[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016072460A - Component holding head of surface mounting machine - Google Patents

Component holding head of surface mounting machine Download PDF

Info

Publication number
JP2016072460A
JP2016072460A JP2014201119A JP2014201119A JP2016072460A JP 2016072460 A JP2016072460 A JP 2016072460A JP 2014201119 A JP2014201119 A JP 2014201119A JP 2014201119 A JP2014201119 A JP 2014201119A JP 2016072460 A JP2016072460 A JP 2016072460A
Authority
JP
Japan
Prior art keywords
light
component
amount
holding head
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201119A
Other languages
Japanese (ja)
Other versions
JP6734625B2 (en
Inventor
進 北田
Susumu Kitada
進 北田
昌裕 谷崎
Masahiro Tanizaki
昌裕 谷崎
哲夫 藤原
Tetsuo Fujiwara
哲夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwha Vision Co Ltd
Original Assignee
Hanwha Techwin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwha Techwin Co Ltd filed Critical Hanwha Techwin Co Ltd
Priority to JP2014201119A priority Critical patent/JP6734625B2/en
Priority to KR1020140173247A priority patent/KR102025370B1/en
Priority to CN201510633554.XA priority patent/CN105472961B/en
Publication of JP2016072460A publication Critical patent/JP2016072460A/en
Application granted granted Critical
Publication of JP6734625B2 publication Critical patent/JP6734625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve detection accuracy of a sensor for detecting a component holder (nozzle) in a component holding head of a surface mounting machine.SOLUTION: A component holding head of a surface mounting machine includes a plurality of spindles arranged along a circumferential direction of a rotary head 40 that is attached to a head body so as to be rotatable in an R direction around a vertical axis of the head body, and a component holder 42 attached to a lower end of each of the spindles. The component holding head includes an optical sensor 30 of a reflection type that detects the component holder 42a that reaches a predetermined position by rotating in the R direction. The optical sensor 30 includes a light emission part that emits light toward a reflection surface 42b in an outer periphery of the component holder 42a, and a light receiving part that receives light reflected on the reflection surface 42b, the parts being arranged on the same axis. The optical sensor 30 is also arranged so that an optical axis of light emitted from the light emission part is displaced from a position of the reflection surface 42b on a vertical center axis of the component holder 42a to point to a position of the reflection surface 42b on a downstream side in a rotation direction in the R direction.SELECTED DRAWING: Figure 7

Description

本発明は、ICチップ等の部品(電子部品)を基板上に実装する表面実装機において、部品を保持する部品保持具を有する部品保持ヘッドに関する。   The present invention relates to a component holding head having a component holder for holding components in a surface mounter for mounting components (electronic components) such as IC chips on a substrate.

一般的に表面実装機は、部品保持ヘッドを部品供給部の上方に移動させ、そこで部品保持ヘッドに備えられた部品保持具としてのノズルに下降・上昇動作を行わせて、ノズルの下端部に部品を真空吸着してピックアップし、次に部品保持ヘッドを基板の上方へ移動させ、そこで再度ノズルに下降・上昇動作を行わせて、部品を基板の所定の座標位置に実装するように構成されている。   In general, a surface mounter moves a component holding head above a component supply unit, and causes a nozzle as a component holder provided in the component holding head to move down and ascend to the lower end of the nozzle. The components are sucked up and picked up, and then the component holding head is moved to the upper side of the board, and then the nozzle is lowered and raised again to mount the parts at predetermined coordinate positions on the board. ing.

上述のように、ノズルに下降・上昇動作を行わせて部品をピックアップする場合、ノズルの下降ストロークが大きすぎるとノズルの下端部が部品の上面を強く押圧して部品を破壊する。下降ストロークが小さすぎると、ノズルは部品の上面に着地できず、部品をピックアップミスする。部品を基板に実装する場合も同様であり、ノズルの下降ストロークが大きすぎるとノズルの下端部に吸着された部品が基板に強く押圧されて破壊する。下降ストロークが小さすぎると、部品は基板の上面に着地できず、部品を実装ミスする。したがってノズルの下降ストロークは的確に制御しなければならない。   As described above, when picking up a component by causing the nozzle to move down and up, if the lowering stroke of the nozzle is too large, the lower end of the nozzle strongly presses the upper surface of the component and destroys the component. If the descending stroke is too small, the nozzle cannot land on the top surface of the part and picks up the part. The same applies to the case where the component is mounted on the substrate. If the lowering stroke of the nozzle is too large, the component adsorbed on the lower end of the nozzle is strongly pressed against the substrate and destroyed. If the descending stroke is too small, the component cannot land on the top surface of the board, and the component is mismounted. Therefore, the lowering stroke of the nozzle must be accurately controlled.

ノズルの下降ストロークを的確に制御するための方法として、ノズルの着地を検知する検知手段(ノズルを検知するセンサ)を利用した方法が特許文献1に提案されている。また本願出願人は、同様にノズルの下降ストロークを的確に制御するための方法として、特願2013−212220において、ノズルを検知するセンサに反射型の光センサ(光ファイバセンサ)を用いた方法を提案した。この光ファイバセンサは、ノズルの外周の反射面に向けて光を発する発光部と、反射面で反射された反射光を受ける受光部とを有し、所定の閾値に対する受光量の変化によりノズルを検知する。   As a method for accurately controlling the lowering stroke of the nozzle, Patent Document 1 proposes a method using detection means (sensor for detecting the nozzle) that detects the landing of the nozzle. In addition, the applicant of the present application similarly uses a method using a reflection type optical sensor (optical fiber sensor) as a sensor for detecting a nozzle in Japanese Patent Application No. 2013-212220 as a method for accurately controlling the downward stroke of the nozzle. Proposed. This optical fiber sensor has a light emitting unit that emits light toward a reflecting surface on the outer periphery of the nozzle and a light receiving unit that receives reflected light reflected by the reflecting surface. Detect.

このように反射型の光センサ(光ファイバセンサ)を用いて、その受光量の変化よりノズルを検知する場合、誤検知を防止し検知精度を向上させる点から、ノズルを検知する前の受光量はできる限り一定であることが望まれる。この点から、従来は発光部から発せられる光の光軸が、検知対象のノズルの鉛直方向中心軸に向くようにしていたが、必ずしも検知精度は十分とはいえなかった。   In this way, when a reflective optical sensor (optical fiber sensor) is used to detect a nozzle based on a change in the amount of received light, the amount of received light before detecting the nozzle from the point of preventing false detection and improving detection accuracy. Is desired to be as constant as possible. From this point, conventionally, the optical axis of the light emitted from the light emitting unit is directed to the central axis in the vertical direction of the nozzle to be detected, but the detection accuracy is not always sufficient.

特許第3543044号公報Japanese Patent No. 3543044

本発明が解決しようとする課題は、表面実装機の部品保持ヘッドにおいて、部品保持具(ノズル)を検知するセンサの検知精度を向上させることにある。   The problem to be solved by the present invention is to improve the detection accuracy of a sensor for detecting a component holder (nozzle) in a component holding head of a surface mounter.

本発明者らが前記課題を解決するために部品保持具(ノズル)を検知するセンサの配置等について検討した結果、詳細は後述するが、部品保持具を検知する反射型の光センサの発光部から発せられる光の光軸方向を、部品保持具の鉛直方向中心軸よりロータリーヘッドの回転方向(R方向)の下流側にオフセットさせると、ノズルを検知する前の受光量が高いレベルで安定するという新規な知見が得られた。本発明は、この知見に基づき完成されたもので、具体的には、以下の(1)から(3)に記載の表面実装機の部品保持ヘッドを提供する。   As a result of studying the arrangement of sensors for detecting a component holder (nozzle) by the present inventors to solve the above-mentioned problems, the light emitting part of a reflective optical sensor for detecting the component holder will be described in detail later. If the optical axis direction of the light emitted from is offset to the downstream side in the rotation direction (R direction) of the rotary head from the vertical center axis of the component holder, the amount of received light before detecting the nozzle is stabilized at a high level. New findings were obtained. The present invention has been completed based on this finding. Specifically, the present invention provides a component holding head for a surface mounter as described in (1) to (3) below.

(1)ヘッド本体に対して鉛直軸周りのR方向に回転可能に取り付けられたロータリーヘッドの円周方向に沿って複数本のスピンドルが配置され、各スピンドルの下端に部品保持具が装着された表面実装機の部品保持ヘッドにおいて、
前記R方向に回転して特定位置に到来した部品保持具を検知する反射型の光センサを設け、
前記光センサは、前記特定位置にある部品保持具の外周の反射面に向けて光を発する発光部と、前記反射面で反射された反射光を受ける受光部とを同一軸線上に有し、かつ、前記発光部から発せられる光の光軸が、前記特定位置にある部品保持具の鉛直方向中心軸上の前記反射面の位置より、前記R方向の回転方向の下流側の前記反射面の位置を指向するようにオフセットして配置されたことを特徴とする表面実装機の部品保持ヘッド。
(1) A plurality of spindles are arranged along the circumferential direction of a rotary head that is attached to the head body so as to be rotatable in the R direction around the vertical axis, and a component holder is attached to the lower end of each spindle. In component holding head of surface mounter,
A reflective optical sensor that detects the component holder that rotates in the R direction and arrives at a specific position is provided.
The optical sensor has a light emitting unit that emits light toward a reflection surface on the outer periphery of the component holder at the specific position, and a light receiving unit that receives the reflected light reflected by the reflection surface, on the same axis. In addition, the optical axis of the light emitted from the light emitting unit is lower than the position of the reflecting surface on the vertical center axis of the component holder at the specific position on the reflecting surface on the downstream side in the rotation direction in the R direction. A component holding head of a surface mounter, wherein the component holding head is arranged to be offset so as to direct the position.

(2)前記オフセットの量は、前記オフセットの量の変化に対して前記受光部の受光量の変化が最小となるように設定されている、(1)に記載の表面実装機の部品保持ヘッド。 (2) The component holding head of the surface mounter according to (1), wherein the amount of the offset is set such that a change in the amount of light received by the light receiving unit is minimized with respect to a change in the amount of offset. .

(3)前記光センサは、所定の閾値に対する受光量の変化により部品保持具を検知し、前記閾値は、前記受光部による受光量の安定領域における受光量に基づき設定されている、(1)又は(2)に記載の表面実装機の部品保持ヘッド。 (3) The optical sensor detects a component holder by a change in the amount of received light with respect to a predetermined threshold, and the threshold is set based on the amount of received light in a stable region of the amount of received light by the light receiving unit. Or the component holding head of the surface mounting machine as described in (2).

本発明によれば、部品保持具(ノズル)を検知する反射型の光センサにおいて、部品保持具を検知する前の受光量が高いレベルで安定する。これにより、当該センサによる部品保持具の検知精度が向上し、部品保持具の下降ストローク等をより的確に制御することができる。   According to the present invention, in a reflection type optical sensor that detects a component holder (nozzle), the amount of received light before detecting the component holder is stabilized at a high level. Thereby, the detection precision of the component holder by the said sensor improves, and the downward stroke of a component holder etc. can be controlled more appropriately.

本発明の部品保持ヘッドの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the components holding head of this invention. 図1の部品保持ヘッドにおいてスピンドルをZ方向に昇降させる機構を示す図で、(a)は正面図、(b)は左側面図、(c)、(d)は要部の斜視図である。2A and 2B are diagrams showing a mechanism for raising and lowering a spindle in the Z direction in the component holding head of FIG. 1, wherein FIG. 1A is a front view, FIG. 1B is a left side view, and FIGS. . 図2のスピンドルをZ方向に昇降させる機構において昇降部材周りの構成を示す説明図である。It is explanatory drawing which shows the structure around a raising / lowering member in the mechanism which raises / lowers the spindle of FIG. 2 to a Z direction. 図1の部品保持ヘッドにおいて使用した光ファイバセンサの要部を、その取付状態を含めて示す斜視図である。It is a perspective view which shows the principal part of the optical fiber sensor used in the component holding head of FIG. 1 including the attachment state. 図1の部品保持ヘッドにおいてスピンドルの下端に装着されたノズル部分の断面を拡大して示す斜視図である。FIG. 2 is an enlarged perspective view showing a section of a nozzle portion mounted on a lower end of a spindle in the component holding head of FIG. 1. ノズルが着地したときの光ファイバセンサの受光量の変化を模式的に示す図である。It is a figure which shows typically the change of the light reception amount of an optical fiber sensor when a nozzle lands. 本発明における「オフセット」を概念的に示す平面図である。It is a top view which shows notionally "offset" in this invention. オフセット角度θ(オフセット量d)を変化させて光ファイバセンサの受光部の受光量を測定した結果を示す(オフセット角度=−1.0°)。The result of measuring the amount of light received by the light receiving portion of the optical fiber sensor by changing the offset angle θ (offset amount d) is shown (offset angle = −1.0 °). 同上(オフセット角度θ=−0.5°)。Same as above (offset angle θ = −0.5 °). 同上(オフセット角度θ=0.0°)。Same as above (offset angle θ = 0.0 °). 同上(オフセット角度θ=+0.5°)。Same as above (offset angle θ = + 0.5 °). 同上(オフセット角度θ=+1.0°)。Same as above (offset angle θ = + 1.0 °). 同上(オフセット角度θ=+1.5°)。Same as above (offset angle θ = + 1.5 °). 同上(オフセット角度θ=+2.0°)。Same as above (offset angle θ = + 2.0 °). 図8A〜Gの結果を基に各例における受光量をオフセット角度θに対してプロットしたものである。Based on the results of FIGS. 8A to G, the received light amount in each example is plotted against the offset angle θ.

以下、本発明の実施の形態を図面に示す実施例に基づき説明する。   Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings.

図1は、本発明の部品保持ヘッドの全体構成を示す斜視図である。   FIG. 1 is a perspective view showing the overall configuration of the component holding head of the present invention.

同図に示す部品保持ヘッド10はロータリーヘッド式の部品保持ヘッドであり、ヘッド本体(メインフレーム)20に、ロータリーヘッド40が鉛直軸周りのR方向に回転可能に取り付けられている。このロータリーヘッド40には、その円周方向に沿って等間隔で複数本のスピンドル41が配置され、各スピンドル41の下端に部品を吸着保持する部品保持具としてノズル42が装着されている。   The component holding head 10 shown in the figure is a rotary head type component holding head, and a rotary head 40 is attached to a head body (main frame) 20 so as to be rotatable in the R direction around the vertical axis. A plurality of spindles 41 are arranged at equal intervals along the circumferential direction of the rotary head 40, and nozzles 42 are attached to the lower ends of the spindles 41 as component holders for sucking and holding components.

ロータリーヘッド40は、ヘッド本体20に設置されたRサーボモータ21の駆動によりR方向に回転する。また、各スピンドル41は、ヘッド本体20に設置されたTサーボモータ22の駆動により、その軸線周りのT方向に回転する。更に、ヘッド本体20には、特定位置にあるスピンドル41a(図3参照)を軸線方向に沿ったZ方向に昇降させるためのZサーボモータ23が配置されている。Rサーボモータ21の駆動によりロータリーヘッド40をR方向に回転させる機構、及びTサーボモータ22の駆動により各スピンドル41をT方向に回転させる機構については周知であるので、その説明は省略する。Zサーボモータ23の駆動によりスピンドル41aを昇降させる機構については、以下に説明する。   The rotary head 40 rotates in the R direction by driving an R servo motor 21 installed in the head body 20. Each spindle 41 rotates in the T direction around its axis by driving a T servo motor 22 installed in the head body 20. Further, the head main body 20 is provided with a Z servo motor 23 for raising and lowering a spindle 41a (see FIG. 3) at a specific position in the Z direction along the axial direction. Since a mechanism for rotating the rotary head 40 in the R direction by driving the R servo motor 21 and a mechanism for rotating the respective spindles 41 in the T direction by driving the T servo motor 22 are well known, description thereof will be omitted. A mechanism for moving the spindle 41a up and down by driving the Z servo motor 23 will be described below.

図2は、図1の部品保持ヘッド10においてスピンドル41aをZ方向に昇降させる機構を示す図で、(a)は正面図、(b)は左側面図、(c)、(d)は要部の斜視図である。   2A and 2B are diagrams showing a mechanism for raising and lowering the spindle 41a in the Z direction in the component holding head 10 of FIG. 1, wherein FIG. 2A is a front view, FIG. 2B is a left side view, and FIG. 2C and FIG. It is a perspective view of a part.

Zサーボモータ23のモータ軸は、ボールねじ機構のねじ軸24に連結され、このねじ軸24にボールねじ機構のナットが装着され、このナットに昇降部材25が締結されている。また、昇降部材25には、回転止めと昇降ガイドために上部スプラインシャフト26が装着されている。そして、この昇降部材25に押圧具25aが一体的に連結されている。したがって、Zサーボモータ23の駆動により、昇降部材25とともに押圧具25aがZ方向に移動する。   A motor shaft of the Z servo motor 23 is connected to a screw shaft 24 of a ball screw mechanism, and a nut of the ball screw mechanism is attached to the screw shaft 24, and an elevating member 25 is fastened to the nut. The elevating member 25 is provided with an upper spline shaft 26 for rotation prevention and elevating guide. A pressing tool 25 a is integrally connected to the elevating member 25. Therefore, the drive of the Z servo motor 23 moves the pressing tool 25 a in the Z direction together with the lifting member 25.

昇降部材25及び押圧具25aはヘッド本体20側に1個だけ設けられている。スピンドル41を下降させるときには、押圧具25aに対してスピンドル41を相対的に移動させることにより下降させるスピンドル41(前記特定位置にあるスピンドル41a)を選択し、押圧具25aを下降させることにより当該スピンドル41a及びその下端に装着されたノズル42aを下降させる。本実施例では図3に示すように、ロータリーヘッド40をR方向に回転させることにより押圧具25aに対してスピンドル41を移動させ、押圧具25aの直下にあるスピンドル41aを下降させる。なお、特定位置は2箇所以上あってもよい。   Only one lifting member 25 and pressing tool 25a are provided on the head body 20 side. When the spindle 41 is lowered, the spindle 41 to be lowered (the spindle 41a at the specific position) is selected by moving the spindle 41 relative to the pressing tool 25a, and the spindle is lowered by lowering the pressing tool 25a. 41a and the nozzle 42a attached to the lower end thereof are lowered. In this embodiment, as shown in FIG. 3, the spindle 41 is moved with respect to the pressing tool 25a by rotating the rotary head 40 in the R direction, and the spindle 41a immediately below the pressing tool 25a is lowered. There may be two or more specific positions.

図2に戻って、押圧具25aが連結された昇降部材25には、アダプタ部材27を介してアーム部材28の基端が連結され、このアーム部材28の先端側にセンサホルダ部材29を介して、ノズルを検知するセンサとして光ファイバセンサ30が連結されている。また、アーム部材28の先端側には、昇降部材25の昇降に伴うアーム部材28の昇降をガイドするために下部スプラインシャフト31が装着されている。この下部スプラインシャフト31は、固定部材32を介してヘッド本体20に固定されている。   Returning to FIG. 2, the base end of the arm member 28 is connected to the elevating member 25 to which the pressing tool 25 a is connected via an adapter member 27, and the sensor holder member 29 is connected to the distal end side of the arm member 28. The optical fiber sensor 30 is connected as a sensor for detecting the nozzle. In addition, a lower spline shaft 31 is attached to the distal end side of the arm member 28 in order to guide the raising / lowering of the arm member 28 accompanying the raising / lowering of the raising / lowering member 25. The lower spline shaft 31 is fixed to the head main body 20 via a fixing member 32.

ここで、前記アダプタ部材27は、光ファイバセンサ30のXY方向の位置を調整するためのXY方向位置調整部材である。すなわち、アダプタ部材27は、昇降部材25に対して、Z方向に垂直な水平面内でXY方向に位置調整可能に連結される。これによって、アダプタ部材27と一体であるアーム部材28のXY方向の位置が調整され、その結果、アーム部材28に連結された光ファイバセンサ30のXY方向の位置が調整される。   Here, the adapter member 27 is an XY direction position adjusting member for adjusting the position of the optical fiber sensor 30 in the XY direction. That is, the adapter member 27 is connected to the elevating member 25 so that the position of the adapter member 27 can be adjusted in the XY direction within a horizontal plane perpendicular to the Z direction. Accordingly, the position in the XY direction of the arm member 28 integrated with the adapter member 27 is adjusted, and as a result, the position in the XY direction of the optical fiber sensor 30 connected to the arm member 28 is adjusted.

また、前記センサホルダ部材29は、光ファイバセンサ30のZ方向の位置を調整するためのZ方向位置調整部材である。すなわち、センサホルダ部材29は、アーム部材28に対してZ方向に位置調整可能に連結される。これによって、センサホルダ部材29に一体に連結(保持)された光ファイバセンサ30のZ方向の位置が調整される。   The sensor holder member 29 is a Z direction position adjusting member for adjusting the position of the optical fiber sensor 30 in the Z direction. That is, the sensor holder member 29 is connected to the arm member 28 so that the position of the sensor holder member 29 can be adjusted in the Z direction. As a result, the position in the Z direction of the optical fiber sensor 30 integrally connected (held) to the sensor holder member 29 is adjusted.

このように光ファイバセンサ30は、アダプタ部材27、アーム部材28及びセンサホルダ部材29を介して昇降部材25に連結されるが、アダプタ部材27及びセンサホルダ部材29による位置調整がなされた後は、昇降部材25及び押圧具25aと一体化される。したがって、光ファイバセンサ30は、Zサーボモータ23の駆動により押圧具25aがZ方向に移動すると、これと連動してZ方向に移動する。すなわち、光ファイバセンサ30は、押圧具25aの昇降によるスピンドル41aのZ方向の移動と同調してZ方向に移動する。なお、スピンドル41は2つのコイルばねからなる弾発体41b(図1参照)によって常に上方の初期位置に向けて付勢されている。   As described above, the optical fiber sensor 30 is connected to the elevating member 25 via the adapter member 27, the arm member 28, and the sensor holder member 29, but after the position adjustment by the adapter member 27 and the sensor holder member 29 is performed, It is integrated with the elevating member 25 and the pressing tool 25a. Accordingly, when the pressing tool 25a moves in the Z direction by driving the Z servo motor 23, the optical fiber sensor 30 moves in the Z direction in conjunction with this. That is, the optical fiber sensor 30 moves in the Z direction in synchronization with the movement of the spindle 41a in the Z direction due to the raising and lowering of the pressing tool 25a. The spindle 41 is always urged toward the upper initial position by an elastic body 41b (see FIG. 1) composed of two coil springs.

光ファイバセンサ30は、発光部及び受光部が光ファイバやレンズとともに同一軸線上に組み込まれたもので、その構成自体は周知である。図4は、本実施例で使用した光ファイバセンサ30の要部を、その取付状態を含めて示す斜視図である。前述のとおり、光ファイバセンサ30は、センサホルダ部材29を介してアーム部材28に連結される。そして本実施例の光ファイバセンサ30は、その光軸方向を調整するための光軸方向調整手段として偏心カラー30aを有する。すなわち、偏心カラー30aは、光ファイバセンサ30のレンズ30bに装着されており、この偏心カラー30aをレンズ30bに対して回転させることで、光ファイバセンサ30の光軸方向を調整する。   The optical fiber sensor 30 has a light emitting part and a light receiving part incorporated together with an optical fiber and a lens on the same axis, and its configuration itself is well known. FIG. 4 is a perspective view showing the main part of the optical fiber sensor 30 used in the present embodiment including its mounting state. As described above, the optical fiber sensor 30 is connected to the arm member 28 via the sensor holder member 29. The optical fiber sensor 30 of the present embodiment has an eccentric collar 30a as an optical axis direction adjusting means for adjusting the optical axis direction. That is, the eccentric collar 30a is attached to the lens 30b of the optical fiber sensor 30, and the optical axis direction of the optical fiber sensor 30 is adjusted by rotating the eccentric collar 30a with respect to the lens 30b.

次に、光ファイバセンサ30のセンサ機能について、その基本を説明する。   Next, the basics of the sensor function of the optical fiber sensor 30 will be described.

本実施例において光ファイバセンサ30は、図1に表れているようにスピンドル41の下端に装着されたノズル42(前記特定位置にあるノズル42a)の斜め上方に配置されている。そして、光ファイバセンサ30の発光部は、図5に拡大して示すノズル42aの外周上面の反射面42bに向けて斜め下向きに光Pを発する。その光Pは光ファイバセンサ30の受光部で反射光として受光される。   In this embodiment, the optical fiber sensor 30 is disposed obliquely above the nozzle 42 (nozzle 42a at the specific position) attached to the lower end of the spindle 41 as shown in FIG. And the light emission part of the optical fiber sensor 30 emits the light P diagonally downward toward the reflective surface 42b of the outer peripheral upper surface of the nozzle 42a shown in FIG. The light P is received as reflected light by the light receiving unit of the optical fiber sensor 30.

ここで、ノズル42は、図5に示すとおりスピンドル41の下端にコイルばね43(弾性体)を介して装着されている。したがって、前記特定位置にあるスピンドル41aの下降によりその下端のノズル42aが着地すると、コイルばね43が圧縮されてスピンドル41aに対するノズル42aの上下方向の位置が変化する。具体的にはノズル42aがスピンドル41aの下端側に向けて相対的に移動する。   Here, the nozzle 42 is attached to the lower end of the spindle 41 via a coil spring 43 (elastic body) as shown in FIG. Accordingly, when the nozzle 42a at the lower end of the spindle 41a is landed by the lowering of the spindle 41a at the specific position, the coil spring 43 is compressed and the vertical position of the nozzle 42a with respect to the spindle 41a changes. Specifically, the nozzle 42a relatively moves toward the lower end side of the spindle 41a.

一方、光ファイバセンサ30の発光部から発せされる光Pは、図4に示したレンズ30bによって、ノズル42aが着地していない初期状態のときの反射面42bに焦点が合せられている。したがって、ノズル42aが着地してその上下方向の位置が変化すると、反射面42bで反射される反射光の量が減少し、光ファイバセンサ30の受光部で受光する受光量が減少する(図6参照)。本実施例では、この受光量の減少を光ファイバセンサ40のセンサ部(図示省略)で検知する。そして、センサ部は受光量が所定量減少したとき、例えば図6に示す閾値A以下になったときに、ノズル42aが着地したと判断し、着地検知信号を発する。   On the other hand, the light P emitted from the light emitting portion of the optical fiber sensor 30 is focused on the reflecting surface 42b in the initial state where the nozzle 42a is not landed by the lens 30b shown in FIG. Therefore, when the nozzle 42a lands and its vertical position changes, the amount of reflected light reflected by the reflecting surface 42b decreases, and the amount of light received by the light receiving portion of the optical fiber sensor 30 decreases (FIG. 6). reference). In this embodiment, this decrease in the amount of received light is detected by a sensor unit (not shown) of the optical fiber sensor 40. The sensor unit determines that the nozzle 42a has landed when the received light amount has decreased by a predetermined amount, for example, when the amount is equal to or less than the threshold value A shown in FIG. 6, and issues a landing detection signal.

なお、本明細書においてノズル(部品保持具)の着地とは、部品のピックアップ工程においてノズルの下端部が部品の上面に着地すること、及び部品の実装工程においてノズルの下端部に保持された部品が基板の上面に着地することの両方を含む概念である。   In this specification, the landing of the nozzle (component holder) means that the lower end of the nozzle is landed on the upper surface of the component in the component pick-up process, and the component held on the lower end of the nozzle in the component mounting process. Is a concept including both landing on the upper surface of the substrate.

再び図6を参照すると、特定位置にあるノズル42aが着地する前の受光量は、継時的にできる限り安定していることが好ましい。ノズル42aが着地する前の受光量の継時的変化が大きいと、ノズル42aが着地していないにも関わらず受光量が閾値A以下になり、誤って着地検知信号を発することになるからである。また、ノズル42aが着地する前の受光量は、できる限り高いレベルであることが好ましい。ノズル42aが着地する前の受光量が高レベルであると、閾値Aの設定の自由度が増し、より的確にノズル42aの着地を検知できるようになるからである。   Referring to FIG. 6 again, it is preferable that the amount of received light before the landing of the nozzle 42a at the specific position is as stable as possible over time. If the temporal change in the amount of light received before the nozzle 42a lands is large, the amount of light received will be less than or equal to the threshold A even though the nozzle 42a has not landed, and a landing detection signal will be erroneously generated. is there. Further, it is preferable that the amount of received light before landing of the nozzle 42a is as high as possible. This is because if the amount of received light before the landing of the nozzle 42a is at a high level, the degree of freedom in setting the threshold A increases and the landing of the nozzle 42a can be detected more accurately.

本発明では、ノズル42aが着地する前の受光量を高いレベルで安定させるために、光ファイバセンサ30の発光部から発せられる光の光軸方向を特定の方向にオフセットさせている。   In the present invention, the optical axis direction of the light emitted from the light emitting portion of the optical fiber sensor 30 is offset in a specific direction in order to stabilize the received light amount before landing of the nozzle 42a at a high level.

図7は、このオフセットを概念的に示す平面図である。同図において、光ファイバセンサ30は、前述の要領で特定位置に到来したノズル42aの着地を検知する。本発明では、光ファイバセンサ30の発光部から発せられる光Pの光軸が、特定位置にあるノズル42aの鉛直方向中心軸C上の反射面42bの位置より、ロータリーヘッド40の回転方向(R方向)の下流側の反射面42bの位置を指向するようにオフセットして光ファイバセンサ30を配置している。言い換えれば、特定位置にあるノズル42aを検知する光ファイバセンサ30の発光部から発せられる光の光軸方向を、当該ノズル42aの鉛直方向中心軸Cよりロータリーヘッドの回転方向(R方向)の下流側にオフセット量dをもってオフセットさせている。   FIG. 7 is a plan view conceptually showing this offset. In the figure, the optical fiber sensor 30 detects the landing of the nozzle 42a that has arrived at a specific position in the manner described above. In the present invention, the optical axis of the light P emitted from the light emitting unit of the optical fiber sensor 30 is determined by the rotational direction (R) of the rotary head 40 from the position of the reflecting surface 42b on the vertical center axis C of the nozzle 42a at the specific position. The optical fiber sensor 30 is arranged so as to be offset so as to be directed to the position of the reflecting surface 42b on the downstream side in the direction). In other words, the optical axis direction of the light emitted from the light emitting portion of the optical fiber sensor 30 that detects the nozzle 42a at the specific position is downstream of the rotation direction (R direction) of the rotary head from the vertical center axis C of the nozzle 42a. An offset amount d is offset on the side.

図8A〜Gは、本発明の効果を検証するための試験として、図7のオフセット量dを変化させて、光ファイバセンサ30の受光部の受光量を測定した結果を示す。試験では、前記特定位置を基準(ゼロ)として、ロータリーヘッドのR方向のオフセット角度θを変化させることで前記特定位置におけるオフセット量dを変化させた。オフセット角度θ及びオフセット量dの関係は下記表1のとおりであり、光ファイバセンサ30の発光部の光軸方向が、R方向の下流側にオフセットする方向をプラス(+)、上流側にオフセットする方向をマイナス(−)とした。そして、試験では、表1中のNo.A〜Gのオフセット角度θ(オフセット量d)に設定した各例について、実際のロータリーヘッドの動作にならってロータリーヘッドをR方向に回転させ、ノズルが前記特定位置に到来する前の時点から前記特定位置を過ぎて行くまでの、光ファイバセンサ30の受光部の受光量の経時変化を測定した。表1中のNo.A〜Gが、それぞれ図8A〜Gの結果に対応する。   8A to 8G show results of measuring the amount of light received by the light receiving unit of the optical fiber sensor 30 by changing the offset amount d in FIG. 7 as a test for verifying the effect of the present invention. In the test, the offset amount d at the specific position was changed by changing the offset angle θ in the R direction of the rotary head with the specific position as a reference (zero). The relationship between the offset angle θ and the offset amount d is as shown in Table 1 below. The direction in which the optical axis direction of the light emitting part of the optical fiber sensor 30 is offset to the downstream side in the R direction is plus (+), and the offset is upstream. The direction to do was minus (-). In the test, for each example set to the offset angle θ (offset amount d) of No. A to G in Table 1, the rotary head is rotated in the R direction following the actual operation of the rotary head, and the nozzle is The time-dependent change in the amount of light received by the light receiving unit of the optical fiber sensor 30 from the time before reaching the specific position to the time when the specific position was passed was measured. Nos. A to G in Table 1 correspond to the results of FIGS.

Figure 2016072460
Figure 2016072460

図8A〜Gより、オフセット角度θ(オフセット量d)がプラス、すなわち光ファイバセンサ30の発光部から発せられる光の光軸方向が、ノズルの鉛直方向中心軸よりロータリーヘッドの回転方向(R方向)の下流側にオフセットしていると、光ファイバセンサ30の受光部の受光量の経時変化が抑えられ受光量が安定することがわかる。ここで、オフセット角度θ(オフセット量d)の上限は、光ファイバセンサ30がノズルを検知するものであるという前提条件から必然的に定まる。具体的には、光ファイバセンサ30の発光部から発せられる光の光軸方向が、図5で説明したノズル42aの反射面42bの範囲内にあることが必要条件であるから、この必要条件よりオフセット角度θ(オフセット量d)の上限は定まることとなる。   8A to G, the offset angle θ (offset amount d) is positive, that is, the optical axis direction of the light emitted from the light emitting portion of the optical fiber sensor 30 is the rotational direction (R direction) of the rotary head from the vertical center axis of the nozzle. ) Is offset to the downstream side, it can be seen that the amount of light received by the light receiving portion of the optical fiber sensor 30 is prevented from changing with time and the amount of received light is stabilized. Here, the upper limit of the offset angle θ (offset amount d) is inevitably determined from the precondition that the optical fiber sensor 30 detects the nozzle. Specifically, since it is a necessary condition that the optical axis direction of the light emitted from the light emitting portion of the optical fiber sensor 30 is within the range of the reflecting surface 42b of the nozzle 42a described in FIG. The upper limit of the offset angle θ (offset amount d) is determined.

ここで、図6で説明した閾値Aは、図8D〜Gに示す本発明の例における受光量の経時的変化において、受光量の安定領域における受光量に基づき設定される。受光量の安定領域とは、図8D〜Gにおいて、受光量の立上り領域及び立下り領域を除いた領域のことである。このように受光量の安定領域における受光量に基づいて閾値を設定することで的確な閾値を設定でき、光ファイバセンサ30の検知精度向上につながる。   Here, the threshold value A described with reference to FIG. 6 is set based on the received light amount in the stable region of the received light amount in the temporal change of the received light amount in the example of the present invention shown in FIGS. The stable region of the received light amount is a region excluding the rising region and the falling region of the received light amount in FIGS. Thus, an accurate threshold can be set by setting the threshold based on the amount of received light in the stable region of the amount of received light, leading to an improvement in detection accuracy of the optical fiber sensor 30.

図9は、図8A〜Gの結果を基に各例における受光量をオフセット角度θに対してプロットしたものである。図9より、本実施例の場合、オフセット角度θが+1.0°のときに、受光量が最大となるとともにオフセット角度θの変化に対する受光量の変化が最小となることが分かる。オフセット角度θの変化に対する受光量の変化が小さいといいうことは、オフセット角度θ(オフセット量d)が誤差等により多少変わったとしても、安定した受光量が得られるということであるので、光ファイバセンサ30の検知精度の向上、安定化のために好ましい。したがって、本実施例の場合、オフセット角度θは+1.0°が最適である。なお、最適なオフセット角度θ(オフセット量d)の値は、ロータリーヘッドの構成、寸法等によって変わるが、そのロータリーヘッドにおいて図9と同様の試験を実施することにより求めることができる。   FIG. 9 is a plot of the amount of light received in each example against the offset angle θ based on the results of FIGS. From FIG. 9, it can be seen that in the present embodiment, when the offset angle θ is + 1.0 °, the amount of received light is maximized and the change in the amount of received light is minimized with respect to the change in the offset angle θ. The fact that the change in the amount of received light with respect to the change in the offset angle θ is small means that a stable amount of received light can be obtained even if the offset angle θ (offset amount d) slightly changes due to an error or the like. This is preferable for improving and stabilizing the detection accuracy of the sensor 30. Therefore, in this embodiment, the offset angle θ is optimally + 1.0 °. The optimum value of the offset angle θ (offset amount d) varies depending on the configuration and dimensions of the rotary head, but can be obtained by performing the same test as that in FIG. 9 on the rotary head.

このオフセット角度θ(オフセット量d)の調整は、図2で説明したアダプタ部材27(XY方向位置調整部材)及びセンサホルダ部材29(Z方向位置調整部材)、並びに図4で説明した偏心カラー30a(光軸方向調整手段)を用いて行う。   The adjustment of the offset angle θ (offset amount d) is performed by adjusting the adapter member 27 (XY direction position adjusting member) and the sensor holder member 29 (Z direction position adjusting member) described in FIG. 2 and the eccentric collar 30a described in FIG. (Optical axis direction adjusting means) is used.

10 部品保持ヘッド
20 ヘッド本体(メインフレーム)
21 Rサーボモータ
22 Tサーボモータ
23 Zサーボモータ
24 ボールねじ機構のねじ軸
25 昇降部材
25a 押圧具
26 上部スプラインシャフト
27 アダプタ部材
28 アーム部材
29 センサホルダ部材
30 光ファイバセンサ
30a 偏心カラー
30b レンズ
31 下部スプラインシャフト(ガイド部材)
32 固定部材
40 ロータリーヘッド
41,41a スピンドル
41b 弾発体
42,42a ノズル(部品保持具)
42b 反射面
43 コイルばね(弾性体)
10 Component holding head 20 Head body (main frame)
21 R Servo Motor 22 T Servo Motor 23 Z Servo Motor 24 Screw Shaft of Ball Screw Mechanism 25 Elevating Member 25a Pressing Tool 26 Upper Spline Shaft 27 Adapter Member 28 Arm Member 29 Sensor Holder Member 30 Optical Fiber Sensor 30a Eccentric Color 30b Lens 31 Lower Spline shaft (guide member)
32 Fixing member 40 Rotary head 41, 41a Spindle 41b Bullet 42, 42a Nozzle (component holder)
42b Reflecting surface 43 Coil spring (elastic body)

Claims (3)

ヘッド本体に対して鉛直軸周りのR方向に回転可能に取り付けられたロータリーヘッドの円周方向に沿って複数本のスピンドルが配置され、各スピンドルの下端に部品保持具が装着された表面実装機の部品保持ヘッドにおいて、
前記R方向に回転して特定位置に到来した部品保持具を検知する反射型の光センサを設け、
前記光センサは、前記特定位置にある部品保持具の外周の反射面に向けて光を発する発光部と、前記反射面で反射された反射光を受ける受光部とを同一軸線上に有し、かつ、前記発光部から発せられる光の光軸が、前記特定位置にある部品保持具の鉛直方向中心軸上の前記反射面の位置より、前記R方向の回転方向の下流側の前記反射面の位置を指向するようにオフセットして配置されたことを特徴とする表面実装機の部品保持ヘッド。
A surface mounter in which a plurality of spindles are arranged along the circumferential direction of a rotary head mounted so as to be rotatable in the R direction around the vertical axis with respect to the head body, and a component holder is mounted at the lower end of each spindle. In the component holding head of
A reflective optical sensor that detects the component holder that rotates in the R direction and arrives at a specific position is provided.
The optical sensor has a light emitting unit that emits light toward a reflection surface on the outer periphery of the component holder at the specific position, and a light receiving unit that receives the reflected light reflected by the reflection surface, on the same axis. In addition, the optical axis of the light emitted from the light emitting unit is lower than the position of the reflecting surface on the vertical center axis of the component holder at the specific position on the reflecting surface on the downstream side in the rotation direction in the R direction. A component holding head of a surface mounter, wherein the component holding head is arranged to be offset so as to direct the position.
前記オフセットの量は、前記オフセットの量の変化に対して前記受光部の受光量の変化が最小となるように設定されている、請求項1に記載の表面実装機の部品保持ヘッド。   2. The component holding head of the surface mounter according to claim 1, wherein the amount of the offset is set such that a change in the amount of light received by the light receiving unit is minimized with respect to a change in the amount of offset. 前記光センサは、所定の閾値に対する受光量の変化により部品保持具を検知し、前記閾値は、前記受光部による受光量の安定領域における受光量に基づき設定されている、請求項1又は2に記載の表面実装機の部品保持ヘッド。   The said optical sensor detects a component holder by the change of the light reception amount with respect to a predetermined threshold value, The said threshold value is set based on the light reception amount in the stable region of the light reception amount by the said light-receiving part. The component holding head of the surface mounting machine described.
JP2014201119A 2014-09-30 2014-09-30 Component holding head for surface mounter Active JP6734625B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014201119A JP6734625B2 (en) 2014-09-30 2014-09-30 Component holding head for surface mounter
KR1020140173247A KR102025370B1 (en) 2014-09-30 2014-12-04 A component holding head for surface mounter
CN201510633554.XA CN105472961B (en) 2014-09-30 2015-09-29 Component holding head of surface mounting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201119A JP6734625B2 (en) 2014-09-30 2014-09-30 Component holding head for surface mounter

Publications (2)

Publication Number Publication Date
JP2016072460A true JP2016072460A (en) 2016-05-09
JP6734625B2 JP6734625B2 (en) 2020-08-05

Family

ID=55789802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201119A Active JP6734625B2 (en) 2014-09-30 2014-09-30 Component holding head for surface mounter

Country Status (2)

Country Link
JP (1) JP6734625B2 (en)
KR (1) KR102025370B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026591A (en) * 2000-07-12 2002-01-25 Matsushita Electric Ind Co Ltd Part mounting method and part mounting device for performing the method
JP2009246303A (en) * 2008-03-31 2009-10-22 Hitachi High-Tech Instruments Co Ltd Electronic component mounting device
JP2009272652A (en) * 2009-08-18 2009-11-19 Panasonic Corp Rotary type component mounting equipment
JP2013191771A (en) * 2012-03-14 2013-09-26 Fuji Mach Mfg Co Ltd Component mounting device
WO2014147806A1 (en) * 2013-03-22 2014-09-25 富士機械製造株式会社 Component mounter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026591A (en) * 2000-07-12 2002-01-25 Matsushita Electric Ind Co Ltd Part mounting method and part mounting device for performing the method
JP2009246303A (en) * 2008-03-31 2009-10-22 Hitachi High-Tech Instruments Co Ltd Electronic component mounting device
JP2009272652A (en) * 2009-08-18 2009-11-19 Panasonic Corp Rotary type component mounting equipment
JP2013191771A (en) * 2012-03-14 2013-09-26 Fuji Mach Mfg Co Ltd Component mounting device
WO2014147806A1 (en) * 2013-03-22 2014-09-25 富士機械製造株式会社 Component mounter

Also Published As

Publication number Publication date
KR20160038666A (en) 2016-04-07
JP6734625B2 (en) 2020-08-05
KR102025370B1 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6178693B2 (en) Component mounting head for surface mounter
JP6717816B2 (en) Component mounter
US9435685B2 (en) Part holding head assembly for chip mounting device
JP5936923B2 (en) Cutting edge position detection method of cutting blade
US10201120B2 (en) Component mounting apparatus
JP2007196327A (en) Position detection device
JP6734625B2 (en) Component holding head for surface mounter
JP6514871B2 (en) Part holding head of surface mounter, positioning method of sensor in this part holding head, and sensor positioning jig
CN105472961B (en) Component holding head of surface mounting machine
KR102092320B1 (en) A component sucking head
CN109382762B (en) Jig for height measurement
JP6453602B2 (en) Component mounting head for surface mounter
JP6417174B2 (en) Component mounting head for surface mounter
JP6417173B2 (en) Component mounting head for surface mounter
JP6429582B2 (en) Component mounting head for surface mounter
JP6499539B2 (en) Bite turning device
JP6654800B2 (en) Step-out detecting device and step-out detecting method for pulse motor mechanism
JP2003124696A (en) Component suction nozzle, component mounter, and method for recognizing component suction nozzle
JP2020136424A (en) Component mounting machine
JP2016086096A (en) Mounting head for surface mounting machine
JPH05110295A (en) Method for determining stop position of electronic part attracting nozzle
JP2013149672A (en) Electronic component mounting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190926

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200710

R150 Certificate of patent or registration of utility model

Ref document number: 6734625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250