JP2016099153A - Axial force measurement method for ground anchor - Google Patents
Axial force measurement method for ground anchor Download PDFInfo
- Publication number
- JP2016099153A JP2016099153A JP2014234437A JP2014234437A JP2016099153A JP 2016099153 A JP2016099153 A JP 2016099153A JP 2014234437 A JP2014234437 A JP 2014234437A JP 2014234437 A JP2014234437 A JP 2014234437A JP 2016099153 A JP2016099153 A JP 2016099153A
- Authority
- JP
- Japan
- Prior art keywords
- axial force
- bearing plate
- anchor
- measuring
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000691 measurement method Methods 0.000 title abstract description 5
- 238000000034 method Methods 0.000 claims description 28
- 238000012935 Averaging Methods 0.000 abstract description 2
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 239000011440 grout Substances 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Piles And Underground Anchors (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
本発明は、斜面の安定化などに用いるグラウンドアンカーの軸力を測定する方法に関するものである。 The present invention relates to a method for measuring an axial force of a ground anchor used for stabilizing a slope.
斜面を安定化する方法として、図1に示すグラウンドアンカー工法が知られている。
グラウンドアンカー工法は、アンカー体31をセメントグラウト37によって地中に拘束し、自由長部32に軸力(引張り力)を付与した状態でアンカー頭部33やくさび34を介して支圧板35および受圧板36に定着することにより、斜面内部に圧縮力を与えて安定化するものである。
グラウンドアンカーは高度経済成長期より大量に打設されており、その数は、高速道路沿いの斜面を中心に12万本以上に達している。
現在、多数のグラウンドアンカーは施工から数十年を迎え、機能が低下しているものも多く、維持管理を行うためには残存緊張力(軸力)の測定が必要となる。
グラウンドアンカーの軸力の測定方法としては、従来のリフトオフ試験に代わるものとして、超音波による透過法が検討されている。
透過法はアンカー頭部33に自由長部32の軸とは垂直な方向に超音波を送信し、その対面で透過波を受信するものである。
As a method of stabilizing the slope, a ground anchor method shown in FIG. 1 is known.
In the ground anchor method, the anchor body 31 is constrained in the ground by a cement grout 37, and an axial force (tensile force) is applied to the free length portion 32, and the bearing plate 35 and the pressure receiving force are received via the anchor head 33 and the wedge 34. By fixing to the plate 36, a compressive force is applied to the inside of the slope to stabilize it.
A large number of ground anchors have been installed since the period of high economic growth, and the number of ground anchors has reached more than 120,000, mainly on the slopes along the expressway.
At present, many ground anchors have been in operation for several decades, and many of them have deteriorated functions. In order to perform maintenance and management, it is necessary to measure the residual tension (axial force).
As a method for measuring the axial force of the ground anchor, an ultrasonic transmission method has been studied as an alternative to the conventional lift-off test.
In the transmission method, an ultrasonic wave is transmitted to the anchor head 33 in a direction perpendicular to the axis of the free length portion 32, and a transmitted wave is received face-to-face.
この透過法は以下のような問題がある。
(1)載荷過程と除荷過程とで得られる超音波パラメータが異なるといったヒステリシスの問題がある。
(2)くさびタイプのグラウンドアンカーでは超音波の伝播経路によって、得られる数値が大きく異なる。
This transmission method has the following problems.
(1) There is a problem of hysteresis such that ultrasonic parameters obtained by the loading process and the unloading process are different.
(2) With wedge type ground anchors, the numerical values obtained vary greatly depending on the propagation path of the ultrasonic waves.
本発明は、大がかりな装置が必要なく、簡便に多数のグラウンドアンカーの軸力を測定することができる、グランドアンカーの軸力の測定方法を提供することを目的とする。 It is an object of the present invention to provide a method for measuring the axial force of a ground anchor that can easily measure the axial force of a large number of ground anchors without requiring a large-scale device.
上記目的を達成するためになされた本願の第1発明は、斜面などの安定化に用いるグラウンドアンカーの軸力測定方法であって、支圧板の側面で超音波を発振して、前記支圧板に設けた支圧板孔の位置、寸法および面積を測定し、測定された前記支圧板孔の位置、寸法および面積を用いて、前記グラウンドアンカーのアンカー頭部と前記支圧板とが接触している、支圧面積を算出し、アンカー頭部の上面の複数点で、超音波を支圧板方向に発振して反射波を計測し、前記反射波の振幅から、前記複数点における前記アンカー頭部の応力を算出し、前記複数点の応力を平均して、平均応力を算出し、前記支圧面積と前記平均応力の積から軸力を算出する、グラウンドアンカーの軸力測定方法を提供する。
本願の第2発明は、第1発明のグラウンドアンカーの軸力測定方法において、前記複数点の反射波のうち、受圧板表面からの反射波が計測できない点を、平均応力の算出時に除外することを特徴とする、グラウンドアンカーの軸力測定方法を提供する。
A first invention of the present application made to achieve the above object is a method for measuring an axial force of a ground anchor used for stabilizing a slope or the like, and oscillates an ultrasonic wave on a side surface of a bearing plate so as to be applied to the bearing plate. The position, size and area of the provided bearing plate hole are measured, and using the measured position, size and area of the bearing plate hole, the anchor head of the ground anchor and the bearing plate are in contact with each other. Calculate the bearing area, measure the reflected wave by oscillating ultrasonic waves in the direction of the bearing plate at multiple points on the upper surface of the anchor head, and determine the stress of the anchor head at the multiple points from the amplitude of the reflected wave A ground anchor axial force measurement method is provided that calculates the average stress by averaging the stresses at the plurality of points, and calculates the axial force from the product of the bearing area and the average stress.
According to a second invention of the present application, in the method for measuring an axial force of a ground anchor according to the first invention, of the reflected waves at the plurality of points, a point where a reflected wave from the pressure receiving plate surface cannot be measured is excluded when calculating the average stress. A method for measuring the axial force of a ground anchor is provided.
本発明は、上記した課題を解決するための手段により、次のような効果の少なくとも一つを得ることができる。
(1)透過法とは異なり、くさびの位置ではなくアンカー頭部から支圧板方向の反射波を測定するため、載荷過程および除荷過程で同じ履歴をたどり、正しく荷重を評価することができる。
(2)アンカー頭部の上面から支圧板方向(軸方向)に超音波を発振して反射波を計測するため、超音波の伝播経路が一定であり、均一な測定結果を得ることができる。
(3)超音波により測定するものであるため、従来の測定方法と比較して、大がかりな装置が不要であり、簡便に多数のアンカーの軸力を測定することができる。
(4)簡便に多数のアンカーの軸力を測定することができるため、詳細な調査実施の判断が可能となり、これまでに補完的に推定されていた斜面全体の安定性が、より精緻に判断できる。
The present invention can obtain at least one of the following effects by means for solving the above-described problems.
(1) Unlike the transmission method, the reflected wave in the direction of the bearing plate is measured not from the position of the wedge but from the anchor head, so that the same history can be traced during the loading process and the unloading process, and the load can be evaluated correctly.
(2) Since the ultrasonic wave is oscillated from the upper surface of the anchor head in the direction of the bearing plate (axial direction) and the reflected wave is measured, the propagation path of the ultrasonic wave is constant, and a uniform measurement result can be obtained.
(3) Since the measurement is performed by ultrasonic waves, a large-scale device is not required as compared with the conventional measurement method, and the axial forces of a large number of anchors can be easily measured.
(4) Since the axial force of a large number of anchors can be measured easily, detailed investigations can be made, and the stability of the entire slope, which has been estimated in a complementary manner, can be judged more precisely. it can.
以下、図に示す実施例に基づき、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
(1)測定装置。
本発明の軸力測定方法のための軸力測定装置は、図1に示す超音波を送受信する超音波センサ1と、超音波センサ1で受信した超音波を計測する超音波計測器2と、からなる。
超音波センサ1は超音波計測器2にケーブルを介して接続する。
(1) Measuring device.
The axial force measuring device for the axial force measuring method of the present invention includes an ultrasonic sensor 1 that transmits and receives ultrasonic waves shown in FIG. 1, an ultrasonic measuring instrument 2 that measures ultrasonic waves received by the ultrasonic sensor 1, and Consists of.
The ultrasonic sensor 1 is connected to the ultrasonic measuring instrument 2 via a cable.
(2)グラウンドアンカー。
グラウンドアンカー工法は、アンカー体31をセメントグラウト37によって地中に拘束し、自由長部32に軸力(引張り力)を付与した状態でアンカー頭部33やくさび34を介して支圧板35および受圧板36に定着する。
自由長部32はPC鋼線や炭素繊維からなる。
自由長部32は、地盤から支圧板35の支圧板孔351およびアンカー頭部33のくさび挿通孔331を貫通して露出する側の端部にくさび34を取り付け、くさび34を自由長部32の軸力によってアンカー頭部33のくさび挿通孔331に貫入させることにより、アンカー頭部33と自由長部32が連結される。(図1)
(2) Ground anchor.
In the ground anchor method, the anchor body 31 is constrained in the ground by a cement grout 37, and an axial force (tensile force) is applied to the free length portion 32, and the bearing plate 35 and the pressure receiving force are received via the anchor head 33 and the wedge 34. Fix to the plate 36.
The free length portion 32 is made of PC steel wire or carbon fiber.
The free length portion 32 attaches a wedge 34 to the end portion of the free pressure portion 35 exposed from the ground through the pressure bearing plate hole 351 of the bearing pressure plate 35 and the wedge insertion hole 331 of the anchor head 33, and attaches the wedge 34 to the free length portion 32. The anchor head 33 and the free length portion 32 are connected by penetrating the wedge insertion hole 331 of the anchor head 33 by an axial force. (Figure 1)
また、自由長部32は鋼棒(PC鋼棒)であってもよい。
この場合、自由長部32は地盤から露出する側の端部が雄ネジ状に形成されており、六角ナットからなるアンカー頭部33と自由長部32は螺合される。(図2)
Moreover, the free length part 32 may be a steel bar (PC steel bar).
In this case, the end portion of the free length portion 32 exposed from the ground is formed in a male screw shape, and the anchor head portion 33 formed of a hexagon nut and the free length portion 32 are screwed together. (Figure 2)
いずれの場合にも、支圧板35および受圧板36は軸力を付与した自由長部32に挿通しており、アンカー頭部33により、斜面である地盤に緊締する。 In any case, the bearing plate 35 and the pressure receiving plate 36 are inserted into the free length portion 32 to which an axial force is applied, and are fastened to the ground which is an inclined surface by the anchor head 33.
(3)軸力測定。
自由長部32の軸力測定は、以下の手順により行う。
(3) Axial force measurement.
The axial force of the free length portion 32 is measured according to the following procedure.
(3−1)支圧板の位置、寸法測定。
支圧板35の側面に超音波センサ1を当接し、支圧板35を横断するように超音波を発振し、支圧板35の形状や支圧板35の端部から支圧板孔351の端部までの距離から、支圧板35に設けられている支圧板孔351の位置、寸法および面積を測定する。(図3)
支圧板孔351はアンカー頭部33の下に位置しているため目視することはできないが、超音波により、位置、寸法、および面積を求めることができる。
(3-1) Measurement of position and dimensions of bearing plate.
The ultrasonic sensor 1 is brought into contact with the side surface of the bearing plate 35 and ultrasonic waves are oscillated so as to cross the bearing plate 35, and the shape of the bearing plate 35 and the end of the bearing plate 35 to the end of the bearing plate hole 351 are detected. From the distance, the position, size and area of the bearing plate hole 351 provided in the bearing plate 35 are measured. (Figure 3)
Although the bearing plate hole 351 cannot be visually observed because it is located under the anchor head 33, the position, size, and area can be obtained by ultrasonic waves.
(3−2)支圧面積の算出。
アンカー頭部33は支圧板35の上面に位置する。よって、アンカー頭部33の寸法や支圧板35に対する位置、断面積、くさび挿通孔331の位置、面積を求める。
そしてアンカー頭部33の断面積から、(3−1)で測定した支圧板孔351の面積と、くさび挿通孔331のうちで支圧板孔351から外れる部分の面積S1とを差し引いて、アンカー頭部33が支圧板35に接触している面積(支圧面積)Sを求める。(図4)
(3-2) Calculation of bearing area.
The anchor head 33 is located on the upper surface of the bearing plate 35. Therefore, the dimension of the anchor head 33, the position with respect to the bearing plate 35, the cross-sectional area, the position and area of the wedge insertion hole 331 are obtained.
And from the cross-sectional area of the anchor head 33, by subtracting the area S 1 of the portion out of the Bearing plate hole 351 among the Bearing plate and the area of the hole 351, the wedge insertion holes 331 measured at (3-1), the anchor The area (bearing area) S where the head 33 is in contact with the bearing plate 35 is determined. (Fig. 4)
(3−3)軸方向反射波の計測。
超音波センサ1をアンカー頭部33の上面にあてて、超音波をアンカー頭部33上面から支圧板35方向(自由長部32の軸方向)に発振し、反射波を計測する。
計測は、超音波センサ1の受感面がアンカー頭部33からはみ出さないようにあて、まんべんなく複数点を計測する。
軸方向反射波は、アンカー頭部33と支圧板35の境界面と、支圧板35と受圧板36の境界面の二カ所で反射するとともに、当該境界面での反射波がアンカー頭部の表面で反射するため、図5のような波形(繰り返し反射波)が計測される。
(3-3) Measurement of reflected wave in the axial direction.
The ultrasonic sensor 1 is applied to the upper surface of the anchor head 33, and an ultrasonic wave is oscillated from the upper surface of the anchor head 33 in the direction of the bearing plate 35 (the axial direction of the free length portion 32) to measure the reflected wave.
In the measurement, a plurality of points are measured evenly so that the sensitive surface of the ultrasonic sensor 1 does not protrude from the anchor head 33.
Axial reflected waves are reflected at two locations, the boundary surface between the anchor head 33 and the bearing plate 35 and the boundary surface between the bearing plate 35 and the pressure receiving plate 36, and the reflected wave at the boundary surface is reflected on the surface of the anchor head. Therefore, a waveform (repetitive reflected wave) as shown in FIG. 5 is measured.
(3−4)反射波の振幅の算出。
(3−3)で計測した軸方向反射波のうち、支圧板35と受圧板36の境界面からの反射波の振幅が計測できない点であって、(3−2)のアンカー頭部33と支圧板35との位置関係からアンカー頭部33の上面から支圧板孔351に向けて発射されて得られたと考えられる反射波については、アンカー頭部33と支圧板35が接触していない箇所であり、求めようとする自由長部32の軸力が反映されていないため除外する。(図6)
また、いずれかの計測点において、アンカー頭部33と支圧板35の境界面からの反射波の振幅が大きい点と小さい点がある場合には、反射波の振幅が小さい点は、アンカー頭部33と支圧板35が接触してない箇所であるため同じく除外する。
(3-4) Calculation of the amplitude of the reflected wave.
Among the axial reflected waves measured in (3-3), the amplitude of the reflected wave from the boundary surface between the bearing plate 35 and the pressure receiving plate 36 cannot be measured, and the anchor head 33 in (3-2) About the reflected wave considered to have been obtained from the upper surface of the anchor head 33 toward the bearing plate hole 351 due to the positional relationship with the bearing plate 35, the anchor head 33 and the bearing plate 35 are not in contact with each other. Yes, since the axial force of the free length portion 32 to be obtained is not reflected, it is excluded. (Fig. 6)
Further, in any measurement point, when there are a point where the amplitude of the reflected wave from the boundary surface of the anchor head 33 and the bearing plate 35 is large and a point where the amplitude of the reflected wave is small, the point where the amplitude of the reflected wave is small is Since it is the location which 33 and the bearing plate 35 do not contact, it excludes similarly.
(3−5)各点の応力の算出。
アンカー頭部33と支圧板35の接触面や、支圧板35と受圧板36との接触面には微視的には凹凸が存在し、直接接触している真実接触部分と、空隙などによる非接触部分がある。そして、真実接触部分の面積は、応力(垂直荷重)の増加に比例する。
そして、応力が増加すると、真実接触部分の面積も増加することにより、支圧板35や受圧板36へ透過する波が増加し、反射波として超音波センサ1によって計測される波が減少して振幅が小さくなる。
このような接触面の反射特性の変化は微細だが、接触面での反射を繰り返すことによって、接触面の反射特性がより顕著に反映される。
以上のような関係から、図7のように、各点の反射波の振幅から、各点の応力を算出する。
測定環境や測定精度により好適な反射波は異なるが、3番目の反射波を用いる場合には、以下の式1を用いる。
[式1]
y=(0.0094±0.005)x
(y:振幅、x:応力)
(3-5) Calculation of stress at each point.
The contact surface between the anchor head 33 and the bearing plate 35 and the contact surface between the bearing plate 35 and the pressure receiving plate 36 are microscopically uneven, and the true contact portion that is in direct contact with the non-contact due to a gap or the like. There is a contact part. The area of the true contact portion is proportional to the increase in stress (vertical load).
When the stress increases, the area of the true contact portion also increases, so that the wave transmitted to the pressure bearing plate 35 and the pressure receiving plate 36 increases, and the wave measured by the ultrasonic sensor 1 as the reflected wave decreases, resulting in an amplitude. Becomes smaller.
Although the change in the reflection characteristics of the contact surface is minute, the reflection characteristics of the contact surface are reflected more remarkably by repeating the reflection on the contact surface.
From the above relationship, the stress at each point is calculated from the amplitude of the reflected wave at each point as shown in FIG.
Although a suitable reflected wave differs depending on the measurement environment and measurement accuracy, the following formula 1 is used when the third reflected wave is used.
[Formula 1]
y = (0.0094 ± 0.005) x
(Y: amplitude, x: stress)
(3−6)軸力の算出。
(3−5)で算出した各点の応力から、平均応力を算出する。
そして、平均応力と(3−2)で算出した支圧面積の積から軸力を算出する。
(3-6) Calculation of axial force.
The average stress is calculated from the stress at each point calculated in (3-5).
Then, the axial force is calculated from the product of the average stress and the bearing area calculated in (3-2).
本発明の軸力測定方法は、従来の測定方法と比較して、大がかりな装置が不要であり、簡便に多数のアンカーの軸力を測定することができる。この結果から、さらに詳細な調査実施の判断が可能となる。
また、これまでに補完的に推定されていた斜面全体の安定性が、より精緻に判断できる。
Compared with the conventional measuring method, the axial force measuring method of the present invention does not require a large-scale device, and can easily measure the axial force of a large number of anchors. From this result, it is possible to make a more detailed decision to conduct a survey.
In addition, the stability of the entire slope, which has been supplementarily estimated so far, can be judged more precisely.
1 超音波センサ
2 超音波計測器
31 アンカー体
32 自由長部
33 アンカー頭部
331 くさび挿通孔
34 くさび
35 支圧板
351 支圧板孔
36 受圧板
37 セメントグラウト
DESCRIPTION OF SYMBOLS 1 Ultrasonic sensor 2 Ultrasonic measuring instrument 31 Anchor body 32 Free length part 33 Anchor head 331 Wedge insertion hole 34 Wedge 35 Supporting plate hole 351 Supporting plate hole 36 Pressure receiving plate 37 Cement grout
Claims (2)
支圧板の側面で超音波を発振して、前記支圧板に設けた支圧板孔の位置、寸法および面積を測定し、
測定された前記支圧板孔の位置、寸法および面積を用いて、前記グラウンドアンカーの頭部に設けたアンカー頭部と前記支圧板とが接触している、支圧面積を算出し、
アンカー頭部の上面の複数点で、超音波を支圧板方向に発振して反射波を計測し、
前記反射波の振幅から、前記複数点における前記アンカー頭部の応力を算出し、
前記複数点の応力を平均して、平均応力を算出し、
前記支圧面積と前記平均応力の積から軸力を算出する、
グラウンドアンカーの軸力測定方法。 A method for measuring the axial force of a ground anchor used to stabilize slopes, etc.
By oscillating ultrasonic waves on the side surface of the bearing plate, measuring the position, size and area of the bearing plate hole provided in the bearing plate,
Using the measured position, size and area of the bearing plate hole, the bearing head is in contact with the anchor head provided on the head of the ground anchor, and the bearing area is calculated,
At multiple points on the top surface of the anchor head, ultrasonic waves are oscillated in the direction of the bearing plate, and the reflected waves are measured.
From the amplitude of the reflected wave, calculate the stress of the anchor head at the plurality of points,
Average the stress at the plurality of points to calculate the average stress,
An axial force is calculated from the product of the bearing area and the average stress.
A method for measuring the axial force of ground anchors.
前記複数点の反射波のうち、受圧板表面からの反射波が計測できない点の反射波の値を、平均応力の算出時に除外することを特徴とする、
グラウンドアンカーの軸力測定方法。 In the ground anchor axial force measuring method according to claim 1,
Of the reflected waves of the plurality of points, the value of the reflected wave at the point where the reflected wave from the pressure-receiving plate surface cannot be measured is excluded when calculating the average stress,
A method for measuring the axial force of ground anchors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014234437A JP6419543B2 (en) | 2014-11-19 | 2014-11-19 | Measuring method of axial force of ground anchor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014234437A JP6419543B2 (en) | 2014-11-19 | 2014-11-19 | Measuring method of axial force of ground anchor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016099153A true JP2016099153A (en) | 2016-05-30 |
JP6419543B2 JP6419543B2 (en) | 2018-11-07 |
Family
ID=56077659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014234437A Active JP6419543B2 (en) | 2014-11-19 | 2014-11-19 | Measuring method of axial force of ground anchor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6419543B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6283439B1 (en) * | 2017-04-03 | 2018-02-21 | 応用地質株式会社 | Ground anchor tension measuring device and tension measuring method |
CN109060525A (en) * | 2018-07-02 | 2018-12-21 | 中国科学院武汉岩土力学研究所 | The test method and device of drawing process force analysis |
CN110241820A (en) * | 2018-03-07 | 2019-09-17 | 许琦 | Anchor head structure |
CN110715979A (en) * | 2019-10-21 | 2020-01-21 | 苏州市建设工程质量检测中心有限公司 | Method for detecting stress performance of connection node of steel structure module unit column |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983003470A1 (en) * | 1982-03-30 | 1983-10-13 | Ogura, Yukio | Method of measuring contact stress of contacting solid surfaces with ultrasonic waves |
JP2002004274A (en) * | 2000-06-16 | 2002-01-09 | Azuma Systems:Kk | Stress diagnosis method of ground anchor and stress diagnosis device |
JP2007101205A (en) * | 2005-09-30 | 2007-04-19 | Chuden Gijutsu Consultant Kk | Tension force measuring piece by magnetic strain, and tension load measuring method |
US7441471B1 (en) * | 2006-12-13 | 2008-10-28 | Davis John D | Ground anchor load testing system and method |
-
2014
- 2014-11-19 JP JP2014234437A patent/JP6419543B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983003470A1 (en) * | 1982-03-30 | 1983-10-13 | Ogura, Yukio | Method of measuring contact stress of contacting solid surfaces with ultrasonic waves |
JP2002004274A (en) * | 2000-06-16 | 2002-01-09 | Azuma Systems:Kk | Stress diagnosis method of ground anchor and stress diagnosis device |
JP2007101205A (en) * | 2005-09-30 | 2007-04-19 | Chuden Gijutsu Consultant Kk | Tension force measuring piece by magnetic strain, and tension load measuring method |
US7441471B1 (en) * | 2006-12-13 | 2008-10-28 | Davis John D | Ground anchor load testing system and method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6283439B1 (en) * | 2017-04-03 | 2018-02-21 | 応用地質株式会社 | Ground anchor tension measuring device and tension measuring method |
JP2018179521A (en) * | 2017-04-03 | 2018-11-15 | 応用地質株式会社 | Tension force measuring apparatus and tension force measuring method for ground anchor |
CN110241820A (en) * | 2018-03-07 | 2019-09-17 | 许琦 | Anchor head structure |
CN110241820B (en) * | 2018-03-07 | 2020-12-04 | 许琦 | Anchor head structure |
CN109060525A (en) * | 2018-07-02 | 2018-12-21 | 中国科学院武汉岩土力学研究所 | The test method and device of drawing process force analysis |
CN110715979A (en) * | 2019-10-21 | 2020-01-21 | 苏州市建设工程质量检测中心有限公司 | Method for detecting stress performance of connection node of steel structure module unit column |
Also Published As
Publication number | Publication date |
---|---|
JP6419543B2 (en) | 2018-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6419543B2 (en) | Measuring method of axial force of ground anchor | |
CN105352800A (en) | Fatigue crack propagation rate testing method of steel box girder | |
CN108204876B (en) | Device and method for detecting pretightening force in real time in bolt assembly process | |
CN107860538B (en) | Detachable system widely applicable to multipoint dynamic deflection calibration and application thereof | |
US6532825B1 (en) | Fatigue damage detection sensor for structural materials and mounting method thereof | |
CN105181451B (en) | Small size component fracture property method of testing and device | |
JP6236413B2 (en) | Deformation monitoring method for road bridge deck | |
Bernini et al. | Vectorial dislocation monitoring of pipelines by use of Brillouin-based fiber-optics sensors | |
JP6681776B2 (en) | Ground anchor soundness evaluation method and soundness evaluation system | |
JP6103578B2 (en) | Nondestructive inspection system, monitoring system, nondestructive inspection method and monitoring method for concrete structure using strain of concrete | |
JP2002173935A (en) | Tension evaluation method for tension material, and interposing member used for tension evaluation of tension material | |
JP2008275520A (en) | Method for inspecting deterioration of concrete structure | |
EP2756277B1 (en) | Analysis of load bearing members. | |
JP4912673B2 (en) | Tensile force detection method for tendons | |
JP7236945B2 (en) | Ground anchor tension evaluation method and tension evaluation system | |
Pacitti et al. | Experimental data based cable tension identification via nonlinear static inverse problem | |
US9151683B2 (en) | Analyzing load bearing members | |
JP2012233351A (en) | Axial force measurement method for ground anchor | |
JP7208622B2 (en) | Strain measuring device for metal structure and method for detecting deterioration damage of metal structure | |
Hicke et al. | Vibration Monitoring of Large-Scale Bridge Model using Distributed Acoustic Sensing | |
KR100546053B1 (en) | Sinking measuring method of structure | |
JP6283439B1 (en) | Ground anchor tension measuring device and tension measuring method | |
CN206557004U (en) | A kind of bridge cable puccinia graminis eating off filament test system of multi-parameter regulation | |
Anastasopoulos et al. | Identification of modal strains of a pre-stressed concrete beam during progressive damage testing | |
KR101208036B1 (en) | Measuring method for residual stress of concrete structure using indentation test apparaus and indenter used in the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180710 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181010 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6419543 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |