[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016006798A - Sulfide-based solid electrolyte for lithium ion secondary battery - Google Patents

Sulfide-based solid electrolyte for lithium ion secondary battery Download PDF

Info

Publication number
JP2016006798A
JP2016006798A JP2015199119A JP2015199119A JP2016006798A JP 2016006798 A JP2016006798 A JP 2016006798A JP 2015199119 A JP2015199119 A JP 2015199119A JP 2015199119 A JP2015199119 A JP 2015199119A JP 2016006798 A JP2016006798 A JP 2016006798A
Authority
JP
Japan
Prior art keywords
solid electrolyte
ion secondary
lithium ion
secondary battery
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015199119A
Other languages
Japanese (ja)
Inventor
松崎 滋夫
Shigeo Matsuzaki
滋夫 松崎
千賀 実
Minoru Chiga
実 千賀
剛 太田
Takeshi Ota
剛 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2015199119A priority Critical patent/JP2016006798A/en
Publication of JP2016006798A publication Critical patent/JP2016006798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sulfide-based solid electrolyte for a lithium ion secondary battery, capable of reducing deterioration in battery performance during charging/discharging.SOLUTION: The solid electrolyte for a lithium ion secondary battery is synthesized from at least LiS and one or more sulfides selected from PS, PS, SiS, GeS, BS, and AlS, has an elemental sulfur component content of 1 wt.% or less, and contains an organic solvent.

Description

本発明は、リチウムイオン伝導性硫化物系固体電解質及びその製造方法に関する。   The present invention relates to a lithium ion conductive sulfide-based solid electrolyte and a method for producing the same.

従来、室温で高いリチウムイオン伝導性を示す電解質のほとんどが液体であり、市販されているリチウムイオン二次電池の多くが有機系電解液を用いている。有機系電解液を用いたリチウムイオン二次電池では、電解液の漏洩や発火の危険性があり、より安全性の高い全固体電池が望まれている。しかしながら、固体電解質のイオン伝導度は一般的に低く実用化が難しいのが現状である。   Conventionally, most electrolytes exhibiting high lithium ion conductivity at room temperature are liquids, and many of the commercially available lithium ion secondary batteries use organic electrolytes. In a lithium ion secondary battery using an organic electrolyte, there is a risk of electrolyte leakage and ignition, and an all-solid battery with higher safety is desired. However, the ionic conductivity of solid electrolytes is generally low and is difficult to put into practical use.

高いイオン伝導性を示す固体電解質として、LiNをベースとするリチウムイオン伝導性セラミックが知られている。この固体電解質のイオン伝導度は、室温で10−3Scm−1である。しかし、分解電圧が低いため、3V以上で作動する電池を構成することができなかった。
また、特許文献1には硫化物系固体電解質であって、10−4Scm−1台のイオン伝導性を有する固体電解質が開示されている。特許文献2にはLiSとPから合成され、10−4Scm−1台のイオン伝導性を有する固体電解質が開示されている。
さらに、特許文献3にはLiSとPを、68〜74モル%:26〜32モル%の比率で合成した硫化物系結晶化ガラスで10−3Scm−1台のイオン伝導性を実現している。
As a solid electrolyte exhibiting high ion conductivity, a lithium ion conductive ceramic based on Li 3 N is known. The ionic conductivity of this solid electrolyte is 10 −3 Scm −1 at room temperature. However, since the decomposition voltage is low, a battery that operates at 3 V or more cannot be constructed.
Patent Document 1 discloses a sulfide-based solid electrolyte having 10 −4 Scm −1 ion conductivity. Patent Document 2 discloses a solid electrolyte synthesized from Li 2 S and P 2 S 5 and having ion conductivity of 10 −4 Scm −1 units.
Further, Patent Document 3 discloses a sulfide-based crystallized glass obtained by synthesizing Li 2 S and P 2 S 5 in a ratio of 68 to 74 mol%: 26 to 32 mol%, and has an ion conduction of 10 −3 Scm −1 unit. Realize the sex.

硫化物系固体電解質の製造法としては、通常、LiSの融点近傍まで加熱溶融し急冷する溶融法と、機械的混合処理であるメカニカルミリング法(MM法)が知られている。硫化物系固体電解質は反応性が高く、空気中の水分と反応してHSが発生する。従って、溶融法では十分に水分管理されたドライ環境下で原料を溶融し、次いで不活性雰囲気下等で急冷している。また、MM法では水分管理された空間で原料を容器中に仕込み、機械的混合処理している。
特開平4−202024号公報 特開2002−109955号公報 特開2005−228570号公報
As a method for producing a sulfide-based solid electrolyte, there are generally known a melting method in which heating and melting are performed to near the melting point of Li 2 S and quenching, and a mechanical milling method (MM method) which is a mechanical mixing process. Sulfide-based solid electrolytes are highly reactive and react with moisture in the air to generate H 2 S. Therefore, in the melting method, the raw material is melted in a dry environment in which moisture is sufficiently controlled, and then rapidly cooled in an inert atmosphere or the like. In the MM method, a raw material is charged into a container in a moisture-controlled space and mechanically mixed.
JP-A-4-202024 JP 2002-109955 A JP 2005-228570 A

本発明は、充放電時における電池性能の劣化を低減できるリチウムイオン二次電池用硫化物系固体電解質を提供することを目的とする。   An object of this invention is to provide the sulfide type solid electrolyte for lithium ion secondary batteries which can reduce the deterioration of the battery performance at the time of charging / discharging.

本発明者らは、出発原料を反応させて得られる反応物を、有機溶媒で洗浄することにより、得られる固体電解質中の単体硫黄成分を効率よく除去できることを見出し、本発明を完成させた。
硫化物系固体電解質から単体硫黄を除去する方法として、単体硫黄の沸点444℃以上で真空加熱する方法等がある。しかしながらこの場合、例えば、P系固体電解質では、Pの沸点290℃以上の温度で加熱することとなり、著しい電池性能の低下を引き起こす。また、SiS系においても、一部硫化物の分解反応による単体硫黄の生成が生じ、必ずしも有効な手段ではなかった。
本発明によれば、以下のリチウムイオン二次電池用硫化物系固体電解質等が提供される。
1.少なくともLiSと、P、P、SiS、GeS、B及びAlから選択される1種以上の硫化物から合成され、単体硫黄成分が1重量%以下であるリチウムイオン二次電池用固体電解質。
2.少なくともLiSと、P、P、SiS、GeS、B及びAlから選択される1種以上の硫化物を出発原料とし、前記出発原料を反応させて得られる反応物を、有機溶媒で洗浄する工程を有するリチウムイオン二次電池用硫化物系固体電解質の製造方法。
3.下記に示す工程(a)、(b)及び(c)を、この順で実施する2に記載のリチウムイオン二次電池用硫化物系固体電解質の製造方法。
(a)前記出発原料を反応させる工程
(b)反応物に有機溶媒を添加し、洗浄する工程
(c)添加した有機溶媒を除去する工程
4.前記有機溶媒が炭化水素系有機溶媒である、2又は3に記載のリチウムイオン二次電池用硫化物系固体電解質の製造方法。
5.上記1記載のリチウムイオン二次電池用硫化物系固体電解質と、Li元素と、Co、Ni、Mn及びFeから選択される1種以上の金属元素を含む複合酸化物を含有するリチウムイオン二次電池用正極合材。
6.単体硫黄の含有率が1重量%以下である硫化物系固体電解質を含む全固体リチウムイオン二次電池。
The present inventors have found that a single sulfur component in a solid electrolyte obtained can be efficiently removed by washing a reaction product obtained by reacting a starting material with an organic solvent, thereby completing the present invention.
As a method of removing elemental sulfur from the sulfide-based solid electrolyte, there is a method of vacuum heating at a boiling point of 444 ° C. or more of elemental sulfur. However, in this case, for example, in the P 2 S 5 system solid electrolyte, heating is performed at a temperature of the boiling point of P 2 S 5 of 290 ° C. or more, which causes a significant decrease in battery performance. In addition, even in the SiS 2 system, the generation of elemental sulfur due to the decomposition reaction of some sulfides occurred, which was not always an effective means.
According to the present invention, the following sulfide-based solid electrolyte for lithium ion secondary batteries is provided.
1. It is synthesized from at least Li 2 S and one or more sulfides selected from P 2 S 3 , P 2 S 5 , SiS 2 , GeS 2 , B 2 S 3 and Al 2 S 3. A solid electrolyte for a lithium ion secondary battery having a weight% or less.
2. At least Li 2 S and one or more sulfides selected from P 2 S 3 , P 2 S 5 , SiS 2 , GeS 2 , B 2 S 3 and Al 2 S 3 are used as starting materials, and the starting materials are The manufacturing method of the sulfide type solid electrolyte for lithium ion secondary batteries which has the process of wash | cleaning the reaction material obtained by making it react with an organic solvent.
3. The manufacturing method of the sulfide type solid electrolyte for lithium ion secondary batteries of 2 which implements process (a), (b), and (c) shown below in this order.
(A) Step of reacting the starting material (b) Step of adding an organic solvent to the reaction and washing (c) Step of removing the added organic solvent The method for producing a sulfide-based solid electrolyte for a lithium ion secondary battery according to 2 or 3, wherein the organic solvent is a hydrocarbon-based organic solvent.
5. Lithium ion secondary containing a sulfide-based solid electrolyte for lithium ion secondary battery as described in 1 above, a complex oxide containing Li element, and one or more metal elements selected from Co, Ni, Mn and Fe Positive electrode composite for batteries.
6). An all-solid-state lithium ion secondary battery comprising a sulfide-based solid electrolyte having a content of elemental sulfur of 1% by weight or less.

本発明によれば、充放電時における電池性能の劣化を低減できるリチウムイオン二次電池用硫化物系固体電解質を提供することができる。ADVANTAGE OF THE INVENTION According to this invention, the sulfide type solid electrolyte for lithium ion secondary batteries which can reduce the deterioration of the battery performance at the time of charging / discharging can be provided.

本発明のリチウムイオン二次電池用硫化物系固体電解質は、少なくとも下記(1)及び(2)を含む出発原料を反応させて得られるものであり、単体硫黄成分が1重量%以下である。
(1)Li
(2)P、P、SiS、GeS、B及びAlから選択される1種以上の硫化物
The sulfide-based solid electrolyte for a lithium ion secondary battery of the present invention is obtained by reacting at least a starting material containing the following (1) and (2), and the elemental sulfur component is 1% by weight or less.
(1) Li 2 S
(2) one or more sulfides selected from P 2 S 3 , P 2 S 5 , SiS 2 , GeS 2 , B 2 S 3 and Al 2 S 3

本発明において、固体電解質の単体硫黄成分の残存量は1重量%以下である。1重量%以下であれば、固体電解質を電池に使用した際に性能の安定した電池が作製できる。1重量%を超えると充放電時に硫黄に起因する反応が起こり、電池の容量や出力の低下を生じる可能性がある。単体硫黄成分の残存量は0.5重量%以下であることが好ましく、さらに0.1重量%以下であることが好ましい。   In the present invention, the residual amount of the single sulfur component of the solid electrolyte is 1% by weight or less. If the amount is 1% by weight or less, a battery having stable performance can be produced when the solid electrolyte is used in the battery. If it exceeds 1% by weight, a reaction due to sulfur occurs during charging and discharging, which may cause a reduction in battery capacity and output. The residual amount of the elemental sulfur component is preferably 0.5% by weight or less, and more preferably 0.1% by weight or less.

尚、上記の出発原料は、特に限定はなく、市販されているものが使用できる。   The starting material is not particularly limited, and commercially available products can be used.

本発明のリチウムイオン二次電池用硫化物系固体電解質は、例えば、固体電解質の製造時に、少なくとも上記(1)及び(2)を含む出発原料を反応させて得られる反応物を、有機溶媒で洗浄する工程を実施すればよい。
反応物である硫化物系固体電解質を有機溶媒で洗浄することにより、最終製品である固体電解質の不純物である単体硫黄成分を低減することができる。
The sulfide-based solid electrolyte for a lithium ion secondary battery of the present invention is obtained by, for example, reacting a reaction product obtained by reacting at least a starting material containing the above (1) and (2) with an organic solvent during the production of the solid electrolyte. What is necessary is just to implement the process to wash | clean.
By washing the sulfide-based solid electrolyte that is a reactant with an organic solvent, the elemental sulfur component that is an impurity of the solid electrolyte that is the final product can be reduced.

有機溶媒で洗浄する工程は、出発原料を反応させて得られる反応物(固体電解質)を対象とする。さらに、後述する固体電解質をガラスセラミック化する加熱工程の後に洗浄してもよい。洗浄工程は1回でもよいが、各工程の後に複数回実施してもよい。出発原料を反応させる工程において、新たに単体硫黄成分が生成する可能性があるため、反応物を対象として洗浄することが好ましい。   The step of washing with an organic solvent targets a reaction product (solid electrolyte) obtained by reacting starting materials. Furthermore, you may wash | clean after the heating process which makes the solid electrolyte mentioned later glass-ceramic. The cleaning step may be performed once, but may be performed a plurality of times after each step. In the step of reacting the starting materials, there is a possibility that a new elemental sulfur component may be newly generated. Therefore, it is preferable to wash the reactant.

尚、単体硫黄成分の除去は、加熱による除去等も用いることができる。具体的に、真空加熱により硫黄成分を蒸発除去することも可能である。しかしながら、単体硫黄の沸点が444℃と高温であり、合成した固体電解質の結晶構造に影響を与える可能性が高い。従って、本発明のように有機溶媒により単体硫黄成分を抽出、ろ過して除去する方法が好ましい。   In addition, the removal by a heating etc. can be used for the removal of a simple sulfur component. Specifically, it is possible to evaporate and remove the sulfur component by vacuum heating. However, the boiling point of elemental sulfur is as high as 444 ° C., and there is a high possibility of affecting the crystal structure of the synthesized solid electrolyte. Therefore, the method of extracting and filtering a single element sulfur component with an organic solvent as in the present invention is preferred.

以下、本発明の製造方法の一実施形態について、詳細に説明する。
本実施形態では、下記に示す工程(a)、(b)及び(c)を、この順で実施する。
(a)出発原料を反応させる工程
(b)工程(a)で得た反応物に有機溶媒を添加し、洗浄する工程
(c)添加した有機溶媒を除去する工程
Hereinafter, an embodiment of the production method of the present invention will be described in detail.
In the present embodiment, the following steps (a), (b), and (c) are performed in this order.
(A) Step of reacting starting materials (b) Step of adding an organic solvent to the reaction product obtained in step (a) and washing (c) Step of removing the added organic solvent

工程(a)において、出発原料を反応させる方法としては、特に限定はなく、本技術分野において公知の方法が採用できる。例えば、出発原料をLiSの融点近傍まで加熱溶融し急冷する溶融法や、出発原料を機械的に混合処理するメカニカルミリング法(MM法)が採用できる。これらの方法により出発原料を処理し、反応物を得る。以下、例としてMM法を採用した場合について説明する。 In the step (a), the method for reacting the starting material is not particularly limited, and a method known in this technical field can be employed. For example, a melting method in which the starting material is heated and melted to near the melting point of Li 2 S and rapidly cooled, or a mechanical milling method (MM method) in which the starting material is mechanically mixed can be employed. The starting material is treated by these methods to obtain a reaction product. Hereinafter, a case where the MM method is adopted will be described as an example.

メカニカルミリング処理には、種々の形式の粉砕法を用いることができる。特に、遊星型ボールミルを使用するのが好ましい。遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い衝撃エネルギーを効率良く発生させることができる。
メカニカルミリング処理時のLiSの仕込み量は、出発原料の合計に対し30〜95mol%とすることが好ましく、さらに、40〜85mol%とすることが好ましく、特に50〜75mol%とすることが好ましい。
Various types of grinding methods can be used for the mechanical milling treatment. In particular, it is preferable to use a planetary ball mill. The planetary ball mill can efficiently generate very high impact energy by rotating the platform while the pot rotates.
The amount of Li 2 S charged at the time of mechanical milling is preferably 30 to 95 mol%, more preferably 40 to 85 mol%, particularly 50 to 75 mol%, based on the total amount of starting materials. preferable.

メカニカルミリング処理の回転速度及び回転時間は特に限定されないが、回転速度が速いほど、ガラス状電解質の生成速度は速くなり、回転時間が長いほどガラス質状電解質ヘの原料の転化率は高くなる。
例えば、遊星型ボールミル機を使用した場合、回転速度を数十〜数百回転/分とし、0.5時間〜100時間処理すればよい。
The rotation speed and rotation time of the mechanical milling treatment are not particularly limited, but the higher the rotation speed, the faster the glassy electrolyte production rate, and the longer the rotation time, the higher the conversion rate of the raw material into the glassy electrolyte.
For example, when a planetary ball mill is used, the rotational speed may be set to several tens to several hundreds of revolutions / minute, and the treatment may be performed for 0.5 hours to 100 hours.

工程(b)では、上記の工程(a)で得た反応物に有機溶媒を添加し、洗浄する。
有機溶媒としては、不純物である単体硫黄成分を抽出できるものが使用できる。例えば、トルエン、キシレン、ヘキサン、二硫化炭素等が好適に用いることができる。特に、トルエン、キシレン、ヘキサン等の炭化水素系有機溶媒が好ましい。
In the step (b), an organic solvent is added to the reaction product obtained in the above step (a) and washed.
As the organic solvent, those capable of extracting the elemental sulfur component which is an impurity can be used. For example, toluene, xylene, hexane, carbon disulfide and the like can be suitably used. In particular, hydrocarbon organic solvents such as toluene, xylene and hexane are preferred.

有機溶媒の使用量は、反応物から単体硫黄成分を十分に抽出できる量であれば特に限定はない。反応物の性状等を考慮して適宜調整すればよいが、反応物が、溶媒の添加によりスラリー状になる程度であることが好ましい。通常、溶媒1リットルに対する原料(合計量)の添加量は0.1〜1Kg程度となる。好ましくは0.3〜1.0Kg、特に好ましくは0.5〜0.8Kgである。   The amount of the organic solvent to be used is not particularly limited as long as it can sufficiently extract a single sulfur component from the reaction product. Although it may be adjusted as appropriate in consideration of the properties of the reactants, it is preferable that the reactants are in a slurry state by the addition of a solvent. Usually, the addition amount of the raw material (total amount) with respect to 1 liter of solvent is about 0.1 to 1 kg. Preferably it is 0.3-1.0Kg, Most preferably, it is 0.5-0.8Kg.

洗浄方法は特に限定はなく、上記の反応物と有機溶媒の混合物を十分に撹拌、混合できればよい。例えば、オートクレーブや万能混合撹拌機の使用が挙げられる。
また、MM法の場合、反応後の容器に有機溶媒を添加し、さらに回転処理を続けることで洗浄することもできる。
The washing method is not particularly limited as long as the mixture of the reactant and the organic solvent can be sufficiently stirred and mixed. For example, use of an autoclave or a universal mixing stirrer can be mentioned.
In the case of the MM method, washing can be performed by adding an organic solvent to the container after the reaction and further continuing the rotation treatment.

洗浄処理の時間は、反応物から単体硫黄成分を十分に抽出できる時間であれば特に限定はない。反応物の性状等を考慮して適宜調整すればよいが、通常、0.5〜10時間程度が好ましい。   The time for the washing treatment is not particularly limited as long as the single sulfur component can be sufficiently extracted from the reaction product. Although it may be adjusted as appropriate in consideration of the properties of the reactants, it is usually preferably about 0.5 to 10 hours.

工程(c)では、上記の洗浄後に添加した有機溶媒を除去し、固体電解質を回収する。有機溶媒の除去は、例えば、ろ過等により実施できる。溶媒を除去することにより、硫化物ガラスである硫化物系固体電解質が得られる。   In the step (c), the organic solvent added after the washing is removed, and the solid electrolyte is recovered. The removal of the organic solvent can be carried out, for example, by filtration. By removing the solvent, a sulfide-based solid electrolyte that is a sulfide glass is obtained.

本発明では、工程(a)又は(c)により得られた硫化物系固体電解質を、さらに、200℃以上400℃以下、より好ましくは270℃〜320℃で加熱処理することにより、硫化物系固体電解質のイオン伝導性を向上できる。これは、反応物が硫化物結晶化ガラス(ガラスセラミック)となるためである。
加熱処理の時間は、1〜5時間が好ましく、特に1.5〜3時間が好ましい。
加熱処理温度が400℃以上の高温になるとリチウムイオン伝導性に劣るLiが生成する可能性が高くなるため望ましくない。
尚、この加熱処理は洗浄工程(b)の前に実施してもよく、また、工程(c)の後に実施してもよい。
In the present invention, the sulfide-based solid electrolyte obtained by the step (a) or (c) is further heat-treated at 200 ° C. or more and 400 ° C. or less, more preferably 270 ° C. to 320 ° C. The ionic conductivity of the solid electrolyte can be improved. This is because the reactant becomes sulfide crystallized glass (glass ceramic).
The heat treatment time is preferably 1 to 5 hours, and particularly preferably 1.5 to 3 hours.
If the heat treatment temperature is a high temperature of 400 ° C. or higher, there is a high possibility that Li 2 P 2 S 6 inferior in lithium ion conductivity is generated, which is not desirable.
This heat treatment may be performed before the cleaning step (b), or may be performed after the step (c).

本発明のリチウムイオン二次電池用固体電解質は、全固体リチウムイオン二次電池の電解質層として使用できる。また、この固体電解質と複合酸化物等を混合してリチウムイオン二次電池用正極合材とし、正極として使用することもできる。
複合酸化物としては、Li元素と、Co、Ni、Mn及びFeから選択される1種以上の金属元素を含むものを使用できる。例えば、Li元素とCoから構成されるコバルト酸リチウムLiCoO2やLi元素とCo及びNiから構成されるLiNi0.8Co0.2等が好ましい。
The solid electrolyte for a lithium ion secondary battery of the present invention can be used as an electrolyte layer of an all solid lithium ion secondary battery. Moreover, this solid electrolyte, composite oxide, etc. can be mixed, and it can also be used as a positive electrode compound material for lithium ion secondary batteries.
As the composite oxide, an element containing Li element and one or more metal elements selected from Co, Ni, Mn, and Fe can be used. For example, lithium cobaltate LiCoO 2 composed of Li element and Co, LiNi 0.8 Co 0.2 O 2 composed of Li element, Co, and Ni are preferable.

尚、本発明のリチウムイオン二次電池用固体電解質又は正極合材には、必要に応じてLiFePO、ケイ酸系化合物、リン酸系化合物等のガラス化材を添加することもできる。 Incidentally, the solid electrolyte or positive electrode material for lithium ion secondary battery of the present invention, LiFePO 4 as necessary, silicic acid compounds, may be added vitrified material such as phosphoric acid-based compound.

本発明の全固体リチウム二次電池は、単体硫黄の含有率が1重量%以下である硫化物系固体電解質を含む。即ち、本発明の硫化物系固体電解質が、電解質層や正極合材に使用されている。
例えば、正極及び負極の間に本発明の固体電解質からなる層を形成することで、全固体リチウム二次電池となる。
The all solid lithium secondary battery of the present invention includes a sulfide-based solid electrolyte in which the content of elemental sulfur is 1% by weight or less. That is, the sulfide solid electrolyte of the present invention is used for an electrolyte layer and a positive electrode mixture.
For example, an all-solid lithium secondary battery is formed by forming a layer made of the solid electrolyte of the present invention between the positive electrode and the negative electrode.

正極材としては、本発明の正極合材の他に、電池分野において正極活物質として使用されているものが使用できる。例えば、硫化物系では、硫化チタン(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS)、硫化銅(CuS)及び硫化ニッケル(Ni)等が使用できる。好ましくは、TiSが使用できる。
また、酸化物系では、酸化ビスマス(Bi)、鉛酸ビスマス(BiPb)、酸化銅(CuO)、酸化バナジウム(V13)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)等が使用できる。尚、これらを混合して用いることも可能である。好ましくは、コバルト酸リチウムが使用できる。
尚、上記の他にはセレン化ニオブ(NbSe)が使用できる。
As the positive electrode material, in addition to the positive electrode mixture of the present invention, those used as a positive electrode active material in the battery field can be used. For example, in the sulfide system, titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), nickel sulfide (Ni 3 S 2 ), and the like can be used. Preferably, TiS 2 can be used.
In the oxide system, bismuth oxide (Bi 2 O 3 ), bismuth lead acid (Bi 2 Pb 2 O 5 ), copper oxide (CuO), vanadium oxide (V 6 O 13 ), lithium cobalt oxide (LiCoO 2 ) Lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and the like can be used. It is also possible to use a mixture of these. Preferably, lithium cobaltate can be used.
In addition to the above, niobium selenide (NbSe 3 ) can be used.

負極材としては、電池分野において負極活物質として使用されているものが使用できる。例えば、炭素材料、具体的には、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等が挙げられる。又はその混合物でもよい。好ましくは、人造黒鉛である。
また、金属リチウム、金属インジウム、金属アルミ、金属ケイ素等の金属自体や他の元素、化合物と組合せた合金を、負極材として用いることができる。
As a negative electrode material, what is used as a negative electrode active material in the battery field | area can be used. For example, carbon materials, specifically artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon Examples thereof include fibers, vapor-grown carbon fibers, natural graphite, and non-graphitizable carbon. Or it may be a mixture thereof. Preferably, it is artificial graphite.
An alloy combined with a metal itself such as metallic lithium, metallic indium, metallic aluminum, metallic silicon, or another element or compound can be used as the negative electrode material.

製造例1
(1)硫化リチウム(LiS)の製造
硫化リチウムは、特開平7−330312号公報における第1の態様(2工程法)の方法に従って製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN−メチル−2−ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。続いてこの反応液を窒素気流下(200cc/分)昇温し、反応した水硫化リチウムを脱硫化水素化し硫化リチウムを得た。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。水硫化リチウムの脱硫化水素反応が終了後(約80分)に反応を終了し、硫化リチウムを得た。
Production Example 1
(1) Production of Lithium Sulfide (Li 2 S) Lithium sulfide was produced according to the method of the first aspect (two-step method) in JP-A-7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 3326.4 g (33.6 mol) and lithium hydroxide 287.4 g (12 mol) were charged into a 10 liter autoclave equipped with a stirring blade, and 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours. Subsequently, this reaction solution was heated under a nitrogen stream (200 cc / min), and the reacted lithium hydrosulfide was dehydrosulfurized to obtain lithium sulfide. As the temperature increased, water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system. While water was distilled out of the system, the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant. The reaction was completed after the dehydrosulfurization reaction of lithium hydrosulfide (about 80 minutes) to obtain lithium sulfide.

(2)硫化リチウムの精製
上記(1)で得た500mLのスラリー反応溶液(NMP−硫化リチウムスラリー)中のNMPをデカンテーションした後、脱水したNMP100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
尚、亜硫酸リチウム(LiSO)、硫酸リチウム(LiSO)並びにチオ硫酸リチウム(Li)の各硫黄酸化物、及びN−メチルアミノ酪酸リチウム(NMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、LMABは0.07質量%であった。このようにして精製したLiSを、以下の実施例で使用した。
(2) Purification of lithium sulfide After decanting NMP in the 500 mL slurry reaction solution (NMP-lithium sulfide slurry) obtained in (1) above, 100 mL of dehydrated NMP was added and stirred at 105 ° C. for about 1 hour. NMP was decanted at that temperature. Further, 100 mL of NMP was added, stirred at 105 ° C. for about 1 hour, NMP was decanted at that temperature, and the same operation was repeated a total of 4 times. After completion of the decantation, lithium sulfide was dried at 230 ° C. (temperature higher than the boiling point of NMP) under a nitrogen stream for 3 hours under normal pressure. The impurity content in the obtained lithium sulfide was measured.
Incidentally, lithium sulfite (Li 2 SO 3), the content of each sulfur oxide lithium sulfate (Li 2 SO 4) and lithium thiosulfate (Li 2 S 2 O 3) , and N- methylamino acid lithium (NMAB) Was quantified by ion chromatography. As a result, the total content of sulfur oxides was 0.13% by mass, and LMAB was 0.07% by mass. Li 2 S thus purified was used in the following examples.

実施例等で製造した固体電解質は、下記方法により評価した。
(1)イオン伝導度
硫化物系固体電解質粉体を錠剤成形機に充填し、4〜6MPaの圧力を加え成形体を得た。さらに、電極としてカーボンと電解質ガラスセラミックを重量比1:1で混合した合材を成形体の両面に乗せ、再度錠剤成形機にて圧力を加えることで、伝導度測定用の成形体(直径約10mm、厚み約1mm)を作製した。この成形体について交流インピーダンス測定によりイオン伝導度測定を実施した。伝導度の値は25℃における数値を採用した。
The solid electrolyte produced in Examples and the like was evaluated by the following method.
(1) Ionic conductivity Sulfide-based solid electrolyte powder was filled in a tablet molding machine, and a pressure of 4 to 6 MPa was applied to obtain a molded body. Furthermore, a composite material in which carbon and electrolyte glass ceramic are mixed at a weight ratio of 1: 1 as an electrode is placed on both sides of the molded body, and pressure is again applied by a tablet molding machine, so that a molded body for measuring conductivity (diameter of about 10 mm and a thickness of about 1 mm). The molded body was subjected to ionic conductivity measurement by AC impedance measurement. The conductivity value was a value at 25 ° C.

(2)電池性能の評価
各例で製造した硫化物系固体電解質とリチウム複合酸化物(LiCoO2)を8:2〜6:4の重量比で混合して、正極合材を作製した。
インジウム箔、又はカーボンと硫化物系固体電解質から作製した合材のいずれかを負極とした。
上記負極上に硫化物系固体電解質、上記の正極合材、Tiメッシュ及びTi箔をこの順序で積層して組み上げ10〜30MPaで圧縮し電池を形成、充放電サイクル曲線を得て評価した。
充放電評価は、カットオフ電圧を下限1.5V、上限3.7Vとし、充電後の充電容量に対する放電容量の比及びその積算値である放電出力により実施した。
(2) Evaluation of battery performance The sulfide-based solid electrolyte produced in each example and lithium composite oxide (LiCoO 2 ) were mixed at a weight ratio of 8: 2 to 6: 4 to prepare a positive electrode mixture.
Either an indium foil or a composite produced from carbon and a sulfide-based solid electrolyte was used as the negative electrode.
A sulfide-based solid electrolyte, the above-mentioned positive electrode mixture, Ti mesh and Ti foil were laminated in this order on the negative electrode, assembled and compressed at 10 to 30 MPa to form a battery, and a charge / discharge cycle curve was obtained and evaluated.
The charge / discharge evaluation was performed by setting the cut-off voltage to a lower limit of 1.5 V and an upper limit of 3.7 V, and the ratio of the discharge capacity to the charge capacity after charging and the discharge output that is an integrated value thereof.

(3)硫化物系固体電解質中の残留単体硫黄成分の分析
30ml試料ビンに対象とする固体電解質粉体1gを入れ、有機溶媒(脱水トルエン)を20ml添加後、振盪機により十分に(約3時間)撹拌した。静置して固体電解質を十分に沈降させ、その上澄み液を注射器により抜き取り、さらに、ミリポアフィルタを通過させ固体電解質を完全に除去し、有機溶媒上澄み液を得た。この上澄み液中の単体硫黄成分をガスクロにて定量し、残留単体硫黄成分量を決定した。
(3) Analysis of residual elemental sulfur component in sulfide-based solid electrolyte 1 g of the target solid electrolyte powder is placed in a 30 ml sample bottle, and 20 ml of organic solvent (dehydrated toluene) is added. Time). The solid electrolyte was allowed to settle down and the solid electrolyte was sufficiently settled. The supernatant was taken out with a syringe, passed through a Millipore filter, and the solid electrolyte was completely removed to obtain an organic solvent supernatant. The single sulfur component in the supernatant was quantified with a gas chromatograph to determine the amount of residual single sulfur component.

実施例1
上記製造例により製造したLiS 16.27gとP(アルドリッチ社製)33.73gを、10mmφアルミナボール175個が入った500mlアルミナ製容器に入れ密閉した。尚、上記計量、密閉作業は全てグローブボックス内で実施し、使用する器具類は全て乾燥機で事前に水分除去したものを用いた。
この密閉したアルミナ容器を、遊星ボールミル(レッチェ社製PM400)にて、室温下、回転数290rpmにて36時間メカニカルミリング処理することで反応物(白黄色のガラス粉体)を得た。
尚、この粉体のX線回折測定(CuKα:λ=1.5418Å)を行なった結果、原料であるLiSのピークは観測されず、反応物に起因するハローパターンが観測された。
Example 1
16.27 g of Li 2 S and 33.73 g of P 2 S 5 (manufactured by Aldrich) manufactured according to the above manufacturing example were put in a 500 ml alumina container containing 175 10 mmφ alumina balls and sealed. The above weighing and sealing operations were all carried out in a glove box, and all the instruments used were water removed beforehand by a dryer.
This sealed alumina container was mechanically milled at a rotational speed of 290 rpm for 36 hours with a planetary ball mill (PM400 manufactured by Lecce) at room temperature to obtain a reaction product (white yellow glass powder).
As a result of X-ray diffraction measurement (CuKα: λ = 1.54184) of this powder, a peak of Li 2 S as a raw material was not observed, and a halo pattern due to the reaction product was observed.

上記のメカニカルミリング処理後、アルミナ容器にトルエンを136ml添加した。その後、20分間ボールミル処理し、反応物を洗浄した。
洗浄後、得られた反応物のスラリーをろ過・乾燥することにより、硫化物系固体電解質を得た。
この硫化物系固体電解質を、グローブボックス内(Ar雰囲気下)でSUS製チューブに密閉し、300℃で2時間の加熱処理を施し、ガラスセラミック化した硫化物系固体電解質を得た。このガラスセラミック化した固体電解質粉末のX線回折測定では、2θ=17.8、18.2、19.8、21.8、23.8、25.9、29.5、30.0degにピークが観測された。
また、このガラスセラミック化した固体電解質のイオン伝導度は、1.3×10−3S/cmであった。
固体電解質の単体硫黄残量は、ガラスセラミック化処理前及び処理後、ともに0.023重量%であった。
ガラスセラミック化した硫化物系固体電解質を用いて電池を形成し、電池性能評価に従い評価した。その結果、充放電容量比率は0.85であった。また、0.2Cレートでの放電容量は136mAh/gであり、放電出力は0.504Wh/gであった。
After the mechanical milling process, 136 ml of toluene was added to the alumina container. Then, the reaction product was washed by ball milling for 20 minutes.
After washing, the resulting slurry of the reaction product was filtered and dried to obtain a sulfide-based solid electrolyte.
This sulfide-based solid electrolyte was sealed in a SUS tube in a glove box (under an Ar atmosphere) and subjected to a heat treatment at 300 ° C. for 2 hours to obtain a sulfide-based solid electrolyte that was converted into a glass ceramic. In the X-ray diffraction measurement of this glass-ceramic solid electrolyte powder, peaks were observed at 2θ = 17.8, 18.2, 19.8, 21.8, 23.8, 25.9, 29.5, 30.0 deg. Was observed.
Further, the ionic conductivity of the glass-ceramic solid electrolyte was 1.3 × 10 −3 S / cm.
The amount of simple sulfur in the solid electrolyte was 0.023% by weight both before and after the glass ceramic treatment.
A battery was formed using a sulfide-based solid electrolyte made into a glass ceramic, and evaluated according to battery performance evaluation. As a result, the charge / discharge capacity ratio was 0.85. Further, the discharge capacity at a 0.2 C rate was 136 mAh / g, and the discharge output was 0.504 Wh / g.

実施例2
の代わりにSiS(Alfa Aesar社製)を用い、スラリー作製時の仕込み量をLiS 21.39gとSiS 28.61gに変えた以外は、実施例1と同様に処理を行ない、固体電解質を得た。
固体電解質の単体硫黄残量は、0.066重量%であった。
また、この固体電解質のイオン伝導度は、9.3×10−4S/cmであった。
この硫化物系固体電解質を用いて電池を形成し、電池性能評価に従い評価した。その結果、充放電容量比率は0.82であった。また、0.2Cレートでの放電容量は124mAh/gであり、放電出力は0.441Wh/gであった。
Example 2
The same treatment as in Example 1 except that SiS 2 (manufactured by Alfa Aesar) was used instead of P 2 S 5 , and the amount of preparation at the time of slurry preparation was changed to Li 2 S 21.39 g and SiS 2 28.61 g. The solid electrolyte was obtained.
The amount of simple sulfur in the solid electrolyte was 0.066% by weight.
The ionic conductivity of this solid electrolyte was 9.3 × 10 −4 S / cm.
A battery was formed using this sulfide-based solid electrolyte and evaluated according to the battery performance evaluation. As a result, the charge / discharge capacity ratio was 0.82. Further, the discharge capacity at a 0.2 C rate was 124 mAh / g, and the discharge output was 0.441 Wh / g.

実施例3
の代わりにAl(三津和社製)を用い、スラリー作製時の仕込み量をLiS 15.89gとAl 28.61gに変えた以外は、実施例1と同様に処理を行ない、固体電解質を得た。
この固体電解質の単体硫黄残量は、0.37重量%であった。
Example 3
Example 1 except that Al 2 S 3 (manufactured by Mitsuwa Corp.) was used instead of P 2 S 5 , and the amount charged during slurry preparation was changed to 15.89 g of Li 2 S and 28.61 g of Al 2 S 3. The solid electrolyte was obtained in the same manner as in Example 1.
The residual amount of simple sulfur in the solid electrolyte was 0.37% by weight.

比較例1
メカニカルミリング処理後、トルエンを使用した洗浄を行わなかった他は、実施例1と同様にし、硫化物系固体電解質を製造した。
この固体電解質の単体硫黄残量は、ガラスセラミック化処理前及び処理後、ともに2.53重量%であった。
また、このガラスセラミック化した固体電解質のイオン伝導度は、1.0×10−3S/cmであった。
ガラスセラミック化した硫化物系固体電解質を用いて電池を形成し、電池性能評価に従い評価した。その結果、充放電容量比率は0.68であった。また、0.2Cレートでの放電容量は103mAh/gであり、放電出力は0.359Wh/gであった。
Comparative Example 1
After the mechanical milling treatment, a sulfide-based solid electrolyte was produced in the same manner as in Example 1 except that the cleaning using toluene was not performed.
The residual amount of simple sulfur in the solid electrolyte was 2.53% by weight both before and after the glass ceramicization treatment.
Further, the ionic conductivity of the glass-ceramic solid electrolyte was 1.0 × 10 −3 S / cm.
A battery was formed using a sulfide-based solid electrolyte made into a glass ceramic, and evaluated according to battery performance evaluation. As a result, the charge / discharge capacity ratio was 0.68. The discharge capacity at a 0.2 C rate was 103 mAh / g, and the discharge output was 0.359 Wh / g.

本発明のリチウムイオン二次電池用固体電解質又は正極合材は、全固体リチウム二次電池に好適に使用できる。
本発明の全固体リチウム二次電池は、携帯情報末端、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等で使用するリチウム二次電池として使用できる。
The solid electrolyte or positive electrode mixture for a lithium ion secondary battery of the present invention can be suitably used for an all solid lithium secondary battery.
The all-solid-state lithium secondary battery of the present invention is a lithium secondary battery used in portable information terminals, portable electronic devices, household small-sized power storage devices, motor-driven motorcycles, electric vehicles, hybrid electric vehicles, and the like. Can be used.

Claims (10)

少なくともLiSと、
、P、SiS、GeS、B及びAlから選択される1種以上の硫化物から合成され、単体硫黄成分が1重量%以下であり、有機溶媒を含むリチウムイオン二次電池用固体電解質。
At least Li 2 S;
Synthesized from P 2 S 3, P 2 S 5, SiS 2, GeS 2, B 2 S 3 and Al 2 S 3 1 or more sulfides selected from elemental sulfur components Ri der than 1 wt% And a solid electrolyte for a lithium ion secondary battery containing an organic solvent .
前記固体電解質が粉体である、請求項1に記載のリチウムイオン二次電池用固体電解質。The solid electrolyte for a lithium ion secondary battery according to claim 1, wherein the solid electrolyte is a powder. 前記有機溶媒が、炭化水素系有機溶媒である、請求項1又は2に記載のリチウムイオン二次電池用固体電解質。The solid electrolyte for lithium ion secondary batteries according to claim 1 or 2, wherein the organic solvent is a hydrocarbon organic solvent. 前記有機溶媒が、トルエン、キシレン、ヘキサンのうち、少なくとも1つを含む、請求項1〜3のいずれかに記載のリチウムイオン二次電池用固体電解質。The solid electrolyte for lithium ion secondary batteries according to any one of claims 1 to 3, wherein the organic solvent contains at least one of toluene, xylene, and hexane. 前記単体硫黄成分が0.1重量%以下である、請求項1〜4のいずれかに記載のリチウムイオン二次電池用固体電解質。 The solid electrolyte for a lithium ion secondary battery according to any one of claims 1 to 4 , wherein the elemental sulfur component is 0.1 wt% or less. 少なくともLiSとPから合成される、請求項1〜5のいずれかに記載のリチウムイオン二次電池用固体電解質。 At least Li 2 are synthesized from S and P 2 S 5, the lithium ion secondary battery for a solid electrolyte according to any one of claims 1 to 5. 前記LiSの仕込み量は、出発原料の合計に対し30〜95mol%である請求項1〜のいずれかに記載のリチウムイオン二次電池用固体電解質。 The charge of Li 2 S is 30~95Mol% the combined total of the starting materials, lithium ion secondary battery for a solid electrolyte according to any one of claims 1-6. 少なくともLiAt least Li 2 Sと、S and
P 2 S 3 、P, P 2 S 5 、SiS, SiS 2 、GeS, GeS 2 、B, B 2 S 3 及びAlAnd Al 2 S 3 から選択される1種以上の硫化物から合成され、単体硫黄成分が1重量%以下であるリチウムイオン二次電池用固体電解質粉体。A solid electrolyte powder for a lithium ion secondary battery synthesized from one or more sulfides selected from the group consisting of 1% by weight or less of a single sulfur component.
前記単体硫黄成分が0.1重量%以下である、請求項8に記載のリチウムイオン二次電池用固体電解質粉体。The solid electrolyte powder for a lithium ion secondary battery according to claim 8, wherein the elemental sulfur component is 0.1 wt% or less. 請求項1〜のいずれかに記載のリチウムイオン二次電池用固体電解質、又は、請求項8若しくは9に記載のリチウムイオン二次電池用固体電解質粉体を含む全固体リチウムイオン二次電池。 Lithium-ion secondary battery for a solid electrolyte according to any one of claims 1 to 7, or, all-solid-state lithium-ion secondary battery including a solid electrolyte powder for a lithium ion secondary battery according to claim 8 or 9.
JP2015199119A 2015-10-07 2015-10-07 Sulfide-based solid electrolyte for lithium ion secondary battery Pending JP2016006798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015199119A JP2016006798A (en) 2015-10-07 2015-10-07 Sulfide-based solid electrolyte for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199119A JP2016006798A (en) 2015-10-07 2015-10-07 Sulfide-based solid electrolyte for lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013188058A Division JP2014013772A (en) 2013-09-11 2013-09-11 Sulfide-based solid electrolyte for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2016006798A true JP2016006798A (en) 2016-01-14

Family

ID=55225101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199119A Pending JP2016006798A (en) 2015-10-07 2015-10-07 Sulfide-based solid electrolyte for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2016006798A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245828A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and totally solid lithium secondary battery
JPH10321256A (en) * 1997-05-19 1998-12-04 Matsushita Electric Ind Co Ltd Working method of solid electrolyte or electrode, and manufacture of lithium battery
JP2002329524A (en) * 2001-02-28 2002-11-15 Sumitomo Electric Ind Ltd Inorganic solid electrolyte and lithium battery member
JP2003151630A (en) * 2001-11-16 2003-05-23 Hitachi Maxell Ltd Nonaqueous secondary battery
WO2004093099A1 (en) * 2003-04-15 2004-10-28 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte and totally solid type secondary using solid electrolyte produced thereby
JP2005166536A (en) * 2003-12-04 2005-06-23 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2005228570A (en) * 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd Lithium ion conductive sulfide based crystallized glass and its manufacturing method
JP2008103193A (en) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd Sulfide-based solid electrolyte for cathode composite material and its manufacturing method
JP2009093995A (en) * 2007-10-11 2009-04-30 Idemitsu Kosan Co Ltd Sulfide solid electrolyte for lithium ion secondary battery
JP2014013772A (en) * 2013-09-11 2014-01-23 Idemitsu Kosan Co Ltd Sulfide-based solid electrolyte for lithium ion secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245828A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and totally solid lithium secondary battery
JPH10321256A (en) * 1997-05-19 1998-12-04 Matsushita Electric Ind Co Ltd Working method of solid electrolyte or electrode, and manufacture of lithium battery
JP2002329524A (en) * 2001-02-28 2002-11-15 Sumitomo Electric Ind Ltd Inorganic solid electrolyte and lithium battery member
JP2003151630A (en) * 2001-11-16 2003-05-23 Hitachi Maxell Ltd Nonaqueous secondary battery
WO2004093099A1 (en) * 2003-04-15 2004-10-28 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte and totally solid type secondary using solid electrolyte produced thereby
JP2005166536A (en) * 2003-12-04 2005-06-23 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2005228570A (en) * 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd Lithium ion conductive sulfide based crystallized glass and its manufacturing method
JP2008103193A (en) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd Sulfide-based solid electrolyte for cathode composite material and its manufacturing method
JP2009093995A (en) * 2007-10-11 2009-04-30 Idemitsu Kosan Co Ltd Sulfide solid electrolyte for lithium ion secondary battery
JP2014013772A (en) * 2013-09-11 2014-01-23 Idemitsu Kosan Co Ltd Sulfide-based solid electrolyte for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5395346B2 (en) Sulfide-based solid electrolyte for lithium ion secondary battery
JP6085318B2 (en) Electrode material and lithium ion battery using the same
JP4996120B2 (en) Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP5848801B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same
JP5368711B2 (en) Solid electrolyte membrane, positive electrode membrane, or negative electrode membrane for all solid lithium secondary battery, method for producing the same, and all solid lithium secondary battery
JP5396033B2 (en) Method for producing sulfide-based solid electrolyte, all-solid lithium secondary battery, all-solid lithium primary battery, and apparatus equipped with these
JP4989183B2 (en) Electrode and solid secondary battery using the same
JP4834442B2 (en) Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP5485716B2 (en) Method for producing lithium ion conductive solid electrolyte
WO2014073197A1 (en) Solid electrolyte
JP2008103280A (en) Positive electrode plied timber and all-solid secondary battery using it
JP2008103146A (en) Solid electrolyte and secondary battery using it
JP2008103204A (en) Cathode active material and secondary battery using it
WO2016013224A1 (en) Solid electrolyte composition, method for producing same, method for producing solid electrolyte-containing layer, electrolyte layer, and battery
JP2008027581A (en) Electrode material, electrode, and all-solid secondary battery
JP2008103203A (en) Solid electrolyte and all-solid secondary battery using it
JP2007311084A (en) Electrolyte, member for battery, electrode, and all-solid secondary battery
JP2009283344A (en) Negative electrode mix for lithium battery, negative electrode for lithium battery, lithium battery, device, and manufacturing method of negative electrode mix for lithium battery
JP5833834B2 (en) Sulfide solid electrolyte, sulfide solid electrolyte sheet and all solid lithium battery
JP5311169B2 (en) Lithium ion conductive solid electrolyte, method for producing the same, solid electrolyte for lithium secondary battery using the solid electrolyte, and all solid lithium battery using the solid electrolyte for secondary battery
JP5001621B2 (en) Solid electrolyte and solid secondary battery using the same
JP6088797B2 (en) Solid electrolyte
JP5096722B2 (en) Battery material manufacturing method and all solid state battery
JP2014093263A (en) Solid electrolyte and lithium battery
JP5596900B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328