[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016008316A - PRODUCTION METHOD OF MSi2 (M IS AT LEAST ONE KIND OF ALKALINE EARTH METAL SELECTED FROM Mg, Ca, Sr, Ba AND Ra) FILM - Google Patents

PRODUCTION METHOD OF MSi2 (M IS AT LEAST ONE KIND OF ALKALINE EARTH METAL SELECTED FROM Mg, Ca, Sr, Ba AND Ra) FILM Download PDF

Info

Publication number
JP2016008316A
JP2016008316A JP2014128316A JP2014128316A JP2016008316A JP 2016008316 A JP2016008316 A JP 2016008316A JP 2014128316 A JP2014128316 A JP 2014128316A JP 2014128316 A JP2014128316 A JP 2014128316A JP 2016008316 A JP2016008316 A JP 2016008316A
Authority
JP
Japan
Prior art keywords
film
basi
msi
substrate
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014128316A
Other languages
Japanese (ja)
Inventor
康祐 原
Yasuhiro Hara
康祐 原
慶彦 中川
Yoshihiko Nakagawa
慶彦 中川
徳隆 宇佐美
Noritaka Usami
徳隆 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2014128316A priority Critical patent/JP2016008316A/en
Publication of JP2016008316A publication Critical patent/JP2016008316A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new production method of a MSifilm which is simpler than a molecular beam epitaxy method or a sputtering method.SOLUTION: A production method of a MSifilm includes a step for evaporating MSi(M is at least one kind of alkaline earth metal selected from Mg, Ca, Sr, Ba and Ra) granule on a substrate by resistance heating under the condition of a not excessively reduced pressure of 1 Pa or lower and at the substrate temperature of 450°C or higher.

Description

本発明は、MSi(MはMg、Ca、Sr、Ba、Raから選択される少なくとも1種のアルカリ土類金属)膜の製造方法に関する。 The present invention relates to a method for producing an MSi 2 (M is at least one alkaline earth metal selected from Mg, Ca, Sr, Ba, Ra) film.

MSi(MはMg、Ca、Sr、Ba、Raから選択される少なくとも1種のアルカリ土類金属)で表されるアルカリ土類金属シリサイドが知られている。ここで、アルカリ土類金属シリサイドの成分であるSi、Mg、Ca、Sr、Ba、Raは、いずれも地球上に豊富に存在するため、枯渇するリスクが少ないとの利点があるといわれている。このような背景もあって、上記アルカリ土類金属シリサイドの応用研究が盛んに行われており、現在までに、アルカリ土類金属シリサイドは太陽電池の電極、液晶プロジェクターなどの液晶表示装置の偏光素子、露光装置の反射鏡の保護層などの材料として使用され得ることが知られている(例えば、特許文献1の請求項1及び0038段落、特許文献2の請求項9、特許文献3の請求項1及び0032段落、特許文献4の請求項3などを参照のこと。)。特に、アルカリ土類金属シリサイドの膜は好適な半導体であり、その結晶は太陽光スペクトルに合致するバンドギャップを有し、かつ高い光吸収係数を示すことから、アルカリ土類金属シリサイド膜の製造方法を含む太陽電池の光吸収層への応用研究が盛んに行われている。 An alkaline earth metal silicide represented by MSi 2 (M is at least one alkaline earth metal selected from Mg, Ca, Sr, Ba, and Ra) is known. Here, since Si, Mg, Ca, Sr, Ba, and Ra, which are components of alkaline earth metal silicide, are all abundant on the earth, it is said that there is an advantage that there is little risk of depletion. . Against this background, application research of the above alkaline earth metal silicide has been actively conducted, and to date, alkaline earth metal silicide has been used as a polarizing element for liquid crystal display devices such as solar cell electrodes and liquid crystal projectors. It is known that it can be used as a material for a protective layer of a reflection mirror of an exposure apparatus (for example, claim 1 and paragraph 0038 of patent document 1, claim 9 of patent document 2, and claim of patent document 3). (See paragraphs 1 and 0032, claim 3 of patent document 4, etc.). In particular, an alkaline earth metal silicide film is a suitable semiconductor, and its crystal has a band gap matching the solar spectrum and exhibits a high light absorption coefficient. Application research to the light absorption layer of a solar cell including selenium has been actively conducted.

例えば、特許文献1には、Ba、Sr及びSiを分子線エピタキシー法で基板に蒸着させて製造したBa1−xSrSi膜が記載されており、当該膜を太陽電池の光吸収層の材料とし得ることが記載されている。 For example, Patent Document 1 describes a Ba 1-x Sr x Si 2 film produced by depositing Ba, Sr, and Si on a substrate by a molecular beam epitaxy method, and the film is used as a light absorption layer of a solar cell. It is described that it can be used as a material.

非特許文献1には、Ba及びSiを分子線エピタキシー法で基板に蒸着させてBaSi膜を製造することが記載されている。 Non-Patent Document 1 describes that Ba and Si are deposited on a substrate by molecular beam epitaxy to produce a BaSi 2 film.

また、非特許文献2には、高周波マグネトロンスパッタリング装置を用いたスパッタリング法でBaSiを基板に成膜させるBaSi膜の製造方法が記載されている。 Non-Patent Document 2 describes a method of manufacturing a BaSi 2 film in which BaSi 2 is formed on a substrate by a sputtering method using a high-frequency magnetron sputtering apparatus.

特開2005−294810号公報JP 2005-294810 A 特開2014−058429号公報JP 2014-058429 A 特開2008−158460号公報JP 2008-158460 A 特開2007−140146号公報JP 2007-140146 A

Japanese Journal of Applied Physics, 2004, Volume 43, L478Japanese Journal of Applied Physics, 2004, Volume 43, L478 Thin Solid Films, Volume 534, 2013, p.116-p.119Thin Solid Films, Volume 534, 2013, p.116-p.119

しかしながら、分子線エピタキシー法においては、10−5Pa未満の超高真空状態が必要とされており、また、大気中で不安定なアルカリ土類金属単体やSi単体を用いる必要がある。 However, in the molecular beam epitaxy method, an ultrahigh vacuum state of less than 10 −5 Pa is required, and it is necessary to use an alkaline earth metal simple substance or Si simple substance that is unstable in the atmosphere.

また、スパッタリング法においては、専用のスパッタリング装置が必要であるし、原料として用いるBaSiをあらかじめ所定の形状に成形しておく必要がある。 Further, in the sputtering method, a dedicated sputtering apparatus is necessary, and BaSi 2 used as a raw material needs to be formed into a predetermined shape in advance.

本発明は、かかる事情に鑑みてなされたものであり、分子線エピタキシー法やスパッタリング法よりも簡便なMSi膜の新たな製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a new method for producing a simple MSi 2 film than the molecular beam epitaxy method or a sputtering method.

本発明者は、思いがけず、BaSiを単に加熱して蒸発させるだけで、基板にBaSiを蒸着させることができるのではないかと想起した。そして、実際に試験を行ってみたところ、分子線エピタキシー法において求められるよりも高い圧力下で、かつ特段の成形を施していないBaSiを用いた場合でも、好適なBaSi膜が得られることを見出し、本発明を完成するに至った。 The present inventors have unexpectedly only evaporated by simply heating the BaSi 2, recalled that it would be able to deposit the BaSi 2 to the substrate. When actually tested, a suitable BaSi 2 film can be obtained even when using BaSi 2 that is not subjected to special molding under a pressure higher than that required in the molecular beam epitaxy method. As a result, the present invention has been completed.

本発明のMSi(MはMg、Ca、Sr、Ba、Raから選択される少なくとも1種のアルカリ土類金属)膜の製造方法は、MSiを加熱して基板に蒸着させる工程を含むことを特徴とする。 The method of manufacturing an MSi 2 (M is at least one alkaline earth metal selected from Mg, Ca, Sr, Ba, Ra) film of the present invention includes a step of heating MSi 2 and depositing it on a substrate. It is characterized by.

本発明のMSi膜の製造方法は、原料として大気中で安定なMSiを所定の形状に成形せずに用いることができ、10−5Pa未満の超高真空状態を必要とせず、しかも、専用のスパッタリング装置が不要である。 The method for producing an MSi 2 film of the present invention can use MSI 2 which is stable in the atmosphere as a raw material without being formed into a predetermined shape, does not require an ultrahigh vacuum state of less than 10 −5 Pa, and No special sputtering equipment is required.

実施例1〜3のBaSi膜のラマンスペクトルである。It is a Raman spectrum of the BaSi 2 films of Examples 1-3. 実施例4〜6のBaSi膜のラマンスペクトルである。It is a Raman spectrum of the BaSi 2 film of Example 4-6. 実施例7〜9のBaSi膜のラマンスペクトルである。It is a Raman spectrum of the BaSi 2 film of Example 7-9. 実施例1〜3のBaSi膜の回折チャート、及び、RIETANにより算出された斜方晶BaSiの回折パターンである。BaSi 2 film diffraction chart of Examples 1 to 3, and a diffraction pattern of orthorhombic BaSi 2 calculated by RIETAN. 実施例4〜6のBaSi膜の回折チャート、並びに、RIETANにより算出された斜方晶BaSi、立方晶BaSi及び結晶Siの回折パターンである。BaSi 2 film diffraction chart of Example 4-6, as well as orthorhombic BaSi 2 calculated by RIETAN, the diffraction pattern of cubic BaSi 2 and crystalline Si. 実施例7〜9のBaSi膜の回折チャート、並びに、RIETANにより算出された斜方晶BaSi、結晶Ba(OH)及び結晶BaSiの回折パターンである。BaSi 2 film diffraction chart of Examples 7-9, as well as orthorhombic BaSi 2 calculated by RIETAN, the diffraction pattern of the crystalline Ba (OH) 2 and crystals Ba 5 Si 3. 実施例1〜3のBaSi膜の断面のSEM画像である。SEM images of the cross section of the BaSi 2 films of Examples 1-3. 実施例4〜6のBaSi膜の断面のSEM画像である。SEM images of the cross section of the BaSi 2 film of Example 4-6. 実施例7〜9のBaSi膜の断面のSEM画像である。SEM images of the cross section of the BaSi 2 film of Example 7-9. 実施例1〜3のBaSi膜のEDXチャートである。A EDX chart of BaSi 2 films of Examples 1-3. 実施例4〜6のBaSi膜のAFM画像である。Is an AFM image of a BaSi 2 film of Example 4-6. 本発明の製造方法で得られたBaSi膜を具備する太陽電池の模式図である。It is a schematic view of a solar cell having a BaSi 2 film obtained by the production method of the present invention.

以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。   Below, the form for implementing this invention is demonstrated. Unless otherwise specified, the numerical range “ab” described herein includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.

本発明のMSi(MはMg、Ca、Sr、Ba、Raから選択される少なくとも1種のアルカリ土類金属)膜の製造方法(以下、単に「本発明の製造方法」ということがある。)は、MSiを加熱して基板に蒸着させる工程(以下、「本発明の工程」ということがある。)を含むことを特徴とする。 The manufacturing method of the MSi 2 film of the present invention (M is at least one alkaline earth metal selected from Mg, Ca, Sr, Ba, and Ra) (hereinafter simply referred to as “the manufacturing method of the present invention”). ) Includes a step of heating MSi 2 and depositing it on the substrate (hereinafter, also referred to as “step of the present invention”).

原料として用いるMSiのMはMg、Ca、Sr、Ba、Raから選択される少なくとも1種のアルカリ土類金属である。MはMg、Ca、Sr、Ba若しくはRa単独でもよいし、Mg、Ca、Sr、Ba及びRaのうちの2〜5種であってもよい。MSiは組成式でMgCaSrBaRaSi(0≦a≦1、0≦b≦1、0≦c≦1、0≦d≦1、0≦e≦1、a+b+c+d+e=1)と表すことができる。特に好ましいMSiとして、BaSi、SrBaSi(0<c<1、0<d<1、c+d=1)を例示することができる。原料として用いるMSiの形状は限定されない。よって、本発明の工程においては、市販のMSiを用いてもよいし、適宜合成して得られるMSiを用いてもよい。 M of MSi 2 used as a raw material is at least one alkaline earth metal selected from Mg, Ca, Sr, Ba, and Ra. M may be Mg, Ca, Sr, Ba or Ra alone, or 2 to 5 of Mg, Ca, Sr, Ba and Ra. MSi 2 is a composition formula and Mg a Ca b Sr c Ba d Ra e Si 2 (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, a + b + c + d + e = 1). As particularly preferred MSi 2 , BaSi 2 , Sr c Ba d Si 2 (0 <c <1, 0 <d <1, c + d = 1) can be exemplified. The shape of MSi 2 used as a raw material is not limited. Therefore, in the process of the present invention, commercially available MSi 2 may be used, or MSi 2 obtained by appropriate synthesis may be used.

本発明の工程は、蒸着を促進させるために、減圧下で行うのが好ましい。具体的な減圧条件としては、1Pa以下が好ましく、10−1Pa以下がより好ましく、10−2Pa以下がさらに好ましい。具体的な減圧条件の下限値には原理上制限がないが、過度な減圧はエネルギーの無駄になるので、例えば下限値として10−5Pa、10−4Paを挙げることができる。よって、好ましい減圧条件の範囲として、10−5Pa〜1Pa、10−4Pa〜1Paを例示できる。 The process of the present invention is preferably performed under reduced pressure in order to promote vapor deposition. As specific decompression conditions, 1 Pa or less is preferable, 10 −1 Pa or less is more preferable, and 10 −2 Pa or less is more preferable. The lower limit value of the specific decompression condition is not limited in principle, but excessive decompression is a waste of energy. For example, the lower limit value is 10 −5 Pa or 10 −4 Pa. Therefore, 10 −5 Pa to 1 Pa and 10 −4 Pa to 1 Pa can be exemplified as a preferable range of reduced pressure conditions.

なお、好ましい減圧条件の範囲は、原料のMSiの配置位置と基板との距離にも左右される。一般に、蒸発した原料の分子が大気中の分子に妨害されずに基板に到着できる距離は、圧力10−2Paで約1mといわれている。この関係に従えば、理論上、基板に十分に蒸着できる距離は、圧力10−1Paで約10cm、圧力1Paで約1cm、圧力10Paで約1mmとなる。したがって、原料のMSiの配置位置と基板との距離が例えば1m以内の場合、圧力は10−2Pa以下が好ましく、当該距離が10cm以内の場合、圧力は10−1Pa以下が好ましいといえる。 Note that the range of preferable decompression conditions also depends on the distance between the position of the raw material MSi 2 and the substrate. In general, the distance that evaporated source molecules can reach the substrate without being obstructed by atmospheric molecules is said to be about 1 m at a pressure of 10 −2 Pa. According to this relationship, the distance that can be sufficiently deposited on the substrate is theoretically about 10 cm at a pressure of 10 −1 Pa, about 1 cm at a pressure of 1 Pa, and about 1 mm at a pressure of 10 Pa. Therefore, when the distance between the arrangement position of the raw MSi 2 and the substrate is within 1 m, for example, the pressure is preferably 10 −2 Pa or less, and when the distance is within 10 cm, the pressure is preferably 10 −1 Pa or less. .

MSiの加熱温度としては、MSiの融点以上であればよい。例えば、BaSiの常圧での融点は1180℃であるため、MSiがBaSiであって本工程を常圧で行う場合には、BaSiの加熱温度を1180℃以上とすればよい。当然、減圧下ではMSiの融点は降下するので、加熱温度は減圧条件に応じて適宜設定すればよい。加熱温度が過度に高すぎると蒸着膜の結晶品質が悪化する恐れがある。そのため、加熱温度は融点+600℃以下が好ましく、融点+500℃以下がより好ましく、融点+400℃以下がさらに好ましい。なお、本明細書で、本発明の工程について説明する場合の融点とは、減圧条件を包含する本発明の工程下でMSiが融解を開始する温度を意味する。 The heating temperature of MSi 2, may be at least of MSi 2 mp. For example, since the melting point of BaSi 2 at normal pressure is 1180 ° C., when MSi 2 is BaSi 2 and this step is performed at normal pressure, the heating temperature of BaSi 2 may be 1180 ° C. or higher. Naturally, since the melting point of MSi 2 falls under reduced pressure, the heating temperature may be set appropriately according to the reduced pressure conditions. If the heating temperature is too high, the crystal quality of the deposited film may be deteriorated. Therefore, the heating temperature is preferably a melting point + 600 ° C. or less, more preferably a melting point + 500 ° C. or less, and further preferably a melting point + 400 ° C. or less. In the present specification, the melting point in the description of the process of the present invention means the temperature at which MSi 2 starts to melt under the process of the present invention including the decompression condition.

好ましい加熱方法としては、抵抗加熱を挙げることができる。具体的な加熱装置としては、抵抗加熱タイプの真空蒸着装置を挙げることができる。   A preferable heating method includes resistance heating. As a specific heating apparatus, a resistance heating type vacuum vapor deposition apparatus can be exemplified.

基板の成分は、MSi膜を設けた基板の用途に応じて選択すれば良い。例えば、基板を太陽電池の材料として用いる場合には、基板の成分としては、シリコン、石英、ガラス、無アルカリガラス、石英ガラス、又は、アルミニウム、チタン、銅、鉄、ニッケル、亜鉛、モリブデン、ステンレス鋼などの金属を挙げることができる。シリコン基板においては、Si(111)、Si(100)を用いるのが好ましい。基板を液晶表示装置の偏光素子の材料として用いる場合には、基板の成分としては、水晶などの石英、ガラス、サファイア、プラスチック等の透光性を有するものを挙げることができる。基板を露光装置の反射鏡の材料として用いる場合には、ガラスを挙げることができる。また、必要に応じて、基板は他の成分で被覆されていてもよい。特に、基板とMSi膜の一体化が重要な場合には、基板とMSi膜の界面にてM−Si結合を生じ得る点から、基板はSiを含むものが好ましい。 The component of the substrate may be selected according to the use of the substrate provided with the MSi 2 film. For example, when a substrate is used as a material for a solar cell, the component of the substrate is silicon, quartz, glass, alkali-free glass, quartz glass, or aluminum, titanium, copper, iron, nickel, zinc, molybdenum, stainless steel Mention may be made of metals such as steel. In the silicon substrate, Si (111) or Si (100) is preferably used. When the substrate is used as a material for a polarizing element of a liquid crystal display device, examples of the component of the substrate include light-transmitting materials such as quartz such as quartz, glass, sapphire, and plastic. Glass can be used when the substrate is used as a material for a reflecting mirror of an exposure apparatus. Moreover, the board | substrate may be coat | covered with the other component as needed. In particular, when integration of the substrate and the MSi 2 film is important, it is preferable that the substrate contains Si from the viewpoint that M-Si bonds can be generated at the interface between the substrate and the MSi 2 film.

本発明の工程においては、基板を加熱状態としてもよい。以下の評価例で示すように、基板温度を400℃〜600℃程度とすると、MSi膜のMSiが種々の結晶状態となり得ることが判明した。また、以下の評価例で示すように、基板温度が400℃〜600℃の範囲内では、基板温度が高いほど膜の表面形状が滑らかになることが判明した。よって、基板温度は400℃以上が好ましく、450℃以上がより好ましく、500℃以上がさらに好ましい。基板温度の上限を示すと、MSiの融点以下であればよく、600℃、650℃、700℃、800℃を例示できる。 In the process of the present invention, the substrate may be heated. As shown in the following Evaluation Examples, when the substrate temperature is 400 ° C. to 600 degree ° C., it was found that MSi 2 of MSi 2 film can be a variety of crystalline state. Further, as shown in the following evaluation examples, it was found that the surface shape of the film becomes smoother as the substrate temperature is higher when the substrate temperature is in the range of 400 ° C to 600 ° C. Therefore, the substrate temperature is preferably 400 ° C. or higher, more preferably 450 ° C. or higher, and further preferably 500 ° C. or higher. When indicating the upper limit of the substrate temperature may be equal to or less than the melting point of the MSi 2, 600 ℃, 650 ℃ , 700 ℃, can be exemplified 800 ° C..

なお、MSi膜に結晶状態が必要であり、本発明の工程のみではMSi膜の結晶の程度が不足している場合には、本発明の工程の後に、MSiを蒸着させた基板を例えば500℃〜1100℃の範囲内で加熱処理することで結晶状態のMSi膜とすることもできる。つまり、仮に、本発明の工程の終了時点では基板上にMSiが無秩序なアモルファスとして存在、又は、一部がM単体若しくはSi単体のごとく存在していたとしても、後の加熱処理に因り、相転移やM−Si結合の再生成を生じさせて、結晶状態のMSi膜とすることもできる。 Incidentally, it is necessary to crystalline state MSi 2 film, if only the process of the present invention are insufficient degree of crystallinity of the MSi 2 film, after the step of the present invention, the substrate was deposited the MSi 2 For example, an MSi 2 film in a crystalline state can be obtained by heat treatment in the range of 500 ° C. to 1100 ° C. In other words, even if MSi 2 is present as disordered amorphous on the substrate at the end of the process of the present invention, or even if a part is present as M alone or Si alone, due to the subsequent heat treatment, It is also possible to produce a crystallized MSi 2 film by causing phase transition and M-Si bond regeneration.

本発明の製造方法においては、MSi膜の膜厚(t)は、加熱時間や原料MSiの量を調整することにより、適宜決定できる。仮に膜厚が薄すぎた場合には、本発明の工程を再度実施して基板上にMSiを追加で堆積させて、所望の膜厚となるようにすればよい。MSi膜の膜厚(t)の範囲としては、例えば0<t<1000μm、0<t<100μm、0<t<10μm、0<t<1μmを挙げることができる。 In the manufacturing method of the present invention, the film thickness (t) of the MSi 2 film can be appropriately determined by adjusting the heating time and the amount of the raw material MSi 2 . If the film thickness is too thin, the process of the present invention may be performed again to additionally deposit MSi 2 on the substrate so that the desired film thickness is obtained. Examples of the film thickness (t) range of the MSi 2 film include 0 <t <1000 μm, 0 <t <100 μm, 0 <t <10 μm, and 0 <t <1 μm.

本発明の製造方法で得られたMSi膜及びこれを備えた基板は、例えば、太陽電池の材料、液晶プロジェクターの材料、露光装置の反射鏡の材料として使用することができる。 The MSi 2 film obtained by the production method of the present invention and the substrate provided therewith can be used, for example, as a material for a solar cell, a material for a liquid crystal projector, or a material for a reflecting mirror of an exposure apparatus.

以上、本発明の製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the manufacturing method of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、実施例を示し、本発明を具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。以下において、特に断らない限り、「部」とは質量部を意味し、「%」とは質量%を意味する。   Hereinafter, the present invention will be specifically described with reference to examples. In addition, this invention is not limited by these Examples. In the following, unless otherwise specified, “part” means part by mass, and “%” means mass%.

(実施例1)
顆粒状のBaSi0.3g(純度99%、株式会社高純度化学研究所)を、小型真空蒸着装置VPC−260F(アルバック機工株式会社)内に設置したタングステンボート(0.2mm×10mm×100mm)上に配置した。基板としてSi(111)を準備し、タングステンボートの上方約20cmの地点に設置した。なお、Si(111)はCz法で製造された抵抗率20〜30Ωcm、厚さ380μmのものであり、使用前に1%HF水溶液と超純水により洗浄を施したものを使用した。
Example 1
A tungsten boat (0.2 mm × 10 mm × 100 mm) in which 0.3 g of granular BaSi 2 (purity 99%, High Purity Chemical Laboratory Co., Ltd.) is installed in a small vacuum deposition apparatus VPC-260F (ULVAC Kiko Co., Ltd.) ) Arranged on top. Si (111) was prepared as a substrate and installed at a point about 20 cm above the tungsten boat. Si (111) was produced by the Cz method and had a resistivity of 20 to 30 Ωcm and a thickness of 380 μm, and was washed with 1% HF aqueous solution and ultrapure water before use.

小型真空蒸着装置内を10−3Paに減圧した後、Si(111)基板を電熱線で400℃に加熱した。そして、タングステンボートを140Aで通電することにより、BaSiを1180℃以上で加熱し、BaSiをSi(111)基板に蒸着及び堆積させた。このようにして得られた基板上のBaSi膜を実施例1のBaSi膜とした。 After reducing the pressure in the small vacuum deposition apparatus to 10 −3 Pa, the Si (111) substrate was heated to 400 ° C. with a heating wire. Then, by energizing the tungsten boat at 140 A, BaSi 2 was heated at 1180 ° C. or more, and BaSi 2 was evaporated and deposited on the Si (111) substrate. The BaSi 2 film on the substrate obtained in this manner was BaSi 2 film of Example 1.

(実施例2)
基板の加熱温度を500℃とした以外は、実施例1と同様にして、実施例2のBaSi膜を得た。
(Example 2)
A BaSi 2 film of Example 2 was obtained in the same manner as in Example 1 except that the heating temperature of the substrate was 500 ° C.

(実施例3)
基板の加熱温度を600℃とした以外は、実施例1と同様にして、実施例3のBaSi膜を得た。
(Example 3)
A BaSi 2 film of Example 3 was obtained in the same manner as Example 1 except that the heating temperature of the substrate was 600 ° C.

(実施例4)
基板として、石英ガラス(厚さ700μm、平岡特殊硝子製作株式会社)を採用したことと、BaSi原料重量を0.15gとしたこと以外は、実施例1と同様にして、実施例4のBaSi膜を得た。なお、石英ガラスは、使用前にアセトン及びメタノール中での超音波洗浄、並びに超純水による洗浄を施したものを使用した。
Example 4
The BaSi of Example 4 was the same as Example 1 except that quartz glass (thickness 700 μm, Hiraoka Special Glass Manufacturing Co., Ltd.) was used as the substrate and that the BaSi 2 raw material weight was 0.15 g. Two films were obtained. The quartz glass used was subjected to ultrasonic cleaning in acetone and methanol and cleaning with ultrapure water before use.

(実施例5)
基板の加熱温度を500℃とした以外は、実施例4と同様にして、実施例5のBaSi膜を得た。
(Example 5)
A BaSi 2 film of Example 5 was obtained in the same manner as Example 4 except that the heating temperature of the substrate was 500 ° C.

(実施例6)
基板の加熱温度を600℃とした以外は、実施例4と同様にして、実施例6のBaSi膜を得た。
(Example 6)
A BaSi 2 film of Example 6 was obtained in the same manner as in Example 4 except that the heating temperature of the substrate was 600 ° C.

(実施例7)
基板として、無アルカリガラスEagle XG(厚さ700μm、コーニング社)を採用したことと、BaSi原料重量を0.15gとしたこと以外は、実施例1と同様にして、実施例7のBaSi膜を得た。なお、無アルカリガラスは、使用前にアセトン及びメタノール中での超音波洗浄、並びに超純水による洗浄を施したものを使用した。
(Example 7)
The BaSi 2 of Example 7 was the same as Example 1 except that non-alkali glass Eagle XG (thickness 700 μm, Corning) was used as the substrate and the BaSi 2 raw material weight was 0.15 g. A membrane was obtained. The alkali-free glass used was subjected to ultrasonic cleaning in acetone and methanol and cleaning with ultrapure water before use.

(実施例8)
基板の加熱温度を500℃とした以外は、実施例7と同様にして、実施例8のBaSi膜を得た。
(Example 8)
A BaSi 2 film of Example 8 was obtained in the same manner as in Example 7 except that the heating temperature of the substrate was 500 ° C.

(実施例9)
基板の加熱温度を600℃とした以外は、実施例7と同様にして、実施例9のBaSi膜を得た。
Example 9
A BaSi 2 film of Example 9 was obtained in the same manner as in Example 7 except that the heating temperature of the substrate was set to 600 ° C.

(実施例10)
基板として、Si(100)基板を採用した以外は、実施例1と同様にして、実施例10のBaSi膜を得た。なお、Si(100)はFz法で製造された抵抗率>1000Ωcm、厚さ350μmのものであり、使用前に1%HF水溶液と超純水により洗浄を施したものを使用した。
(Example 10)
A BaSi 2 film of Example 10 was obtained in the same manner as Example 1 except that a Si (100) substrate was adopted as the substrate. Si (100) was manufactured by Fz method and had a resistivity> 1000 Ωcm and a thickness of 350 μm, and was washed with 1% HF aqueous solution and ultrapure water before use.

(実施例11)
基板の加熱温度を500℃とした以外は、実施例10と同様にして、実施例11のBaSi膜を得た。
(Example 11)
A BaSi 2 film of Example 11 was obtained in the same manner as Example 10 except that the heating temperature of the substrate was 500 ° C.

(実施例12)
基板の加熱温度を600℃とした以外は、実施例10と同様にして、実施例12のBaSi膜を得た。
(Example 12)
A BaSi 2 film of Example 12 was obtained in the same manner as Example 10 except that the heating temperature of the substrate was 600 ° C.

(評価例1)
実施例1〜9のBaSi膜につき、ラマン分光測定装置にて分析し、ラマンスペクトルを得た。図1に実施例1〜3のBaSi膜のラマンスペクトルを、図2に実施例4〜6のBaSi膜のラマンスペクトルを、図3に実施例7〜9のBaSi膜のラマンスペクトルをそれぞれ示す。
(Evaluation example 1)
Per BaSi 2 film of Example 1-9, analyzed by Raman spectrometer, to obtain a Raman spectrum. FIG. 1 shows the Raman spectra of the BaSi 2 films of Examples 1 to 3, FIG. 2 shows the Raman spectra of the BaSi 2 films of Examples 4 to 6, and FIG. 3 shows the Raman spectra of the BaSi 2 films of Examples 7 to 9. Each is shown.

いずれのラマンスペクトルにおいても、BaSiの特徴的なピークが観察された。また、実施例1、実施例4、実施例6のBaSi膜からは、Siの特徴的なピークも観察された。 In any Raman spectrum, a characteristic peak of BaSi 2 was observed. Further, from the BaSi 2 films of Example 1, Example 4, and Example 6, a characteristic peak of Si was also observed.

(評価例2)
X線回折装置 (D8 Discover−TS、ブルカー・エイエックスエス社) を用い、薄膜法X線回折により、実施例1〜9のBaSi膜の結晶構造を評価した。試料に対する入射角 (ω) を4°以下で固定し、入射X線に対する検出器の角度 (2θ) を15−70°の範囲で走査することで、各膜からの回折パターンを得た。なお、X線はCuKα線 (1.54056 A) であり、Ge4結晶モノクロメーターにより単色化した。
(Evaluation example 2)
The crystal structures of the BaSi 2 films of Examples 1 to 9 were evaluated by thin film X-ray diffraction using an X-ray diffractometer (D8 Discover-TS, Bruker AXS). A diffraction pattern from each film was obtained by fixing the incident angle (ω) to the sample at 4 ° or less and scanning the detector angle (2θ) with respect to the incident X-ray in a range of 15 to 70 °. The X-ray was CuK α ray (1.54056 A), and was monochromatized by a Ge4 crystal monochromator.

図4に実施例1〜3のBaSi膜の回折チャートを、RIETANにより算出された斜方晶BaSiの回折パターンとともに示す。図5に実施例4〜6のBaSi膜の回折チャートを、RIETANにより算出された斜方晶BaSi、立方晶BaSi及び結晶Siの回折パターンとともに示す。図6に実施例7〜9のBaSi膜の回折チャートを、RIETANにより算出された斜方晶BaSi、結晶Ba(OH)及び結晶BaSiの回折パターンとともに示す。 FIG. 4 shows a diffraction chart of the BaSi 2 films of Examples 1 to 3 together with an orthorhombic BaSi 2 diffraction pattern calculated by RIETRAN. FIG. 5 shows diffraction charts of the BaSi 2 films of Examples 4 to 6 together with diffraction patterns of orthorhombic BaSi 2 , cubic BaSi 2 and crystalline Si calculated by RIETRAN. FIG. 6 shows diffraction charts of BaSi 2 films of Examples 7 to 9 together with diffraction patterns of orthorhombic BaSi 2 , crystal Ba (OH) 2, and crystal Ba 5 Si 3 calculated by RIETRAN.

図4の回折チャートから、実施例1のBaSi膜はアモルファス又はX線回折装置にて回折ピークが検出できないほど小さな結晶状態であるといえる。また、図4の回折チャートから、実施例2及び実施例3のBaSi膜の回折ピークが斜方晶BaSiの回折ピークと一致しているため、実施例2及び実施例3のBaSi膜は斜方晶であるといえる。なお、斜方晶BaSiはBaSiの結晶の中で最も安定なものであり、1.3eVのバンドギャップと高い光吸収係数を示すため、太陽電池の材料として有用である。以上のとおり、Si(111)基板を用いた基板温度500℃〜600℃の条件においては、BaSi膜は単相の斜方晶で得られることがわかる。 From the diffraction chart of FIG. 4, it can be said that the BaSi 2 film of Example 1 is in an amorphous state or a crystal state that is so small that a diffraction peak cannot be detected by an X-ray diffractometer. Further, from the diffraction chart of FIG. 4, the diffraction peaks of the BaSi 2 films of Example 2 and Example 3 coincide with the diffraction peaks of orthorhombic BaSi 2 , so that the BaSi 2 films of Example 2 and Example 3 Is orthorhombic. In addition, orthorhombic BaSi 2 is the most stable of the BaSi 2 crystals, and shows a band gap of 1.3 eV and a high light absorption coefficient, and is therefore useful as a material for solar cells. As described above, it can be understood that the BaSi 2 film is obtained in a single-phase orthorhombic system under the condition of the substrate temperature of 500 ° C. to 600 ° C. using the Si (111) substrate.

図5の回折チャートから、実施例4及び実施例5のBaSi膜は、斜方晶、立方晶及びアモルファスの混在状態であることがわかる。また、図5の回折チャートから、実施例6のBaSi膜は、アモルファス又はX線回折装置にて回折ピークが検出できないほど小さな結晶状態であるといえる。 From the diffraction chart of FIG. 5, it can be seen that the BaSi 2 films of Example 4 and Example 5 are in a mixed state of orthorhombic, cubic and amorphous. From the diffraction chart of FIG. 5, it can be said that the BaSi 2 film of Example 6 is in an amorphous state or a crystal state that is so small that a diffraction peak cannot be detected by an X-ray diffractometer.

図6の回折チャートから、実施例7のBaSi膜には、斜方晶及びアモルファスのBaSiとともに、結晶Ba(OH)及び結晶BaSiが共存していることがわかる。また、図6の回折チャートから、実施例8及び実施例9のBaSi膜は、斜方晶及びアモルファスの混在状態であることがわかる。 From the diffraction chart of FIG. 6, it can be seen that the BaSi 2 film of Example 7 contains crystal Ba (OH) 2 and crystal Ba 5 Si 3 together with orthorhombic and amorphous BaSi 2 . Moreover, it can be seen from the diffraction chart of FIG. 6 that the BaSi 2 films of Example 8 and Example 9 are in a mixed state of orthorhombic and amorphous.

以上のとおり、基板の種類や基板温度を変えることに因り、異なる状態のMSi膜を製造できることが判明した。 As described above, it has been found that MSI 2 films in different states can be manufactured by changing the type of substrate and the substrate temperature.

(評価例3)
走査型電子顕微鏡(SEM)(JSM−7001FA、日本電子株式会社)を用いて、実施例1〜9のBaSi膜が形成された基板につき、断面の観察を行った。断面のSEM画像を図7〜9に示す。各SEM画像から膜厚を測定した。結果を表1に示す。
(Evaluation example 3)
Using a scanning electron microscope (SEM) (JSM-7001FA, JEOL Ltd.), the cross section of the substrate on which the BaSi 2 films of Examples 1 to 9 were formed was observed. Cross-sectional SEM images are shown in FIGS. The film thickness was measured from each SEM image. The results are shown in Table 1.

(評価例4)
実施例1〜3のBaSi膜につき、エネルギー分散型X線分光器を用いて、組成分析を行った。得られたEDXチャートを図10に示す。なお、EDXチャートはBa Lαのピークで規格化している。また、EDXチャートに観察されるCuピークはサンプルホルダー由来である。
(Evaluation example 4)
The BaSi 2 films of Examples 1 to 3 were subjected to composition analysis using an energy dispersive X-ray spectrometer. The obtained EDX chart is shown in FIG. Note that the EDX chart is normalized by the peak of Ba Lα. Further, the Cu peak observed in the EDX chart is derived from the sample holder.

いずれのEDXチャートにも、Si及びBaのピークが確認できた。また、実施例1のEDXチャートからは、酸素のピークが観察された。実施例1のBaSi膜は表面の少なくとも一部が酸化していることが示唆される。 Si and Ba peaks were confirmed in all EDX charts. Further, from the EDX chart of Example 1, an oxygen peak was observed. It is suggested that at least a part of the surface of the BaSi 2 film of Example 1 is oxidized.

(評価例5)
実施例1〜3のBaSi膜につき、原子間力顕微鏡 (AFM) (Nanoscope III、デジタルインスツルメンツ社) を用い、タッピングモードで表面を観察した。得られたAFM画像を図11に示す。また、膜表面の4μm×4μmの領域において、二乗平均(RMS)粗さを算出した。結果を表2に示す。
(Evaluation example 5)
The surface of the BaSi 2 films of Examples 1 to 3 was observed in the tapping mode using an atomic force microscope (AFM) (Nanoscope III, Digital Instruments). The obtained AFM image is shown in FIG. Further, the root mean square (RMS) roughness was calculated in a 4 μm × 4 μm region on the film surface. The results are shown in Table 2.

基板温度が高いほど、膜表面は平らになることがわかる。   It can be seen that the higher the substrate temperature, the flatter the film surface.

(評価例6)
実施例2〜3、11〜12のBaSi膜につき、ライフタイム測定装置 (LTA−1512EP、株式会社コベルコ科研) を用い、μ−PCD法により光励起キャリア減衰挙動を測定した。なお、μ−PCD法とは、パルスレーザーにより励起されたキャリア(正孔及び電子)の減衰をマイクロ波の反射率変化により検出する方法である。レーザーの波長は349nmとし、周波数26GHzのマイクロ波により差動検出を行った。
(Evaluation example 6)
The BaSi 2 films of Examples 2-3 and 11-12 were measured for photoexcited carrier attenuation behavior by μ-PCD method using a lifetime measuring device (LTA-1512EP, Kobelco Research Institute, Inc.). Note that the μ-PCD method is a method of detecting attenuation of carriers (holes and electrons) excited by a pulse laser based on a change in reflectance of the microwave. The wavelength of the laser was 349 nm, and differential detection was performed with microwaves having a frequency of 26 GHz.

光励起キャリア減衰挙動から、キャリア寿命(τ)、すなわちキャリア生成から再結合までの時間、及び、キャリア拡散長(L)、すなわちキャリア生成から再結合までの移動距離を算出した。結果を表3に示す。   From the photoexcited carrier decay behavior, the carrier lifetime (τ), that is, the time from carrier generation to recombination, and the carrier diffusion length (L), that is, the movement distance from carrier generation to recombination were calculated. The results are shown in Table 3.

ここで、BaSi膜のキャリア拡散長が太陽電池における半導体薄膜からなる光吸収層の厚みよりも長ければ、太陽電池の半導体膜として使用可能である。そして、BaSiが光を吸収するために必要な厚みは3μm未満と言われている。そうすると、少なくとも、3μm以上のキャリア拡散長(L)を示す実施例2〜3、11のBaSi膜は、太陽電池の半導体膜として十分に使用可能といえる。 Here, if the carrier diffusion length of the BaSi 2 film is longer than the thickness of the light absorption layer made of the semiconductor thin film in the solar cell, it can be used as the semiconductor film of the solar cell. And it is said that the thickness required for BaSi 2 to absorb light is less than 3 μm. Then, at least, BaSi 2 film of Example 2~3,11 shown 3μm or more carrier diffusion length (L) can be said to sufficiently usable as the semiconductor film of the solar cell.

(応用例1)
本発明の製造方法で得られる、BaSi膜が配置されたSi基板を、太陽電池に応用した例を図12に示す。図12においては、金属からなる電極上にSi基板1が配設され、Si基板1上にBaSi膜2が配設されている。そして、BaSi膜2上に電極が配設されている。
(Application 1)
An example in which a Si substrate on which a BaSi 2 film obtained by the production method of the present invention is disposed is applied to a solar cell is shown in FIG. In FIG. 12, a Si substrate 1 is disposed on an electrode made of metal, and a BaSi 2 film 2 is disposed on the Si substrate 1. An electrode is disposed on the BaSi 2 film 2.

Claims (8)

MSi(MはMg、Ca、Sr、Ba、Raから選択される少なくとも1種のアルカリ土類金属)を加熱して基板に蒸着させる工程を含むことを特徴とするMSi膜の製造方法。 A method for producing an MSi 2 film, comprising a step of heating MSi 2 (M is at least one alkaline earth metal selected from Mg, Ca, Sr, Ba, and Ra) and depositing it on a substrate. 圧力が1Pa以下である請求項1に記載のMSi膜の製造方法。 The method for producing an MSi 2 film according to claim 1, wherein the pressure is 1 Pa or less. 加熱温度が前記MSiの融点以上である請求項1又は2に記載のMSi膜の製造方法。 Manufacturing method of MSi 2 film according to the heating Claim 1 or 2 temperature is said MSi 2 above the melting point. 前記基板が、シリコン製、ガラス製又は金属製である請求項1〜3のいずれか1項に記載のMSi膜の製造方法。 The method for manufacturing an MSi 2 film according to claim 1, wherein the substrate is made of silicon, glass, or metal. 前記基板の温度を450℃以上とする請求項1〜4のいずれか1項に記載のMSi膜の製造方法。 The method of manufacturing an MSi 2 film according to claim 1, wherein the temperature of the substrate is 450 ° C. or higher. 前記MSi膜のMSiが結晶である請求項1〜5のいずれか1項に記載のMSi膜の製造方法。 Manufacturing method of MSi 2 film according to any one of claims 1 to 5 MSi 2 is crystalline of the MSi 2 film. 前記MSi膜が太陽電池材料用である請求項1〜6のいずれか1項に記載のMSi膜の製造方法。 The method for producing an MSi 2 film according to claim 1, wherein the MSi 2 film is for a solar cell material. 請求項1〜6の製造方法で得られたMSi膜を採用することを特徴とする太陽電池、液晶プロジェクター又は露光装置の製造方法。 Method for manufacturing a solar cell, a liquid crystal projector or the exposure apparatus characterized by employing a MSi 2 film obtained by the manufacturing method of claims 1 to 6.
JP2014128316A 2014-06-23 2014-06-23 PRODUCTION METHOD OF MSi2 (M IS AT LEAST ONE KIND OF ALKALINE EARTH METAL SELECTED FROM Mg, Ca, Sr, Ba AND Ra) FILM Pending JP2016008316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128316A JP2016008316A (en) 2014-06-23 2014-06-23 PRODUCTION METHOD OF MSi2 (M IS AT LEAST ONE KIND OF ALKALINE EARTH METAL SELECTED FROM Mg, Ca, Sr, Ba AND Ra) FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128316A JP2016008316A (en) 2014-06-23 2014-06-23 PRODUCTION METHOD OF MSi2 (M IS AT LEAST ONE KIND OF ALKALINE EARTH METAL SELECTED FROM Mg, Ca, Sr, Ba AND Ra) FILM

Publications (1)

Publication Number Publication Date
JP2016008316A true JP2016008316A (en) 2016-01-18

Family

ID=55226107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128316A Pending JP2016008316A (en) 2014-06-23 2014-06-23 PRODUCTION METHOD OF MSi2 (M IS AT LEAST ONE KIND OF ALKALINE EARTH METAL SELECTED FROM Mg, Ca, Sr, Ba AND Ra) FILM

Country Status (1)

Country Link
JP (1) JP2016008316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149523A (en) * 2018-02-28 2019-09-05 東ソー株式会社 Thin film including strontium and manufacturing method thereof
JP2021017624A (en) * 2019-07-19 2021-02-15 東ソー株式会社 Barium silicified film and its manufacturing method
JP7562093B2 (en) 2020-09-18 2024-10-11 東ソー株式会社 Silicide-based alloy thin film and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964417A (en) * 1995-08-25 1997-03-07 Kokusai Denshin Denwa Co Ltd <Kdd> Manufacture of siloxene compound thin film
US20060091000A1 (en) * 2004-10-29 2006-05-04 Alexander Kosyachkov Novel thiosilicate phosphor compositions and deposition methods using barium-silicon vacuum deposition sources for deposition of thiosilicate phosphor films
JP2008066719A (en) * 2006-08-10 2008-03-21 Univ Of Tsukuba High-performance silicon-based photovoltaic cell, and manufacturing method thereof
JP2009076895A (en) * 2007-08-30 2009-04-09 Univ Of Tsukuba Semiconductor material, solar cell using the same, and method for manufacturing the same semiconductor material and the same solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964417A (en) * 1995-08-25 1997-03-07 Kokusai Denshin Denwa Co Ltd <Kdd> Manufacture of siloxene compound thin film
US20060091000A1 (en) * 2004-10-29 2006-05-04 Alexander Kosyachkov Novel thiosilicate phosphor compositions and deposition methods using barium-silicon vacuum deposition sources for deposition of thiosilicate phosphor films
JP2008066719A (en) * 2006-08-10 2008-03-21 Univ Of Tsukuba High-performance silicon-based photovoltaic cell, and manufacturing method thereof
JP2009076895A (en) * 2007-08-30 2009-04-09 Univ Of Tsukuba Semiconductor material, solar cell using the same, and method for manufacturing the same semiconductor material and the same solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149523A (en) * 2018-02-28 2019-09-05 東ソー株式会社 Thin film including strontium and manufacturing method thereof
JP7076093B2 (en) 2018-02-28 2022-05-27 東ソー株式会社 Thin film containing strontium and its manufacturing method
JP2021017624A (en) * 2019-07-19 2021-02-15 東ソー株式会社 Barium silicified film and its manufacturing method
JP7304571B2 (en) 2019-07-19 2023-07-07 東ソー株式会社 Barium silicide-based film and method for producing the same
JP7562093B2 (en) 2020-09-18 2024-10-11 東ソー株式会社 Silicide-based alloy thin film and its manufacturing method

Similar Documents

Publication Publication Date Title
Parrott et al. Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI 3 films
Ilican et al. Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method
Wang et al. Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering system
Lian et al. Ultrahigh‐Detectivity Photodetectors with Van der Waals Epitaxial CdTe Single‐Crystalline Films
Adurodija et al. Crystallization process and electro-optical properties of In 2 O 3 and ITO thin films
Dakhel Structural, optical, and opto-dielectric properties of W-doped Ga 2 O 3 thin films
Bouznit et al. New co-spray way to synthesize high quality ZnS films
Singh et al. Structural, optical and electronic properties of Fe doped ZnO thin films
Bozheyev et al. Preparation of highly (001)‐oriented photoactive tungsten diselenide (WSe2) films by an amorphous solid–liquid‐crystalline solid (aSLcS) rapid‐crystallization process
JP2016008316A (en) PRODUCTION METHOD OF MSi2 (M IS AT LEAST ONE KIND OF ALKALINE EARTH METAL SELECTED FROM Mg, Ca, Sr, Ba AND Ra) FILM
Agawane et al. Non-toxic novel route synthesis and characterization of nanocrystalline ZnSxSe1− x thin films with tunable band gap characteristics
Xu et al. Large-area CsPbBr3 perovskite films grown with effective one-step RF-magnetron sputtering
Liu et al. Effects of copper content on properties of CZTS thin films grown on flexible substrate
Guerrero de León et al. Influence of the Zn plasma kinetics on the structural and optical properties of ZnO thin films grown by PLD
Weiß et al. Reactive magnetron sputtering of tungsten disulfide (WS2− x) films: Influence of deposition parameters on texture, microstructure, and stoichiometry
Fallah Azad et al. The effect of seed layer on optical and structural characteristics of ZnO nanorod arrays deposited by CBD method
Kale et al. Structural, optical and thermo electrical properties of nanostructured vacuum evaporated CdS thin films
JP6347041B2 (en) Barium silicide laminated material and method for producing the same
Zhao et al. Effect of magnetic transition metal (TM= V, Cr, and Mn) dopant on characteristics of copper nitride
Alev et al. Nanostructured MoS2 thin films: Effect of substrate temperature on microstructure, optical, and electrical properties
Rodríguez‐Tapiador et al. Power effect on the properties of copper nitride films as solar absorber deposited in pure nitrogen atmosphere
Legall et al. A new generation of X-ray optics based on pyrolytic graphite
Akkari et al. High absorbing CuInS 2 thin films growing by oblique angle incidence deposition in presence of thermal gradient
Malar et al. Characterization of stepwise flash evaporated CuIn3Se5 films
Pathak et al. Effect of substrate temperature on the structural, optical, and electrical properties of silverindium-selenide films prepared by using laser ablation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002