar.
Since the absorption amount of the skin main component is wavelength-dependent, usually, a plurality of spectra are prepared in advance by varying the variable factors that affect the quantification of the skin main component at a plurality of ratios by multivariate analysis. The method of estimating each ratio of the skin main component by comparing the spectrum of the measurement result of the absorption amount of near infrared light in the skin main component with the above plurality of spectra and selecting a spectrum that matches from these spectra. It is taken.

特許第3931638号公報Japanese Patent No. 3931638 特許第3994588号公報Japanese Patent No. 3994588

しかしながら、従来の近赤外の連続光を用いた非侵襲的に血糖値を測定する装置では、特定深さを通過する経路の光の吸収量のみを測定することができず、したがって、特定深さの皮膚主成分における血糖相応のグルコース濃度を精度よく定量することができないという問題点があった。
また、特許文献1の装置では、皮膚表面から皮下脂肪までの深さを「皮膚厚さ」として、皮下脂肪の特異吸収波長での吸光度から皮膚の性状を分類すること、例えば、皮膚表面から皮下脂肪までの深さを「皮膚厚さ」として代用することには、(1)皮膚の真皮と皮下組織の境界は、皮膚の表面からの深さとして均一では無いこと、(2)真皮には脂肪を分泌する汗腺があって脂肪分泌物を蓄えていること、(3)皮下脂肪の特異吸収波長での吸光度から皮膚の性状の分類を行う場合、真皮の細胞及び間質液には脂肪が含まれているので、真皮と皮下脂肪との区別が難しい、等の理由により問題点があった。
However, a conventional device that measures blood glucose level non-invasively using near-infrared continuous light cannot measure only the amount of light absorbed in a path that passes through a specific depth. There is a problem that the glucose concentration corresponding to blood glucose in the skin main component cannot be accurately quantified.
In the device of Patent Document 1, the depth from the skin surface to the subcutaneous fat is defined as “skin thickness”, and the skin properties are classified from the absorbance at the specific absorption wavelength of the subcutaneous fat. To substitute the depth to fat as “skin thickness”, (1) the boundary between the dermis and subcutaneous tissue of the skin is not uniform as the depth from the surface of the skin; There is a sweat gland that secretes fat and stores fat secretions. (3) When categorizing skin properties from the absorbance at the specific absorption wavelength of subcutaneous fat, fat is contained in cells and interstitial fluid of the dermis. Because it is contained, there is a problem because it is difficult to distinguish between dermis and subcutaneous fat.

一般に、皮膚の赤外スペクトルを用いて生体成分濃度の定量を行う場合、受光部と発光部との間隔によって定まるバナナシェイプ特性により、皮膚内での光路の皮膚表面からの深さが概ね推定される。例えば、受光部と発光部との間隔を650μmとすれば、光路の皮膚表面からの深さは325μmと推定され、また、受光部と発光部との間隔を300μmとすれば、光路の皮膚表面からの深さは150μmと推定される。
しかしながら、特許文献1の装置では、上記の理由等により、皮膚の赤外スペクトルを用いて生体成分濃度の定量を行う部位を特定することができず、したがって、真皮中で間質成分の一つとしてグルコースが存在している網状層(Stratum reticulare)を特定部位として、この特定部位を透過する光路での吸光度を選択的に測定することはできない。
In general, when the concentration of biological components is quantified using the infrared spectrum of the skin, the depth of the optical path from the skin surface in the skin is roughly estimated by the banana shape characteristic determined by the distance between the light receiving part and the light emitting part. The For example, if the distance between the light receiving part and the light emitting part is 650 μm, the depth of the light path from the skin surface is estimated to be 325 μm, and if the distance between the light receiving part and the light emitting part is 300 μm, the skin surface of the light path Is estimated to be 150 μm.
However, in the apparatus of Patent Document 1, for the above-mentioned reasons, it is not possible to specify a site where the biological component concentration is quantified using the infrared spectrum of the skin, and therefore, one of the interstitial components in the dermis. As a specific part of the reticular layer where glucose is present (Stratum reticulare), it is not possible to selectively measure the absorbance in the optical path that passes through the specific part.

そこで、近赤外線の照射部及び受光部を備えたセンシング部と、このセンシング部を100〜750gf/cmの接触圧力にて皮膚に接触させる保持手段と、このセンシング部と皮膚表面との接触圧力を測定する測定手段と、この接触圧力が適正接触圧力となったときにその旨を知らせる告知手段とを備えた血糖値測定装置が考えられるが、この血糖値測定装置においても、照射部から皮膚内へ光が入射する状態、及び皮膚から後方散乱する光が受光部へ入射する状態を測定することができないので、計測光強度波形に基づいた適正な密着状態を判断し、その旨を告知することができない。 Therefore, a sensing unit including a near-infrared irradiation unit and a light receiving unit, holding means for bringing the sensing unit into contact with the skin at a contact pressure of 100 to 750 gf / cm 2 , and a contact pressure between the sensing unit and the skin surface A blood glucose level measuring device including a measuring means for measuring the blood pressure and a notification means for notifying that when the contact pressure becomes an appropriate contact pressure can be considered. Since it is not possible to measure the state of light entering inside and the state of light scattered back from the skin entering the light receiving unit, determine the proper contact state based on the measured light intensity waveform and notify that fact. I can't.

本発明は、上記の課題を解決するためになされたものであって、照射部と観測対象との密着状態を、精度良く測定し、確認することで、任意の層における目的成分の濃度を、非侵襲的にかつ精度良く定量することができる濃度定量装置及び濃度定量方法並びにプログラムを提供することを目的とする。   The present invention was made in order to solve the above-described problem, and by measuring and confirming the close contact state between the irradiation unit and the observation target with high accuracy, the concentration of the target component in any layer can be determined. It is an object of the present invention to provide a concentration quantification apparatus, a concentration quantification method, and a program capable of non-invasively and accurately quantifying.

上記の課題を解決するために、本発明は以下の濃度定量装置及び濃度定量方法並びにプログラムを採用した。
すなわち、本発明の濃度定量装置は、複数の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記観測対象に短時間パルス光を照射する照射部と、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光部と、前記観測対象に対して照射する短時間パルス光の、前記複数の層の各々の層における光路長分布のモデルを記憶する光路長分布記憶部と、前記光路長分布のモデルの所定の時刻における、前記複数の層の各々の層の光路長を取得する光路長取得部と、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶部と、時間分解波形のモデルの前記所定の時刻における光強度を取得する光強度モデル取得部と、前記照射部から前記観測対象へ短時間パルス光の予備照射を行うことにより、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御する照射量制御部と、前記照射量制御部により前記短時間パルス光の照射量が制御された後に、前記短時間パルス光の前記観測対象への入射開始時刻を基準として前記受光部が受光する時刻毎の光強度を測定し、前記受光部が前記観測対象からの後方散乱光を検出し始める時刻と強度との関係に基づき、前記照射部と前記観測対象とが密着状態であるか否かを判定する密着判定部と、前記密着判定部が前記照射部と前記観測対象とが密着状態であると判定した場合に、前記受光部が受光した前記光の強度を取得する光強度取得部と、前記光強度取得部が取得した前記光の強度の光強度分布と、前記光路長取得部が取得した前記複数の層の各々の層の光路長と、前記光強度モデル取得部が取得した光強度モデルとに基づいて、前記任意の層の吸収係数を算出する吸収係数算出部と、前記吸収係数算出部が算出した吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出部と、を備えてなることを特徴とする。
In order to solve the above problems, the present invention employs the following concentration determination apparatus, concentration determination method, and program.
That is, the concentration quantification device of the present invention is a concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of layers, and irradiates the observation target with short-time pulsed light. An irradiating unit, a light receiving unit that receives light scattered back from the observation target by irradiation of the short-time pulsed light, and each of the plurality of layers of short-time pulsed light irradiated to the observation target An optical path length distribution storage unit that stores a model of an optical path length distribution in the layer; an optical path length acquisition unit that acquires an optical path length of each of the plurality of layers at a predetermined time of the optical path length distribution model; and A time-resolved waveform storage unit that stores a model of a time-resolved waveform of short-time pulsed light that is irradiated to an observation target; and a light intensity model acquisition unit that acquires a light intensity at the predetermined time of the model of the time-resolved waveform An irradiation amount control unit for controlling the irradiation amount of the short-time pulse light irradiated from the irradiation unit to the observation target by performing preliminary irradiation of the short-time pulse light from the irradiation unit to the observation target; and the irradiation amount After the amount of irradiation of the short-time pulsed light is controlled by the control unit, measure the light intensity at each time the light-receiving unit receives light with reference to the start time of incidence of the short-time pulsed light on the observation target, A contact determination unit that determines whether or not the irradiation unit and the observation target are in a close contact state based on a relationship between a time at which the light receiving unit starts detecting backscattered light from the observation target and an intensity; When the determination unit determines that the irradiation unit and the observation target are in close contact with each other, a light intensity acquisition unit that acquires the intensity of the light received by the light receiving unit, and the light intensity acquisition unit acquired Light intensity distribution of light intensity The absorption for calculating the absorption coefficient of the arbitrary layer based on the optical path length of each of the plurality of layers acquired by the optical path length acquisition unit and the light intensity model acquired by the light intensity model acquisition unit A coefficient calculator, and a concentration calculator that calculates the concentration of the target component in the arbitrary layer based on the absorption coefficient calculated by the absorption coefficient calculator.

本発明の濃度定量装置では、照射量制御部により、照射部から観測対象へ短時間パルス光の予備照射を行うことにより、照射部から観測対象へ照射される短時間パルス光の照射量を制御し、この照射量制御部により短時間パルス光の照射量が制御された後に、密着判定部により、照射部が出力する短時間パルス光の観測対象への入射開始時刻を基準として受光部が受光する時刻毎の光強度を測定し、受光部が観測対象からの後方散乱光を検出し始める時刻と強度との関係に基づき、照射部と観測対象とが密着状態であるか否かを判定し、密着判定部が照射部と観測対象とが密着状態であると判定した場合に、光強度取得部により、受光部が受光した後方散乱光の強度を取得する。
その後、照射量制御部により、照射部から観測対象へ短時間パルス光の予備照射を行うことにより、照射部から観測対象へ照射される短時間パルス光の照射量を制御することができる。
特に、この短時間パルス光の照射量の低減の度合いを、人体が短時間パルス光の照射により受ける被爆量を考慮して、濃度測定時に照射する光出力に対して1/1000〜1/10の範囲内に設定することにより、人体が短時間パルス光を照射される際の被爆量を少なくすることができ、かつ、照射部が出力する短時間パルス光の観測対象へ密着させられた安定な状態で、測定を行うことができ、測定精度を高めることができる。
このように、密着判定部により照射部と観測対象とが密着状態であるか否かを判定し、この密着判定部が照射部と観測対象とが密着状態であると判定した場合に、光強度取得部により、受光部が受光した後方散乱光の強度を取得することにより、照射部と観測対象との密着状態を速やかかつ容易に確認することができ、定量を行う特定部位である任意の層における目的成分の吸収係数、すなわち目的成分の濃度を速やかかつ容易に測定することができ、その結果、任意の層における目的成分の濃度を、非侵襲的にかつ速やかに定量することができる。
In the concentration determination apparatus of the present invention, the irradiation amount control unit controls the irradiation amount of the short-time pulse light irradiated from the irradiation unit to the observation target by performing preliminary irradiation of the short-time pulse light from the irradiation unit to the observation target. Then, after the irradiation amount control unit controls the irradiation amount of the short-time pulse light, the light-receiving unit receives the light from the contact determination unit based on the start time of the short-time pulse light output from the irradiation unit to the observation target. Measure the light intensity at each time, and determine whether the irradiation unit and the observation target are in close contact based on the relationship between the intensity and the time when the light receiving unit starts detecting backscattered light from the observation target. When the contact determination unit determines that the irradiation unit and the observation target are in contact, the light intensity acquisition unit acquires the intensity of the backscattered light received by the light receiving unit.
Thereafter, the irradiation amount control unit performs preliminary irradiation of the short-time pulse light from the irradiation unit to the observation target, whereby the irradiation amount of the short-time pulse light irradiated from the irradiation unit to the observation target can be controlled.
In particular, the degree of reduction in the amount of irradiation of the short-time pulse light is set to 1/1000 to 1/10 with respect to the light output irradiated at the time of concentration measurement in consideration of the amount of exposure that the human body receives by irradiation of the short-time pulse light. By setting it within the range, the amount of exposure when the human body is irradiated with short-time pulse light can be reduced, and the short-time pulse light output from the irradiation unit can be kept in close contact with the observation target. In this state, measurement can be performed and measurement accuracy can be improved.
As described above, when the contact determination unit determines whether or not the irradiation unit and the observation target are in a close contact state, and the contact determination unit determines that the irradiation unit and the observation target are in a close contact state, the light intensity By acquiring the intensity of the backscattered light received by the light receiving unit by the acquiring unit, it is possible to quickly and easily confirm the contact state between the irradiation unit and the observation target, and any layer that is a specific part for quantification Thus, the absorption coefficient of the target component, that is, the concentration of the target component can be measured quickly and easily. As a result, the concentration of the target component in any layer can be quantified non-invasively and quickly.

本発明の濃度定量装置は、前記密着判定部は、前記受光部が受光する時刻毎の光強度として、前記観測対象の表面を伝搬する直接伝搬光の強度と前記観測対象からの後方散乱光の強度を選択し、前記直接伝搬光の強度が前記後方散乱光の強度の1/10以下の場合に、前記照射部と前記観測対象とが密着状態であると判定することを特徴とする。   In the concentration quantification device according to the present invention, the contact determination unit is configured to detect the intensity of direct propagation light propagating on the surface of the observation target and the backscattered light from the observation target as the light intensity at each time received by the light receiving unit. An intensity is selected, and when the intensity of the directly propagated light is 1/10 or less of the intensity of the backscattered light, it is determined that the irradiation unit and the observation target are in close contact with each other.

本発明の濃度定量装置では、受光部が受光する時刻毎の光強度として、観測対象の表面を伝搬する直接伝搬光の強度と観測対象からの後方散乱光の強度を選択し、直接伝搬光の強度が後方散乱光の強度の1/10以下の場合に、照射部及び受光部と観測対象とが密着状態であると判定する。
このように、直接伝搬光の強度が後方散乱光の強度の1/10以下の場合に、照射部と観測対象とが密着状態であると判定することで、直接伝搬光の強度と後方散乱光の強度との比を用いて、照射部と観測対象との密着状態を容易かつ簡便に判定することができる。
したがって、目的成分の濃度を速やかかつ簡便に測定することができ、その結果、任意の層における目的成分の濃度を、非侵襲的にかつ速やかに定量することができる。
In the concentration quantification apparatus of the present invention, the intensity of the direct propagation light propagating on the surface of the observation target and the intensity of the backscattered light from the observation target are selected as the light intensity at each time received by the light receiving unit, When the intensity is 1/10 or less of the intensity of the backscattered light, it is determined that the irradiation unit, the light receiving unit, and the observation target are in close contact.
As described above, when the intensity of the directly propagated light is 1/10 or less of the intensity of the backscattered light, it is determined that the irradiation unit and the observation target are in close contact with each other. It is possible to easily and simply determine the close contact state between the irradiation unit and the observation target using the ratio with the intensity of the light.
Therefore, the concentration of the target component can be measured quickly and easily, and as a result, the concentration of the target component in any layer can be quantified non-invasively and quickly.

本発明の濃度定量装置は、前記密着判定部に、前記照射部と前記観測対象とが密着状態であるか否かを判定した結果を告知する告知部を備えていることを特徴とする。
この濃度定量装置では、密着判定部に、照射部及び受光部と観測対象とが密着状態であるか否かを判定した結果を告知する告知部を備えたことにより、照射部及び受光部と観測対象とが密着状態であるか否かを速やかかつ容易に知ることができる。
The concentration determination apparatus of the present invention is characterized in that the contact determination unit includes a notification unit that notifies the result of determining whether or not the irradiation unit and the observation target are in a contact state.
In this concentration determination apparatus, the contact determination unit includes a notification unit for notifying the result of determining whether or not the irradiation unit, the light receiving unit, and the observation target are in a close contact state. It is possible to quickly and easily know whether or not the object is in close contact.

本発明の濃度定量装置は、前記密着判定部は、前記照射部と前記観測対象とが密着状態であるか否かを連続的に判定し、前記照射部と前記観測対象とが密着状態と判定した場合に、前記光強度取得部により、前記受光部が受光した前記光の強度を取得し、前記照射部と前記観測対象とが密着状態ではないと判定した場合に、前記照射量制御部により前記照射部から前記観測対象へ短時間パルス光の予備照射を行うことにより、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御し、前記照射部と前記観測対象とが密着状態であるか否かを再度判定することを特徴とする。
この濃度定量装置では、密着判定部及び照射量制御部により、照射部から観測対象へ照射される短時間パルス光の照射量の制御、及び照射部と観測対象との密着状態を連続的にモニタリングすることで、照射部と観測対象とが密着状態となった時点での観測対象からの後方散乱光の強度を速やかに取得することができる。
In the concentration determination apparatus of the present invention, the contact determination unit continuously determines whether or not the irradiation unit and the observation target are in a close contact state, and determines that the irradiation unit and the observation target are in a close contact state. When the light intensity acquisition unit acquires the intensity of the light received by the light receiving unit, and the irradiation amount control unit determines that the irradiation unit and the observation target are not in close contact with each other, By performing preliminary irradiation of short-time pulse light from the irradiation unit to the observation target, the irradiation amount of the short-time pulse light irradiated from the irradiation unit to the observation target is controlled, and the irradiation unit and the observation target are controlled. It is characterized by determining again whether or not is in a close contact state.
In this concentration determination device, the contact determination unit and the dose control unit control the irradiation amount of short-time pulsed light irradiated from the irradiation unit to the observation target, and continuously monitor the contact state between the irradiation unit and the observation target. By doing so, the intensity of the backscattered light from the observation target at the time when the irradiation unit and the observation target are in close contact with each other can be quickly acquired.

本発明の濃度定量装置は、前記光強度取得部が取得した前記光の強度の光強度分布と、前記光路長取得部が取得した前記複数の層の各々の層の光路長と、前記光強度モデル取得部が取得した光強度モデルとに基づいて、前記光強度分布から前記任意の層の光強度分布に対応する領域の時間の範囲である積分区間を算出する積分区間算出部を備え、前記吸収係数算出部は、前記積分区間算出部が算出した前記積分区間を変化させて前記任意の層における目的成分の吸収係数を算出することを特徴とする。   The concentration quantification device of the present invention includes a light intensity distribution of the light intensity acquired by the light intensity acquisition unit, an optical path length of each of the plurality of layers acquired by the optical path length acquisition unit, and the light intensity. Based on the light intensity model acquired by the model acquisition unit, an integration interval calculation unit that calculates an integration interval that is a time range of a region corresponding to the light intensity distribution of the arbitrary layer from the light intensity distribution, The absorption coefficient calculation unit calculates the absorption coefficient of the target component in the arbitrary layer by changing the integration interval calculated by the integration interval calculation unit.

この濃度定量装置では、積分区間算出部が、光強度取得部が取得した光の強度の光強度分布と、光路長取得部が取得した複数の層の各々の層の光路長と、光強度モデル取得部が取得した光強度モデルとに基づいて、光強度分布から任意の層の光強度分布に対応する領域の時間の範囲である積分区間を算出し、吸収係数算出部が、積分区間算出部が算出した積分区間を変化させて任意の層における目的成分の吸収係数を算出する。
このように、積分区間算出部により算出された積分区間を基に、受光部が受光した光強度から前記積分区間に対応する時間帯の光強度を取得することにより、定量を行う特定部位である任意の層からの光を他の層からの光と区別して測定することができ、任意の層からの光に対する他の層からの光の影響を低減することができる。したがって、任意の層における目的成分の光の吸収量、すなわち目的成分の濃度を精度良く測定することができ、その結果、任意の層における目的成分の濃度を、非侵襲的にかつ精度良く定量することができる。
In this concentration quantification apparatus, the integration interval calculation unit includes the light intensity distribution of the light intensity acquired by the light intensity acquisition unit, the optical path length of each of the plurality of layers acquired by the optical path length acquisition unit, and the light intensity model. Based on the light intensity model acquired by the acquisition unit, an integration interval that is a time range of a region corresponding to the light intensity distribution of an arbitrary layer is calculated from the light intensity distribution, and the absorption coefficient calculation unit is an integration interval calculation unit. The absorption coefficient of the target component in an arbitrary layer is calculated by changing the integration interval calculated by.
Thus, based on the integration interval calculated by the integration interval calculation unit, it is a specific part to be quantified by obtaining the light intensity in the time zone corresponding to the integration interval from the light intensity received by the light receiving unit. Light from any layer can be measured separately from light from other layers, and the influence of light from other layers on light from any layer can be reduced. Therefore, the light absorption amount of the target component in any layer, that is, the concentration of the target component can be accurately measured. As a result, the concentration of the target component in any layer is quantified noninvasively and with high accuracy. be able to.

本発明の濃度定量装置は、前記光強度取得部が、前記観測対象の層の数n以上となる複数の時刻t〜tにおける光強度を取得し(但し、nは1以上の自然数、mはn以上の自然数)、前記吸収係数算出部は、自然対数を示すln(・)、前記受光部が時刻tにおいて受光した光強度を示すI(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度を示すN(t)、前記光路長分布のモデルの時刻tにおける第i層の光路長を示すLi(t)、第i層の吸収係数を示すμを用いて、

Figure 2016010717
から任意の層の吸収係数を算出する、ことを特徴とする。 In the concentration determination apparatus of the present invention, the light intensity acquisition unit acquires light intensities at a plurality of times t 1 to t m where the number of layers to be observed is n or more (where n is a natural number of 1 or more, m is a natural number greater than or equal to n), the absorption coefficient calculating unit is ln (·) indicating a natural logarithm, I (t) indicating the light intensity received by the light receiving unit at time t, and time resolution of the short-time pulsed light N (t) indicating the light intensity at time t of the waveform model, Li (t) indicating the optical path length of the i-th layer at time t of the optical path length distribution model, and μ i indicating the absorption coefficient of the i-th layer. make use of,
Figure 2016010717
From the above, the absorption coefficient of an arbitrary layer is calculated.

本発明の濃度定量装置では、光強度取得部が、任意の層の複数の時刻t〜tにおける光強度を取得し、吸収係数算出部が、任意の層の吸収係数を、上記の式(1)から算出する。
このように、後方散乱光を時間分解計測することで、任意の層以外の層からの後方散乱光をノイズとして低減することができ、目的成分の濃度における任意の層以外の層からの影響を低減することができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration determination apparatus of the present invention, the light intensity acquisition unit acquires the light intensity at a plurality of times t 1 to t m of an arbitrary layer, and the absorption coefficient calculation unit calculates the absorption coefficient of the arbitrary layer by the above formula. Calculate from (1).
In this way, by measuring the time-resolved backscattered light, backscattered light from layers other than any layer can be reduced as noise, and the influence of the layer other than any layer on the concentration of the target component can be reduced. Can be reduced. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記光強度取得部が、所定の時刻から少なくとも所定の時間τの間の光強度を取得し、前記吸収係数算出部は、自然対数を示すln(・)、前記受光部が時刻tにおいて受光した光強度を示すI(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度を示すN(t)、前記光路長分布のモデルの時刻tにおける第i層の光路長を示すLi(t)、前記観測対象の層の数を示すn、第i層の吸収係数を示すμiを用いて、

Figure 2016010717
から任意の層の吸収係数を算出する、ことを特徴とする。 In the concentration quantification device of the present invention, the light intensity acquisition unit acquires the light intensity from a predetermined time to at least a predetermined time τ, and the absorption coefficient calculation unit includes ln (·) indicating the natural logarithm, I (t) indicating the light intensity received by the light receiving unit at time t, N (t) indicating the light intensity at time t of the time-resolved waveform model of the short-time pulse light, and time t of the model of the optical path length distribution Li (t) indicating the optical path length of the i-th layer, n indicating the number of layers to be observed, and μi indicating the absorption coefficient of the i-th layer,
Figure 2016010717
From the above, the absorption coefficient of an arbitrary layer is calculated.

本発明の濃度定量装置では、光強度取得部が、所定の時刻から少なくとも所定の時刻τの間の光強度の時間変化を取得し、吸収係数算出部が、任意の層の吸収係数を、上記の式(2)から算出する。
このように、後方散乱光を時間分解計測することで、任意の層以外の層からの後方散乱光をノイズとして低減することができ、目的成分の濃度における任意の層以外の層からの影響を低減することができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration determination apparatus of the present invention, the light intensity acquisition unit acquires a temporal change in light intensity from a predetermined time to at least a predetermined time τ, and the absorption coefficient calculation unit calculates the absorption coefficient of an arbitrary layer as described above. (2) is calculated.
In this way, by measuring the time-resolved backscattered light, backscattered light from layers other than any layer can be reduced as noise, and the influence of the layer other than any layer on the concentration of the target component can be reduced. Can be reduced. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記照射部が、複数の波長1〜qの光を照射し、前記吸収係数算出部は、前記任意の層における吸収係数を前記照射部が照射した複数の波長毎に算出し、前記濃度算出部は、前記任意の層である第a層における波長iの吸収係数を示すμa(i)、前記観測対象を形成する第j成分のモル濃度を示すgj、第j成分の波長iに対する吸収係数を示すεj(i)、前記観測対象を形成する主成分の個数を示すp、照射部が照射する波長の種類数を示すqを用いて、

Figure 2016010717
から前記任意の層における前記目的成分の濃度を算出する、ことを特徴とする。 In the concentration quantification device of the present invention, the irradiation unit irradiates light having a plurality of wavelengths 1 to q, and the absorption coefficient calculation unit calculates the absorption coefficient in the arbitrary layer for each of the plurality of wavelengths irradiated by the irradiation unit. The concentration calculation unit calculates μa (i) indicating the absorption coefficient of the wavelength i in the a-th layer which is the arbitrary layer, gj indicating the molar concentration of the j-th component forming the observation target, and jth Ε j (i) indicating the absorption coefficient for the wavelength i of the component, p indicating the number of main components forming the observation object, q indicating the number of types of wavelengths irradiated by the irradiation unit,
Figure 2016010717
From the above, the concentration of the target component in the arbitrary layer is calculated.

本発明の濃度定量装置では、照射部が、複数の波長1〜qの光を照射し、吸収係数算出部が、任意の層における吸収係数を照射部が照射した複数の波長毎に算出し、濃度算出部が、任意の層における目的成分の濃度を上記の式(3)から算出する。
このように、後方散乱光を時間分解計測することで、任意の層以外の層からの後方散乱光をノイズとして低減することができ、目的成分の濃度における任意の層以外の層からの影響を低減することができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration quantification device of the present invention, the irradiation unit irradiates light having a plurality of wavelengths 1 to q, the absorption coefficient calculation unit calculates the absorption coefficient in an arbitrary layer for each of the plurality of wavelengths irradiated by the irradiation unit, The concentration calculation unit calculates the concentration of the target component in an arbitrary layer from the above equation (3).
In this way, by measuring the time-resolved backscattered light, backscattered light from layers other than any layer can be reduced as noise, and the influence of the layer other than any layer on the concentration of the target component can be reduced. Can be reduced. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量方法は、複数の層により構成される観測対象に短時間パルス光を照射する照射部と、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光部と、前記観測対象に対して照射する短時間パルス光の、前記複数の層の各々の層における光路長分布のモデルを記憶する光路長分布記憶部と、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶部とを備え、前記観測対象のうち任意の層における目的成分の濃度を定量する濃度定量装置を用いた濃度定量方法であって、前記照射部により、前記観測対象に短時間パルス光を照射し、前記受光部により、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光し、照射量制御部により、前記照射部から前記観測対象へ短時間パルス光の予備照射を行い、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御し、前記照射量制御部により前記短時間パルス光の照射量が制御された後に、密着判定部により、前記受光部が前記後方散乱光を検出し始める時刻と強度との関係に基づき、前記照射部と前記観測対象とが密着状態であるか否かを判定し、光強度取得部により、前記密着判定部が前記照射部と前記観測対象とが密着状態であると判定した場合に、前記受光部が受光した前記光の強度を取得し、光路長取得部により、前記光路長分布のモデルの所定の時刻における、前記複数の層の各々の層の光路長を取得し、光強度モデル取得部により、前記時間分解波形記憶部から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光強度を取得し、吸収係数算出部により、前記光強度取得部が取得した光強度と前記光路長取得部が取得した前記複数の層の各々の層の光路長と前記光強度モデル取得部が取得した光強度モデルとに基づいて、前記任意の層における目的成分の吸収係数を算出し、濃度算出部により、前記吸収係数算出部が算出した吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する、ことを特徴とする。   The concentration quantification method of the present invention includes an irradiation unit that irradiates an observation target composed of a plurality of layers with a short-time pulsed light, and a light receiving unit that receives light scattered back from the observation target by the irradiation of the short-time pulsed light. An optical path length distribution storage unit for storing a model of an optical path length distribution in each of the plurality of layers of short-time pulse light irradiated to the observation target, and a short irradiation to the observation target A time-resolved waveform storage unit that stores a time-resolved waveform model of time-pulsed light, and a concentration quantification method using a concentration quantification device that quantifies the concentration of a target component in any layer of the observation target, The irradiation unit irradiates the observation target with short-time pulsed light, the light receiving unit receives light scattered back from the observation target by the irradiation of the short-time pulsed light, and the irradiation amount control unit The preliminary irradiation of the short-time pulse light from the irradiation unit to the observation target is performed, the irradiation amount of the short-time pulse light irradiated from the irradiation unit to the observation target is controlled, and the short-time pulse is controlled by the irradiation amount control unit After the irradiation amount of light is controlled, whether the irradiation unit and the observation target are in close contact based on the relationship between the time when the light receiving unit starts detecting the backscattered light and the intensity by the contact determination unit And when the light intensity acquisition unit determines that the irradiation unit and the observation target are in a close contact state, the light intensity acquisition unit acquires the intensity of the light received by the light receiving unit, An optical path length acquisition unit acquires an optical path length of each of the plurality of layers at a predetermined time of the optical path length distribution model, and a light intensity model acquisition unit acquires the short path from the time-resolved waveform storage unit. Time-resolved wave of time pulse light The light intensity at the predetermined time of the model is acquired, and the light intensity acquired by the light intensity acquisition unit and the optical path length of each of the plurality of layers acquired by the optical path length acquisition unit by the absorption coefficient calculation unit And the light intensity model acquired by the light intensity model acquisition unit, the absorption coefficient of the target component in the arbitrary layer is calculated, and based on the absorption coefficient calculated by the absorption coefficient calculation unit by the concentration calculation unit The concentration of the target component in the arbitrary layer is calculated.

本発明の濃度定量方法では、照射量制御部により、前記照射部から前記観測対象へ短時間パルス光の予備照射を行い、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御し、前記照射量制御部により前記短時間パルス光の照射量が制御された後に、密着判定部により、照射部が出力する短時間パルス光の観測対象への入射開始時刻を基準として受光部が受光する時刻毎の光強度を測定し、受光部が後方散乱光を検出し始める時刻と強度との関係に基づき、照射部と観測対象とが密着状態であるか否かを判定し、密着判定部が照射部と観測対象とが密着状態であると判定した場合に、光強度取得部により、受光部が受光した後方散乱光の強度を取得する。
このように、照射量制御部により、照射部から観測対象へ照射される短時間パルス光の照射量を制御し、密着判定部により照射部と観測対象とが密着状態であるか否かを判定し、この密着判定部が照射部と観測対象とが密着状態であると判定した場合に、光強度取得部により、受光部が受光した後方散乱光の強度を取得することにより、定量を行う特定部位である任意の層における目的成分の吸収係数、すなわち目的成分の濃度を速やかかつ容易に測定することができ、その結果、任意の層における目的成分の濃度を、非侵襲的にかつ速やかに定量することができる。
In the concentration determination method of the present invention, the irradiation amount control unit performs preliminary irradiation of short-time pulse light from the irradiation unit to the observation target, and the irradiation amount of short-time pulse light irradiated from the irradiation unit to the observation target. After the irradiation amount control unit controls the irradiation amount of the short-time pulsed light, the contact determination unit receives the short-time pulsed light output from the irradiation unit with respect to the observation start time as a reference. Measuring the light intensity at each time the unit receives light, and determining whether the irradiation unit and the observation target are in close contact based on the relationship between the intensity and the time at which the light receiving unit starts detecting backscattered light, When the contact determination unit determines that the irradiation unit and the observation target are in contact, the light intensity acquisition unit acquires the intensity of the backscattered light received by the light receiving unit.
As described above, the irradiation amount control unit controls the irradiation amount of the short-time pulse light emitted from the irradiation unit to the observation target, and the contact determination unit determines whether the irradiation unit and the observation target are in a close contact state. When the contact determination unit determines that the irradiation unit and the observation target are in contact with each other, the light intensity acquisition unit obtains the intensity of the backscattered light received by the light receiving unit, and performs the quantification. It is possible to quickly and easily measure the absorption coefficient of the target component in any layer that is the site, that is, the concentration of the target component. As a result, the concentration of the target component in any layer can be determined non-invasively and quickly. can do.

本発明のプログラムは、複数の層により構成される観測対象に短時間パルス光を照射する照射部と、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光部と、前記観測対象に対して照射する短時間パルス光の、前記複数の層の各々の層における光路長分布のモデルを記憶する光路長分布記憶部と、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶部とを備え、前記観測対象のうち任意の層における目的成分の濃度を定量する濃度定量装置のコンピューターに、前記観測対象に前記短時間パルス光を照射する照射手順、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光手順、前記照射部から前記観測対象へ短時間パルス光の予備照射を行うことにより、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御する照射量制御手順、前記照射量制御手順により前記短時間パルス光の照射量が制御された後に、前記受光手順により前記観測対象からの後方散乱光を検出し始める時刻と強度との関係に基づき、前記照射部と前記観測対象とが密着状態であるか否かを判定する密着判定手順、前記密着判定手順により前記照射部と前記観測対象とが密着状態であると判定された場合に、前記受光手順により受光された前記光の強度を取得する光強度取得手順、前記光路長分布記憶部から、前記光路長分布のモデルの所定の時刻における、前記複数の層の各々の層の光路長を取得する光路長取得手順、前記時間分解波形記憶部から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光強度を取得する光強度モデル取得手順、前記光強度取得手順により取得された前記光強度分布と、前記光路長取得手段により取得された前記複数の層の各々の層の光路長と、前記光強度モデル取得手順により取得された前記光強度とに基づいて、前記任意の層の吸収係数を算出する吸収係数算出手順、前記吸収係数算出手順により算出された吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手順、を実行させることを特徴とする。   The program of the present invention includes an irradiation unit that irradiates an observation target composed of a plurality of layers with a short-time pulsed light, and a light-receiving unit that receives light backscattered from the observation target due to the irradiation of the short-time pulsed light. An optical path length distribution storage unit for storing a model of an optical path length distribution in each of the plurality of layers of the short-time pulse light applied to the observation target; and a short-time pulse applied to the observation target A time-resolved waveform storage unit that stores a model of a time-resolved waveform of light, and a computer for a concentration quantification device that quantifies the concentration of a target component in an arbitrary layer of the observation target; An irradiation procedure for irradiating light, a light receiving procedure for receiving light scattered back from the observation target by irradiation with the short-time pulse light, and a short-time pulse light from the irradiation unit to the observation target By performing pre-irradiation, the irradiation amount control procedure for controlling the irradiation amount of the short-time pulse light irradiated to the observation object from the irradiation unit, the irradiation amount of the short-time pulse light is controlled by the irradiation amount control procedure. After that, the contact determination procedure for determining whether or not the irradiation unit and the observation target are in close contact based on the relationship between the intensity and the time when the backscattering light from the observation target starts to be detected by the light receiving procedure. , A light intensity acquisition procedure for acquiring the intensity of the light received by the light receiving procedure when it is determined by the contact determination procedure that the irradiation unit and the observation target are in a close contact state, the optical path length distribution storage An optical path length acquisition procedure for acquiring an optical path length of each of the plurality of layers at a predetermined time of the optical path length distribution model from the unit, and from the time-resolved waveform storage unit, A light intensity model acquisition procedure for acquiring the light intensity at the predetermined time of the model of the decomposition waveform, the light intensity distribution acquired by the light intensity acquisition procedure, and the plurality of layers acquired by the optical path length acquisition means Based on the optical path length of each layer and the light intensity acquired by the light intensity model acquisition procedure, the absorption coefficient calculation procedure for calculating the absorption coefficient of the arbitrary layer, calculated by the absorption coefficient calculation procedure A concentration calculation procedure for calculating the concentration of the target component in the arbitrary layer is executed based on an absorption coefficient.

本発明のプログラムでは、濃度定量装置のコンピューターに、観測対象に短時間パルス光を照射する照射手順、短時間パルス光の照射により観測対象から後方散乱される光を受光する受光手順、照射部から観測対象へ短時間パルス光の予備照射を行うことにより、照射部から観測対象へ照射される短時間パルス光の照射量を制御する照射量制御手順、短時間パルス光の観測対象への入射開始時刻を基準として受光手順により受光された時刻毎の光強度を測定し、受光手順により観測対象からの後方散乱光を検出し始める時刻と強度との関係に基づき、照射部と観測対象とが密着状態であるか否かを判定する密着判定手順、を実行させた後、光強度取得手順により取得された光強度分布と、光路長取得手段により取得された複数の層の各々の層の光路長と、光強度モデル取得手順により取得された光強度とに基づいて、任意の層の吸収係数を算出する吸収係数算出手順、吸収係数算出手順により算出された吸収係数に基づいて、任意の層における目的成分の濃度を算出する濃度算出手順、を順次実行させる。   In the program of the present invention, an irradiation procedure for irradiating the observation target with the short-time pulse light on the computer of the concentration quantification apparatus, a light-receiving procedure for receiving the light scattered back from the observation target by the irradiation of the short-time pulse light, from the irradiation unit Dose control procedure for controlling the irradiation amount of short-time pulse light irradiated from the irradiation unit to the observation object by performing preliminary irradiation of the short-time pulse light on the observation object, and start of incidence of the short-time pulse light on the observation object The light intensity at each time received by the light receiving procedure is measured with respect to the time, and the irradiation unit and the observation target are in close contact based on the relationship between the time and intensity at which the backscattered light from the observation target starts to be detected by the light receiving procedure. After performing the adhesion determination procedure for determining whether or not it is in the state, the light intensity distribution acquired by the light intensity acquisition procedure and each of the plurality of layers acquired by the optical path length acquisition means Based on the optical path length and the light intensity acquired by the light intensity model acquisition procedure, the absorption coefficient calculation procedure for calculating the absorption coefficient of an arbitrary layer, based on the absorption coefficient calculated by the absorption coefficient calculation procedure, The concentration calculation procedure for calculating the concentration of the target component in the layer is sequentially executed.

このように、短時間パルス光の観測対象への入射開始時刻を基準として受光手順により受光された時刻毎の光強度を測定し、照射量制御手順により、照射部から観測対象へ短時間パルス光の予備照射を行うことにより、照射部から観測対象へ照射される短時間パルス光の照射量を制御し、受光手順により観測対象からの後方散乱光を検出し始める時刻と強度との関係に基づき、照射部と観測対象とが密着状態であるか否かを判定する密着判定手順を実行することで、照射部と観測対象との密着状態を速やかかつ容易に確認することができ、定量を行う特定部位である任意の層における目的成分の吸収係数、すなわち目的成分の濃度を速やかかつ容易に測定することができる。その結果、任意の層における目的成分の濃度を、非侵襲的にかつ速やかに定量することができる。   In this way, the light intensity at each time received by the light receiving procedure is measured based on the start time of incidence of the short-time pulse light on the observation target, and the short-time pulse light is transmitted from the irradiation unit to the observation target by the dose control procedure. The amount of short-time pulsed light emitted from the irradiation unit to the observation target is controlled by performing preliminary irradiation, and based on the relationship between the time when the backscattering light from the observation target is detected by the light receiving procedure and the intensity. By performing the contact determination procedure for determining whether or not the irradiation unit and the observation target are in close contact with each other, the contact state between the irradiation unit and the observation target can be quickly and easily confirmed and quantified. The absorption coefficient of the target component, that is, the concentration of the target component in an arbitrary layer that is a specific site can be measured quickly and easily. As a result, the concentration of the target component in any layer can be quantified non-invasively and rapidly.

本発明の第1の実施形態の血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus of the 1st Embodiment of this invention. 皮膚の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of skin. 光の波長と皮膚への浸透深さとの関係を示す図である。It is a figure which shows the relationship between the wavelength of light, and the penetration depth to skin. シミュレーション部が算出した各層の光路長分布を示す図である。It is a figure which shows the optical path length distribution of each layer which the simulation part computed. シミュレーション部で得た無吸収時光強度の時間分解波形を示す図である。It is a figure which shows the time-resolved waveform of the light intensity at the time of non-absorption obtained in the simulation part. 皮膚の主成分の吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the main component of skin. 本発明の第1の実施形態の血糖値測定装置を用いて血糖値を測定する手順を示す図である。It is a figure which shows the procedure which measures a blood glucose level using the blood glucose level measuring apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の血糖値測定装置を用いて血糖値を測定する手順を示す図である。It is a figure which shows the procedure which measures a blood glucose level using the blood glucose level measuring apparatus of the 1st Embodiment of this invention. 照射部が皮膚の表面と非接触状態の場合における計測タイミングを示す図である。It is a figure which shows the measurement timing in case an irradiation part is a non-contact state with the surface of skin. 照射部が皮膚の表面と密着不十分状態の場合における計測タイミングを示す図である。It is a figure which shows the measurement timing in case an irradiation part is in the state of adhesion | attachment inadequate with the surface of skin. 照射部が皮膚の表面と密着状態の場合における計測タイミングを示す図である。It is a figure which shows the measurement timing in case an irradiation part is a close contact state with the surface of skin. 照射部と皮膚とが密着不十分状態の場合における検出光強度波形を示す図である。It is a figure which shows the detected light intensity waveform in the case where an irradiation part and skin are in a close contact | adherence state. 真皮層における吸収係数と積分区間との関係を示す図である。It is a figure which shows the relationship between the absorption coefficient in a dermis layer, and an integration area. 本発明の第2の実施形態の血糖値測定装置を用いて血糖値を測定する手順を示す図である。It is a figure which shows the procedure which measures a blood glucose level using the blood glucose level measuring apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の血糖値測定装置を用いて血糖値を測定する手順を示す図である。It is a figure which shows the procedure which measures a blood glucose level using the blood glucose level measuring apparatus of the 2nd Embodiment of this invention.

本発明の濃度定量装置及び濃度定量方法並びにプログラムを実施するための形態について説明する。
本発明では、濃度定量装置として血糖値測定装置を、観測対象として人の手のひらの皮膚を、目的成分としてグルコースを、それぞれ例に取り説明する。
An embodiment for carrying out a concentration determination apparatus, a concentration determination method, and a program according to the present invention will be described.
In the present invention, a blood glucose level measuring device will be described as an example of a concentration determination device, the skin of a human palm as an observation target, and glucose as a target component.

[第1の実施形態]
図1は、本発明の第1の実施形態の血糖値測定装置の構成を示す概略ブロック図である。
この血糖値測定装置100は、手のひら等の皮膚(観測対象)を構成する複数層のうちの真皮層(任意の層)に含まれるグルコース(目的成分)の濃度を非侵襲にて定量する装置であり、シミュレーション部101と、光路長分布算出部102と、光路長分布記憶部103と、時間分解波形算出部104と、時間分解波形記憶部105と、照射部106と、受光部107と、光路長取得部108と、無吸収時光強度取得部(光強度モデル取得部)109と、計測タイミング算出部110と、密着判定部111と、告知部112と、計測光強度取得部(光強度取得部)113と、計測時間分解波形記憶部114と、計測無吸収時光強度取得部115と、積分区間算出部116と、吸収係数算出部117と、吸収係数分布記憶部118と、吸収係数取得部119と、濃度算出部120と、照射量制御部121とを備えている。
[First Embodiment]
FIG. 1 is a schematic block diagram showing a configuration of a blood sugar level measuring apparatus according to the first embodiment of the present invention.
This blood glucose level measuring device 100 is a device that non-invasively quantifies the concentration of glucose (target component) contained in a dermis layer (arbitrary layer) of a plurality of layers constituting skin (observation target) such as a palm. Yes, a simulation unit 101, an optical path length distribution calculation unit 102, an optical path length distribution storage unit 103, a time-resolved waveform calculation unit 104, a time-resolved waveform storage unit 105, an irradiation unit 106, a light receiving unit 107, and an optical path Length acquisition unit 108, non-absorption light intensity acquisition unit (light intensity model acquisition unit) 109, measurement timing calculation unit 110, adhesion determination unit 111, notification unit 112, measurement light intensity acquisition unit (light intensity acquisition unit) ) 113, measurement time-resolved waveform storage unit 114, measurement non-absorption light intensity acquisition unit 115, integration interval calculation unit 116, absorption coefficient calculation unit 117, absorption coefficient distribution storage unit 118, and absorption unit An acquiring unit 119, and a concentration calculator 120, and a dose controller 121.

シミュレーション部101は、吸収係数がゼロの皮膚モデルに対して光を照射するシミュレーションを行う。
光路長分布算出部102は、皮膚に対して照射する短時間パルス光の、この皮膚を構成する各々の層における光路長分布のモデルを算出する。ここでは、吸収係数がゼロの皮膚モデルの光路長分布を算出する。
光路長分布記憶部103は、光路長分布算出部102にて算出した皮膚を構成する各々の層における光路長分布のモデルを記憶する。ここでは、吸収係数がゼロの皮膚モデルの光路長分布を記憶する。
The simulation part 101 performs the simulation which irradiates light with respect to the skin model whose absorption coefficient is zero.
The optical path length distribution calculation unit 102 calculates a model of the optical path length distribution in each layer constituting the skin of the short-time pulse light irradiated to the skin. Here, the optical path length distribution of the skin model with zero absorption coefficient is calculated.
The optical path length distribution storage unit 103 stores a model of the optical path length distribution in each layer constituting the skin calculated by the optical path length distribution calculation unit 102. Here, the optical path length distribution of the skin model having zero absorption coefficient is stored.

ここで、短時間パルス光とは、パルス幅の時間が照射部106から受光部107へ光が空気中を直接伝搬する時間よりも短いパルス光のことであり、例えば、パルス光の半値幅が0.1ps〜10ps、2つのパルス光の間の時間間隔が1ps〜100psのパルス光のことである。
また、光路長分布とは、光(光子)の移動経路の長さ(光路長)を当該光(光子)が受光部107に到達するまでの時間を基に分布関数として表したものである。
Here, the short-time pulsed light is pulsed light whose pulse width is shorter than the time during which light travels directly from the irradiation unit 106 to the light receiving unit 107 in the air. 0.1 ps to 10 ps refers to pulsed light having a time interval of 1 ps to 100 ps between two pulsed lights.
Further, the optical path length distribution is a distribution function representing the length (optical path length) of the moving path of light (photon) based on the time until the light (photon) reaches the light receiving unit 107.

時間分解波形算出部104は、皮膚に対して照射する短時間パルス光の時間分解波形のモデルを算出する。ここでは、吸収係数がゼロの皮膚モデルの時間分解波形を算出する。
時間分解波形記憶部105は、時間分解波形算出部104にて算出した短時間パルス光の時間分解波形のモデルを記憶する。ここでは、吸収係数がゼロの皮膚モデルの時間分解波形を記憶する。
The time-resolved waveform calculation unit 104 calculates a model of a time-resolved waveform of short-time pulse light that is applied to the skin. Here, the time-resolved waveform of the skin model with zero absorption coefficient is calculated.
The time-resolved waveform storage unit 105 stores a model of the time-resolved waveform of the short-time pulse light calculated by the time-resolved waveform calculation unit 104. Here, the time-resolved waveform of the skin model having zero absorption coefficient is stored.

照射部106は、皮膚に対して短時間パルス光を照射する。この照射部106が照射する複数の短時間パルス光は、皮膚を構成する主成分の各々の成分の吸収スペクトル分布の直交性が高くなる波長の光、すなわち、皮膚を構成する主成分の各々の成分のうち、ある主成分における特定成分の吸収スペクトルの極大値が他の成分の吸収スペクトルの極大値と大きく異なる波長の光を含んでいる。
受光部107は、短時間パルス光が皮膚によって後方散乱した光を受光する。この受光部107は、受光強度を記録する内部メモリー(図示せず)を備えている。なお、この内部メモリーは、受光部107に電気的に接続する外部メモリーに代えた構成としてもよい。
The irradiation unit 106 irradiates the skin with pulsed light for a short time. The plurality of short-time pulse lights emitted by the irradiation unit 106 is light having a wavelength that increases the orthogonality of the absorption spectrum distribution of each component of the main components constituting the skin, that is, each of the main components constituting the skin. Among the components, the maximum value of the absorption spectrum of a specific component in a certain main component includes light having a wavelength that is significantly different from the maximum value of the absorption spectrum of another component.
The light receiving unit 107 receives light obtained by back-scattering the short-time pulse light by the skin. The light receiving unit 107 includes an internal memory (not shown) that records the light reception intensity. The internal memory may be replaced with an external memory that is electrically connected to the light receiving unit 107.

ここで、観測対象である人の皮膚組織の構造について説明する。
図2は、人の皮膚組織の断面を示す模式図であり、皮膚31は、表皮層32と、真皮層(任意の層)33と、皮下組織34の3層により構成されている。
表皮層32は、最も外側にある厚み0.2mm〜0.3mmの薄い層で、概ね水を60%程度、蛋白質、脂質及びグルコースを含有する層であり、角質層、顆粒層、有棘層、底層等を含む。
Here, the structure of the human skin tissue to be observed will be described.
FIG. 2 is a schematic diagram showing a cross section of a human skin tissue. The skin 31 is composed of three layers of an epidermis layer 32, a dermis layer (arbitrary layer) 33, and a subcutaneous tissue 34.
The epidermis layer 32 is an outermost thin layer having a thickness of 0.2 mm to 0.3 mm, and is a layer containing about 60% of water, protein, lipid and glucose, and includes a stratum corneum, a granular layer, and a spiny layer. , Including bottom layer.

真皮層33は、表皮層32下に形成される厚み0.5mm〜2mmの層で、概ね水を60%程度、蛋白質、脂質及びグルコースを含有する層であり、この真皮層33内には神経、毛根、皮脂腺、汗腺、毛包、血管、リンパ管等が存在する。
皮下組織34は、真皮層33下に形成される厚み1〜3mmの層で、大部分が概ね脂質を90%以上含み、残部が水からなる皮下脂肪でできている。
真皮層33内には毛細血管等が発達しており、血中グルコースに応じた物質移動が速やかに起こり、血中グルコース濃度(血糖値)に対して真皮層33中のグルコース濃度も追随して変化すると考えられている。
The dermis layer 33 is a layer formed under the epidermis layer 32 and having a thickness of 0.5 mm to 2 mm. The dermis layer 33 is a layer containing approximately 60% of water, protein, lipid, and glucose. , Hair roots, sebaceous glands, sweat glands, hair follicles, blood vessels, lymphatic vessels, and the like.
The subcutaneous tissue 34 is a layer having a thickness of 1 to 3 mm formed under the dermis layer 33. The subcutaneous tissue 34 is mostly made of subcutaneous fat containing approximately 90% or more of lipids and the balance being water.
Capillaries and the like are developed in the dermis layer 33, mass transfer according to blood glucose occurs rapidly, and the glucose concentration in the dermis layer 33 follows the blood glucose concentration (blood glucose level). It is thought to change.

この血糖値測定装置100では、照射部106及び受光部107を所定の入出射間距離Wをおいて皮膚31の表面に密着させ、この密着状態で照射部106から皮膚31の表面に光Rを照射する。照射した光Rは皮膚31内の組織によって散乱され、皮膚31内に拡散する。拡散した光Rの一部は、受光部107に到達する(後方散乱光)。この受光部107に到達した後方散乱光が皮膚31内を伝搬してきた経路は、バナナ型の3次元形状、いわゆるバナナシェイプの経路となる。   In this blood glucose level measuring apparatus 100, the irradiation unit 106 and the light receiving unit 107 are brought into close contact with the surface of the skin 31 with a predetermined input / output distance W, and light R is emitted from the irradiation unit 106 to the surface of the skin 31 in this close contact state. Irradiate. The irradiated light R is scattered by the tissue in the skin 31 and diffuses into the skin 31. A part of the diffused light R reaches the light receiving unit 107 (backscattered light). The path through which the backscattered light that has reached the light receiving unit 107 has propagated in the skin 31 is a banana-shaped three-dimensional shape, a so-called banana-shaped path.

この照射部106と受光部107との入出射間距離Wと皮膚31内に侵入する光Rの侵入深さとの間には、一定の関係がある。そこで、照射部106と受光部107との入出射間距離Wを規定することにより、皮膚31内に侵入する光Rの侵入深さも一義的に決定されることとなる。例えば、入出射間距離Wを10mmとすると、光Rの侵入深さは10mmとなり、入出射間距離Wを0.8mmとすると、光Rの侵入深さは0.8mmとなる。   There is a certain relationship between the distance W between the incident part 106 and the light receiving part 107 and the penetration depth of the light R entering the skin 31. Therefore, the penetration depth of the light R that penetrates into the skin 31 is uniquely determined by defining the distance W between the emission and emission between the irradiation unit 106 and the light receiving unit 107. For example, if the distance W between incident and outgoing is 10 mm, the penetration depth of the light R is 10 mm, and if the distance W between incoming and outgoing is 0.8 mm, the penetration depth of the light R is 0.8 mm.

図3は、光の波長と皮膚への浸透深さとの関係を示す図である。図中、「Nd−YAG」はNd−YAGレーザーが出力するレーザー光の波長を、「Xe」はXeレーザーが出力するレーザー光の波長を、「Cs」はCsレーザーが出力するレーザー光の波長を、「CO」は一酸化炭素レーザーが出力するレーザー光の波長を、「CO」は炭酸ガスレーザーが出力するレーザー光の波長を、それぞれ示している。
図3によれば、真皮層33へ浸透させるのに十分な光としては、Nd−YAGレーザーが出力するレーザー光が好適であることが分かる。
FIG. 3 is a diagram showing the relationship between the wavelength of light and the penetration depth into the skin. In the figure, “Nd-YAG” is the wavelength of the laser beam output from the Nd-YAG laser, “Xe” is the wavelength of the laser beam output from the Xe laser, and “Cs” is the wavelength of the laser beam output from the Cs laser. “CO” represents the wavelength of the laser beam output from the carbon monoxide laser, and “CO 2 ” represents the wavelength of the laser beam output from the carbon dioxide laser.
According to FIG. 3, it can be seen that the laser light output from the Nd-YAG laser is suitable as the light sufficient to penetrate the dermis layer 33.

光路長取得部108は、光路長分布記憶部103から、光路長分布のモデルの所定の時刻における、皮膚の各々の層の光路長を取得する。ここでは、光路長分布記憶部103からある時刻における光路長を取得する。
無吸収時光強度取得部109は、時間分解波形記憶部105から、短時間パルス光の時間分解波形のモデルの所定の時刻における無吸収時光強度を取得する。ここでは、時間分解波形記憶部105からある時刻における無吸収時光強度を取得する。
The optical path length acquisition unit 108 acquires, from the optical path length distribution storage unit 103, the optical path length of each layer of the skin at a predetermined time of the optical path length distribution model. Here, the optical path length at a certain time is acquired from the optical path length distribution storage unit 103.
The non-absorption light intensity acquisition unit 109 acquires the non-absorption light intensity at a predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage unit 105. Here, the non-absorption light intensity at a certain time is acquired from the time-resolved waveform storage unit 105.

計測タイミング算出部110は、照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107から出力される計測光強度の時刻との時間差である計測タイミングを算出する。
照射量制御部121は、照射部106から観測対象へ短時間パルス光の予備照射を行うことにより、照射部106から観測対象へ照射される短時間パルス光の照射量を制御する。
この照射量制御部121では、特に、この短時間パルス光の照射量の低減の度合いを、人体が短時間パルス光の照射により受ける被爆量を考慮して、濃度測定時に照射する光出力に対して1/1000〜1/10の範囲内に設定する。これにより、人体が短時間パルス光を照射される際の被爆量が少なくなり、かつ、照射部106が出力する短時間パルス光の観測対象へ密着させられた安定な状態で、測定が行われる。その結果、測定精度を高めることが可能になる。
密着判定部111は、照射量制御部121により短時間パルス光の照射量が制御された後に、計測タイミング算出部110から出力される計測タイミングを基に、照射部106が皮膚の表面に密着しているか否かを判定する。
ここでは、計測タイミング算出部110から出力される計測タイミングが、密着判定部111に内蔵されている接触状態記憶部に記憶されている(1)〜(3)のいずれに当てはまるかを判定する。
The measurement timing calculation unit 110 calculates a measurement timing that is a time difference between the time of the trigger signal when the irradiation unit 106 irradiates the short-time pulse light and the time of the measurement light intensity output from the light receiving unit 107.
The irradiation amount control unit 121 controls the irradiation amount of the short time pulse light irradiated from the irradiation unit 106 to the observation target by performing preliminary irradiation of the short time pulse light from the irradiation unit 106 to the observation target.
In the irradiation amount control unit 121, in particular, the degree of reduction of the irradiation amount of the short-time pulse light is determined with respect to the light output irradiated at the time of concentration measurement in consideration of the exposure amount received by the human body by the irradiation of the short-time pulse light. To within a range of 1/1000 to 1/10. Thereby, the amount of exposure when the human body is irradiated with the short-time pulse light is reduced, and the measurement is performed in a stable state in which the human body is in close contact with the observation target of the short-time pulse light output from the irradiation unit 106. . As a result, the measurement accuracy can be increased.
After the irradiation amount control unit 121 controls the irradiation amount of the short-time pulsed light, the contact determination unit 111 causes the irradiation unit 106 to adhere to the skin surface based on the measurement timing output from the measurement timing calculation unit 110. It is determined whether or not.
Here, it is determined whether the measurement timing output from the measurement timing calculation unit 110 corresponds to any one of (1) to (3) stored in the contact state storage unit built in the contact determination unit 111.

(1)空気を伝搬して皮膚の表面にて反射した光を受けている皮膚の表面に対して「非接触状態」での照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107が出力する計測光強度の時刻との時間差である計測タイミング。
(2)空気を伝搬して皮膚の表面にて反射した光と皮膚内を伝搬した光のいずれも受けている皮膚の表面に対して「密着不十分状態」での照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107が出力する計測光強度の時刻との時間差である計測タイミング。
(3)皮膚内を伝搬した光のみを受けている皮膚の表面に対して「密着状態」での照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107が出力する計測光強度の時刻との時間差である計測タイミング。
(1) the time of a trigger signal at which the irradiation unit 106 in a “non-contact state” irradiates a pulsed light for a short time with respect to the skin surface receiving light reflected by the skin surface by propagating air; A measurement timing that is a time difference from the time of the measurement light intensity output from the light receiving unit 107.
(2) The irradiation unit 106 in the “insufficient contact state” for a short time pulsed against the surface of the skin receiving both the light propagated through the air and reflected at the skin surface and the light propagated through the skin. A measurement timing that is a time difference between the time of the trigger signal for irradiating light and the time of the measurement light intensity output from the light receiving unit 107.
(3) Time of a trigger signal when the irradiation unit 106 emits pulsed light for a short time to the surface of the skin receiving only the light propagated through the skin and the measurement output from the light receiving unit 107 Measurement timing, which is the time difference from the time of light intensity.

この密着判定部111には、密着判定部111の判定結果を告知する告知部112が設けられている。この告知部112は、判定結果を音声にて告知するスピーカー等の音声装置、判定結果を画像にて表示する液晶ディスプレイ等の表示装置、判定結果をスピーカー等の音声装置及びLED等の発光装置等にて知らせる告知装置等、のいずれか1種または2種以上を備えている。これらは必要に応じて選択使用することができる。   The contact determination unit 111 is provided with a notification unit 112 that notifies the determination result of the contact determination unit 111. This notification unit 112 is a sound device such as a speaker that notifies the determination result by voice, a display device such as a liquid crystal display that displays the determination result as an image, a sound device such as a speaker, and a light emitting device such as an LED. One or two or more of notification devices, etc. to be notified are provided. These can be selected and used as required.

計測光強度取得部113は、密着判定部111が「照射部106が皮膚の表面に密着している」と判定した場合に、受光部107が受光した光のある時刻における光強度を取得する。
計測時間分解波形記憶部114は、計測光強度取得部113が取得した短時間パルス光の時間分解波形のモデルを記憶する。ここでは、吸収係数がゼロ、すなわち無吸収時の皮膚モデルの時間分解波形を記憶する。
計測無吸収時光強度取得部115は、計測時間分解波形記憶部114が記憶した短時間パルス光の時間分解波形から無吸収時の光強度を取得する。
The measurement light intensity acquisition unit 113 acquires the light intensity at a certain time of the light received by the light receiving unit 107 when the contact determination unit 111 determines that “the irradiation unit 106 is in close contact with the surface of the skin”.
The measurement time-resolved waveform storage unit 114 stores a model of the time-resolved waveform of the short-time pulse light acquired by the measurement light intensity acquisition unit 113. Here, the time-resolved waveform of the skin model when the absorption coefficient is zero, that is, no absorption is stored.
The measurement non-absorption light intensity acquisition unit 115 acquires the non-absorption light intensity from the time-resolved waveform of the short-time pulse light stored in the measurement time-resolved waveform storage unit 114.

積分区間算出部116は、光路長取得部108が取得した光路長分布のモデルの皮膚の各々の層の光路長と、無吸収時光強度取得部109が取得した短時間パルス光の時間分解波形のモデルの無吸収時光強度と、計測光強度取得部113が取得した受光部107が受光した光の強度分布とに基づいて、前記光の強度分布から任意の層の光強度に対応する領域の時間の範囲を算出する。   The integration interval calculation unit 116 calculates the optical path length of each layer of the model skin of the optical path length distribution acquired by the optical path length acquisition unit 108 and the time-resolved waveform of the short-time pulse light acquired by the non-absorption light intensity acquisition unit 109. Based on the non-absorbing light intensity of the model and the light intensity distribution received by the light receiving unit 107 acquired by the measurement light intensity acquisition unit 113, the time of the region corresponding to the light intensity of an arbitrary layer from the light intensity distribution The range of is calculated.

ここで、積分区間とは、光の強度分布における任意の層の光強度に対応する領域の時間幅のことであり、開始時刻と、終了時刻と、増分時間とにより決定することができる。
例えば、(1)後方散乱した光を受光する受光部107の出力する光強度が計測光強度取得部113の最小検出感度を超えて検出された時刻から最小検出感度と等しい光強度で検出された時刻までの時間、(2)シミュレーション部101で得られる無吸収時光強度を記憶している時間分解波形記憶部105から取得した無吸収時光強度の時間特性、(3)皮膚表面に接する受光部107と照射部106との間隔、(4)シミュレーション部101に与える皮膚モデルのサイズ及び光学特性(散乱係数、吸収係数、非等方性パラメーター、または屈折率)を用いて、積分区間の開始時刻、終了時刻、増分時間を決定する。
Here, the integration interval is a time width of a region corresponding to the light intensity of an arbitrary layer in the light intensity distribution, and can be determined by the start time, the end time, and the increment time.
For example, (1) the light intensity output from the light receiving unit 107 that receives the backscattered light is detected with a light intensity equal to the minimum detection sensitivity from the time when the light intensity output exceeds the minimum detection sensitivity of the measurement light intensity acquisition unit 113. Time to time, (2) time characteristics of non-absorbing light intensity acquired from the time-resolved waveform storage unit 105 storing the non-absorbing light intensity obtained by the simulation unit 101, and (3) a light receiving unit 107 in contact with the skin surface And (4) the start time of the integration interval using the size and optical characteristics (scattering coefficient, absorption coefficient, anisotropic parameter, or refractive index) of the skin model given to the simulation unit 101, Determine the end time and increment time.

吸収係数算出部117は、積分区間算出部116が算出した任意の層の光強度に対応する領域の時間の範囲、例えば積分区間の開始時刻、終了時刻、増分時間に基づいて皮膚の任意の層の吸収係数を算出する。
ここでは、積分区間算出部116によって定めた積分区間での任意の層の吸収係数及び推定誤差率を求め、積分区間に対する任意の層の吸収係数及び推定誤差率の分布を算出する。
この吸収係数算出部117では、皮膚における任意の層の吸収係数を、下記の式(4)から算出する。
The absorption coefficient calculation unit 117 is based on the time range of the region corresponding to the light intensity of the arbitrary layer calculated by the integration interval calculation unit 116, for example, the arbitrary layer of the skin based on the start time, end time, and increment time of the integration interval. The absorption coefficient is calculated.
Here, the absorption coefficient and estimated error rate of an arbitrary layer in the integration interval determined by the integration interval calculation unit 116 are obtained, and the distribution of the absorption coefficient and estimated error rate of the arbitrary layer with respect to the integration interval is calculated.
In this absorption coefficient calculation unit 117, the absorption coefficient of an arbitrary layer in the skin is calculated from the following equation (4).

Figure 2016010717
Figure 2016010717

但し、ln(A)はAの自然対数、I(t)は受光部107が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の吸収係数を示す。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の吸収係数、μは真皮層の吸収係数、μは皮下組織の吸収係数を示す。
Where ln (A) is the natural logarithm of A, I (t) is the light intensity received by the light receiving unit 107 at time t, and N (t) is a model of a time-resolved waveform of short-time pulsed light with a specific wavelength λk. The light intensity at time t, Li (t) represents the optical path length of the i-th layer at time t in the model of the optical path length distribution in each layer of the skin, and μi represents the absorption coefficient of the i-th layer.
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the epidermal layer absorption coefficient, μ 2 is the dermal layer absorption coefficient, and μ 3 is the subcutaneous tissue. Absorption coefficient is shown.

吸収係数分布記憶部118は、吸収係数算出部117が算出した積分区間に対する任意の層の吸収係数及び推定誤差率の分布を記憶する。
吸収係数取得部119は、吸収係数分布記憶部118から取得した積分区間に対する任意の層の吸収係数及び推定誤差率の分布と、積分区間の変化に対する吸収係数変動率の範囲等の基準とを用いて、皮膚の表面からの特定深さにおける層の皮膚主成分における血糖相応のグルコース濃度に基づく吸収係数を取得する。
The absorption coefficient distribution storage unit 118 stores the absorption coefficient and estimated error rate distribution of an arbitrary layer for the integration interval calculated by the absorption coefficient calculation unit 117.
The absorption coefficient acquisition unit 119 uses the distribution of the absorption coefficient and estimated error rate of an arbitrary layer with respect to the integration interval acquired from the absorption coefficient distribution storage unit 118, and the standard such as the range of the absorption coefficient fluctuation rate with respect to the change of the integration interval. Thus, an absorption coefficient based on the glucose concentration corresponding to blood glucose in the skin main component of the layer at a specific depth from the skin surface is obtained.

濃度算出部120は、吸収係数取得部19が取得した皮膚の表面からの特定深さにおける層の皮膚主成分における血糖相応のグルコース濃度に基づく吸収係数から、特定深さの層に含まれるグルコースの濃度を算出する。
この濃度算出部20では、皮膚の任意の層におけるグルコースの濃度を、下記の式(5)から算出する。
The concentration calculation unit 120 calculates the concentration of glucose contained in the layer at the specific depth from the absorption coefficient based on the glucose concentration corresponding to blood glucose in the skin main component of the layer at the specific depth from the skin surface acquired by the absorption coefficient acquisition unit 19. Calculate the concentration.
The concentration calculator 20 calculates the glucose concentration in an arbitrary layer of the skin from the following equation (5).

Figure 2016010717
Figure 2016010717

但し、μaは皮膚の任意の層である第a層における吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の吸収係数、pは皮膚を構成する主成分の個数、qは特定波長λkの種類数を示す。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の吸収係数、μは真皮層の吸収係数、μは皮下組織の吸収係数を示す。
Where μa is the absorption coefficient in the a-th layer which is an arbitrary layer of the skin, gj is the molar concentration of the j-th component constituting the skin, εj is the absorption coefficient of the j-th component, and p is the number of main components constituting the skin Q indicate the number of types of the specific wavelength λk.
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the epidermal layer absorption coefficient, μ 2 is the dermal layer absorption coefficient, and μ 3 is the subcutaneous tissue. Absorption coefficient is shown.

この血糖値測定装置100では、照射部106は、皮膚に短時間パルス光を照射し、受光部107は、短時間パルス光が皮膚により後方散乱した光を受光し、計測タイミング算出部110は、照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107から出力される計測光強度の時刻との時間差である計測タイミングを算出し、密着判定部111は、計測タイミング算出部110から出力される計測タイミングを基に、照射部106が皮膚の表面に密着しているか否かを判定する。   In this blood glucose level measuring apparatus 100, the irradiation unit 106 irradiates the skin with short-time pulse light, the light-receiving unit 107 receives light back-scattered by the short-time pulse light by the skin, and the measurement timing calculation unit 110 The irradiation unit 106 calculates a measurement timing that is a time difference between the time of the trigger signal that irradiates the short-time pulse light and the time of the measurement light intensity output from the light receiving unit 107, and the contact determination unit 111 calculates the measurement timing. Based on the measurement timing output from 110, it is determined whether or not the irradiation unit 106 is in close contact with the surface of the skin.

ここで、照射部106が皮膚の表面に密着していると判定された場合、告知部112が判定結果を告知するとともに、計測光強度取得部113が、時刻tにおいて受光部107が受光した後方散乱光の光強度を取得する。
一方、照射部106が皮膚の表面に密着していないと判定された場合、告知部112が判定結果を告知するとともに、密着判定部111が「照射部106が皮膚の表面に密着している」と判定するまで、照射部106を皮膚の表面にて摺動させて密着判定部111が「照射部106が皮膚の表面に密着しているか否かを判定する」という動作を繰り返し行う。
Here, when it is determined that the irradiation unit 106 is in close contact with the surface of the skin, the notification unit 112 notifies the determination result, and the measurement light intensity acquisition unit 113 receives the rear light received by the light receiving unit 107 at time t. Obtain the light intensity of the scattered light.
On the other hand, when it is determined that the irradiation unit 106 is not in close contact with the skin surface, the notification unit 112 notifies the determination result, and the contact determination unit 111 “the irradiation unit 106 is in close contact with the skin surface”. Until the determination is made, the irradiation unit 106 is slid on the surface of the skin, and the contact determination unit 111 repeatedly performs an operation of “determining whether or not the irradiation unit 106 is in close contact with the surface of the skin”.

次いで、光路長取得部108は、光路長分布記憶部103から、皮膚モデルにおける光路長分布の時刻tにおける皮膚の各層の光路長を取得し、無吸収時光強度取得部109は、時間分解波形記憶部105から、皮膚モデルにおける短時間パルス光の時間分解波形の時刻tにおける光の強度を取得する。   Next, the optical path length acquisition unit 108 acquires the optical path length of each layer of the skin at time t of the optical path length distribution in the skin model from the optical path length distribution storage unit 103, and the non-absorption light intensity acquisition unit 109 stores the time-resolved waveform storage From the unit 105, the light intensity at time t of the time-resolved waveform of the short-time pulsed light in the skin model is acquired.

次いで、積分区間算出部116は、光路長取得部108が取得した光路長分布のモデルの皮膚の各々の層の光路長、例えば、光路長分布記憶部103から取得した光路長と、無吸収時光強度取得部109が取得した短時間パルス光の時間分解波形のモデルにおける光強度、例えば、時間分解波形記憶部105から取得した光強度と、計測光強度取得部113が取得した受光部107が受光した光の強度分布とに基づいて、前記光の強度分布から任意の層の光強度に対応する領域の積分区間を算出する。   Next, the integration interval calculation unit 116 calculates the optical path length of each skin layer of the optical path length distribution model acquired by the optical path length acquisition unit 108, for example, the optical path length acquired from the optical path length distribution storage unit 103, and the non-absorbing light. The light intensity in the time-resolved waveform model of the short-time pulse light acquired by the intensity acquisition unit 109, for example, the light intensity acquired from the time-resolved waveform storage unit 105, and the light receiving unit 107 acquired by the measurement light intensity acquisition unit 113 receive light. Based on the light intensity distribution, an integration interval of a region corresponding to the light intensity of an arbitrary layer is calculated from the light intensity distribution.

例えば、(1)後方散乱した光を受光する受光部107の出力する光強度が計測光強度取得部113の最小検出感度を超えて検出された時刻から最小検出感度と等しい光強度で検出された時刻までの時間、(2)シミュレーション部101で得られる無吸収時光強度を記憶している時間分解波形記憶部105から取得した無吸収時光強度の時間特性、(3)皮膚表面に接する受光部107と照射部106との間隔、(4)シミュレーション部101に与える皮膚モデルのサイズ及び光学特性(散乱係数、吸収係数、非等方性パラメーター、または屈折率)を用いて、積分区間の開始時刻、終了時刻、増分時間を決定する。   For example, (1) the light intensity output from the light receiving unit 107 that receives the backscattered light is detected with a light intensity equal to the minimum detection sensitivity from the time when the light intensity output exceeds the minimum detection sensitivity of the measurement light intensity acquisition unit 113. Time to time, (2) time characteristics of non-absorbing light intensity acquired from the time-resolved waveform storage unit 105 storing the non-absorbing light intensity obtained by the simulation unit 101, and (3) a light receiving unit 107 in contact with the skin surface And (4) the start time of the integration interval using the size and optical characteristics (scattering coefficient, absorption coefficient, anisotropic parameter, or refractive index) of the skin model given to the simulation unit 101, Determine the end time and increment time.

次いで、吸収係数算出部117は、積分区間算出部116によって定めた積分区間での任意の層の吸収係数及び推定誤差率を求め、積分区間に対する任意の層の吸収係数及び推定誤差率の分布を算出する。
次いで、吸収係数分布記憶部118は、吸収係数算出部117が算出した積分区間に対する任意の層の吸収係数及び推定誤差率の分布を記憶する。
次いで、吸収係数取得部119は、吸収係数分布記憶部118から取得した積分区間に対する任意の層の吸収係数及び推定誤差率の分布と、積分区間の変化に対する吸収係数変動率の範囲等の基準とを用いて、皮膚の表面からの特定深さにおける層の皮膚主成分における血糖相応のグルコース濃度に基づく吸収係数を取得する。
Next, the absorption coefficient calculation unit 117 obtains the absorption coefficient and estimated error rate of an arbitrary layer in the integration interval determined by the integration interval calculation unit 116, and calculates the distribution of the absorption coefficient and estimated error rate of the arbitrary layer with respect to the integration interval. calculate.
Next, the absorption coefficient distribution storage unit 118 stores the distribution of the absorption coefficient and estimated error rate of an arbitrary layer for the integration interval calculated by the absorption coefficient calculation unit 117.
Next, the absorption coefficient acquisition unit 119 includes a distribution of an absorption coefficient and an estimated error rate of an arbitrary layer with respect to the integration interval acquired from the absorption coefficient distribution storage unit 118, and a reference such as a range of the absorption coefficient variation rate with respect to a change in the integration interval. Is used to obtain an absorption coefficient based on the glucose concentration corresponding to blood glucose in the skin main component of the layer at a specific depth from the surface of the skin.

次いで、濃度算出部120は、吸収係数取得部119が取得した皮膚の表面からの特定深さにおける層の皮膚主成分における血糖相応のグルコース濃度に基づく吸収係数に基づいて、皮膚の表面からの特定深さにおける層に含まれるグルコースの濃度を、上記の式(5)に基づき算出する。
これにより、特定深さの層以外の層によるノイズの影響を軽減して、特定深さの層に含まれるグルコースの濃度を算出することができる。
Next, the concentration calculation unit 120 identifies the skin surface based on the absorption coefficient based on the glucose concentration corresponding to blood glucose in the skin main component of the layer at the specific depth from the skin surface acquired by the absorption coefficient acquisition unit 119. The concentration of glucose contained in the layer at the depth is calculated based on the above equation (5).
Thereby, the influence of the noise by layers other than the layer of specific depth can be reduced, and the concentration of glucose contained in the layer of specific depth can be calculated.

この血糖値測定装置100では、計測タイミング算出部110により、照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107から出力される計測光強度の時刻との時間差である計測タイミングを算出し、密着判定部111により、計測タイミング算出部110から出力される計測タイミングを基に、照射部106が皮膚の表面に密着しているか否かを判定するので、照射部106と皮膚の表面との密着状態を確認することができ、特定深さの層に含まれるグルコースの光の吸収量、すなわちグルコースの濃度を、非侵襲的に精度良く測定することができる。   In this blood sugar level measuring apparatus 100, the measurement timing calculation unit 110 measures a time difference between the time of the trigger signal when the irradiation unit 106 irradiates the pulsed light for a short time and the time of the measurement light intensity output from the light receiving unit 107. The timing is calculated, and the contact determination unit 111 determines whether or not the irradiation unit 106 is in close contact with the skin surface based on the measurement timing output from the measurement timing calculation unit 110. The amount of light absorbed in the layer having a specific depth, that is, the concentration of glucose can be measured noninvasively with high accuracy.

次に、血糖値測定装置100の動作を説明する。
血糖値測定装置100により、図2に示す真皮層33中のグルコース濃度を測定する場合、血糖値を測定する前に、予め皮膚モデルの各層における光路長分布と時間分解波形とを算出しておく必要がある。
Next, the operation of the blood sugar level measuring apparatus 100 will be described.
When the glucose level in the dermis layer 33 shown in FIG. 2 is measured by the blood glucose level measuring apparatus 100, the optical path length distribution and the time-resolved waveform in each layer of the skin model are calculated in advance before measuring the blood glucose level. There is a need.

ここで、皮膚モデルの光路長分布及び時間分解波形の算出方法を説明する。
初めに、シミュレーション部101は、皮膚モデルを生成する。皮膚モデルの生成は、皮膚の各層の光散乱係数、吸収係数及び厚みを決定することで行う。ここで、皮膚の各層の散乱係数及び厚みは、個体による差が少ないので、予めサンプルを取ることなどによって決定すると良い。なお、表皮層32の厚みは略0.3mm、真皮層33の厚みは略1.2mm、皮下組織34の厚みは略3.0mmである。
また、ここで用いる皮膚モデルの吸収係数はゼロとする。その理由は、この皮膚モデルを用いて光吸収量を算出するからである。
Here, a method for calculating the optical path length distribution and time-resolved waveform of the skin model will be described.
First, the simulation unit 101 generates a skin model. The skin model is generated by determining the light scattering coefficient, absorption coefficient, and thickness of each layer of the skin. Here, since the scattering coefficient and thickness of each layer of the skin have little difference between individuals, it is preferable to determine by taking a sample in advance. The thickness of the epidermis layer 32 is approximately 0.3 mm, the thickness of the dermis layer 33 is approximately 1.2 mm, and the thickness of the subcutaneous tissue 34 is approximately 3.0 mm.
The absorption coefficient of the skin model used here is zero. The reason is that the amount of light absorption is calculated using this skin model.

シミュレーション部101は、皮膚モデルを生成すると、この皮膚モデルに光を照射するシミュレーションを行う。このとき、照射部106の位置と受光部107の位置との間の距離を決定しておく必要がある。シミュレーションは、モンテカルロ法を用いて行うと良い。モンテカルロ法によるシミュレーションは、例えば以下のように行われる。   When the simulation unit 101 generates a skin model, the simulation unit 101 performs a simulation of irradiating the skin model with light. At this time, it is necessary to determine the distance between the position of the irradiation unit 106 and the position of the light receiving unit 107. The simulation is preferably performed using the Monte Carlo method. The simulation by the Monte Carlo method is performed as follows, for example.

まず、シミュレーション部101は、照射する光のモデルを光子(光束)とし、この光子を皮膚モデルに照射する計算を行う。皮膚モデルに照射された光子は、皮膚モデル内を移動する。このとき、光子は、次に進む点までの距離L及び方向θを乱数Rによって決定する。シミュレーション部101は、光子が次に進む点までの距離Lの計算を、式(6)により行う。   First, the simulation unit 101 uses a model of light to be irradiated as a photon (light beam), and performs calculation to irradiate the skin model with the photon. Photons irradiated to the skin model move in the skin model. At this time, the photon determines the distance L and the direction θ to the next advancing point by the random number R. The simulation unit 101 calculates the distance L to the point at which the photon advances next using Equation (6).

Figure 2016010717
Figure 2016010717

但し、ln(A)はAの自然対数を示し、μsは、皮膚モデルの第s層(表皮層、真皮層、皮下組織層の何れか)の散乱係数を示す。
また、シミュレーション部101は、光子が次に進む点までの方向θの計算を、式(7)により行う。
Here, ln (A) represents the natural logarithm of A, and μs represents the scattering coefficient of the s-th layer (any one of the epidermis layer, dermis layer, and subcutaneous tissue layer) of the skin model.
In addition, the simulation unit 101 calculates the direction θ up to the point where the photon advances next by Expression (7).

Figure 2016010717
Figure 2016010717

但し、gは、散乱角度の余弦(cos)の平均である非等方性パラメーターを示し、皮膚の非等方性パラメーターは、略0.9である。
シミュレーション部101は、上記式(6)及び式(7)の計算を単位時間毎に繰り返すことにより、照射部106から受光部107までの光子の移動経路を算出することができる。シミュレーション部101は、複数の光子について移動距離の算出を行う。例えば、シミュレーション部101は、10個の光子について移動距離を算出する。
However, g shows the anisotropic parameter which is the average of cosine (cos) of a scattering angle, and the anisotropic parameter of skin is about 0.9.
The simulation unit 101 can calculate the movement path of photons from the irradiation unit 106 to the light receiving unit 107 by repeating the calculations of the above formulas (6) and (7) every unit time. The simulation unit 101 calculates a movement distance for a plurality of photons. For example, the simulation unit 101 calculates the movement distance for 10 8 photons.

図4は、シミュレーション部が算出した各層の光路長分布を示す図である。
図4では、横軸を光子の照射からの経過時間とし、縦軸を光路長の対数表示としている。
シミュレーション部101は、受光部107に到達した光子の各々の移動経路を、移動経路が通過する層毎に分類する。そして、シミュレーション部101は、単位時間毎に到達した光子の移動経路の平均長を分類された層毎に算出することで、図4に示すような皮膚の各層の光路長分布を算出する。
FIG. 4 is a diagram illustrating the optical path length distribution of each layer calculated by the simulation unit.
In FIG. 4, the horizontal axis represents the elapsed time from the photon irradiation, and the vertical axis represents the logarithm of the optical path length.
The simulation unit 101 classifies each movement path of photons that have reached the light receiving unit 107 for each layer through which the movement path passes. And the simulation part 101 calculates the optical path length distribution of each layer of skin as shown in FIG. 4 by calculating the average length of the movement path | route of the photon which arrived for every unit time for every classified layer.

また、シミュレーション部101は、単位時間毎に受光部107に到達した光子の個数を算出することで、図5に示すような皮膚モデルの時間分解波形を算出する。
図5は、シミュレーション部101で得た無吸収時光強度(受光光子数と等しい)N(t)の時間分解波形を示す図である。図5では、横軸を光子の照射からの経過時間とし、縦軸を受光部107が検出した光子数としている。
Moreover, the simulation part 101 calculates the time-resolved waveform of a skin model as shown in FIG. 5 by calculating the number of photons that have reached the light-receiving part 107 every unit time.
FIG. 5 is a diagram showing a time-resolved waveform of the non-absorbing light intensity (equal to the number of received photons) N (t) obtained by the simulation unit 101. In FIG. 5, the horizontal axis represents the elapsed time from photon irradiation, and the vertical axis represents the number of photons detected by the light receiving unit 107.

上述したような処理により、シミュレーション部101は、複数の波長に対して、皮膚モデルの光路長分布及び時間分解波形を算出する。このとき、シミュレーション部101は、皮膚の主成分(水、たんぱく質、脂質、グルコース等)の吸収スペクトルの差が大きい波長について光路長分布及び時間分解波形を算出すると良い。   Through the processing as described above, the simulation unit 101 calculates the optical path length distribution and time-resolved waveform of the skin model for a plurality of wavelengths. At this time, the simulation unit 101 may calculate an optical path length distribution and a time-resolved waveform for a wavelength having a large difference in absorption spectrum of skin main components (water, protein, lipid, glucose, etc.).

図6は、皮膚の主成分の吸収スペクトルを示すグラフである。図6では、横軸を照射する光の波長とし、縦軸を吸収係数としている。
図6によれば、グルコースの吸収係数は波長が1600nmのときに極大となり、水の吸収係数は波長が1450nmのときに極大となることがわかる。
したがって、シミュレーション部101は、例えば1400nm、1450nm、1500nm、1600nm、1680nm、1720nm、1740nmというように皮膚の主成分の吸収スペクトルの差が大きい波長について光路長分布及び時間分解波形を算出すると良い。
FIG. 6 is a graph showing the absorption spectrum of the main component of the skin. In FIG. 6, the horizontal axis represents the wavelength of light to be irradiated, and the vertical axis represents the absorption coefficient.
According to FIG. 6, it can be seen that the absorption coefficient of glucose is maximized when the wavelength is 1600 nm, and the absorption coefficient of water is maximized when the wavelength is 1450 nm.
Therefore, the simulation unit 101 may calculate the optical path length distribution and the time-resolved waveform for wavelengths having a large difference in the absorption spectrum of the main component of the skin, such as 1400 nm, 1450 nm, 1500 nm, 1600 nm, 1680 nm, 1720 nm, and 1740 nm.

シミュレーション部101が複数の波長に対する皮膚モデルの光路長分布及び時間分解波形を算出すると、光路長分布記憶部103は、算出された光路長分布の情報を記憶し、時間分解波形記憶部105は、算出された時間分解波形の情報を記憶する。   When the simulation unit 101 calculates the optical path length distribution and time-resolved waveform of the skin model for a plurality of wavelengths, the optical path length distribution storage unit 103 stores information on the calculated optical path length distribution, and the time-resolved waveform storage unit 105 Information on the calculated time-resolved waveform is stored.

次に、この血糖値測定装置100を用いて血糖値を測定する手順について、図7及び図8に基づき説明する。
まず、被測定者が血糖値測定装置100を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置100を動作させ、照射部106が、皮膚に対して波長λkの短時間パルス光を照射する(ステップS1)。
この波長λとしては、例えば、シミュレーション部101が光路長分布及び時間分解波形を算出した複数の波長の中の1つが好ましい。
例えば、皮膚を構成する主成分のうち、ある主成分における特定成分の吸収係数が他の成分の吸収係数より大きくなる波長の光、すなわち、特定成分の吸収係数の極小値が他の成分の吸収係数の極小値と大きく異なる波長の光について光路長分布及び時間分解波形を算出すると良い。
Next, a procedure for measuring a blood sugar level using the blood sugar level measuring apparatus 100 will be described with reference to FIGS.
First, the person to be measured places the blood glucose level measuring device 100 on the skin such as the wrist and operates the blood glucose level measuring device 100 by pressing a measurement start switch (not shown) or the like. Irradiation with λk short-time pulse light is performed (step S1).
As the wavelength λ k , for example, one of a plurality of wavelengths for which the simulation unit 101 has calculated the optical path length distribution and the time-resolved waveform is preferable.
For example, among the main components that make up the skin, light having a wavelength at which the absorption coefficient of a specific component in one main component is greater than the absorption coefficient of another component, that is, the minimum value of the absorption coefficient of a specific component is absorbed by the other component It is preferable to calculate the optical path length distribution and the time-resolved waveform for light having a wavelength significantly different from the minimum value of the coefficient.

照射部106が波長λの短時間パルス光を照射すると、受光部107は、照射部106から照射され皮膚によって後方散乱された光を受光する(ステップS2)。
このとき、受光部107は、照射開始からの単位時間毎(例えば、1ピコ秒毎の時刻t〜t)の受光強度を、内部メモリー(図示せず)に記録しておく。
When the irradiation unit 106 irradiates the short pulse light having a wavelength lambda k, the light receiving portion 107 receives the light backscattered by the skin is irradiated from the irradiation unit 106 (step S2).
At this time, the light receiving unit 107 records the received light intensity for each unit time from the start of irradiation (for example, times t 1 to t m every 1 picosecond) in an internal memory (not shown).

次いで、照射量制御部121が、照射部106から観測対象へ短時間パルス光の予備照射を行うことにより、照射部106から観測対象へ照射される短時間パルス光の照射量を、人体が短時間パルス光の照射により受ける被爆量を考慮して、濃度測定時に照射する光出力に対して1/1000〜1/10の範囲内に制御する(ステップS3)。
ここで、短時間パルス光の照射量が濃度測定時に照射する光出力に対して1/1000〜1/10の範囲内に設定されていなかった場合、再度、照射部106が、皮膚に対して波長λkの短時間パルス光を照射する(ステップS1)以降を行う。
次いで、照射部106が皮膚の表面に密着しているか否かを判定する(ステップS4)。
すなわち、計測タイミング算出部110が、照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107から出力される計測光強度の時刻との時間差である計測タイミングを算出し、密着判定部111が、計測タイミング算出部110から出力される計測タイミングを基に、照射部106が皮膚の表面に密着しているか否かを判定する。
ここでは、計測タイミング算出部110から出力される計測タイミングが、密着判定部111に内蔵されている接触状態記憶部に記憶されている(1)〜(3)のいずれに当てはまるかを判定する。
Next, the irradiation amount control unit 121 performs preliminary irradiation of short-time pulse light from the irradiation unit 106 to the observation target, so that the human body reduces the irradiation amount of the short-time pulse light irradiated from the irradiation unit 106 to the observation target. In consideration of the exposure amount received by the time pulse light irradiation, the light output irradiated at the time of concentration measurement is controlled within a range of 1/1000 to 1/10 (step S3).
Here, when the irradiation amount of the short-time pulse light is not set within the range of 1/1000 to 1/10 with respect to the light output irradiated at the concentration measurement, the irradiation unit 106 again applies to the skin. Irradiation with short-time pulsed light of wavelength λk (step S1) and subsequent steps are performed.
Next, it is determined whether or not the irradiation unit 106 is in close contact with the surface of the skin (step S4).
That is, the measurement timing calculation unit 110 calculates the measurement timing that is the time difference between the time of the trigger signal when the irradiation unit 106 irradiates the short-time pulse light and the time of the measurement light intensity output from the light receiving unit 107, The determination unit 111 determines whether or not the irradiation unit 106 is in close contact with the surface of the skin based on the measurement timing output from the measurement timing calculation unit 110.
Here, it is determined whether the measurement timing output from the measurement timing calculation unit 110 corresponds to any one of (1) to (3) stored in the contact state storage unit built in the contact determination unit 111.

(1)空気を伝搬して皮膚の表面にて反射した光を受けている皮膚の表面に対して「非接触状態」での照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107が出力する計測光強度の時刻との時間差である計測タイミング。
この非接触状態では、図9に示すように、時間の起点である照射部106の出射時刻からtps以内、例えば10ps以内に皮膚におけるリーク光(直接伝搬光)が観測され、出射時刻からtps以降に皮膚からの後方散乱光は観測されない。
(1) the time of a trigger signal at which the irradiation unit 106 in a “non-contact state” irradiates a pulsed light for a short time with respect to the skin surface receiving light reflected by the skin surface by propagating air; A measurement timing that is a time difference from the time of the measurement light intensity output from the light receiving unit 107.
In this non-contact state, as shown in FIG. 9, leak light (directly propagated light) in the skin is observed within t 1 ps, for example, within 10 ps from the emission time of the irradiation unit 106 that is the starting point of time. No backscattered light from the skin is observed after t 2 ps.

(2)空気を伝搬して皮膚の表面にて反射した光と皮膚内を伝搬した光のいずれも受けている皮膚の表面に対して「密着不十分状態」での照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107が出力する計測光強度の時刻との時間差である計測タイミング。
この密着不十分状態では、図10に示すように、時間の起点である照射部106の出射時刻からtps以内、例えば10ps以内に皮膚におけるリーク光(直接伝搬光)が観測されるとともに、出射時刻からtps以降に皮膚からの後方散乱光が観測される。
(2) The irradiation unit 106 in the “insufficient contact state” for a short time pulsed against the surface of the skin receiving both the light propagated through the air and reflected at the skin surface and the light propagated through the skin. A measurement timing that is a time difference between the time of the trigger signal for irradiating light and the time of the measurement light intensity output from the light receiving unit 107.
In this inadequate contact state, as shown in FIG. 10, leak light (direct propagation light) in the skin is observed within t 1 ps, for example, within 10 ps from the emission time of the irradiation unit 106 that is the starting point of time, Backscattered light from the skin is observed after t 2 ps from the emission time.

(3)皮膚内を伝搬した光のみを受けている皮膚の表面に対して「密着状態」での照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107が出力する計測光強度の時刻との時間差である計測タイミング。
この密着状態では、図11に示すように、時間の起点である照射部106の出射時刻からtps以降に皮膚からの後方散乱光が観測され、出射時刻からtps以内、例えば10ps以内に皮膚におけるリーク光(直接伝搬光)は観測されない。
(3) Time of a trigger signal when the irradiation unit 106 emits pulsed light for a short time to the surface of the skin receiving only the light propagated through the skin and the measurement output from the light receiving unit 107 Measurement timing, which is the time difference from the time of light intensity.
In this close contact state, as shown in FIG. 11, backscattered light from the skin is observed after t 2 ps from the emission time of the irradiation unit 106, which is the starting point of time, and within t 1 ps, for example, within 10 ps from the emission time. In addition, leak light (direct propagation light) in the skin is not observed.

図12は、照射部106と皮膚とが密着不十分状態の場合における受光部107が受光した検出光強度波形を示したものであり、時間の起点は、照射部106が短時間パルス光を照射した時刻である。
図12中、振幅が小さな検出光強度波形(A)は、照射光が皮膚内を伝搬せずに皮膚表面を伝搬して受光した光によるものであり、この検出光強度波形(A)の後に検出された振幅が大きな検出光強度波形(B)は、照射光が皮膚内を伝搬して受光した光によるものである。
FIG. 12 shows the detected light intensity waveform received by the light receiving unit 107 when the irradiation unit 106 and the skin are not sufficiently in close contact with each other. The starting point of time is that the irradiation unit 106 irradiates the pulsed light for a short time. It is time.
In FIG. 12, the detected light intensity waveform (A) having a small amplitude is due to the light received by propagating the irradiated light on the skin surface without propagating through the skin, and after this detected light intensity waveform (A). The detected light intensity waveform (B) having a large amplitude is due to the light received by the irradiation light propagating through the skin.

このように、皮膚表面を伝搬した光と、皮膚内を伝搬した光とは、明らかに時間差があるので、この時間差を検出することにより明瞭に判別することができることが分かる。
この場合、皮膚表面を伝搬して受光した光の強度が、皮膚内を伝搬した光(後方散乱光)の強度の1/10以下であれば、照射部106と皮膚とが密着状態であると見なすことができるので、皮膚表面を伝搬して受光した光の強度と、皮膚内を伝搬した光(後方散乱光)の強度とを比較することで、照射部106と皮膚とが密着状態であるか否かを判定することが容易である。
Thus, it can be seen that there is a clear time difference between the light propagated through the skin surface and the light propagated through the skin, so that it can be clearly discriminated by detecting this time difference.
In this case, if the intensity of the light propagated through the skin surface and received is 1/10 or less of the intensity of the light propagated in the skin (back scattered light), the irradiation unit 106 and the skin are in close contact with each other. Therefore, the irradiation unit 106 and the skin are in close contact with each other by comparing the intensity of the light received through the skin surface with the intensity of the light (backscattered light) transmitted through the skin. It is easy to determine whether or not.

ここで、密着判定部111が、照射部106が皮膚の表面に密着していると判定した場合、告知部112が判定結果を告知するとともに、計測光強度取得部113が、受光部107が受光した後方散乱光の光強度分布を取得する。このとき、受光部107では、照射開始からの単位時間毎(例えば、1ピコ秒毎の時刻t〜t)の受光強度を内部メモリに記録しておく。
一方、照射部106が皮膚の表面に密着していないと判定した場合、告知部112が判定結果を告知するとともに、再度、「短時間パルス光を照射」(ステップS1)〜「照射部が皮膚の表面に密着しているか否かを判定」(ステップS4)を実行する。
Here, when the contact determination unit 111 determines that the irradiation unit 106 is in close contact with the surface of the skin, the notification unit 112 notifies the determination result, and the measurement light intensity acquisition unit 113 receives the light reception unit 107. The light intensity distribution of the backscattered light obtained is acquired. At this time, the light receiving unit 107 records the received light intensity for each unit time from the start of irradiation (for example, times t 1 to t m every 1 picosecond) in the internal memory.
On the other hand, when it is determined that the irradiation unit 106 is not in close contact with the surface of the skin, the notification unit 112 notifies the determination result and again “irradiates the pulsed light for a short time” (step S1) to “the irradiation unit is skin. ”Determine whether or not it is in close contact with the surface” (step S4).

このステップS1〜S4の実行は、密着判定部111が「照射部106が皮膚の表面に密着している」と判定するまで、繰り返し行われる。
例えば、密着判定部111が、照射部106と観測対象とが密着状態ではないと判定した場合に、照射量制御部121により照射部106から観測対象へ短時間パルス光の予備照射を行うことにより、照射部106から観測対象へ照射される短時間パルス光の照射量を制御し、照射部106と前記観測対象とが密着状態であるか否かを再度判定する。
このように、密着判定部111及び照射量制御部121により、照射部106から観測対象へ照射される短時間パルス光の照射量の制御、及び照射部106と観測対象との密着状態を連続的にモニタリングすることで、照射部106と観測対象とが密着状態となった時点での観測対象からの後方散乱光の強度を速やかに取得することができる。
密着判定部111が、照射部106が皮膚の表面に密着していると判定した場合、積分区間を変化させて真皮層の吸収係数を算出する(処理A:ステップS5)。
この処理A(ステップS5)は、図8に示す手順により行う。
The execution of steps S1 to S4 is repeated until the contact determination unit 111 determines that “the irradiation unit 106 is in close contact with the surface of the skin”.
For example, when the contact determination unit 111 determines that the irradiation unit 106 and the observation target are not in a close contact state, the irradiation amount control unit 121 performs preliminary irradiation of short-time pulse light from the irradiation unit 106 to the observation target. Then, the irradiation amount of the short-time pulse light irradiated to the observation target from the irradiation unit 106 is controlled, and it is determined again whether or not the irradiation unit 106 and the observation target are in a close contact state.
As described above, the contact determination unit 111 and the irradiation amount control unit 121 continuously control the irradiation amount of the short-time pulse light irradiated from the irradiation unit 106 to the observation target and the contact state between the irradiation unit 106 and the observation target. By monitoring the intensity, the intensity of the backscattered light from the observation target at the time when the irradiation unit 106 and the observation target are in close contact with each other can be quickly acquired.
When the contact determination unit 111 determines that the irradiation unit 106 is in close contact with the surface of the skin, the integration interval is changed to calculate the absorption coefficient of the dermis layer (Process A: Step S5).
This process A (step S5) is performed according to the procedure shown in FIG.

まず、積分区間算出部116は、(1)後方散乱した光を受光する受光部107の出力する光強度が計測光強度取得部113の最小検出感度を超えて検出された時刻から最小検出感度と等しい光強度で検出された時刻までの時間、(2)シミュレーション部101で得られる無吸収時光強度を記憶している時間分解波形記憶部105から取得した無吸収時光強度の時間特性、(3)皮膚表面に接する受光部107と照射部106との間隔、(4)シミュレーション部101に与える皮膚モデルのサイズ及び光学特性(散乱係数、吸収係数、非等方性パラメーター、または屈折率)を用いて、真皮層の光強度に対応する領域の時間の範囲である積分区間を算出する。より具体的には、積分区間の開始時刻、終了時刻、増分時間を算出する(ステップS11)。   First, the integration interval calculation unit 116 (1) determines the minimum detection sensitivity from the time when the light intensity output from the light receiving unit 107 that receives the backscattered light exceeds the minimum detection sensitivity of the measurement light intensity acquisition unit 113. Time until time detected with equal light intensity, (2) time characteristics of non-absorbing light intensity acquired from the time-resolved waveform storage unit 105 storing the non-absorbing light intensity obtained by the simulation unit 101, (3) Using the distance between the light receiving unit 107 and the irradiation unit 106 in contact with the skin surface, and (4) the size and optical characteristics (scattering coefficient, absorption coefficient, anisotropic parameter, or refractive index) of the skin model given to the simulation unit 101 Then, an integration interval that is a time range of the region corresponding to the light intensity of the dermis layer is calculated. More specifically, the start time, end time, and increment time of the integration interval are calculated (step S11).

図13は、真皮層における吸収係数と積分区間との関係を示す図である。図13では、表皮層、真皮層、皮下組織の三層の皮膚モデルを用いており、真皮層の吸収係数に対して表皮層の吸収係数を25%から150%まで変化させている。図15中、Aは25%を、Bは50%を、Cは75%を、Dは100%を、Eは125%を、Fは150%を、それぞれ示している。
図13によれば、14ps〜34psの範囲では、表皮層と真皮層の吸収係数の値が近づくと、予め与えられた真値の吸収係数の値である0.55/mmに近い値で算出されていることが分かる。また、34ps〜54psの範囲では、増加してピークを持つ傾向があることが分かる。これにより、積分区間が広くなるにしたがって、真皮層の吸収係数の値はある特定の範囲(図15では、0.54〜0.56/mm)に収斂していくことが分かる。
FIG. 13 is a diagram showing the relationship between the absorption coefficient and the integration interval in the dermis layer. In FIG. 13, a three-layer skin model of the epidermis layer, the dermis layer, and the subcutaneous tissue is used, and the absorption coefficient of the epidermis layer is changed from 25% to 150% with respect to the absorption coefficient of the dermis layer. In FIG. 15, A indicates 25%, B indicates 50%, C indicates 75%, D indicates 100%, E indicates 125%, and F indicates 150%.
According to FIG. 13, in the range of 14 ps to 34 ps, when the absorption coefficient values of the epidermis layer and the dermis layer approach, a value close to 0.55 / mm which is the value of the true absorption coefficient given in advance is calculated. You can see that. It can also be seen that there is a tendency to increase and have a peak in the range of 34 ps to 54 ps. Thus, it can be seen that the value of the absorption coefficient of the dermis layer converges in a specific range (0.54 to 0.56 / mm in FIG. 15) as the integration interval becomes wider.

次いで、計測光強度取得部113は、内部メモリーに記録されている受光強度から、ある時刻tにおける受光強度を皮膚の層の数と同じ数だけ取得する(ステップS12)。
例えば、皮膚の3つの層について4種類の波長を用いて濃度測定を行う場合には、3つの異なる時刻t〜tにおける受光強度I(t)〜I(t)を取得する。ここで、皮膚の層の数と同じ数だけ受光強度を取得する理由は、後述する処理において、皮膚の各層の吸収係数を連立方程式によって算出するためである。
Next, the measurement light intensity acquisition unit 113 acquires the received light intensity at a certain time t by the same number as the number of skin layers from the received light intensity recorded in the internal memory (step S12).
For example, when concentration measurement is performed on three layers of skin using four types of wavelengths, received light intensity I (t 1 ) to I (t 3 ) at three different times t 1 to t 3 is acquired. Here, the reason why the received light intensity is obtained in the same number as the number of skin layers is to calculate the absorption coefficient of each skin layer by simultaneous equations in the processing described later.

また、計測光強度取得部113が光強度を取得する時刻t〜tは、皮膚の各層の光路長分布のピークとなる時刻であると良い。すなわち、照射部106が短時間パルス光を照射した時刻に、既に説明した図4において皮膚の各層の光路長が極大となる時間を加算した時刻の光強度をそれぞれ取得すると良い。 Also, the times t 1 to t 3 at which the measurement light intensity acquisition unit 113 acquires the light intensity may be a time at which the optical path length distribution of each layer of the skin becomes a peak. That is, the light intensity at the time obtained by adding the time when the optical path length of each layer of the skin in FIG.

計測光強度取得部113が受光強度I(t)〜I(t)を取得すると、光路長取得部108は、光路長分布記憶部103が記憶する波長λの光路長分布から、時刻t〜tにおける皮膚の各層の光路長L(t)〜L(t)、L(t)〜L(t)、L(t)〜L(t)を取得する(ステップS13)。
また、計測光強度取得部113が受光強度I(t)〜I(t)を取得すると、無吸収時光強度取得部109は、時間分解波形記憶部105が記憶する波長λの時間分解波形から、短時間パルス光の時間分解波形のモデルの所定の時刻における光強度、例えば、時刻t〜tにおける検出光子数(無吸収時光強度)N(t)〜N(t)を取得する(ステップS14)。
When the measurement light intensity acquisition unit 113 acquires the received light intensity I (t 1 ) to I (t 3 ), the optical path length acquisition unit 108 calculates the time from the optical path length distribution of the wavelength λ 1 stored in the optical path length distribution storage unit 103. t 1 ~t optical path length of each layer of the skin at 3 L 1 (t 1) ~L 1 (t 3), L 2 (t 1) ~L 2 (t 3), L 3 (t 1) ~L 3 ( t 3) to get (step S13).
When the measurement light intensity acquisition unit 113 acquires the received light intensities I (t 1 ) to I (t 3 ), the non-absorption light intensity acquisition unit 109 performs time resolution of the wavelength λ 1 stored in the time-resolved waveform storage unit 105. from the waveform, the light intensity at a predetermined time model of time-resolved waveform of the short pulse light, for example, the time t 1 ~t 3 in the detection photon number (no absorption at the light intensity) N (t 1) ~N ( t 3) Is acquired (step S14).

光路長取得部108が皮膚の各層の光路長を取得し、無吸収時光強度取得部109が検出光子数(無吸収時光強度)N(t)〜N(t)を取得すると、吸収係数算出部117は、式(8)に基づいて、積分区間算出部116が算出した、ある積分区間での皮膚の各層の吸収係数μ〜μを算出する(ステップS15)。ここで、吸収係数μは、表皮層の吸収係数を示し、吸収係数μは、真皮層の吸収係数を示し、吸収係数μは、皮下組織の吸収係数を示す。 When the optical path length acquisition unit 108 acquires the optical path length of each layer of the skin, and the non-absorption light intensity acquisition unit 109 acquires the number of detected photons (non-absorption light intensity) N (t 1 ) to N (t 3 ), the absorption coefficient The calculation unit 117 calculates the absorption coefficients μ 1 to μ 3 of each skin layer in a certain integration interval calculated by the integration interval calculation unit 116 based on the equation (8) (step S15). Here, the absorption coefficient μ 1 indicates the absorption coefficient of the epidermis layer, the absorption coefficient μ 2 indicates the absorption coefficient of the dermis layer, and the absorption coefficient μ 3 indicates the absorption coefficient of the subcutaneous tissue.

Figure 2016010717
Figure 2016010717

但し、ln(A)はAの自然対数を示し、N(t)は特定波長λkの短時間パルス光の時間分解波形のモデルの時刻tにおける光強度を示す。また、Iinは、照射部106が照射した短時間パルス光の光強度を示す。また、Ninは、シミュレーション部101が照射のシミュレーションを行った光子の個数を示す。 Here, ln (A) represents the natural logarithm of A, and N (t) represents the light intensity at the time t of the model of the time-resolved waveform of the short-time pulsed light with the specific wavelength λk. I in represents the light intensity of the short-time pulsed light irradiated by the irradiation unit 106. N in indicates the number of photons for which the simulation unit 101 has simulated irradiation.

吸収係数算出部117がある積分区間での皮膚の各層の吸収係数μ〜μを算出すると、吸収係数分布記憶部118は、吸収係数算出部117が算出した、ある積分区間での皮膚の各層の吸収係数μ〜μを記憶する(ステップS16)。 When the absorption coefficient calculation unit 117 calculates the absorption coefficient μ 1 to μ 3 of each skin layer in an integration interval, the absorption coefficient distribution storage unit 118 calculates the skin in a certain integration interval calculated by the absorption coefficient calculation unit 117. The absorption coefficients μ 1 to μ 3 of each layer are stored (step S16).

吸収係数算出部117がある積分区間での皮膚の各層の吸収係数μ〜μを算出すると、吸収係数算出部117は、設定した積分区間での真皮層33の吸収係数を算出したか否かを判断する(ステップS17)。
本実施形態では、皮膚の主成分を水、たんぱく質、脂質、グルコースの4種類として血糖値の測定を行うので、吸収係数算出部117は、4種類の波長λ〜λに対して吸収係数μ〜μを算出したか否かを判定する。ここで、波長λ〜λは、シミュレーション部301が光路長分布及び時間分解波形を算出した複数の波長の中から選出する。
When the absorption coefficient calculation unit 117 calculates the absorption coefficient μ 1 to μ 3 of each skin layer in an integration interval, whether the absorption coefficient calculation unit 117 has calculated the absorption coefficient of the dermis layer 33 in the set integration interval or not. Is determined (step S17).
In this embodiment, blood sugar levels are measured with four main components of skin, water, protein, lipid, and glucose, so that the absorption coefficient calculation unit 117 has absorption coefficients for the four wavelengths λ 1 to λ 4 . It is determined whether μ 1 to μ 3 are calculated. Here, the wavelengths λ 1 to λ 4 are selected from a plurality of wavelengths calculated by the simulation unit 301 for the optical path length distribution and the time-resolved waveform.

ここで、吸収係数算出部117が設定した積分区間での真皮層33の吸収係数μ〜μに算出しなかった吸収係数があると判断した場合(ステップS17:NO)、再度、ある時刻における受光強度の取得(ステップS12)に戻り、まだ算出していない真皮層の吸収係数を算出し、再度、設定した積分区間での真皮層の吸収係数の算出の可否の判断(ステップS17)を行う。
一方、吸収係数算出部117が設定した積分区間での真皮層の吸収係数μ〜μを算出したと判断した場合(ステップS17:YES)、真皮層の吸収係数分布から吸収係数を取得する(ステップ18)。
Here, when it is determined that there is an absorption coefficient that has not been calculated in the absorption coefficients μ 1 to μ 3 of the dermis layer 33 in the integration interval set by the absorption coefficient calculation unit 117 (step S17: NO), a certain time again Returning to the acquisition of the received light intensity (step S12), the absorption coefficient of the dermis layer that has not yet been calculated is calculated, and it is determined again whether or not the absorption coefficient of the dermis layer can be calculated in the set integration interval (step S17). Do.
On the other hand, when it is determined that the absorption coefficient μ 1 to μ 3 of the dermis layer in the integration interval set by the absorption coefficient calculation unit 117 is calculated (step S17: YES), the absorption coefficient is acquired from the absorption coefficient distribution of the dermis layer. (Step 18).

吸収係数取得部119は、皮膚の主成分の種類数に対応した波長数の吸収係数を算出したか否かを判断する(ステップS6)。
ここで、吸収係数取得部119が皮膚の主成分の種類数に対応した波長数の吸収係数を算出していないと判断した場合(ステップS6:NO)、短時間パルス光の照射(ステップS1)に戻り、まだ算出していない皮膚の主成分の種類数に対応した波長数の吸収係数を算出し、再度、吸収係数の算出の可否の判断(ステップS6)を行う。
The absorption coefficient acquisition unit 119 determines whether or not the absorption coefficient of the number of wavelengths corresponding to the number of types of skin main components has been calculated (step S6).
Here, when it is determined that the absorption coefficient acquisition unit 119 has not calculated the absorption coefficient of the number of wavelengths corresponding to the number of main components of the skin (step S6: NO), irradiation with short-time pulsed light (step S1) Returning to step S6, the absorption coefficient of the number of wavelengths corresponding to the number of types of the main component of the skin that has not yet been calculated is calculated, and it is determined again whether the absorption coefficient can be calculated (step S6).

一方、吸収係数取得部119が皮膚の主成分の種類数に対応した波長数の吸収係数を算出したと判断した場合(ステップS6:YES)、濃度算出部120は真皮層に含まれるグルコースの濃度を算出する(ステップS7)。
濃度算出部120は、真皮層におけるグルコースの濃度を、下記の式(9)により算出する。
On the other hand, when it is determined that the absorption coefficient acquisition unit 119 has calculated the absorption coefficient of the number of wavelengths corresponding to the number of types of skin main components (step S6: YES), the concentration calculation unit 120 determines the concentration of glucose contained in the dermis layer. Is calculated (step S7).
The concentration calculation unit 120 calculates the glucose concentration in the dermis layer by the following equation (9).

Figure 2016010717
Figure 2016010717

但し、μ2(1)〜μ2(4)は、真皮層における波長λ〜λの吸収係数を示す。
また、g〜gは、真皮層におけるそれぞれ皮膚の主成分である水、たんぱく質、脂質、グルコースのモル濃度を示す。また、ε1(1)〜ε1(4)は、波長λ〜λに対する水のモル吸光係数を示し、ε2(1)〜ε2(4)は、波長λ〜λに対するたんぱく質のモル吸光係数を示し、ε3(1)〜ε3(4)は、波長λ〜λに対する脂質のモル吸光係数を示し、ε4(1)〜ε4(4)は、波長λ〜λに対するグルコースのモル吸光係数を示す。
つまり、式(9)のgを算出することで、真皮層に含まれるグルコースのモル濃度を求めることができる。
However, μ 2 (1) ~μ 2 (4) shows the absorption coefficient of the wavelength lambda 1 to [lambda] 4 in the dermis layer.
Further, g 1 to g 4 shows the water respectively in the dermal layer is the main component of skin, proteins, lipids, the molar concentration of glucose. Further, ε 1 (1) ~ε 1 (4) shows a molar extinction coefficient of water with respect to the wavelength λ 1 ~λ 4, ε 2 ( 1) ~ε 2 (4) is for the wavelength lambda 1 to [lambda] 4 Indicates the molar extinction coefficient of the protein, ε 3 (1) to ε 3 ( 4) indicate the molar extinction coefficient of the lipid for wavelengths λ 1 to λ 4 , and ε 4 (1) to ε 4 (4) indicate the wavelength The molar extinction coefficient of glucose with respect to λ 1 to λ 4 is shown.
That is, by calculating g 4 in Equation (9), the molar concentration of glucose contained in the dermis layer can be obtained.

ここで、式(9)によりグルコースのモル濃度を求めることができる理由を説明する。
皮膚の散乱係数の波長依存性は小さいので、検出光子数N(t)及び光路長Ln(t)の波長に対する変化は無視することができる。また、ベア・ランベルト(Beer-Lambert)の法則により、吸収係数=モル吸光係数×モル濃度で表すことができる。これにより、2波長で得られた時間分解計測より、検出光子数N(t)を消去することで、真皮層において得られる吸収係数差と皮膚を形成する各成分のモル吸光係数との関係式を示す式(9)を導くことができる。
Here, the reason why the molar concentration of glucose can be obtained by the equation (9) will be described.
Since the wavelength dependence of the skin scattering coefficient is small, changes in the number of detected photons N (t) and the optical path length Ln (t) with respect to the wavelength can be ignored. Further, it can be expressed by Absorption coefficient = Molar extinction coefficient × Molar concentration according to the Beer-Lambert law. Thus, by eliminating the detected photon number N (t) from time-resolved measurement obtained at two wavelengths, the relational expression between the absorption coefficient difference obtained in the dermis layer and the molar absorption coefficient of each component forming the skin Equation (9) showing can be derived.

上述の血糖値測定装置100は、コンピューターシステムを内蔵しており、上述した各ステップの処理動作は、プログラムの形式でコンピューター読み取り可能な記録媒体に記憶されている。そこで、このプログラムをコンピューターが読み出して実行することにより、上記の処理動作を行うことができる。
ここで、コンピューター読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等が挙げられる。
また、このコンピュータープログラムを通信回線によりコンピューターに配信し、この配信を受けたコンピューターが当該プログラムを実行するようにしてもよい。
The blood glucose level measuring apparatus 100 described above has a built-in computer system, and the processing operation of each step described above is stored in a computer-readable recording medium in the form of a program. Therefore, the computer can read out and execute this program to perform the above processing operation.
Here, examples of the computer-readable recording medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory.
Further, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、上記の各ステップの一部を実現するためのものであってもよい。
さらに、上述した機能をコンピューターシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
The program may be for realizing a part of the above steps.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.

以上説明したように、本実施形態によれば、計測タイミング算出部110により、照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107から出力される計測光強度の時刻との時間差である計測タイミングを算出し、照射量制御部121により照射部106から観測対象へ照射される短時間パルス光の照射量を制御し、照射量制御部121により短時間パルス光の照射量が制御された後に、密着判定部111により、計測タイミング算出部110から出力される計測タイミングを基に、照射部106が皮膚の表面に密着しているか否かを判定するので、照射部106と皮膚との密着状態を速やかかつ容易に確認することができ、その結果、真皮層におけるグルコースの濃度を精度良く測定することができる。   As described above, according to the present embodiment, the measurement timing calculation unit 110 causes the time of the trigger signal when the irradiation unit 106 irradiates the pulsed light for a short time and the time of the measurement light intensity output from the light receiving unit 107. Is calculated, and the irradiation amount control unit 121 controls the irradiation amount of the short-time pulse light emitted from the irradiation unit 106 to the observation target. The irradiation amount control unit 121 controls the irradiation amount of the short-time pulse light. Is controlled by the contact determination unit 111 based on the measurement timing output from the measurement timing calculation unit 110, so that the irradiation unit 106 is in close contact with the skin surface. The state of close contact with the skin can be confirmed quickly and easily, and as a result, the glucose concentration in the dermis layer can be accurately measured.

また、積分区間算出部116により、光路長取得部108が取得した光路長分布のモデルの皮膚の各々の層の光路長と、無吸収時光強度取得部109が取得した短時間パルス光の時間分解波形のモデルの無吸収時光強度と、計測光強度取得部113が取得した受光部107が受光した光の強度分布とに基づいて、前記光の強度分布から真皮層の光強度に対応する領域の積分区間を算出するので、積分区間算出部116により算出された積分区間を基に、受光部107が受光した光の強度から前記積分区間に対応する時間帯の光の強度を取得することにより、真皮層からの光を他の層からの光と区別して測定することができ、真皮層からの光に対する他の層からの光の影響を低減することができる。したがって、真皮層におけるグルコースの濃度を精度良く測定することができ、その結果、真皮層におけるグルコースの濃度を、非侵襲的にかつ精度良く定量することができる。
また、積分区間を可変させることにより、真皮層におけるグルコースの濃度の測定精度を高めることができる。
Further, by the integration interval calculation unit 116, the optical path length of each layer of the skin of the model of the optical path length distribution acquired by the optical path length acquisition unit 108 and the time resolution of the short-time pulse light acquired by the non-absorption light intensity acquisition unit 109 Based on the non-absorption light intensity of the waveform model and the intensity distribution of the light received by the light receiving unit 107 acquired by the measurement light intensity acquisition unit 113, an area corresponding to the light intensity of the dermis layer is calculated from the light intensity distribution. Since the integration interval is calculated, based on the integration interval calculated by the integration interval calculation unit 116, by acquiring the light intensity in the time zone corresponding to the integration interval from the light intensity received by the light receiving unit 107, Light from the dermis layer can be measured separately from light from other layers, and the influence of light from other layers on light from the dermis layer can be reduced. Therefore, the glucose concentration in the dermis layer can be accurately measured, and as a result, the glucose concentration in the dermis layer can be quantified non-invasively and accurately.
Moreover, the measurement accuracy of the glucose concentration in the dermis layer can be increased by varying the integration interval.

なお、本実施形態では、シミュレーション部101が、吸収係数がゼロの皮膚モデルに対して光を照射するシミュレーションを行うこととしたが、シミュレーション部101が行った吸収係数がゼロの皮膚モデルに対して光を照射するシミュレーションの結果を、光路長分布記憶部103及び時間分解波形記憶部105に記憶させておけば、シミュレーション部101を備えなくとも、本実施形態と同様の作用・効果を奏することができる。
また、密着判定部111が、計測タイミング算出部110から出力される照射部106が短時間パルス光を照射するトリガー信号の時刻と、受光部107から出力される計測光強度の時刻との時間差である計測タイミングを基に、照射部106が皮膚の表面に密着しているか否かを判定することとしたが、この密着判定部111による判定を連続的に行うことで、照射部106が皮膚の表面に密着しているか否かを判定することとしてもよい。
In the present embodiment, the simulation unit 101 performs the simulation of irradiating light to the skin model having the zero absorption coefficient. However, the simulation unit 101 performs the simulation for the skin model having the zero absorption coefficient. If the simulation result of irradiating light is stored in the optical path length distribution storage unit 103 and the time-resolved waveform storage unit 105, even if the simulation unit 101 is not provided, the same operations and effects as in this embodiment can be achieved. it can.
In addition, the contact determination unit 111 calculates the time difference between the time of the trigger signal when the irradiation unit 106 output from the measurement timing calculation unit 110 emits short-time pulse light and the time of the measurement light intensity output from the light receiving unit 107. Based on a certain measurement timing, it is determined whether or not the irradiation unit 106 is in close contact with the surface of the skin. By continuously performing the determination by the contact determination unit 111, the irradiation unit 106 is It may be determined whether or not it is in close contact with the surface.

[第2の実施形態]
図14及び図15は、本発明の第2の実施形態の血糖値測定装置(濃度定量装置)が血糖値を測定する動作を示すフローチャートである。
本実施形態の血糖値測定装置は、第1の実施形態の血糖値測定装置100と同一の構成であり、光路長取得部108、無吸収時光強度取得部109、計測光強度取得部113、吸収係数算出部117の動作が異なる。
[Second Embodiment]
FIGS. 14 and 15 are flowcharts showing the operation of the blood sugar level measuring apparatus (concentration quantifying apparatus) according to the second embodiment of the present invention measuring the blood sugar level.
The blood sugar level measuring apparatus of the present embodiment has the same configuration as the blood sugar level measuring apparatus 100 of the first embodiment, and includes an optical path length acquisition unit 108, a non-absorption light intensity acquisition unit 109, a measurement light intensity acquisition unit 113, and an absorption. The operation of the coefficient calculation unit 117 is different.

次に、この血糖値測定装置100を用いて血糖値を測定する手順について説明する。
本実施形態では、「照射部106が短時間パルス光を照射」(ステップS21)から「照射部106と皮膚との密着性を判定」(ステップS23)までは、第1の実施形態の手順と全く同一であるから、説明を省略する。
Next, a procedure for measuring a blood sugar level using the blood sugar level measuring apparatus 100 will be described.
In the present embodiment, the steps from “irradiation unit 106 irradiates pulsed light for a short time” (step S21) to “determining the adhesion between irradiation unit 106 and skin” (step S23) are the same as those in the first embodiment. Since it is completely the same, description is abbreviate | omitted.

ステップS23にて、密着判定部111が、照射部106が皮膚の表面に密着していると判定した場合、積分区間を変化させて真皮層の吸収係数を算出する(処理B:ステップS24)。
この処理B(ステップS24)は、図15に示す動作により行う。
In step S23, when the contact determination unit 111 determines that the irradiation unit 106 is in close contact with the surface of the skin, the absorption interval of the dermis layer is calculated by changing the integration interval (process B: step S24).
This process B (step S24) is performed by the operation shown in FIG.

まず、積分区間算出部116により、(1)後方散乱した光を受光する受光部107の出力する光強度が計測光強度取得部113の最小検出感度を超えて検出された時刻から最小検出感度と等しい光強度で検出された時刻までの時間、(2)シミュレーション部101で得られる無吸収時光強度を記憶している時間分解波形記憶部105から取得した無吸収時光強度の時間特性、(3)皮膚表面に接する受光部107と照射部16との間隔、(4)シミュレーション部101に与える皮膚モデルのサイズ及び光学特性(散乱係数、吸収係数、非等方性パラメーター、または屈折率)を用いて、積分区間を算出する。より具体的には、積分区間の開始時刻、終了時刻、増分時間を算出する(ステップS31)。   First, the integration interval calculation unit 116 (1) determines the minimum detection sensitivity from the time when the light intensity output from the light receiving unit 107 that receives the backscattered light exceeds the minimum detection sensitivity of the measurement light intensity acquisition unit 113. Time until time detected with equal light intensity, (2) time characteristics of non-absorbing light intensity acquired from the time-resolved waveform storage unit 105 storing the non-absorbing light intensity obtained by the simulation unit 101, (3) Using the distance between the light receiving unit 107 and the irradiation unit 16 in contact with the skin surface, and (4) the size and optical characteristics (scattering coefficient, absorption coefficient, anisotropic parameter, or refractive index) of the skin model given to the simulation unit 101 Calculate the integration interval. More specifically, the start time, end time, and increment time of the integration interval are calculated (step S31).

次いで、受光部107が受光を完了すると、計測光強度取得部113は、内部メモリーに記録されている受光強度から、ある時刻から時間τの間の受光強度の時間分布を取得する(ステップS32)。
例えば、皮膚の3つの層について4種類の波長を用いて濃度測定を行う場合には、3つの異なる時間τ〜τにおける受光強度の時間分布を取得する。
Next, when the light receiving unit 107 completes the light reception, the measurement light intensity acquisition unit 113 acquires a time distribution of the light reception intensity from a certain time to time τ from the light reception intensity recorded in the internal memory (step S32). .
For example, when concentration measurement is performed for three layers of skin using four types of wavelengths, time distributions of received light intensity at three different times τ 1 to τ 3 are acquired.

計測光強度取得部113が、時間τの間の受光強度の時間分布を取得すると、光路長取得部108は、光路長分布記憶部103が記憶する波長λの光路長分布から、ある時刻から時間τの間の皮膚の各層の光路長、例えば、光路長L(t)〜L(t)、L(t)〜L(t)、L(t)〜L(t)を取得する(ステップS33)。
また、計測光強度取得部113が、時間τの間の受光強度の時間分布を取得すると、無吸収時光強度取得部109は、時間分解波形記憶部105が記憶する波長λの時間分解波形から、ある時刻から時間τの間の無吸収時光強度、例えば、ある時刻から時間τの間における検出光子数(無吸収時光強度)N(t)〜N(t)を取得する(ステップS34)。
When the measurement light intensity acquisition unit 113 acquires the time distribution of the received light intensity during the time τ, the optical path length acquisition unit 108 starts from the optical path length distribution of the wavelength λ 1 stored in the optical path length distribution storage unit 103 from a certain time. The optical path length of each layer of the skin during time τ, for example, optical path lengths L 1 (t 1 ) to L 1 (t 3 ), L 2 (t 1 ) to L 2 (t 3 ), L 3 (t 1 ) ~L 3 acquires (t 3) (step S33).
When the measurement light intensity acquisition unit 113 acquires the time distribution of the received light intensity during the time τ, the non-absorption light intensity acquisition unit 109 calculates the time-resolved waveform of the wavelength λ 1 stored in the time-resolved waveform storage unit 105. The non-absorption light intensity between a certain time and the time τ, for example, the number of detected photons (non-absorption light intensity) N (t 1 ) to N (t 3 ) between the certain time and the time τ is acquired (step S34). ).

光路長取得部108が皮膚の各層の光路長を取得し、無吸収時光強度取得部109が検出光子数(無吸収時光強度)N(t)〜N(t)を取得すると、吸収係数算出部117は、式(10)に基づいて、積分区間算出部116が算出した、ある積分区間での皮膚の各層の吸収係数μ〜μを算出する(ステップS35)。ここで、吸収係数μは、表皮層の吸収係数を示し、吸収係数μは、真皮層の吸収係数を示し、吸収係数μは、皮下組織層の吸収係数を示す。 When the optical path length acquisition unit 108 acquires the optical path length of each layer of the skin, and the non-absorption light intensity acquisition unit 109 acquires the number of detected photons (non-absorption light intensity) N (t 1 ) to N (t 3 ), the absorption coefficient The calculation unit 117 calculates the absorption coefficients μ 1 to μ 3 of each layer of the skin in a certain integration interval calculated by the integration interval calculation unit 116 based on the equation (10) (step S35). Here, the absorption coefficient μ 1 indicates the absorption coefficient of the epidermis layer, the absorption coefficient μ 2 indicates the absorption coefficient of the dermis layer, and the absorption coefficient μ 3 indicates the absorption coefficient of the subcutaneous tissue layer.

Figure 2016010717
Figure 2016010717

但し、ln(A)はAの自然対数を示す。また、I(t)は、時刻tにおける受光部107の受光強度を示し、Iinは、照射部106が照射した短時間パルス光の光強度を示す。また、N(t)は、時間分解波形の時刻tにおける検出光子数を示し、Ninは、シミュレーション部301が照射のシミュレーションを行った光子の個数を示す。また、L(t)〜L(t)は、時刻tにおける皮膚の各層の光路長を示す。 Here, ln (A) represents the natural logarithm of A. Further, I (t) indicates the light reception intensity of the light receiving unit 107 at time t, and I in indicates the light intensity of the short-time pulsed light irradiated by the irradiation unit 106. N (t) represents the number of detected photons at time t of the time-resolved waveform, and N in represents the number of photons on which the simulation unit 301 has simulated the irradiation. L 1 (t) to L 3 (t) indicate the optical path length of each layer of the skin at time t.

吸収係数算出部117がある積分区間での皮膚の各層の吸収係数μ〜μを算出すると、吸収係数分布記憶部118は、吸収係数算出部117が算出した、ある積分区間での皮膚の各層の吸収係数μ〜μを記憶する(ステップS36)。 When the absorption coefficient calculation unit 117 calculates the absorption coefficient μ 1 to μ 3 of each skin layer in an integration interval, the absorption coefficient distribution storage unit 118 calculates the skin in a certain integration interval calculated by the absorption coefficient calculation unit 117. The absorption coefficients μ 1 to μ 3 of each layer are stored (step S36).

吸収係数算出部117がある積分区間での皮膚の各層の吸収係数μ〜μを算出すると、吸収係数算出部117は、設定した積分区間での真皮層の吸収係数を算出したか否かを判断する(ステップS37)。
本実施形態では、皮膚の主成分を水、たんぱく質、脂質、グルコースの4種類として血糖値の測定を行うので、吸収係数算出部117は、4種類の波長λ〜λに対して吸収係数μ〜μを算出したか否かを判定する。ここで、波長λ〜λは、シミュレーション部101が光路長分布及び時間分解波形を算出した複数の波長の中から選出する。
When the absorption coefficient calculation unit 117 calculates the absorption coefficient μ 1 to μ 3 of each layer of the skin in an integration interval, whether the absorption coefficient calculation unit 117 has calculated the absorption coefficient of the dermis layer in the set integration interval or not. Is determined (step S37).
In this embodiment, blood sugar levels are measured with four main components of skin, water, protein, lipid, and glucose, so that the absorption coefficient calculation unit 117 has absorption coefficients for the four wavelengths λ 1 to λ 4 . It is determined whether μ 1 to μ 3 are calculated. Here, the wavelengths λ 1 to λ 4 are selected from a plurality of wavelengths calculated by the simulation unit 101 for the optical path length distribution and the time-resolved waveform.

ここで、吸収係数算出部117が設定した積分区間での真皮層の吸収係数μ〜μに算出しなかった吸収係数があると判断した場合(ステップS37:NO)、再度、ある時刻における受光強度の取得(ステップS32)に戻り、まだ算出していない真皮層の吸収係数を算出し、再度、設定した積分区間での真皮層の吸収係数の算出の可否の判断(ステップS37)を行う。
一方、吸収係数算出部117が設定した積分区間での真皮層の吸収係数μ〜μを算出したと判断した場合(ステップS37:YES)、真皮層の吸収係数分布から吸収係数を取得する(ステップ38)。
Here, when it is determined that there is an absorption coefficient that has not been calculated in the absorption coefficient μ 1 to μ 3 of the dermis layer in the integral interval set by the absorption coefficient calculation unit 117 (step S37: NO), again at a certain time. Returning to the acquisition of the received light intensity (step S32), the absorption coefficient of the dermis layer that has not been calculated yet is calculated, and it is determined again whether or not the absorption coefficient of the dermis layer can be calculated in the set integration interval (step S37). .
On the other hand, when it is determined that the absorption coefficient μ 1 to μ 3 of the dermis layer in the integration interval set by the absorption coefficient calculation unit 117 is calculated (step S37: YES), the absorption coefficient is acquired from the absorption coefficient distribution of the dermis layer. (Step 38).

吸収係数取得部119は、皮膚の主成分の種類数に対応した波長数の吸収係数を算出したか否かを判断する(ステップS25)。
ここで、吸収係数取得部119が皮膚の主成分の種類数に対応した波長数の吸収係数を算出していないと判断した場合(ステップS25:NO)、短時間パルス光の照射(ステップS21)に戻り、まだ算出していない皮膚の主成分の種類数に対応した波長数の吸収係数を算出し、再度、吸収係数の算出の可否の判断(ステップS25)を行う。
The absorption coefficient acquisition unit 119 determines whether or not the absorption coefficient of the number of wavelengths corresponding to the number of types of the main components of the skin has been calculated (step S25).
Here, when it is determined that the absorption coefficient acquisition unit 119 has not calculated the absorption coefficient of the number of wavelengths corresponding to the number of types of main components of the skin (step S25: NO), irradiation with short-time pulsed light (step S21) Returning to FIG. 5, the absorption coefficient of the number of wavelengths corresponding to the number of types of the main component of the skin that has not been calculated yet is calculated, and it is determined again whether or not the absorption coefficient can be calculated (step S25).

一方、吸収係数取得部119が皮膚の主成分の種類数に対応した波長数の吸収係数を算出したと判断した場合(ステップS25:YES)、濃度算出部120は、上記の式(9)に基づいて、真皮層に含まれるグルコースの濃度を算出する(ステップS26)。   On the other hand, when it is determined that the absorption coefficient acquisition unit 119 has calculated the absorption coefficient of the number of wavelengths corresponding to the number of types of main components of the skin (step S25: YES), the concentration calculation unit 120 calculates the above equation (9). Based on this, the concentration of glucose contained in the dermis layer is calculated (step S26).

このように、本実施形態によれば、吸収係数μ〜μを、時間τの間の光路長の積分値によって算出する。これにより、計測した受光強度I(t)に含まれている誤差による吸収係数μ〜μの算出結果に対する影響を少なくすることができる。 Thus, according to the present embodiment, the absorption coefficients μ 1 to μ 3 are calculated by the integrated value of the optical path length during the time τ. Thus, it is possible to reduce the influence on the calculation result of the absorption coefficient μ 13 by the error contained in the measured received light intensity I (t).

以上、本発明の各実施形態について、図面を参照して説明してきたが、具体的な構成は上述のものに限られることはなく、本発明の要旨を逸脱しない範囲内において様々な設計変更等が可能である。
例えば、上記の各実施形態では、濃度定量装置として血糖値測定装置を、観測対象として人の手のひらの皮膚を、目的成分としてグルコースを、パルス光として短時間パルス光を、それぞれ取ることで、皮膚の真皮層に含まれるグルコースの濃度を測定する場合について説明したが、これに限らず、濃度定量方法を、複数の光散乱媒質の層から形成される観測対象の任意の層における目的成分の濃度を定量する他の装置に用いてもよく、特定波長の短時間パルス光を、特定波長の連続光に替えてもよい。
例えば、携帯型の皮膚主成分の濃度測定装置に適用した場合、皮膚疾患の検査や診断や治療に有効利用することが可能である。
As described above, each embodiment of the present invention has been described with reference to the drawings. However, the specific configuration is not limited to the above-described one, and various design changes and the like can be made without departing from the scope of the present invention. Is possible.
For example, in each of the above embodiments, the blood sugar level measuring device is used as the concentration determination device, the skin of a human palm is used as the observation target, glucose is used as the target component, and short-time pulsed light is used as the pulsed light. Although the case of measuring the concentration of glucose contained in the dermal layer of the present invention is not limited to this, the concentration determination method is not limited to this, and the concentration of the target component in an arbitrary layer to be observed formed from a plurality of light scattering medium layers May be used in other devices for quantitative determination, and short-time pulsed light with a specific wavelength may be replaced with continuous light with a specific wavelength.
For example, when it is applied to a portable skin main component concentration measuring apparatus, it can be effectively used for examination, diagnosis and treatment of skin diseases.

100…血糖値測定装置(濃度定量装置)、103…光路長分布記憶部、105…時間
分解波形記憶部、106…照射部、107…受光部、108…光路長取得部、109…無
吸収時光強度取得部(光強度モデル取得部)、113…計測光強度取得部(光強度取得部
)、116…積分区間算出部、117…吸収係数算出部、118…吸収係数分布記憶部、
120…濃度算出部、121…照射量制御部、31…皮膚(観測対象)、33…真皮層(
任意の層)、S1〜S6、S11〜S18、S21〜S26、S31〜S38…ステップ
DESCRIPTION OF SYMBOLS 100 ... Blood glucose level measuring apparatus (concentration quantification apparatus), 103 ... Optical path length distribution storage part, 105 ... Time-resolved waveform storage part, 106 ... Irradiation part, 107 ... Light receiving part, 108 ... Optical path length acquisition part, 109 ... Non-absorption light Intensity acquisition unit (light intensity model acquisition unit), 113 ... Measurement light intensity acquisition unit (light intensity acquisition unit), 116 ... Integration interval calculation unit, 117 ... Absorption coefficient calculation unit, 118 ... Absorption coefficient distribution storage unit,
120 ... Concentration calculation part, 121 ... Irradiation amount control part, 31 ... Skin (observation object), 33 ... Dermal layer (
Arbitrary layer), S1 to S6, S11 to S18, S21 to S26, S31 to S38 ... step

上記の課題を解決するために、本発明は以下の濃度定量装置及び濃度定量方法並びにプログラムを採用した。
本発明の濃度定量装置は、皮膚を観測対象とし、前記皮膚におけるグルコースの濃度を定量する濃度定量装置であって、前記観測対象に短時間パルス光を照射する照射部と、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光部と、前記短時間パルス光の前記観測対象への出射時刻から所定時間内に前記受光部が所定強度以上の光強度を受光したか否か、に基づき、前記照射部と前記観測対象とが密着状態であるか否かを判定する密着判定部と、前記密着判定部の判定結果を告知する告知部と、前記受光部が受光した前記光の強度を用いて前記グルコースの濃度を算出する濃度算出部と、を備えてなることを特徴とする。
すなわち、本発明の濃度定量装置は、複数の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記観測対象に短時間パルス光を照射する照射部と、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光部と、前記観測対象に対して照射する短時間パルス光の、前記複数の層の各々の層における光路長分布のモデルを記憶する光路長分布記憶部と、前記光路長分布のモデルの所定の時刻における、前記複数の層の各々の層の光路長を取得する光路長取得部と、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶部と、時間分解波形のモデルの前記所定の時刻における光強度を取得する光強度モデル取得部と、前記照射部から前記観測対象へ短時間パルス光の予備照射を行うことにより、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御する照射量制御部と、前記照射量制御部により前記短時間パルス光の照射量が制御された後に、前記短時間パルス光の前記観測対象への入射開始時刻を基準として前記受光部が受光する時刻毎の光強度を測定し、前記受光部が前記観測対象からの後方散乱光を検出し始める時刻と強度との関係に基づき、前記照射部と前記観測対象とが密着状態であるか否かを判定する密着判定部と、前記密着判定部が前記照射部と前記観測対象とが密着状態であると判定した場合に、前記受光部が受光した前記光の強度を取得する光強度取得部と、前記光強度取得部が取得した前記光の強度の光強度分布と、前記光路長取得部が取得した前記複数の層の各々の層の光路長と、前記光強度モデル取得部が取得した光強度モデルとに基づいて、前記任意の層の吸収係数を算出する吸収係数算出部と、前記吸収係数算出部が算出した吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出部と、を備えてなることを特徴とする。
In order to solve the above problems, the present invention employs the following concentration determination apparatus, concentration determination method, and program.
The concentration quantification device of the present invention is a concentration quantification device for quantifying the concentration of glucose in the skin as an observation target, an irradiation unit for irradiating the observation target with a short-time pulsed light, and the short-time pulsed light A light receiving unit that receives light backscattered from the observation target due to irradiation, and the light receiving unit receives a light intensity that is greater than or equal to a predetermined intensity within a predetermined time from the emission time of the short-time pulsed light to the observation target Whether or not the irradiation unit and the observation target are in a close contact state, a contact determination unit for notifying the determination result of the contact determination unit, and the light receiving unit receiving light And a concentration calculating unit that calculates the concentration of glucose using the intensity of the light.
That is, the concentration quantification device of the present invention is a concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of layers, and irradiates the observation target with short-time pulsed light. An irradiating unit, a light receiving unit that receives light scattered back from the observation target by irradiation of the short-time pulsed light, and each of the plurality of layers of short-time pulsed light irradiated to the observation target An optical path length distribution storage unit that stores a model of an optical path length distribution in the layer; an optical path length acquisition unit that acquires an optical path length of each of the plurality of layers at a predetermined time of the optical path length distribution model; and A time-resolved waveform storage unit that stores a model of a time-resolved waveform of short-time pulsed light that is irradiated to an observation target; and a light intensity model acquisition unit that acquires a light intensity at the predetermined time of the model of the time-resolved waveform An irradiation amount control unit for controlling the irradiation amount of the short-time pulse light irradiated from the irradiation unit to the observation target by performing preliminary irradiation of the short-time pulse light from the irradiation unit to the observation target; and the irradiation amount After the amount of irradiation of the short-time pulsed light is controlled by the control unit, measure the light intensity at each time the light-receiving unit receives light with reference to the start time of incidence of the short-time pulsed light on the observation target, A contact determination unit that determines whether or not the irradiation unit and the observation target are in a close contact state based on a relationship between a time at which the light receiving unit starts detecting backscattered light from the observation target and an intensity; When the determination unit determines that the irradiation unit and the observation target are in close contact with each other, a light intensity acquisition unit that acquires the intensity of the light received by the light receiving unit, and the light intensity acquisition unit acquired Light intensity distribution of light intensity The absorption for calculating the absorption coefficient of the arbitrary layer based on the optical path length of each of the plurality of layers acquired by the optical path length acquisition unit and the light intensity model acquired by the light intensity model acquisition unit A coefficient calculator, and a concentration calculator that calculates the concentration of the target component in the arbitrary layer based on the absorption coefficient calculated by the absorption coefficient calculator.

Claims (10)

複数の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、
前記観測対象に短時間パルス光を照射する照射部と、
前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光部と、
前記観測対象に対して照射する短時間パルス光の、前記複数の層の各々の層における光路長分布のモデルを記憶する光路長分布記憶部と、
前記光路長分布のモデルの所定の時刻における、前記複数の層の各々の層の光路長を取得する光路長取得部と、
前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶部と、
時間分解波形のモデルの前記所定の時刻における光強度を取得する光強度モデル取得部と、
前記照射部から前記観測対象へ短時間パルス光の予備照射を行うことにより、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御する照射量制御部と、
前記照射量制御部により前記短時間パルス光の照射量が制御された後に、前記短時間パルス光の前記観測対象への入射開始時刻を基準として前記受光部が受光する時刻毎の光強度を測定し、前記受光部が前記観測対象からの後方散乱光を検出し始める時刻と強度との関係に基づき、前記照射部と前記観測対象とが密着状態であるか否かを判定する密着判定部と、
前記密着判定部が前記照射部と前記観測対象とが密着状態であると判定した場合に、前記受光部が受光した前記光の強度を取得する光強度取得部と、
前記光強度取得部が取得した前記光の強度の光強度分布と、前記光路長取得部が取得した前記複数の層の各々の層の光路長と、前記光強度モデル取得部が取得した光強度モデルとに基づいて、前記任意の層の吸収係数を算出する吸収係数算出部と、
前記吸収係数算出部が算出した吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出部と、
を備えてなることを特徴とする濃度定量装置。
A concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of layers,
An irradiation unit for irradiating the observation target with a short-time pulsed light;
A light receiving unit that receives light scattered back from the observation target by irradiation with the short-time pulsed light;
An optical path length distribution storage unit for storing a model of an optical path length distribution in each of the plurality of layers of short-time pulse light irradiated to the observation target;
An optical path length acquisition unit that acquires an optical path length of each of the plurality of layers at a predetermined time of the optical path length distribution model;
A time-resolved waveform storage unit that stores a model of a time-resolved waveform of a short-time pulsed light irradiated to the observation target;
A light intensity model acquisition unit for acquiring light intensity at the predetermined time of the model of the time-resolved waveform;
An irradiation amount control unit that controls the irradiation amount of the short-time pulse light irradiated from the irradiation unit to the observation target by performing preliminary irradiation of the short-time pulse light from the irradiation unit to the observation target;
After the irradiation amount control unit controls the irradiation amount of the short-time pulsed light, the light intensity at each time received by the light-receiving unit is measured with reference to the start time of incidence of the short-time pulsed light on the observation target. A contact determination unit that determines whether or not the irradiation unit and the observation target are in a close contact state based on a relationship between the time when the light receiving unit starts to detect backscattered light from the observation target and the intensity; ,
A light intensity acquisition unit that acquires the intensity of the light received by the light receiving unit when the contact determination unit determines that the irradiation unit and the observation target are in a contact state;
The light intensity distribution of the light intensity acquired by the light intensity acquisition unit, the optical path length of each of the plurality of layers acquired by the optical path length acquisition unit, and the light intensity acquired by the light intensity model acquisition unit An absorption coefficient calculation unit for calculating an absorption coefficient of the arbitrary layer based on the model;
Based on the absorption coefficient calculated by the absorption coefficient calculation unit, a concentration calculation unit that calculates the concentration of the target component in the arbitrary layer;
A concentration quantification apparatus comprising:
前記密着判定部は、前記受光部が受光する時刻毎の光強度として、前記観測対象の表面を伝搬する直接伝搬光の強度と前記観測対象からの後方散乱光の強度を選択し、前記直接伝搬光の強度が前記後方散乱光の強度の1/10以下の場合に、前記照射部と前記観測対象とが密着状態であると判定することを特徴とする請求項1記載の濃度定量装置。   The contact determination unit selects the intensity of direct propagation light propagating on the surface of the observation target and the intensity of backscattered light from the observation target as the light intensity at each time received by the light receiving unit, and the direct propagation The concentration quantification apparatus according to claim 1, wherein when the intensity of light is 1/10 or less of the intensity of the backscattered light, the irradiation unit and the observation target are determined to be in a close contact state. 前記密着判定部は、前記照射部と前記観測対象とが密着状態であるか否かを判定した結果を告知する告知部を備えていることを特徴とする請求項1または2記載の濃度定量装置。   The concentration determination apparatus according to claim 1, wherein the contact determination unit includes a notification unit that notifies a result of determining whether or not the irradiation unit and the observation target are in a contact state. . 前記密着判定部は、前記照射部と前記観測対象とが密着状態であるか否かを連続的に判定し、前記照射部と前記観測対象とが密着状態と判定した場合に、前記光強度取得部により、前記受光部が受光した前記光の強度を取得し、
前記照射部と前記観測対象とが密着状態ではないと判定した場合に、前記照射量制御部により前記照射部から前記観測対象へ短時間パルス光の予備照射を行うことにより、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御し、前記照射部と前記観測対象とが密着状態であるか否かを再度判定することを特徴とする請求項1ないし3のいずれか1項記載の濃度定量装置。
The contact determination unit continuously determines whether or not the irradiation unit and the observation target are in a close contact state, and obtains the light intensity when the irradiation unit and the observation target are determined to be in a close contact state. Obtains the intensity of the light received by the light receiving unit,
When it is determined that the irradiation unit and the observation target are not in a close contact state, the irradiation amount control unit performs preliminary irradiation of pulsed light from the irradiation unit to the observation target, so that the irradiation unit and the observation target 4. The method according to claim 1, wherein the irradiation amount of the short-time pulse light applied to the observation target is controlled to determine again whether or not the irradiation unit and the observation target are in close contact with each other. 1. The concentration determination apparatus according to item 1.
前記光強度取得部が取得した前記光の強度の光強度分布と、前記光路長取得部が取得した前記複数の層の各々の層の光路長と、前記光強度モデル取得部が取得した光強度モデルとに基づいて、前記光強度分布から前記任意の層の光強度分布に対応する領域の時間の範囲である積分区間を算出する積分区間算出部を備え、
前記吸収係数算出部は、前記積分区間算出部が算出した前記積分区間を変化させて前記任意の層における目的成分の吸収係数を算出する
ことを特徴とする請求項1ないし4のいずれか1項記載の濃度定量装置。
The light intensity distribution of the light intensity acquired by the light intensity acquisition unit, the optical path length of each of the plurality of layers acquired by the optical path length acquisition unit, and the light intensity acquired by the light intensity model acquisition unit An integration interval calculation unit that calculates an integration interval that is a time range of a region corresponding to the light intensity distribution of the arbitrary layer from the light intensity distribution based on the model;
The said absorption coefficient calculation part changes the said integration area calculated by the said integration area calculation part, and calculates the absorption coefficient of the target component in the said arbitrary layers. The concentration determination apparatus described.
前記光強度取得部は、前記観測対象の層の数n以上となる複数の時刻t〜tにおける光強度を取得し(但し、nは1以上の自然数、mはn以上の自然数)、
前記吸収係数算出部は、
自然対数を示すln(・)、前記受光部が時刻tにおいて受光した光強度を示すI(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度を示すN(t)、前記光路長分布のモデルの時刻tにおける第i層の光路長を示すLi(t)、第i層の吸収係数を示すμを用いて、
Figure 2016010717
から任意の層の吸収係数を算出する、
ことを特徴とする請求項1ないし5のいずれか1項記載の濃度定量装置。
The light intensity acquisition unit acquires light intensities at a plurality of times t 1 to t m that are equal to or greater than the number n of the observation target layers (where n is a natural number of 1 or more, m is a natural number of n or more),
The absorption coefficient calculation unit
Ln (·) indicating the natural logarithm, I (t) indicating the light intensity received by the light receiving unit at time t, and N (t) indicating the light intensity at time t of the time-resolved waveform model of the short-time pulsed light , Li (t) indicating the optical path length of the i-th layer at time t in the model of the optical path length distribution, and μ i indicating the absorption coefficient of the i-th layer,
Figure 2016010717
Calculate the absorption coefficient of any layer from
The concentration determination apparatus according to any one of claims 1 to 5, wherein the concentration determination apparatus according to any one of claims 1 to 5 is provided.
前記光強度取得部は、所定の時刻から少なくとも所定の時間τの間の光強度を取得し、
前記吸収係数算出部は、
自然対数を示すln(・)、前記受光部が時刻tにおいて受光した光強度を示すI(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度を示すN(t)、前記光路長分布のモデルの時刻tにおける第i層の光路長を示すLi(t)、前記観測対象の層の数を示すn、第i層の吸収係数を示すμiを用いて、
Figure 2016010717
から任意の層の吸収係数を算出する、
ことを特徴とする請求項1ないし6のいずれか1項記載の濃度定量装置。
The light intensity acquisition unit acquires a light intensity during a predetermined time τ from a predetermined time,
The absorption coefficient calculation unit
Ln (·) indicating the natural logarithm, I (t) indicating the light intensity received by the light receiving unit at time t, and N (t) indicating the light intensity at time t of the time-resolved waveform model of the short-time pulsed light , Li (t) indicating the optical path length of the i-th layer at time t in the optical path length distribution model, n indicating the number of layers to be observed, and μi indicating the absorption coefficient of the i-th layer,
Figure 2016010717
Calculate the absorption coefficient of any layer from
The concentration quantification apparatus according to claim 1, wherein
前記照射部は、複数の波長1〜qの光を照射し、
前記吸収係数算出部は、前記任意の層における吸収係数を前記照射部が照射した複数の波長毎に算出し、
前記濃度算出部は、
前記任意の層である第a層における波長iの吸収係数を示すμa(i)、前記観測対象を形成する第j成分のモル濃度を示すgj、第j成分の波長iに対する吸収係数を示すεj(i)、前記観測対象を形成する主成分の個数を示すp、照射部が照射する波長の種類数を示すqを用いて、
Figure 2016010717
から前記任意の層における前記目的成分の濃度を算出する、
ことを特徴とする請求項1ないし7のいずれか1項記載の濃度定量装置。
The irradiation unit irradiates light having a plurality of wavelengths 1 to q,
The absorption coefficient calculation unit calculates an absorption coefficient in the arbitrary layer for each of a plurality of wavelengths irradiated by the irradiation unit,
The concentration calculator
Μa (i) indicating the absorption coefficient of the wavelength i in the a-layer which is the arbitrary layer, gj indicating the molar concentration of the j-th component forming the observation object, and ε indicating the absorption coefficient of the j-th component with respect to the wavelength i j (i) , p indicating the number of main components forming the observation object, q indicating the number of types of wavelengths irradiated by the irradiation unit,
Figure 2016010717
Calculate the concentration of the target component in the arbitrary layer from
8. The concentration quantification apparatus according to claim 1, wherein
複数の層により構成される観測対象に短時間パルス光を照射する照射部と、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光部と、前記観測対象に対して照射する短時間パルス光の、前記複数の層の各々の層における光路長分布のモデルを記憶する光路長分布記憶部と、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶部とを備え、前記観測対象のうち任意の層における目的成分の濃度を定量する濃度定量装置を用いた濃度定量方法であって、
前記照射部により、前記観測対象に短時間パルス光を照射し、
前記受光部により、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光し、
照射量制御部により、前記照射部から前記観測対象へ短時間パルス光の予備照射を行い、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御し、
前記照射量制御部により前記短時間パルス光の照射量が制御された後に、密着判定部により、前記照射部が出力する前記短時間パルス光の前記観測対象への入射開始時刻を基準として前記受光部が受光する時刻毎の光強度を測定し、前記受光部が前記後方散乱光を検出し始める時刻と強度との関係に基づき、前記照射部と前記観測対象とが密着状態であるか否かを判定し、
光強度取得部により、前記密着判定部が前記照射部と前記観測対象とが密着状態であると判定した場合に、前記受光部が受光した前記光の強度を取得し、
光路長取得部により、前記光路長分布のモデルの所定の時刻における、前記複数の層の各々の層の光路長を取得し、
光強度モデル取得部により、前記時間分解波形記憶部から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光強度を取得し、
吸収係数算出部により、前記光強度取得部が取得した光強度と、前記光路長取得部が取得した前記複数の層の各々の層の光路長と、前記光強度モデル取得部が取得した前記光強度とに基づいて、前記任意の層における目的成分の吸収係数を算出し、
濃度算出部により、前記吸収係数算出部が算出した吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する、
ことを特徴とする濃度定量方法。
An irradiating unit that irradiates an observation target composed of a plurality of layers with a short-time pulse light, a light-receiving unit that receives light scattered back from the observation target by the irradiation of the short-time pulse light, and the observation target An optical path length distribution storage unit for storing a model of an optical path length distribution in each of the plurality of layers, and a time-resolved waveform of the short-time pulse light irradiated to the observation target. A time-resolved waveform storage unit that stores a model, and a concentration quantification method using a concentration quantification device that quantifies the concentration of a target component in an arbitrary layer of the observation target,
The irradiation unit irradiates the observation target with short-time pulsed light,
The light receiving unit receives light backscattered from the observation target by irradiation with the short-time pulsed light,
The irradiation amount control unit performs preliminary irradiation of the short-time pulse light from the irradiation unit to the observation target, and controls the irradiation amount of the short-time pulse light irradiated from the irradiation unit to the observation target,
After the irradiation amount control unit controls the irradiation amount of the short-time pulse light, the contact determination unit receives the light reception on the basis of the start time of incidence of the short-time pulse light output from the irradiation unit on the observation target. Whether the irradiation unit and the observation target are in close contact with each other based on the relationship between the intensity and the time when the light receiving unit starts detecting the backscattered light. Determine
The light intensity acquisition unit acquires the intensity of the light received by the light receiving unit when the contact determination unit determines that the irradiation unit and the observation target are in a close contact state,
The optical path length acquisition unit acquires the optical path length of each of the plurality of layers at a predetermined time of the optical path length distribution model,
The light intensity model acquisition unit acquires the light intensity at the predetermined time of the model of the time-resolved waveform of the short-time pulsed light from the time-resolved waveform storage unit,
The light intensity acquired by the light intensity acquisition unit by the absorption coefficient calculation unit, the optical path length of each of the plurality of layers acquired by the optical path length acquisition unit, and the light acquired by the light intensity model acquisition unit Based on the strength, calculate the absorption coefficient of the target component in the arbitrary layer,
Based on the absorption coefficient calculated by the absorption coefficient calculation unit, the concentration calculation unit calculates the concentration of the target component in the arbitrary layer.
Concentration determination method characterized by this.
複数の層により構成される観測対象に短時間パルス光を照射する照射部と、前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光部と、前記観測対象に対して照射する短時間パルス光の、前記複数の層の各々の層における光路長分布のモデルを記憶する光路長分布記憶部と、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶部とを備え、前記観測対象のうち任意の層における目的成分の濃度を定量する濃度定量装置のコンピューターに、
前記観測対象に前記短時間パルス光を照射する照射手順、
前記短時間パルス光の照射により前記観測対象から後方散乱される光を受光する受光手順、
前記照射部から前記観測対象へ短時間パルス光の予備照射を行うことにより、前記照射部から前記観測対象へ照射される短時間パルス光の照射量を制御する照射量制御手順、
前記照射量制御手順により前記短時間パルス光の照射量が制御された後に、前記短時間パルス光の前記観測対象への入射開始時刻を基準として前記受光手順により受光された時刻毎の光強度を測定し、前記受光手順により前記観測対象からの後方散乱光を検出し始める時刻と強度との関係に基づき、前記照射部と前記観測対象とが密着状態であるか否かを判定する密着判定手順、
前記密着判定手順により前記照射部と前記観測対象とが密着状態であると判定された場合に、前記受光手順により受光された前記光の強度を取得する光強度取得手順、
前記光路長分布記憶部から、前記光路長分布のモデルの所定の時刻における、前記複数の層の各々の層の光路長を取得する光路長取得手順、
前記時間分解波形記憶部から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光強度を取得する光強度モデル取得手順、
前記光強度取得手順により取得された前記光強度分布と、前記光路長取得手段により取得された前記複数の層の各々の層の光路長と、前記光強度モデル取得手順により取得された前記光強度とに基づいて、前記任意の層の吸収係数を算出する吸収係数算出手順、
前記吸収係数算出手順により算出された吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手順、
を実行させることを特徴とするプログラム。
An irradiating unit that irradiates an observation target composed of a plurality of layers with a short-time pulse light, a light-receiving unit that receives light scattered back from the observation target by the irradiation of the short-time pulse light, and the observation target An optical path length distribution storage unit for storing a model of an optical path length distribution in each of the plurality of layers, and a time-resolved waveform of the short-time pulse light irradiated to the observation target. A time-resolved waveform storage unit that stores a model, and a computer of a concentration quantification device that quantifies the concentration of a target component in any layer of the observation target,
An irradiation procedure for irradiating the observation object with the short-time pulsed light,
A light receiving procedure for receiving light backscattered from the observation target by irradiation with the short-time pulsed light,
A dose control procedure for controlling the dose of short-time pulsed light irradiated from the irradiation unit to the observation target by performing preliminary irradiation of the short-time pulsed light from the irradiation unit to the observation target;
After the irradiation amount of the short-time pulse light is controlled by the irradiation amount control procedure, the light intensity at each time received by the light-receiving procedure with reference to the start time of incidence of the short-time pulse light on the observation target is determined. A contact determination procedure for measuring and determining whether or not the irradiation unit and the observation target are in a close contact state based on the relationship between the intensity and the time when the light reception procedure starts detecting backscattered light from the observation target ,
A light intensity acquisition procedure for acquiring the intensity of the light received by the light receiving procedure when it is determined by the contact determination procedure that the irradiation unit and the observation target are in a contact state;
An optical path length acquisition procedure for acquiring an optical path length of each of the plurality of layers at a predetermined time of the optical path length distribution model from the optical path length distribution storage unit;
A light intensity model acquisition procedure for acquiring the light intensity at the predetermined time of the model of the time-resolved waveform of the short-time pulsed light from the time-resolved waveform storage unit;
The light intensity distribution acquired by the light intensity acquisition procedure, the optical path length of each of the plurality of layers acquired by the optical path length acquisition means, and the light intensity acquired by the light intensity model acquisition procedure Based on the above, an absorption coefficient calculation procedure for calculating the absorption coefficient of the arbitrary layer,
A concentration calculation procedure for calculating the concentration of the target component in the arbitrary layer based on the absorption coefficient calculated by the absorption coefficient calculation procedure;
A program characterized by having executed.
JP2015175942A 2015-09-07 2015-09-07 Concentration quantification apparatus Pending JP2016010717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175942A JP2016010717A (en) 2015-09-07 2015-09-07 Concentration quantification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175942A JP2016010717A (en) 2015-09-07 2015-09-07 Concentration quantification apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011185108A Division JP2013043062A (en) 2011-08-26 2011-08-26 Concentration determination apparatus, concentration determination method, and program

Publications (1)

Publication Number Publication Date
JP2016010717A true JP2016010717A (en) 2016-01-21

Family

ID=55227802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175942A Pending JP2016010717A (en) 2015-09-07 2015-09-07 Concentration quantification apparatus

Country Status (1)

Country Link
JP (1) JP2016010717A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207488A1 (en) * 2017-05-09 2018-11-15 ソニー株式会社 Optical constant measurement device and optical constant measurement method
JP2020513572A (en) * 2016-11-22 2020-05-14 エアウェア インコーポレイテッドAirware, Inc. NDIR glucose detection in liquids
US10768095B2 (en) 2018-08-23 2020-09-08 Ricoh Company, Ltd Optical sensor
JPWO2021053737A1 (en) * 2019-09-18 2021-03-25
CN114468991A (en) * 2021-02-11 2022-05-13 先阳科技有限公司 Method and device for inhibiting jitter influence and wearable equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121347A (en) * 2001-10-18 2003-04-23 Fuji Photo Film Co Ltd Method and apparatus for measuring glucose concentration
WO2005006984A1 (en) * 2003-07-22 2005-01-27 Kabushiki Kaisha Toshiba Biological information measurement device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121347A (en) * 2001-10-18 2003-04-23 Fuji Photo Film Co Ltd Method and apparatus for measuring glucose concentration
WO2005006984A1 (en) * 2003-07-22 2005-01-27 Kabushiki Kaisha Toshiba Biological information measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513572A (en) * 2016-11-22 2020-05-14 エアウェア インコーポレイテッドAirware, Inc. NDIR glucose detection in liquids
JP7469041B2 (en) 2016-11-22 2024-04-16 エアウェア インコーポレイテッド NDIR Glucose Detection in Liquids
WO2018207488A1 (en) * 2017-05-09 2018-11-15 ソニー株式会社 Optical constant measurement device and optical constant measurement method
US10768095B2 (en) 2018-08-23 2020-09-08 Ricoh Company, Ltd Optical sensor
JPWO2021053737A1 (en) * 2019-09-18 2021-03-25
JP7150373B2 (en) 2019-09-18 2022-10-11 ルミアナ ツェンコヴァ Visible and near-infrared spectroscopic analyzer and visible and near-infrared spectroscopic analysis method
CN114468991A (en) * 2021-02-11 2022-05-13 先阳科技有限公司 Method and device for inhibiting jitter influence and wearable equipment

Similar Documents

Publication Publication Date Title
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
US9464983B2 (en) Concentration determination apparatus, probe, concentration determination method, and program
US10667795B2 (en) Wearable, noninvasive glucose sensing methods and systems
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5186044B2 (en) Blood glucose level estimation device
JP2021532846A (en) Performing transabdominal fetal oximetry using optical tomography
CN108478192B (en) Measuring system for estimating skin tissue micro-vessel depth
JP2016010717A (en) Concentration quantification apparatus
JP2008049091A (en) Body component concentration measuring method
JP5750750B2 (en) Concentration meter
US20220039699A1 (en) Wearable, Noninvasive Monitors Of Glucose, Vital Sign Sensing, And Other Important Variables And Methods For Using Same
JP2007259967A (en) Internal component measuring instrument
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5626879B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
JP5924658B2 (en) Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
JP5674094B2 (en) Concentration determination apparatus, concentration determination method, and program
US20140275870A1 (en) Continuous noninvasive measurement of analyte concentration using an optical bridge
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2013043062A (en) Concentration determination apparatus, concentration determination method, and program
JP2013140126A (en) Concentration assaying device, concentration assaying method and program
EP4144292A1 (en) Process and analyte monitor for estimating a quantity in mathematical relationship with an analyte concentration level in a target
JP5818038B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5761708B2 (en) Concentration determination method and concentration determination apparatus
JP2013138811A (en) Concentration determination apparatus, concentration determination method, and program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228