[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016065544A - Engine device - Google Patents

Engine device Download PDF

Info

Publication number
JP2016065544A
JP2016065544A JP2015253063A JP2015253063A JP2016065544A JP 2016065544 A JP2016065544 A JP 2016065544A JP 2015253063 A JP2015253063 A JP 2015253063A JP 2015253063 A JP2015253063 A JP 2015253063A JP 2016065544 A JP2016065544 A JP 2016065544A
Authority
JP
Japan
Prior art keywords
intake
purification
engine
exhaust gas
fresh air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015253063A
Other languages
Japanese (ja)
Other versions
JP6067092B2 (en
Inventor
智明 北川
Tomoaki Kitagawa
智明 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2015253063A priority Critical patent/JP6067092B2/en
Publication of JP2016065544A publication Critical patent/JP2016065544A/en
Application granted granted Critical
Publication of JP6067092B2 publication Critical patent/JP6067092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent accuracy in engine control from being decreased due to a difference in fixing position of a new gas temperature sensor when a temperature of new gas supplied to an intake manifold of an engine is detected by the new gas temperature sensor.SOLUTION: An engine device 1 has an intake manifold 6 and an exhaust manifold 7 that are installed and divided at a right side and a left side; a cooling fan and a flywheel housing that are installed and divided at a front side and a rear side; an exhaust emission control system; EGR device 26; a turbosupercharger 32; and a breather chamber 38. An intake pipe 35 for supplying new gas to the intake manifold 6 and the breather chamber 38 are connected via a blow-by gas return pipe 37. A new gas temperature sensor 120 for detecting a temperature of new gas fed into an intake pipe 35 is fixed to the intake pipe 35.SELECTED DRAWING: Figure 15

Description

本願発明は、エンジン装置に関するものである。   The present invention relates to an engine device.

ディーゼルエンジン(以下、単にエンジンという)の吸気マニホールドに供給される新気の温度を新気温度センサにて検出することは、従来よく行われている。この種の新気温度センサは、エンジンの吸気経路中に配置される(例えば特許文献1参照)。   Conventionally, the temperature of fresh air supplied to an intake manifold of a diesel engine (hereinafter simply referred to as an engine) is detected by a fresh air temperature sensor. This type of fresh air temperature sensor is disposed in the intake path of the engine (see, for example, Patent Document 1).

特開2010−180794号公報JP 2010-180794 A

しかし、前記従来技術においては、エンジンを搭載する作業機械側にある吸気経路の途中に新気温度センサを設けるというように、新気温度センサの取付け位置が例えば作業機械毎やエンジンを購入する客先毎に変わる場合がある。そうすると、検出される新気温度は新気温度センサの取付け位置の相違で当然変わるから、エンジン制御の精度が落ちることになる。これを回避するには、例えば新気温度センサの取付け位置(レイアウト)毎に、検出結果に対して補正をすることが挙げられる。しかし、このような態様ではエンジン制御が複雑になるという問題があった。   However, in the prior art, a fresh air temperature sensor is installed in the intake path on the side of the work machine on which the engine is mounted. May vary from destination to destination. As a result, the detected fresh air temperature naturally changes depending on the mounting position of the fresh air temperature sensor, so that the accuracy of engine control decreases. In order to avoid this, for example, the detection result may be corrected for each attachment position (layout) of the fresh air temperature sensor. However, in this aspect, there is a problem that engine control becomes complicated.

本願発明は、上記のような現状を検討して改善を施した排気ガス浄化装置を提供することを技術的課題としている。   This invention makes it a technical subject to provide the exhaust-gas purification apparatus which examined and improved the above present condition.

本願発明は、吸気マニホールド及び排気マニホールドが左右に振り分けて配置されるとともに冷却ファン及びフライホイルハウジングが前後に振り分けて配置されており、前記排気マニホールドからの排気ガスを浄化する排気ガス浄化装置と、前記排気マニホールドからのEGRガス及び新気を混合させて前記吸気マニホールドに供給するEGR装置と、前記排気マニホールドからの排気により新気を圧縮するターボ過給機と、シリンダヘッドの上面側を覆うヘッドカバー内に配置された潤滑油分離用のブリーザ室とを備えるエンジン装置であって、前記タービン過給機のコンプレッサケースの吸気入口側と連通する吸気管と前記ブリーザ室とが、ブローバイガス戻し管を介して接続されており、前記吸気管に導入された新気の温度を検出する新気温度センサが、前記吸気管において前記ブローバイガス戻し管との接続部よりも吸気上流側となる位置に取り付けられているというものである。   The present invention relates to an exhaust gas purification device for purifying exhaust gas from the exhaust manifold, wherein the intake manifold and the exhaust manifold are arranged to be divided into left and right, and the cooling fan and the flywheel housing are arranged in the front and rear. An EGR device that mixes EGR gas and fresh air from the exhaust manifold and supplies them to the intake manifold, a turbocharger that compresses fresh air by exhaust from the exhaust manifold, and a head cover that covers the upper surface side of the cylinder head An engine device including a breather chamber for separating lubricating oil disposed therein, wherein the intake pipe communicating with an intake inlet side of a compressor case of the turbine supercharger and the breather chamber include a blow-by gas return pipe. The temperature of fresh air introduced into the intake pipe is detected. Fresh air temperature sensor than it said connecting portion between the blow-by gas return tube in the intake pipe is that is attached to the position where the intake upstream side.

上記エンジン装置において、前記EGR装置及び前記タービン過給機が前記シリンダヘッド左右に振り分けて配置され、前記ブリーザ室が前記ヘッドカバーの前記フライホイルハウジング側に配置されており、前記タービン過給機のコンプレッサケースの吸気入口が前記冷却ファン側に向く一方で前記タービン過給機のタービンケースの排気出口が前記フライホイルハウジング側に向いており、前記吸気管と前記ブローバイガス戻し管との接続部が、前記コンプレッサケースの吸気出口よりも前記冷却ファン側に設けられるものとしてもよい。   In the engine device, the EGR device and the turbine supercharger are arranged separately on the left and right sides of the cylinder head, the breather chamber is arranged on the flywheel housing side of the head cover, and the compressor of the turbine supercharger While the intake inlet of the case faces the cooling fan side, the exhaust outlet of the turbine case of the turbine supercharger faces the flywheel housing side, and the connection portion between the intake pipe and the blow-by gas return pipe is It is good also as what is provided in the said cooling fan side rather than the intake outlet of the said compressor case.

上記エンジン装置において、前記コンプレッサケースの吸気出口側と連結して圧縮させた新気を前記EGR装置過給管が前記シリンダヘッドを跨ぐように設置されているものとしてもよい。   In the engine apparatus, fresh air that is compressed by being connected to an intake outlet side of the compressor case may be installed such that the EGR apparatus supercharging pipe straddles the cylinder head.

本願発明によると、吸気管に導入された新気の温度を検出する新気温度センサが、吸気管に取り付けられているから、エンジンに対する新気温度センサの取付け位置(レイアウト)を常に一定にでき、エンジンに対して常に同じ条件(位置)で新気温度を計測できる。このため、検出結果に対する補正が不要であり、簡単な構成でエンジン制御の精度を維持できる。新気温度の検出構造を低コストに構成できる。   According to the present invention, since the fresh air temperature sensor for detecting the temperature of fresh air introduced into the intake pipe is attached to the intake pipe, the mounting position (layout) of the fresh air temperature sensor with respect to the engine can always be constant. The fresh air temperature can always be measured under the same conditions (position) with respect to the engine. For this reason, correction for the detection result is unnecessary, and the accuracy of engine control can be maintained with a simple configuration. The structure for detecting the fresh air temperature can be configured at low cost.

本願発明によると、新気温度センサは、吸気管においてブローバイガス戻し管との接続部よりも吸気上流側に位置しているから、新気にブローバイガスを混合する前に新気温度を検出できる。ブローバイガス中の潤滑油によって新気温度センサが汚損するのを防止できる。   According to the present invention, the fresh air temperature sensor is located upstream of the connection with the blow-by gas return pipe in the intake pipe, so that the fresh air temperature can be detected before the blow-by gas is mixed with the fresh air. . It is possible to prevent the fresh air temperature sensor from being damaged by the lubricating oil in the blow-by gas.

本願発明によると、吸気管の上面側にセンサ取付け台が一体形成されており、センサ取付け台に新気温度センサが着脱可能にボルト締結されており、新気温度センサに設けられた新気用配線コネクタの接続方向が吸気管の長手方向に沿うように設定されているから、新気用配線コネクタに接続されるハーネスを吸気管に沿わせることができ、ハーネスの存在が邪魔にならない。   According to the present invention, a sensor mounting base is integrally formed on the upper surface side of the intake pipe, and a fresh air temperature sensor is detachably bolted to the sensor mounting base. Since the connection direction of the wiring connector is set along the longitudinal direction of the intake pipe, the harness connected to the fresh air wiring connector can be along the intake pipe, and the presence of the harness does not get in the way.

エンジンを斜め前方から見た斜視図である。It is the perspective view which looked at the engine from diagonally forward. エンジンの左側面図である。It is a left view of an engine. エンジンの右側面図である。It is a right view of an engine. エンジンの平面図である。It is a top view of an engine. エンジンの正面図である。It is a front view of an engine. エンジンの背面図である。It is a rear view of an engine. DPFを浄化入口管側から見た外観斜視図である。It is the external appearance perspective view which looked at DPF from the purification inlet pipe side. DPFを浄化出口管側から見た外観斜視図である。It is the external appearance perspective view which looked at DPF from the purification outlet pipe side. DPFの断面説明図である。It is a section explanatory view of DPF. 挟持フランジの分離側面図である。It is a separation side view of a clamping flange. 吊り下げ体及び吊り下げ金具の位置関係を示すDPFの外観斜視図である。It is an external appearance perspective view of DPF which shows the positional relationship of a hanging body and a hanging metal fitting. DPFの底面図である。It is a bottom view of DPF. 接続フランジ体を分離させた状態でのDPFの外観斜視図である。It is an external appearance perspective view of DPF in the state where the connection flange body was separated. 浄化入口管の拡大断面図である。It is an expanded sectional view of a purification inlet pipe. 新気温度センサの取付け位置を説明するエンジンの拡大斜視図である。It is an expansion perspective view of an engine explaining the attachment position of a fresh air temperature sensor.

以下に、本発明を具体化した実施形態を図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.

(1).エンジンの概略構造
はじめに、図1〜図6を参照しながら、コモンレール式のエンジン1の概略構造について説明する。なお、以下の説明では、クランク軸線と平行な両側部(クランク軸線を挟んで両側の側部)を左右、冷却ファン9配置側を前側、フライホイルハウジング10配置側を後側と、排気マニホールド7配置側を左側、吸気マニホールド6配置側を右側と称して、これらを便宜的に、エンジン1における四方及び上下の位置関係の基準としている。
(1). General Structure of Engine First, a general structure of a common rail engine 1 will be described with reference to FIGS. In the following description, both sides parallel to the crank axis (the sides on both sides of the crank axis) are left and right, the cooling fan 9 arrangement side is the front side, the flywheel housing 10 arrangement side is the rear side, and the exhaust manifold 7 The arrangement side is referred to as the left side, and the intake manifold 6 arrangement side is referred to as the right side.

図1〜図6に示すように、農業機械や建設・土木機械といった作業機械に搭載される原動機としてのエンジン1は、連続再生式の排気ガス浄化装置2(ディーゼルパティキュレートフィルタ、以下、DPFという)を備えている。DPF2によって、エンジン1から排出される排気ガス中の粒子状物質(PM)が除去されると共に、排気ガス中の一酸化炭素(CO)や炭化水素(HC)が低減される。   As shown in FIGS. 1 to 6, an engine 1 as a prime mover mounted on a work machine such as an agricultural machine or a construction / civil engineering machine is a continuously regenerative exhaust gas purification device 2 (diesel particulate filter, hereinafter referred to as DPF). ). The particulate matter (PM) in the exhaust gas discharged from the engine 1 is removed by the DPF 2 and carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas are reduced.

エンジン1は、エンジン出力軸であるクランク軸3とピストン(図示省略)とを内蔵したシリンダブロック4を備えている。シリンダブロック4上にはシリンダヘッド5が搭載されている。シリンダヘッド5の右側面に吸気マニホールド6が配置され、シリンダヘッド5の左側面に排気マニホールド7が配置されている。シリンダヘッド5の上面側はヘッドカバー8にて覆われている。シリンダブロック4の前後両側面から、クランク軸3の前後両端側を突出させている。エンジン1の前面側に冷却ファン9が設けられている。クランク軸3の前端側から冷却ファン用Vベルト22を介して冷却ファン9に回転動力が伝達される。   The engine 1 includes a cylinder block 4 that incorporates a crankshaft 3 that is an engine output shaft and a piston (not shown). A cylinder head 5 is mounted on the cylinder block 4. An intake manifold 6 is disposed on the right side surface of the cylinder head 5, and an exhaust manifold 7 is disposed on the left side surface of the cylinder head 5. The upper surface side of the cylinder head 5 is covered with a head cover 8. The front and rear end sides of the crankshaft 3 are projected from both front and rear side surfaces of the cylinder block 4. A cooling fan 9 is provided on the front side of the engine 1. Rotational power is transmitted from the front end side of the crankshaft 3 to the cooling fan 9 via the cooling fan V-belt 22.

エンジン1の後面側にフライホイルハウジング10が設けられている。フライホイルハウジング10内に、フライホイル11がクランク軸3の後端側に軸支された状態で収容されている。エンジン1の回転動力は、クランク軸3からフライホイル11を介して作業機械の作動部に伝達される。シリンダブロック4の下面には、潤滑油を貯留するオイルパン12が配置されている。オイルパン12内の潤滑油は、シリンダブロック4の右側面に配置されたオイルフィルタ13等を介してエンジン1の各潤滑部に供給され、その後、オイルパン12に戻る。   A flywheel housing 10 is provided on the rear side of the engine 1. A flywheel 11 is accommodated in the flywheel housing 10 in a state of being supported on the rear end side of the crankshaft 3. The rotational power of the engine 1 is transmitted from the crankshaft 3 to the operating part of the work machine via the flywheel 11. An oil pan 12 that stores lubricating oil is disposed on the lower surface of the cylinder block 4. The lubricating oil in the oil pan 12 is supplied to each lubricating portion of the engine 1 through the oil filter 13 and the like disposed on the right side surface of the cylinder block 4, and then returns to the oil pan 12.

シリンダブロック4右側面におけるオイルフィルタ13の上方(吸気マニホールド6の下方)には燃料供給ポンプ14が設けられている。また、エンジン1には、電磁開閉制御型の燃料噴射バルブ(図示省略)を有する四気筒分のインジェクタ15を備えている。各インジェクタ15は、燃料供給ポンプ14、円筒状のコモンレール16(蓄圧室)及び燃料フィルタ17を介して、作業機械に搭載された燃料タンク(図示省略)に接続されている。燃料タンクの燃料が燃料供給ポンプ14から燃料フィルタ17を経由してコモンレール16に圧送され、高圧の燃料がコモンレール16に蓄えられる。各インジェクタ15の燃料噴射バルブを開閉制御することによって、コモンレール16内の高圧の燃料が各インジェクタ15からエンジン1の各気筒に噴射される。   A fuel supply pump 14 is provided on the right side of the cylinder block 4 above the oil filter 13 (below the intake manifold 6). The engine 1 includes an injector 15 for four cylinders having an electromagnetic opening / closing control type fuel injection valve (not shown). Each injector 15 is connected to a fuel tank (not shown) mounted on the work machine via a fuel supply pump 14, a cylindrical common rail 16 (pressure accumulation chamber), and a fuel filter 17. Fuel in the fuel tank is pumped from the fuel supply pump 14 to the common rail 16 via the fuel filter 17, and high-pressure fuel is stored in the common rail 16. By controlling opening and closing of the fuel injection valve of each injector 15, high-pressure fuel in the common rail 16 is injected from each injector 15 to each cylinder of the engine 1.

シリンダブロック4の前面側には、冷却水潤滑用の冷却水ポンプ21が冷却ファン9のファン軸と同軸状に配置されている。クランク軸3の回転動力によって、冷却ファン用Vベルト22を介して、冷却ファン9と共に冷却水ポンプ21が駆動される。作業機械に搭載されるラジエータ(図示省略)内の冷却水は、冷却水ポンプ21の駆動によって、シリンダブロック4及びシリンダヘッド5に供給され、エンジン1を冷却する。エンジン1の冷却に寄与した冷却水はラジエータに戻される。なお、冷却水ポンプ21の左側方にオルタネータ23が配置されている。   On the front side of the cylinder block 4, a cooling water pump 21 for lubricating lubricating water is arranged coaxially with the fan shaft of the cooling fan 9. The cooling water pump 21 is driven together with the cooling fan 9 via the cooling fan V-belt 22 by the rotational power of the crankshaft 3. Cooling water in a radiator (not shown) mounted on the work machine is supplied to the cylinder block 4 and the cylinder head 5 by driving the cooling water pump 21 to cool the engine 1. The cooling water that has contributed to the cooling of the engine 1 is returned to the radiator. An alternator 23 is arranged on the left side of the cooling water pump 21.

シリンダブロック4の左右側面に機関脚取付け部24がそれぞれ設けられている。各機関脚取付け部24には、防振ゴムを有する機関脚体(図示省略)がそれぞれボルト締結される。エンジン1は、各機関脚体を介して作業機械(具体的にはエンジン取付けシャーシ)に防振支持される。   Engine leg mounting portions 24 are respectively provided on the left and right side surfaces of the cylinder block 4. Each engine leg mounting portion 24 is bolted to an engine leg (not shown) having vibration-proof rubber. The engine 1 is supported in a vibration-proof manner on a work machine (specifically, an engine mounting chassis) through each engine leg.

図2及び図4に示すように、吸気マニホールド6の入口部は、EGR装置26(排気ガス再循環装置)を介してエアクリーナ(図示省略)に連結されている。エアクリーナに吸い込まれた新気(外部空気)は、当該エアクリーナにて除塵及び浄化されたのち、EGR装置26を介して吸気マニホールド6に送られ、エンジン1の各気筒に供給される。   As shown in FIGS. 2 and 4, the inlet portion of the intake manifold 6 is connected to an air cleaner (not shown) via an EGR device 26 (exhaust gas recirculation device). The fresh air (external air) sucked into the air cleaner is dust-removed and purified by the air cleaner, then sent to the intake manifold 6 via the EGR device 26 and supplied to each cylinder of the engine 1.

EGR装置26は、エンジン1の排気ガスの一部(排気マニホールド7からのEGRガス)及び新気(エアクリーナからの外部空気)を混合させて吸気マニホールド6に供給するEGR本体ケース27(コレクタ)と、エアクリーナにEGR本体ケース27を連通させる吸気スロットル部材28と、排気マニホールド7にEGRクーラ29を介して接続する再循環排気ガス管30と、再循環排気ガス管30にEGR本体ケース27を連通させるEGRバルブ部材31とを備えている。   The EGR device 26 mixes a part of the exhaust gas of the engine 1 (EGR gas from the exhaust manifold 7) and fresh air (external air from the air cleaner) and supplies them to the intake manifold 6; The EGR body case 27 is connected to the recirculation exhaust gas pipe 30, the recirculation exhaust gas pipe 30 connected to the exhaust manifold 7 via the EGR cooler 29, and the recirculation exhaust gas pipe 30. EGR valve member 31 is provided.

吸気マニホールド6には、EGR本体ケース27を介して吸気スロットル部材28が連結されている。吸気スロットル部材28はEGR本体ケース27の長手方向の一端部にボルト締結されている。EGR本体ケース27の左右内向きの開口端部が吸気マニホールド6の入口部にボルト締結されている。EGR本体ケース27には、EGRバルブ部材31を介して、再循環排気ガス管30の出口側が連結されている。再循環排気ガス管30の入口側は、EGRクーラ29を介して排気マニホールド7の下面側に連結されている。EGRバルブ部材31内のEGRバルブ(図示省略)の開度を調節することによって、EGR本体ケース27へのEGRガスの供給量が調節される。   An intake throttle member 28 is connected to the intake manifold 6 via an EGR main body case 27. The intake throttle member 28 is bolted to one end of the EGR main body case 27 in the longitudinal direction. The left and right inwardly opening end portions of the EGR main body case 27 are bolted to the inlet portion of the intake manifold 6. An outlet side of the recirculated exhaust gas pipe 30 is connected to the EGR main body case 27 via an EGR valve member 31. The inlet side of the recirculated exhaust gas pipe 30 is connected to the lower surface side of the exhaust manifold 7 via the EGR cooler 29. The amount of EGR gas supplied to the EGR main body case 27 is adjusted by adjusting the opening of an EGR valve (not shown) in the EGR valve member 31.

上記の構成において、エアクリーナから吸気スロットル部材28を介してEGR本体ケース27内に新気(外部空気)が供給される一方、排気マニホールド7からEGRバルブ部材31を介してEGR本体ケース27内にEGRガス(排気マニホールド7から排出される排気ガスの一部)を供給される。エアクリーナからの新気及び排気マニホールド7からのEGRガスがEGR本体ケース27内で混合されたのち、EGR本体ケース27内の混合ガスが吸気マニホールド6に供給される。このように、排気マニホールド7から排出された排気ガスの一部を吸気マニホールド6経由でエンジン1に還流させることによって、高負荷運転時の最高燃焼温度を低下させ、エンジン1からのNOx(窒素酸化物)の排出量を低減している。   In the above configuration, fresh air (external air) is supplied from the air cleaner through the intake throttle member 28 into the EGR main body case 27, while EGR is supplied from the exhaust manifold 7 through the EGR valve member 31 into the EGR main body case 27. Gas (a part of the exhaust gas discharged from the exhaust manifold 7) is supplied. After fresh air from the air cleaner and EGR gas from the exhaust manifold 7 are mixed in the EGR main body case 27, the mixed gas in the EGR main body case 27 is supplied to the intake manifold 6. In this way, a part of the exhaust gas discharged from the exhaust manifold 7 is recirculated to the engine 1 via the intake manifold 6, thereby lowering the maximum combustion temperature during high load operation and reducing NOx (nitrogen oxidation from the engine 1. Waste) is reduced.

図1〜図5に示すように、シリンダヘッド5の右側方で且つ排気マニホールド7の上方には、ターボ過給機32が配置されている。ターボ過給機32は、タービンホイル(図示省略)を内蔵したタービンケース33と、ブロアホイル(図示省略)を内蔵したコンプレッサケース34とを備えている。タービンケース33の排気入口側は、排気マニホールド7の出口部に接続されている。タービンケース33の排気出口側は、DPF2を介してテールパイプ(図示省略)に連結されている。エンジン1の各気筒から排気マニホールド7に排出された排気ガスは、ターボ過給機32のタービンケース33及びDPF2等を経由して、テールパイプから外部に放出される。   As shown in FIGS. 1 to 5, a turbocharger 32 is disposed on the right side of the cylinder head 5 and above the exhaust manifold 7. The turbocharger 32 includes a turbine case 33 with a built-in turbine wheel (not shown) and a compressor case 34 with a blower foil (not shown). The exhaust inlet side of the turbine case 33 is connected to the outlet portion of the exhaust manifold 7. The exhaust outlet side of the turbine case 33 is connected to a tail pipe (not shown) via the DPF 2. Exhaust gas discharged from each cylinder of the engine 1 to the exhaust manifold 7 is discharged to the outside through the turbine case 33 of the turbocharger 32, the DPF 2, and the like.

コンプレッサケース34の吸気入口側は、吸気管35を介してエアクリーナに連結されている。コンプレッサケース34の吸気出口側は、過給管36を介して吸気スロットル部材28に連結されている。エアクリーナにて除塵された新気は、コンプレッサケース34から吸気スロットル部材28及びEGR本体ケース27を経由して吸気マニホールド6に送られ、エンジン1の各気筒に供給される。吸気管35は、ブローバイガス戻し管37を介してヘッドカバー8内のブリーザ室38に連結されている(図7参照)。ブリーザ室38にて潤滑油を分離除去されたブローバイガスは、ブローバイガス戻し管37を通じて吸気管35に戻され、吸気マニホールド6に還流されてエンジン1の各気筒に再供給される。   An intake inlet side of the compressor case 34 is connected to an air cleaner via an intake pipe 35. An intake outlet side of the compressor case 34 is connected to an intake throttle member 28 via a supercharging pipe 36. The fresh air removed by the air cleaner is sent from the compressor case 34 to the intake manifold 6 via the intake throttle member 28 and the EGR main body case 27 and supplied to each cylinder of the engine 1. The intake pipe 35 is connected to a breather chamber 38 in the head cover 8 via a blow-by gas return pipe 37 (see FIG. 7). The blow-by gas from which the lubricating oil is separated and removed in the breather chamber 38 is returned to the intake pipe 35 through the blow-by gas return pipe 37, is returned to the intake manifold 6, and is supplied again to each cylinder of the engine 1.

図15に詳細に示すように、吸気管35には、これに導入された新気の温度を検出する新気温度センサ120が取り付けられている。吸気マニホールド6には、混合ガスの温度を検出する混合ガス温度センサ121が取り付けられている。また、EGRバルブ部材31には、排気マニホールド7からのEGRガスの温度を検出するEGRガス温度センサ122が取り付けられている。これらエンジン側に取り付けられた温度センサ120〜122群は、混合ガスのEGR率を求めるのに用いられるものである。ここで、EGR率とは、EGRガス量と新気量との和で、EGRガス量を割った値(=EGRガス量/(EGRガス量+新気量))のことを言う。   As shown in detail in FIG. 15, a fresh air temperature sensor 120 that detects the temperature of fresh air introduced into the intake pipe 35 is attached to the intake pipe 35. A mixed gas temperature sensor 121 that detects the temperature of the mixed gas is attached to the intake manifold 6. Further, an EGR gas temperature sensor 122 that detects the temperature of EGR gas from the exhaust manifold 7 is attached to the EGR valve member 31. These temperature sensors 120 to 122 attached to the engine side are used for obtaining the EGR rate of the mixed gas. Here, the EGR rate means a value obtained by dividing the EGR gas amount by the sum of the EGR gas amount and the fresh air amount (= EGR gas amount / (EGR gas amount + new air amount)).

実施形態の新気温度センサ120は、吸気管35においてブローバイガス戻し管37との接続部123よりも吸気上流側に位置している。吸気管35の上面側にはセンサ取付け台124が一体形成されている。センサ取付け台124に新気温度センサ120が着脱可能にボルト締結されている。新気温度センサ120の検出部は、吸気管35の内部に突出している。   The fresh air temperature sensor 120 of the embodiment is located on the intake air upstream side of the connection part 123 with the blow-by gas return pipe 37 in the intake pipe 35. A sensor mounting base 124 is integrally formed on the upper surface side of the intake pipe 35. The fresh air temperature sensor 120 is detachably bolted to the sensor mount 124. The detection part of the fresh air temperature sensor 120 protrudes into the intake pipe 35.

このように構成すると、エンジン1に対する新気温度センサ120の取付け位置(レイアウト)を常に一定にでき、エンジン1に対して常に同じ条件(位置)で新気温度を計測できる。このため、検出結果に対する補正が不要であり、簡単な構成でエンジン制御の精度を維持できる。新気温度の検出構造を低コストに構成できる。また、新気温度センサ120は、吸気管35においてブローバイガス戻し管37との接続部123よりも吸気上流側に位置するから、新気にブローバイガスを混合する前に、新気温度を検出できる。ブローバイガス中の潤滑油によって新気温度センサ120が汚損するのを防止できる。なお、吸気管35の吸気上流側はゴムホースを介してエアクリーナに接続されるため、ゴムホースの存在によって新気温度センサ120に及ぶ振動の軽減が可能になる。その結果、新気温度センサ120の耐久性を向上できる。   If comprised in this way, the attachment position (layout) of the fresh air temperature sensor 120 with respect to the engine 1 can always be made constant, and fresh air temperature can always be measured with respect to the engine 1 under the same conditions (position). For this reason, correction for the detection result is unnecessary, and the accuracy of engine control can be maintained with a simple configuration. The structure for detecting the fresh air temperature can be configured at low cost. Further, since the fresh air temperature sensor 120 is positioned on the intake air upstream side of the connection part 123 with the blow-by gas return pipe 37 in the intake pipe 35, the fresh air temperature can be detected before the blow-by gas is mixed with the fresh air. . The fresh air temperature sensor 120 can be prevented from being contaminated by the lubricating oil in the blow-by gas. In addition, since the intake upstream side of the intake pipe 35 is connected to an air cleaner via a rubber hose, vibrations that reach the fresh air temperature sensor 120 can be reduced by the presence of the rubber hose. As a result, the durability of the fresh air temperature sensor 120 can be improved.

新気温度センサ120には、新気用配線コネクタ125が一体的に設けられている。実施形態では、新気用配線コネクタ125の接続方向を吸気管35の長手方向に沿わせている。このように構成すると、新気用配線コネクタ125に接続されるハーネスを吸気管35に沿わせることができ、ハーネスの存在が邪魔にならない。   The fresh air temperature sensor 120 is integrally provided with a fresh air wiring connector 125. In the embodiment, the connection direction of the fresh air connector 125 is aligned with the longitudinal direction of the intake pipe 35. If comprised in this way, the harness connected to the wiring connector 125 for fresh air can be made to follow the intake pipe 35, and presence of a harness does not become obstructive.

(2).DPFの概略構造
次に、図7〜図10を参照しながら、DPF2の概略構造について説明する。DPF2は、浄化入口管41及び浄化出口管42を有する耐熱金属材料製の浄化ケーシング40を備えている。浄化ケーシング40の内部には、二酸化窒素(NO2)を生成する白金等のディーゼル酸化触媒43と、捕集した粒子状物質(PM)を比較的低温で連続的に酸化除去するハニカム構造のスートフィルタ44とが、排気ガスの移動方向(図9の矢印方向参照)に直列に並べて収容されている。浄化ケーシング40の長手方向両側(一端側と他端側)に、浄化入口管41と浄化出口管42とが振り分けて設けられている。浄化入口管41はタービンケース33の排気出口側に連結されている。浄化出口管42はテールパイプ(図示省略)に連結されている。
(2). Next, a schematic structure of the DPF 2 will be described with reference to FIGS. The DPF 2 includes a purification casing 40 made of a heat-resistant metal material having a purification inlet pipe 41 and a purification outlet pipe 42. Inside the purification casing 40 is a diesel oxidation catalyst 43 such as platinum that generates nitrogen dioxide (NO2), and a soot filter with a honeycomb structure that continuously oxidizes and removes the collected particulate matter (PM) at a relatively low temperature. 44 are accommodated in series in the exhaust gas movement direction (see the arrow direction in FIG. 9). A purification inlet pipe 41 and a purification outlet pipe 42 are provided separately on both sides in the longitudinal direction (one end side and the other end side) of the purification casing 40. The purification inlet pipe 41 is connected to the exhaust outlet side of the turbine case 33. The purification outlet pipe 42 is connected to a tail pipe (not shown).

上記の構成において、エンジン1の排気ガスは、タービンケース33の排気出口側から浄化入口管41を経由して浄化ケーシング40内に流入し、ディーゼル酸化触媒43、スートフィルタ44の順に通過して浄化処理される。排気ガス中の粒子状物質は、スートフィルタ44における各セル間の多孔質な仕切り壁を通り抜けできずに捕集される。その後、ディーゼル酸化触媒43及びスートフィルタ44を通過した排気ガスがテールパイプに向けて放出される。   In the above configuration, the exhaust gas of the engine 1 flows into the purification casing 40 from the exhaust outlet side of the turbine case 33 via the purification inlet pipe 41 and passes through the diesel oxidation catalyst 43 and the soot filter 44 in this order for purification. It is processed. Particulate matter in the exhaust gas is collected without passing through the porous partition wall between the cells in the soot filter 44. Thereafter, exhaust gas that has passed through the diesel oxidation catalyst 43 and the soot filter 44 is discharged toward the tail pipe.

排気ガスがディーゼル酸化触媒43及びスートフィルタ44を通過する際に、排気ガス温度が再生可能温度(例えば約300℃)を超えていれば、ディーゼル酸化触媒43の作用で、排気ガス中の一酸化窒素(NO)が不安定な二酸化窒素に酸化される。そして、二酸化窒素が一酸化窒素に戻る際に放出する酸素(O)がスートフィルタ44に堆積した粒子状物質を酸化除去することによって、スートフィルタ44の粒子状物質捕集能力は回復する(スートフィルタ44は自己再生する)。   When the exhaust gas passes through the diesel oxidation catalyst 43 and the soot filter 44, if the exhaust gas temperature exceeds a renewable temperature (for example, about 300 ° C.), the oxidation of the exhaust gas is caused by the action of the diesel oxidation catalyst 43. Nitrogen (NO) is oxidized to unstable nitrogen dioxide. Then, oxygen (O) released when nitrogen dioxide returns to nitric oxide oxidizes and removes the particulate matter deposited on the soot filter 44, so that the particulate matter collecting ability of the soot filter 44 is recovered (soot). The filter 44 self-regenerates).

なお、実施形態では、浄化ケーシング40の長手方向他端側が消音器45に構成されており、当該消音器45に浄化出口管42が設けられている。ディーゼル酸化触媒43及びスートフィルタ44とは、排気ガス浄化用のフィルタ体に相当する。   In the embodiment, the other end in the longitudinal direction of the purification casing 40 is configured as a silencer 45, and the purification outlet pipe 42 is provided in the silencer 45. The diesel oxidation catalyst 43 and the soot filter 44 correspond to a filter body for exhaust gas purification.

浄化ケーシング40は、触媒内側ケース46及び触媒外側ケース47と、フィルタ内側ケース48及びフィルタ外側ケース49と、消音内側ケース50及び消音外側ケース51とを備えている。それぞれの内側ケース46,48,50及び外側ケース47,49,51の組合せは二重筒構造に構成されている。触媒内側ケース46内にディーゼル酸化触媒43が収容される。フィルタ内側ケース48内にスートフィルタ44が収容される。触媒内側ケース46の外周側と触媒外側ケース47の内周側との間に、断面L字状の薄板製支持体52が配置されている。触媒内側ケース46の外周側と触媒外側ケース47の内周側とは、薄板製支持体52を介して連結されている。   The purification casing 40 includes a catalyst inner case 46 and a catalyst outer case 47, a filter inner case 48 and a filter outer case 49, and a sound deadening inner case 50 and a sound deadening outer case 51. The combination of each of the inner cases 46, 48, 50 and the outer cases 47, 49, 51 has a double cylinder structure. A diesel oxidation catalyst 43 is accommodated in the catalyst inner case 46. The soot filter 44 is accommodated in the filter inner case 48. Between the outer peripheral side of the catalyst inner case 46 and the inner peripheral side of the catalyst outer case 47, a thin plate support 52 having an L-shaped cross section is disposed. The outer peripheral side of the catalyst inner case 46 and the inner peripheral side of the catalyst outer case 47 are connected via a thin plate support 52.

それぞれの内側ケース46,48及び外側ケース47,49の組合せが浄化ケーシング40の構成要素である浄化ケースに相当する。実施形態のDPF2は消音器45付きであるが、消音器45自体はDPF2に必須の構成要素ではない。つまり、消音内側ケース50及び消音外側ケース51は浄化ケーシング40に必須の構成要素ではない。   The combination of the inner cases 46 and 48 and the outer cases 47 and 49 corresponds to a purification case that is a component of the purification casing 40. The DPF 2 of the embodiment includes the silencer 45, but the silencer 45 itself is not an essential component of the DPF 2. That is, the silencer inner case 50 and the silencer outer case 51 are not essential components of the purification casing 40.

触媒内側ケース46及び触媒外側ケース47の一端側(排気上流側の端部)に触媒内蓋体53が溶接固定されている。触媒内側ケース46及び触媒外側ケース47の一端側を触媒内蓋体53によって塞いでいる。触媒内蓋体53の外端面側には、触媒内蓋体53を外側から覆う触媒外蓋体54が溶接固定されている。触媒外側ケース47の外周側に浄化入口管41が溶接固定されている。浄化入口管41は、触媒内側ケース46及び触媒外側ケース47に形成された排気ガス入口55を介して触媒内側ケース46内に連通している。   A catalyst inner lid 53 is welded and fixed to one end side (end portion on the exhaust upstream side) of the catalyst inner case 46 and the catalyst outer case 47. One end sides of the catalyst inner case 46 and the catalyst outer case 47 are closed by a catalyst inner lid 53. A catalyst outer lid body 54 that covers the catalyst inner lid body 53 from the outside is welded and fixed to the outer end face side of the catalyst inner lid body 53. A purification inlet pipe 41 is welded and fixed to the outer peripheral side of the catalyst outer case 47. The purification inlet pipe 41 communicates with the catalyst inner case 46 via an exhaust gas inlet 55 formed in the catalyst inner case 46 and the catalyst outer case 47.

触媒内側ケース46の他端側(排気下流側の端部)に、触媒外側ケース47の外周側(半径外側)にはみ出る薄板状の触媒フランジ56が溶接固定されている。触媒フランジ56の外周側に、触媒外側ケース47の他端側が溶接固定されている。一方、フィルタ内側ケース48の外周側の長手中途部に、フィルタ外側ケース49の外周側にはみ出る薄板状のフィルタ入口フランジ57が溶接固定されている。フィルタ入口フランジ57の外周側に、フィルタ外側ケース49の一端側(排気上流側の端部)が溶接固定されている。   A thin plate-like catalyst flange 56 protruding from the outer peripheral side (radius outer side) of the catalyst outer case 47 is welded and fixed to the other end side (end portion on the exhaust downstream side) of the catalyst inner case 46. The other end side of the catalyst outer case 47 is welded and fixed to the outer peripheral side of the catalyst flange 56. On the other hand, a thin plate-like filter inlet flange 57 that protrudes from the outer peripheral side of the filter outer case 49 is welded and fixed to a longitudinal middle part of the outer peripheral side of the filter inner case 48. One end side (end portion on the upstream side of the exhaust) of the filter outer case 49 is fixed by welding to the outer peripheral side of the filter inlet flange 57.

図7〜図9に示すように、ガスケット58を介して触媒フランジ56とフィルタ入口フランジ57とを突き合わせ、各外側ケース47,49の外周側を囲う厚板状の中央挟持フランジ59,60で両フランジ56,57を排気ガス移動方向の両側から挟持し、ボルト61及びナット62で両中央挟持フランジ59,60を両フランジ56,57と共に締結することによって、触媒外側ケース47とフィルタ外側ケース49とが連結される。触媒外側ケース47とフィルタ外側ケース49とを連結した状態では、フィルタ内側ケース46の一端側が、触媒内側ケース46及び触媒外側ケース47の他端側から内部にオーバーラップしている(挿入されている)。   As shown in FIGS. 7 to 9, the catalyst flange 56 and the filter inlet flange 57 are brought into contact with each other via a gasket 58, and both are sandwiched by thick plate-like central clamping flanges 59 and 60 that surround the outer peripheral sides of the outer cases 47 and 49. The flanges 56 and 57 are clamped from both sides in the exhaust gas movement direction, and both the central clamp flanges 59 and 60 are fastened together with both the flanges 56 and 57 with bolts 61 and nuts 62, so that the catalyst outer case 47 and the filter outer case 49 Are concatenated. In a state where the catalyst outer case 47 and the filter outer case 49 are connected, one end side of the filter inner case 46 overlaps (inserts) from the other end side of the catalyst inner case 46 and the catalyst outer case 47. ).

浄化ケーシング40の長手方向他端側に位置する消音器45は、二重筒構造の消音内側ケース50及び消音外側ケース51を備えている。消音内側ケース50の一端側(排気上流側の端部)に仕切蓋体63が溶接固定されている。消音内側ケース50の一端側を仕切蓋体63によって塞いでいる。消音内側ケース50及び消音外側ケース51の他端側(排気下流側の端部)には消音内蓋体64が溶接固定されている。消音内蓋体64の外端面側には、消音内蓋体64を外側から覆う消音外蓋体65が溶接固定されている。   The silencer 45 located on the other longitudinal end side of the purification casing 40 includes a silencer inner case 50 and a silencer outer case 51 having a double cylinder structure. A partition lid 63 is welded and fixed to one end side (end portion on the exhaust upstream side) of the silencer inner case 50. One end side of the silencer inner case 50 is closed by a partition lid 63. A silencer inner lid body 64 is welded and fixed to the other end side (end portion on the exhaust downstream side) of the silencer inner case 50 and the silencer outer case 51. On the outer end face side of the silencer inner lid body 64, a silencer outer lid body 65 that covers the silencer inner lid body 64 from the outside is welded and fixed.

仕切蓋体63と消音内蓋体64との間には一対の連通管66が設けられている(図9では一方のみ示す)。両連通管66の一端側は仕切蓋体63を貫通している。両連通管66の他端側は消音内蓋体64によって塞がれている。各連通管66には多数の連通穴67が形成されている。仕切蓋体63と消音内蓋体64とで仕切られた消音内側ケース50の内部は、連通穴67を介して両方の連通管66と連通する共鳴室に構成されている。   A pair of communication pipes 66 is provided between the partition lid 63 and the muffler inner lid 64 (only one is shown in FIG. 9). One end side of both communication pipes 66 penetrates the partition lid 63. The other end side of both the communication pipes 66 is closed by a sound deadening inner lid body 64. A number of communication holes 67 are formed in each communication pipe 66. The inside of the silencer inner case 50 partitioned by the partition lid 63 and the silencer inner lid 64 is configured as a resonance chamber that communicates with both the communication pipes 66 through the communication holes 67.

消音内側ケース50及び消音外側ケース51には、両連通管66の間を通る浄化出口管42を貫通させている。浄化出口管42の一端側(上端側)には一対の出口蓋体68が溶接固定されている。浄化出口管42の一端側を両出口蓋体68によって塞いでいる。両出口蓋体68は上下に適宜間隔を開けて配置されている。浄化出口管42のうち消音内側ケース50内の部分には多数の排気穴69が形成されている。従って、消音内側ケース50内の両連通管66は、連通穴67、共鳴室及び排気穴69を介して浄化出口管42に連通している。浄化出口管42の他端側(下端側)は、例えばテールパイプや既設の消音部材に接続される。上記の構成において、消音内側ケース46の両連通管66内に侵入した排気ガスは、連通穴67、共鳴室及び排気穴69を介して浄化出口管42を通過し、消音器45外に排出される。   The sound-absorbing inner case 50 and the sound-absorbing outer case 51 are penetrated by a purification outlet pipe 42 that passes between the two communication pipes 66. A pair of outlet lid bodies 68 are welded and fixed to one end side (upper end side) of the purification outlet pipe 42. One end side of the purification outlet pipe 42 is closed by both outlet lid bodies 68. Both outlet lids 68 are arranged at an appropriate interval in the vertical direction. A number of exhaust holes 69 are formed in a portion of the purification outlet pipe 42 in the silencer inner case 50. Accordingly, both the communication pipes 66 in the silencer inner case 50 communicate with the purification outlet pipe 42 through the communication hole 67, the resonance chamber and the exhaust hole 69. The other end side (lower end side) of the purification outlet pipe 42 is connected to, for example, a tail pipe or an existing silencing member. In the above configuration, the exhaust gas that has entered the both communication pipes 66 of the muffler inner case 46 passes through the purification outlet pipe 42 via the communication hole 67, the resonance chamber and the exhaust hole 69, and is discharged out of the silencer 45. The

フィルタ内側ケース48の他端側に、フィルタ外側ケース49の外周側にはみ出る薄板状のフィルタ出口フランジ70が溶接固定されている。フィルタ出口フランジ70の外周側に、フィルタ外側ケース49の他端側が溶接固定されている。一方、消音内側ケース50の一端側に、消音外側ケース51の外周側にはみ出る薄板状の消音フランジ71が溶接固定されている。消音フランジ71の外周側に、消音外側ケース51の一端側が溶接固定されている。   A thin plate-like filter outlet flange 70 protruding from the outer peripheral side of the filter outer case 49 is fixed to the other end side of the filter inner case 48 by welding. The other end side of the filter outer case 49 is fixed to the outer peripheral side of the filter outlet flange 70 by welding. On the other hand, a thin plate-like silencing flange 71 protruding from the outer peripheral side of the silencing outer case 51 is welded and fixed to one end side of the silencing inner case 50. One end side of the silencer outer case 51 is welded and fixed to the outer peripheral side of the silencer flange 71.

図7〜図9に示すように、ガスケット72を介してフィルタ出口フランジ70と消音フランジ71とを突き合わせ、各外側ケース49,51の外周側を囲う厚板状の出口挟持フランジ73,74で両フランジ70,71を排気ガス移動方向の両側から挟持し、ボルト75及びナット76で両出口挟持フランジ73,74を両フランジ70,71と共に締結することによって、フィルタ外側ケース49と消音外側ケース51とが連結される。   As shown in FIGS. 7 to 9, the filter outlet flange 70 and the silencing flange 71 are brought into contact with each other via a gasket 72, and both are connected by thick plate-like outlet clamping flanges 73 and 74 that surround the outer peripheral sides of the outer cases 49 and 51. The flanges 70 and 71 are clamped from both sides in the exhaust gas movement direction, and both the outlet clamping flanges 73 and 74 are fastened together with both the flanges 70 and 71 by bolts 75 and nuts 76. Are concatenated.

各中央挟持フランジ59(60)は、対応する外側ケース47(49)の周方向に複数に分割された円弧体59a,59b(60a,60b)からなっている。各円弧体59a,59b(60a,60b)は円弧状(略半円の馬蹄形)に形成されている。触媒外側ケース47とフィルタ外側ケース49とを連結した状態では、両円弧体59a,59b(60a,60b)の端部同士が周方向に対峙して突き合わさり、触媒外側ケース47(フィルタ外側ケース49)の外周側を取り囲む。ここで、触媒側の円弧体59a,59bとフィルタ入口側の円弧体60a,60bとの端部同士の突合せ部分は、お互いに位相をずらした位置におかれる(突合せ部分同士を同位相に重ねない)。中央挟持フランジ59,60を構成する各円弧体59a,59b,60a,60bはいずれも同一形態である。   Each center clamping flange 59 (60) is composed of arcuate bodies 59a, 59b (60a, 60b) divided into a plurality of portions in the circumferential direction of the corresponding outer case 47 (49). Each arc body 59a, 59b (60a, 60b) is formed in an arc shape (substantially semicircular horseshoe shape). In a state where the catalyst outer case 47 and the filter outer case 49 are connected, the ends of both arcs 59a, 59b (60a, 60b) face each other in the circumferential direction, and the catalyst outer case 47 (filter outer case 49). ). Here, the abutting portions of the ends of the arcuate bodies 59a and 59b on the catalyst side and the arcuate bodies 60a and 60b on the filter inlet side are placed at positions shifted from each other (the abutting portions are overlapped in the same phase). Absent). Each of the circular arc bodies 59a, 59b, 60a, 60b constituting the central clamping flanges 59, 60 has the same form.

各出口挟持フランジ73(74)も、中央挟持フランジ59,60と同様に、対応する外側ケース49(51)の周方向に複数に分割された円弧体73a,73b(74a,74b)からなっている。各円弧体73a,73b(74a,74b)は、中央挟持フランジ59(60)の各円弧体59a,59b(60a,60b)と基本的に同じ形態のものである。フィルタ出口側の円弧体73a,73bと、消音側の円弧体74a,74bとの端部同士の突合せ部分も、お互いに位相をずらした位置におかれる。   Each outlet pinching flange 73 (74) is also composed of arcuate bodies 73a and 73b (74a and 74b) divided into a plurality of portions in the circumferential direction of the corresponding outer case 49 (51), like the central pinching flanges 59 and 60. Yes. The arc bodies 73a and 73b (74a and 74b) have basically the same form as the arc bodies 59a and 59b (60a and 60b) of the center clamping flange 59 (60). The abutting portions between the ends of the arcuate bodies 73a and 73b on the filter outlet side and the arcuate bodies 74a and 74b on the silencing side are also placed at positions that are out of phase with each other.

挟持フランジ59,60,73,74のうち少なくとも一つに、浄化ケーシング40をエンジン1に支持させる連結脚体77が着脱可能に取り付けられる。実施形態では、出口挟持フランジ73における一方の円弧体73aに、貫通穴付きの脚体締結部78が形成されている。連結脚体77には、円弧体73aの脚体締結部78に対応する取付けボス部が形成されている。円弧体73aの脚体締結部78に連結脚体77の取付けボス部をボルト締結することによって、フィルタ出口側の出口挟持フランジ73に連結脚体77が着脱可能に取り付けられる。浄化ケーシング40(実施形態では触媒外側ケース47)の外周側には、浄化ケーシング40をエンジン1に支持させる固定脚体79が溶接にて固着されている。連結脚体77及び固定脚体79は、フライホイルハウジング10の上面側に形成されたDPF取付け部80にボルト締結される。つまり、DPF2は、連結脚体77及び固定脚体79によって、高剛性部材であるフライホイルハウジング10上に安定的に連結支持される。   A connecting leg 77 for supporting the purification casing 40 on the engine 1 is detachably attached to at least one of the sandwiching flanges 59, 60, 73, 74. In the embodiment, a leg fastening portion 78 with a through hole is formed in one arcuate body 73 a of the outlet pinching flange 73. An attachment boss portion corresponding to the leg fastening portion 78 of the arc member 73a is formed on the connecting leg 77. The connecting leg 77 is detachably attached to the outlet holding flange 73 on the filter outlet side by bolting the mounting boss portion of the connecting leg 77 to the leg fastening portion 78 of the arc member 73a. A fixed leg 79 for supporting the purification casing 40 on the engine 1 is fixed to the outer peripheral side of the purification casing 40 (in the embodiment, the catalyst outer case 47) by welding. The connecting leg 77 and the fixed leg 79 are bolted to a DPF attachment portion 80 formed on the upper surface side of the flywheel housing 10. That is, the DPF 2 is stably connected and supported on the flywheel housing 10, which is a highly rigid member, by the connecting legs 77 and the fixed legs 79.

図7及び図8に示すように、浄化ケーシング40の外周側には、浄化ケーシング40内の排気ガス圧力を検出する排気ガス圧力センサ81と、同じく浄化ケーシング40内の排気ガス温度を検出する排気ガス温度センサ82とを備えている。排気ガス圧力センサ81は、スートフィルタ44を挟んだ排気上流側及び排気下流側間の排気ガスの圧力差を検出するものである。当該圧力差に基づきスートフィルタ44の粒子状物質の堆積量が換算され、DPF2内の詰り状態が把握される。   As shown in FIGS. 7 and 8, an exhaust gas pressure sensor 81 for detecting the exhaust gas pressure in the purification casing 40 and an exhaust gas for detecting the exhaust gas temperature in the purification casing 40 are disposed on the outer peripheral side of the purification casing 40. And a gas temperature sensor 82. The exhaust gas pressure sensor 81 detects the pressure difference of the exhaust gas between the exhaust upstream side and the exhaust downstream side across the soot filter 44. Based on the pressure difference, the amount of particulate matter deposited on the soot filter 44 is converted, and the clogged state in the DPF 2 is grasped.

挟持フランジ59,60,73,74のうち少なくとも一つに、排気ガス圧力センサ81及び排気ガス温度センサ82を支持する略L字板状のセンサブラケット83が着脱可能に取り付けられる。実施形態では、消音側の出口挟持フランジ74における一方の円弧体74aに、貫通穴付きのセンサ支持部86が形成されている。つまり、センサ支持部86は、排気ガス入口55側から最も遠い消音側の出口挟持フランジ74の一部に形成されている。円弧体43aのセンサ支持部86にセンサブラケット83の鉛直板部85をボルト締結することによって、消音側の出口挟持フランジ74にセンサブラケット83が着脱可能に取り付けられる。   At least one of the sandwiching flanges 59, 60, 73, 74 is detachably attached with a sensor bracket 83 having a substantially L-shaped plate that supports the exhaust gas pressure sensor 81 and the exhaust gas temperature sensor 82. In the embodiment, a sensor support portion 86 with a through hole is formed in one arcuate body 74 a of the outlet clamping flange 74 on the silencer side. That is, the sensor support portion 86 is formed in a part of the muffler-side outlet pinching flange 74 farthest from the exhaust gas inlet 55 side. The sensor bracket 83 is detachably attached to the mute-side outlet pinching flange 74 by bolting the vertical plate portion 85 of the sensor bracket 83 to the sensor support portion 86 of the arcuate body 43a.

図7,図8及び図10に示すように、円弧体74aのセンサ支持部86は浄化ケーシング40の外周側(半径外側)に張り出している。このため、センサブラケット83の水平板部84は浄化ケーシング40の外周側から外向きに離れている。排気ガス圧力センサ81及び排気ガス温度センサ82は、センサブラケット83の水平板部84上に並設されている。センサブラケット83の水平板部84は、浄化ケーシング40の排気ガス移動方向の長さ範囲内に両センサ81,82が収まるように、フィルタ外側ケース49の外周側に位置している。このような取付け構造を採用すると、仮にDPF2に消音器45が直付けされていない場合であっても、浄化ケーシング40の排気ガス移動方向の長さ範囲内に両センサ81,82を収められる。   As shown in FIGS. 7, 8, and 10, the sensor support portion 86 of the arcuate body 74 a projects to the outer peripheral side (radius outside) of the purification casing 40. For this reason, the horizontal plate portion 84 of the sensor bracket 83 is separated outward from the outer peripheral side of the purification casing 40. The exhaust gas pressure sensor 81 and the exhaust gas temperature sensor 82 are juxtaposed on the horizontal plate portion 84 of the sensor bracket 83. The horizontal plate portion 84 of the sensor bracket 83 is located on the outer peripheral side of the filter outer case 49 so that the sensors 81 and 82 are within the length range of the purification casing 40 in the exhaust gas movement direction. If such a mounting structure is adopted, even if the silencer 45 is not directly attached to the DPF 2, both the sensors 81 and 82 can be accommodated within the length range of the purification casing 40 in the exhaust gas movement direction.

排気ガス圧力センサ81には圧力用配線コネクタ87が一体的に設けられている。排気ガス圧力センサ81には、上流及び下流センサ配管88,89を介して上流及び下流管継手体90,91の基端側がそれぞれ接続されている。触媒内側ケース46とフィルタ内側ケース48とには、スートフィルタ44を挟むような位置関係で、圧力用ボス体92が溶接にて固着されている。各圧力用ボス体92の外向き突端側は、対応する外側ケース47,49に形成された開口から半径外向きに突出している。各管継手体90,91の先端側はそれぞれ対応する圧力用ボス体92に管継手ボルト93を介して締結される。   The exhaust gas pressure sensor 81 is integrally provided with a pressure wiring connector 87. The exhaust gas pressure sensor 81 is connected to the proximal end sides of the upstream and downstream pipe joint bodies 90 and 91 via upstream and downstream sensor pipes 88 and 89, respectively. A pressure boss body 92 is fixed to the catalyst inner case 46 and the filter inner case 48 by welding so as to sandwich the soot filter 44 therebetween. The outward protruding end side of each pressure boss body 92 protrudes radially outward from the opening formed in the corresponding outer case 47, 49. The distal ends of the pipe joint bodies 90 and 91 are fastened to the corresponding pressure boss bodies 92 via pipe joint bolts 93, respectively.

排気ガス温度センサ82は、センサブラケット83の水平板部84上に、温度用配線コネクタ94を備えている。排気ガス温度センサ82(温度用配線コネクタ94といってもよい)からは三本のセンサ配管95〜97が延びている。触媒内側ケース46とフィルタ内側ケース48とには、温度用ボス体98が溶接にて固着されている。触媒内側ケース46には二つ、フィルタ内側ケース48には一つの温度用ボス体98が設けられている。各温度用ボス体98外向き突端側は、対応する外側ケース47,49に形成された開口から半径外向きに突出している。各温度用ボス体98に螺合する装着ボルト99に、排気ガス温度センサ82から延びるセンサ配管95〜97先端の検出部分を貫通させ、装着ボルト99を介して温度用ボス体98にセンサ配管95〜97先端の検出部分が固定される。各センサ配管95〜97先端の検出部分は、触媒内蓋体53とディーゼル酸化触媒43との間、ディーゼル酸化触媒43とスートフィルタ44との間、並びに、スートフィルタ44と仕切蓋体63との間にそれぞれ突入している。   The exhaust gas temperature sensor 82 includes a temperature wiring connector 94 on the horizontal plate portion 84 of the sensor bracket 83. Three sensor pipes 95 to 97 extend from the exhaust gas temperature sensor 82 (which may be referred to as a temperature wiring connector 94). A temperature boss body 98 is fixed to the catalyst inner case 46 and the filter inner case 48 by welding. Two temperature bosses 98 are provided in the catalyst inner case 46, and one temperature boss body 98 is provided in the filter inner case 48. The outward protruding end side of each temperature boss body 98 protrudes radially outward from the opening formed in the corresponding outer case 47, 49. Detection bolts 95 to 97 extending from the exhaust gas temperature sensor 82 are passed through mounting bolts 99 screwed to the temperature boss bodies 98, and the sensor pipes 95 are connected to the temperature boss bodies 98 via the mounting bolts 99. The detection part at the tip of ~ 97 is fixed. The detection portions at the tips of the sensor pipes 95 to 97 are between the catalyst inner lid 53 and the diesel oxidation catalyst 43, between the diesel oxidation catalyst 43 and the soot filter 44, and between the soot filter 44 and the partition lid body 63. Each rushes in between.

実施形態では、圧力用配線コネクタ87と温度用配線コネクタ94との接続方向を同じ方向に向けた状態で、排気ガス圧力センサ81及び排気ガス温度センサ82をセンサブラケット83の水平板部84上に固定している。このため、各コネクタ87,94に対する配線の接続作業性を向上できる。   In the embodiment, the exhaust gas pressure sensor 81 and the exhaust gas temperature sensor 82 are placed on the horizontal plate portion 84 of the sensor bracket 83 with the connection direction of the pressure wiring connector 87 and the temperature wiring connector 94 being in the same direction. It is fixed. For this reason, the connection workability of the wiring with respect to each connector 87,94 can be improved.

また、実施形態では、フィルタ出口側の出口挟持フランジ73における他方の円弧体73bに吊り下げ体101が一体的に形成されると共に、浄化ケーシング40の触媒外蓋体54に吊り下げ金具102がボルト締結されている。浄化ケーシング40の対角線方向(長手軸線Aと交差する方向)に各々の開口穴103,104が位置するように、吊り下げ体101と吊り下げ金具102が排気ガス移動方向の両側に離間させて対峙させている(図11参照)。フィルタ出口側の出口挟持フランジ73だけでなく、その他の挟持フランジ59,60,74も、浄化ケース連結用の厚板フランジに相当する。つまり、その他の挟持フランジ59,60,74に吊り下げ体101を一体的に形成してもよい。   In the embodiment, the suspension body 101 is integrally formed on the other arcuate body 73b of the outlet holding flange 73 on the filter outlet side, and the suspension fitting 102 is bolted to the catalyst outer lid body 54 of the purification casing 40. It is concluded. The suspension body 101 and the suspension fitting 102 are opposed to each other in the exhaust gas movement direction so that the respective opening holes 103 and 104 are located in the diagonal direction of the purification casing 40 (direction intersecting the longitudinal axis A). (See FIG. 11). Not only the outlet clamping flange 73 on the filter outlet side, but also the other clamping flanges 59, 60, 74 correspond to thick plate flanges for connecting the purification case. That is, the suspended body 101 may be integrally formed with the other holding flanges 59, 60, and 74.

このように構成すると、エンジン1の組立工場等において、例えばチェンブロックのフック(図示省略)に吊り下げ体101及び吊り下げ金具102を係止し、チェンブロックによって浄化ケーシング40を昇降させ、エンジン1に浄化ケーシング40を組み付けできる。つまり、作業者が自力で浄化ケーシング40を持ち上げたりせずに、吊り下げ体101及び吊り下げ金具102を用いて浄化ケーシング40をスムーズにエンジン1に搭載できる。   If comprised in this way, in the assembly factory etc. of the engine 1, for example, the suspension body 101 and the suspension metal fitting 102 are locked to the hook (not shown) of the chain block, and the purification casing 40 is moved up and down by the chain block. The purification casing 40 can be assembled to the casing. That is, the purification casing 40 can be smoothly mounted on the engine 1 by using the suspended body 101 and the suspension fitting 102 without the operator lifting the purification casing 40 by himself / herself.

また、吊り下げ体101と吊り下げ金具102の対角線方向の位置関係によって、重量物である浄化ケーシング40を安定した姿勢で吊り下げでき、例えばフライホイルハウジング10のDPF取付け部80と、連結脚体77及び固定脚体79との位置合せを簡単に行える。従って、DPF2の組付け作業性を向上できる。   Further, the purification casing 40, which is a heavy object, can be suspended in a stable posture by the positional relationship in the diagonal direction between the suspended body 101 and the suspended metal fitting 102. For example, the DPF attachment portion 80 of the flywheel housing 10 and the connecting leg body 77 and the fixed leg 79 can be easily aligned. Therefore, the assembly workability of the DPF 2 can be improved.

ところで、図10に示すように、厚板フランジに相当する各挟持フランジ59,60,73,74には、貫通穴付きのボルト締結部105が周方向に沿った等間隔で複数設けられている。実施形態では、各挟持フランジ59,60,73,74一組に付き十箇所のボルト締結部105を備えている。各円弧体59a,59b,60a,60b,73a,73b,74a,74b単位で見ると、周方向に沿った等間隔で五箇所ずつボルト締結部105が設けられている。各フランジ56,57,70,71には、挟持フランジ59,60,73,74の各ボルト締結部105に対応するボルト穴106が形成されている。このため、各挟持フランジ59,60,73,74の円弧体59a,59b,60a,60b,73a,73b,74a,74b群の取付け位相は、浄化ケーシング40の排気ガス移動方向の長手軸線A回りに(浄化ケーシング40の周方向に沿って)多段階に変更可能である。   By the way, as shown in FIG. 10, each clamping flange 59, 60, 73, 74 corresponding to a thick plate flange is provided with a plurality of bolt fastening portions 105 with through holes at equal intervals along the circumferential direction. . In the embodiment, ten bolt fastening portions 105 are provided for each pair of clamping flanges 59, 60, 73 and 74. When viewed in units of arcs 59a, 59b, 60a, 60b, 73a, 73b, 74a, and 74b, five bolt fastening portions 105 are provided at equal intervals along the circumferential direction. Bolt holes 106 corresponding to the respective bolt fastening portions 105 of the clamping flanges 59, 60, 73, 74 are formed in the flanges 56, 57, 70, 71. For this reason, the mounting phase of the arcuate bodies 59a, 59b, 60a, 60b, 73a, 73b, 74a, 74b of the holding flanges 59, 60, 73, 74 is around the longitudinal axis A in the exhaust gas movement direction of the purification casing 40. It can be changed in multiple stages (along the circumferential direction of the purification casing 40).

このように構成すると、各挟持フランジ59,60,73,74の形状(吊り下げ体101の形成位置)を変更することなく、浄化入口管41や浄化出口管42の連結方向(エンジン1に対するDPF2の取付け仕様)に対して吊り下げ体101の位置を簡単に変更でき、DPF2の組付け作業性の更なる向上に寄与できる。   If comprised in this way, without changing the shape (formation position of the suspension body 101) of each clamping flange 59, 60, 73, 74, the connection direction (DPF2 with respect to the engine 1) of the purification inlet pipe 41 or the purification outlet pipe 42 ), The position of the suspended body 101 can be easily changed, which can contribute to further improvement in the assembly workability of the DPF 2.

図9に詳細に示したように、浄化ケーシング40の排気ガス移動方向の両端部を塞ぐ蓋体は、内蓋体53,64と外蓋体54,65との二重構造に構成されている。そして、浄化ケーシング40をエンジン1に搭載した状態で外蓋体54,65において少なくとも下部に位置する箇所に、内蓋体53,64と外蓋体54,65との間に溜まる水を排出させる第1水抜き穴107が形成されている(図7〜図11参照)。外蓋体54,65は略円盤状の同一形状に形成されている。第1水抜き穴107は、各外蓋体54,65において排気ガス移動方向の中心線(長手軸線A)を基準にした放射方向の周縁部に形成されている。実施形態の第1水抜き穴107は、排気ガス移動方向の中心線(長手軸線A)をから見て十字方向の周縁部に開口している(一つの外蓋体54,65に対して四箇所開口している)。これら第1水抜き穴107を介して、内蓋体53,64と外蓋体54,65との間が外部に連通している。   As shown in detail in FIG. 9, the lid that closes both ends of the purification casing 40 in the exhaust gas movement direction has a double structure of the inner lids 53 and 64 and the outer lids 54 and 65. . And the water which accumulates between the inner cover bodies 53 and 64 and the outer cover bodies 54 and 65 is discharged | emitted to the location located in the lower part in the outer cover bodies 54 and 65 in the state which mounted the purification casing 40 in the engine 1. A first drain hole 107 is formed (see FIGS. 7 to 11). The outer lid bodies 54 and 65 are formed in the substantially same disc shape. The first drain hole 107 is formed in the peripheral edge in the radial direction with respect to the center line (longitudinal axis A) in the exhaust gas movement direction in each of the outer lid bodies 54 and 65. The first drain hole 107 of the embodiment opens at the peripheral edge in the cross direction when viewed from the center line (longitudinal axis A) in the exhaust gas movement direction (four to one outer lid body 54, 65). Some places are open). The inner lid bodies 53 and 64 and the outer lid bodies 54 and 65 communicate with the outside through the first drain holes 107.

このように構成すると、浄化ケーシング40の排気ガス移動方向の両端部を、内蓋体53,64と外蓋体54,65との二重構造で塞いで断熱性を確保したものでありながら、結露や雨水等によって内蓋体53,64と外蓋体54,65との間に溜まる水を第1水抜き穴107から排出でき、DPF2の水抜き性がよくなる。このため、DPF2の耐腐食性能が向上する。その上、浄化ケーシング40の排気ガス移動方向の両端部を同一形状の外蓋体54,65で塞ぐことになるから、構成部品点数を減少させてコスト低減に寄与できる。外蓋体54,65の形状を変更することなく、浄化ケーシング40の排気ガス移動方向の各端部に対して、外蓋体54,65の前記中心線(長手軸線A)回りの取り付け向きを簡単に変更できる。ひいては、外側ケース(例えば触媒外側ケース47や消音外側ケース51)の前記エンジン1に対する取り付け向きの自由度を高められる。   If comprised in this way, although the both ends of the exhaust gas movement direction of the purification | cleaning casing 40 are plugged up with the double structure of the inner cover bodies 53 and 64 and the outer cover bodies 54 and 65, heat insulation is ensured, Water accumulated between the inner lid bodies 53 and 64 and the outer lid bodies 54 and 65 due to condensation, rain water, or the like can be discharged from the first drain hole 107, and the drainage of the DPF 2 is improved. For this reason, the corrosion resistance performance of DPF2 improves. In addition, since both ends of the purification casing 40 in the exhaust gas movement direction are closed by the outer lid bodies 54 and 65 having the same shape, it is possible to reduce the number of components and contribute to cost reduction. Without changing the shape of the outer lid bodies 54 and 65, the direction of attachment around the center line (longitudinal axis A) of the outer lid bodies 54 and 65 is adjusted with respect to each end of the purification casing 40 in the exhaust gas movement direction. Easy to change. As a result, the degree of freedom of the mounting direction of the outer case (for example, the catalyst outer case 47 and the muffler outer case 51) with respect to the engine 1 can be increased.

図12に示すように、浄化ケーシング40をエンジン1に搭載した状態で各外側ケース47,49において少なくとも下部に位置する箇所には、内側ケース46,48と外側ケース47,49との間に溜まる水を排出させる第2水抜き穴108が形成されている。実施形態では、触媒外側ケース47において固定脚体79を挟んだ両側とフィルタ外側ケース49との三箇所に、第2水抜き穴108が形成されている。このように構成すると、浄化ケーシング40を、内側ケース46,48と外側ケース47,49との二重構造に構成して断熱性を確保したものでありながら、結露や雨水等によって内側ケース46,48と外側ケース47,49との間に溜まる水を第2水抜き穴108から排出でき、DPF2の水抜き性がよくなる。このため、DPF2の耐腐食性能の更なる向上に寄与できる。   As shown in FIG. 12, in a state where the purification casing 40 is mounted on the engine 1, the outer cases 47 and 49 are located at least in the lower part and are collected between the inner cases 46 and 48 and the outer cases 47 and 49. A second drain hole 108 for discharging water is formed. In the embodiment, second drain holes 108 are formed at three locations of the catalyst outer case 47 on both sides of the fixed leg 79 and the filter outer case 49. If comprised in this way, although the purification | cleaning casing 40 is comprised in the double structure of the inner side cases 46 and 48 and the outer side cases 47 and 49, and heat insulation was ensured, the inner case 46, dew, rain water, etc. Water accumulated between the outer case 47 and the outer cases 47 and 49 can be discharged from the second drain hole 108, and the drainage of the DPF 2 is improved. For this reason, it can contribute to the further improvement of the corrosion resistance performance of DPF2.

図13及び図14に示すように、触媒外側ケース47の外周側に設けられた浄化入口管41の先端側には、タービンケース33の排気出口側に締結される接続フランジ体110が溶接にて固着されている。接続フランジ体110には、中央に形成された開口縁部を浄化入口管41の方向に突出させることによって環状突起部111が一体的に形成されている。接続フランジ体110中央の開口部に浄化入口管41を差し込んで、接続フランジ体110の環状突起部111と浄化入口管41の先端外周側とが溶接されている。   As shown in FIGS. 13 and 14, a connection flange body 110 that is fastened to the exhaust outlet side of the turbine case 33 is welded to the distal end side of the purification inlet pipe 41 provided on the outer peripheral side of the catalyst outer case 47. It is fixed. An annular protrusion 111 is integrally formed on the connection flange body 110 by projecting an opening edge formed in the center in the direction of the purification inlet pipe 41. The purification inlet pipe 41 is inserted into the opening at the center of the connection flange body 110, and the annular protrusion 111 of the connection flange body 110 and the tip outer peripheral side of the purification inlet pipe 41 are welded.

このように構成すると、接続フランジ体110の平坦部から、浄化入口管41の先端外周側との溶接部分が離間することになるので、溶接によって浄化入口管41に接続フランジ体110を固着するにも拘らず、溶接による高熱の悪影響が接続フランジ体110に及び難く、接続フランジ体110の平坦部の平面度を維持できる。従って、DPF2破損の要因となる応力が接続フランジ体110に局所的に生ずるおそれを抑制できる。   If comprised in this way, since the welding part with the front-end | tip outer peripheral side of the purification inlet pipe 41 will space apart from the flat part of the connection flange body 110, the connection flange body 110 will be fixed to the purification inlet pipe 41 by welding. Nevertheless, the adverse effect of high heat due to welding hardly affects the connection flange body 110, and the flatness of the flat portion of the connection flange body 110 can be maintained. Therefore, it is possible to suppress the possibility that stress that causes damage to the DPF 2 is locally generated in the connection flange body 110.

図13及び図14に示すように、浄化入口管41は二重筒構造に構成されている。実施形態の浄化入口管41は、触媒外側ケース47に形成された排気ガス入口55を外側から覆う末広がり形状の漏斗状部112と、漏斗状部112の先端開口部に差し込み固定された内筒部113と、内筒部113に被嵌された外筒部114とにより構成されている。漏斗状部112の基端側は触媒外側ケース47の外周側に溶接固定されている。内筒部113が差し込まれた漏斗状部112の先端側と外筒部114の基端側との重複部位が溶接にて固定されている。外筒部114の先端側は内筒部113に溶接固定されている。内筒部113の先端側は外筒部114から突出しており、当該部分に接続フランジ体110が溶接固定されている。このように構成すると、浄化ケーシング40だけでなく浄化入口管41においても断熱性能が向上する。従って、浄化ケーシング40内での排気ガスの温度低下を抑制できる。また、エンジン1の配置スペース(例えば作業機械のボンネット)内の温度上昇を防止して、ヒートバランス悪化を抑制できる。   As shown in FIGS. 13 and 14, the purification inlet pipe 41 has a double cylinder structure. The purification inlet pipe 41 of the embodiment includes a funnel-like portion 112 having a divergent shape that covers the exhaust gas inlet 55 formed in the catalyst outer case 47 from the outside, and an inner cylindrical portion that is fixedly inserted into the tip opening of the funnel-like portion 112. 113 and an outer cylindrical portion 114 fitted to the inner cylindrical portion 113. The base end side of the funnel-shaped portion 112 is welded and fixed to the outer peripheral side of the catalyst outer case 47. The overlapping part of the front end side of the funnel-shaped part 112 in which the inner cylinder part 113 was inserted, and the base end side of the outer cylinder part 114 is being fixed by welding. The distal end side of the outer cylindrical portion 114 is fixed to the inner cylindrical portion 113 by welding. The front end side of the inner cylinder part 113 protrudes from the outer cylinder part 114, and the connection flange body 110 is fixed to the part by welding. With this configuration, the heat insulation performance is improved not only in the purification casing 40 but also in the purification inlet pipe 41. Therefore, the temperature drop of the exhaust gas in the purification casing 40 can be suppressed. Moreover, the temperature rise in the arrangement | positioning space (for example, hood of a working machine) of the engine 1 can be prevented, and heat balance deterioration can be suppressed.

図9に示すように、浄化出口管42は浄化ケーシング40を貫通している。実施形態では、消音内側ケース50及び消音外側ケース51に浄化出口管42を貫通させている。浄化出口管42の閉塞側の端部である一端側(上端側)は二重壁構造に構成されている。この場合、浄化出口管42の一端側に一対の出口蓋体68が溶接固定されていて、浄化出口管42の一端側を両出口蓋体68によって塞いでいる。両出口蓋体68は上下に適宜間隔を開けて配置されている。両出口蓋体68の間の空気層は断熱層として寄与している。このように構成すると、浄化ケーシング40及び浄化入口管41だけでなく浄化出口管42においても断熱性能が向上する。従って、浄化ケーシング40内での排気ガスの温度低下をより一層抑制できる。また、エンジン1の配置スペース(例えば作業機械のボンネット)内の温度上昇を防止して、ヒートバランス悪化をより確実に抑制できる。   As shown in FIG. 9, the purification outlet pipe 42 passes through the purification casing 40. In the embodiment, the purification outlet pipe 42 is passed through the silencer inner case 50 and the silencer outer case 51. One end side (upper end side) which is an end portion on the closed side of the purification outlet pipe 42 is configured in a double wall structure. In this case, a pair of outlet lid bodies 68 are welded and fixed to one end side of the purification outlet pipe 42, and one end side of the purification outlet pipe 42 is closed by both outlet lid bodies 68. Both outlet lids 68 are arranged at an appropriate interval in the vertical direction. The air layer between the two outlet lid bodies 68 contributes as a heat insulating layer. With this configuration, the heat insulation performance is improved not only in the purification casing 40 and the purification inlet pipe 41 but also in the purification outlet pipe 42. Therefore, the temperature drop of the exhaust gas in the purification casing 40 can be further suppressed. Moreover, the temperature rise in the arrangement | positioning space (for example, hood of a working machine) of the engine 1 can be prevented, and a heat balance deterioration can be suppressed more reliably.

(3).まとめ
以上の構成から明らかなように、エンジン1が排出した排気ガスを浄化する複数のフィルタ体43,44と、前記各フィルタ体43,44を内蔵する複数の浄化ケース46〜49からなる浄化ケーシング40と、前記浄化ケーシング40内の排気ガス圧力を検出する排気ガス圧力センサ81と、前記浄化ケーシング40内の排気ガス温度を検出する排気ガス温度センサ82とを備えている排気ガス浄化装置2において、前記浄化ケーシング40の外周側に、前記両センサ81,82が前記浄化ケーシング40の排気ガス移動方向の長さ範囲内に収まるように配置されているから、エンジン1の仕様毎や作業機械毎に前記各センサ81,82の初期設定(調整)の適否を評価する必要がなく、設計・試験等の評価工数を削減できる。前記排気ガス浄化装置2関連の構成部品の標準化を図れる。前記両センサ81,82の取付け位置が前記浄化ケーシング40の排気ガス移動方向の長さ範囲内に収まるから、前記浄化ケーシング40(前記排気ガス浄化装置2)の排気ガス移動方向の全長に対して前記両センサ81,82の影響をなくせる。その結果、エンジン1の配置スペース内に、前記両センサ81,82を含む前記排気ガス浄化装置2をコンパクトに配置できる。
(3). Summary As is clear from the above configuration, a purification casing comprising a plurality of filter bodies 43, 44 for purifying the exhaust gas discharged from the engine 1 and a plurality of purification cases 46-49 incorporating the filter bodies 43, 44. 40, an exhaust gas pressure sensor 81 for detecting the exhaust gas pressure in the purification casing 40, and an exhaust gas temperature sensor 82 for detecting the exhaust gas temperature in the purification casing 40. Since the sensors 81 and 82 are disposed on the outer peripheral side of the purification casing 40 so as to be within the length range of the purification casing 40 in the exhaust gas movement direction, In addition, it is not necessary to evaluate the suitability of the initial setting (adjustment) of each of the sensors 81 and 82, and the number of evaluation man-hours for designing and testing can be reduced. The components related to the exhaust gas purification device 2 can be standardized. Since the mounting positions of the sensors 81 and 82 are within the length range of the purification casing 40 in the exhaust gas movement direction, the purification casing 40 (the exhaust gas purification device 2) has a total length in the exhaust gas movement direction. The influence of both the sensors 81 and 82 can be eliminated. As a result, the exhaust gas purification device 2 including both the sensors 81 and 82 can be compactly arranged in the arrangement space of the engine 1.

また、前記浄化ケース46〜49群のフランジ59,60,73,74の一部に設けたセンサ支持部86に、センサブラケット83が着脱可能に取り付けられており、前記センサブラケット83に前記両センサ81,82が設けられているから、高剛性の前記フランジ59,60,73,74に前記両センサ81,82を支持させて、前記両センサ81,82に伝わる振動を低減できる。このため、前記両センサ81,82の検出精度に対する悪影響を抑制できる。前記両センサ81,82の脱落も防止できる。   In addition, a sensor bracket 83 is detachably attached to a sensor support portion 86 provided on a part of the flanges 59, 60, 73, 74 of the purification cases 46 to 49, and both sensors are attached to the sensor bracket 83. Since 81 and 82 are provided, both the sensors 81 and 82 are supported by the highly rigid flanges 59, 60, 73 and 74, and vibrations transmitted to both the sensors 81 and 82 can be reduced. For this reason, an adverse effect on the detection accuracy of the sensors 81 and 82 can be suppressed. The sensors 81 and 82 can be prevented from falling off.

更に、前記センサ支持部86は、前記浄化ケース46〜49群において排気ガス入口55側から最も遠いフランジ74の一部に形成されており、前記センサブラケット83の水平板部84が前記浄化ケーシング40の外周側から外向きに離れた位置にあり、前記水平板部84上に前記両センサ81,82が並設されているから、前記排気ガス浄化装置2の発する熱は前記両センサ81,82に伝わり難い。このため、前記排気ガス浄化装置2に前記両センサ81,82を組み付けたものでありながら、過熱による前記両センサ81,82の故障を抑制できる。その上、前記排気ガス浄化装置2と前記両センサ81,82とが近接するから、前記排気ガス浄化装置2と前記両センサ81,82とをつなぐ各センサ配管88,89,95〜97の長さを短く設定でき、組付け作業性の改善やコストダウンを実現できる。   Further, the sensor support portion 86 is formed in a part of the flange 74 farthest from the exhaust gas inlet 55 side in the purification cases 46 to 49, and the horizontal plate portion 84 of the sensor bracket 83 is the purification casing 40. Since the both sensors 81 and 82 are arranged in parallel on the horizontal plate portion 84, the heat generated by the exhaust gas purifying device 2 is the two sensors 81 and 82. It is hard to be transmitted to. For this reason, although both said sensors 81 and 82 are assembled | attached to the said exhaust gas purification apparatus 2, the failure of both said sensors 81 and 82 by overheating can be suppressed. In addition, since the exhaust gas purification device 2 and the sensors 81 and 82 are close to each other, the lengths of the sensor pipes 88, 89, and 95 to 97 that connect the exhaust gas purification device 2 and the sensors 81 and 82 are long. The length can be set short, and the assembly workability can be improved and the cost can be reduced.

上記の記載並びに図7、図8及び図11から明らかなように、エンジン1が排出した排気ガスを浄化する複数のフィルタ体43,44と、前記各フィルタ体43,44を内蔵する複数の浄化ケース47,49,51からなる浄化ケーシング40とを備えている排気ガス浄化装置2において、前記各浄化ケース47,49,51を排気ガス移動方向に並べて厚板フランジ59,60,73,74にて連結することによって前記浄化ケーシング40が構成されており、前記厚板フランジ73に吊り下げ体101が一体的に形成されているから、例えば前記エンジン1の組立工場等において、例えばチェンブロックのフック(図示省略)に前記吊り下げ体101及び前記吊り下げ金具102を係止し、前記チェンブロックによって前記浄化ケーシング40を昇降させ、前記エンジン1に前記浄化ケーシング40を組み付けできる。つまり、作業者が自力で前記浄化ケーシング40を持ち上げたりせずに、前記吊り下げ体101及び前記吊り下げ金具102を用いて前記浄化ケーシング40をスムーズに前記エンジン1に搭載できる。   As apparent from the above description and FIGS. 7, 8, and 11, a plurality of filter bodies 43, 44 that purify the exhaust gas discharged from the engine 1, and a plurality of purification bodies that incorporate the filter bodies 43, 44. In the exhaust gas purifying apparatus 2 including the purification casing 40 including the cases 47, 49, 51, the purification cases 47, 49, 51 are arranged in the exhaust gas moving direction on the thick plate flanges 59, 60, 73, 74. The purification casing 40 is configured by connecting the suspension plate 101 and the suspension body 101 is integrally formed with the thick plate flange 73. For example, in the assembly factory of the engine 1, for example, the hook of the chain block The suspension body 101 and the suspension fitting 102 are locked to (not shown), and the purification casing is secured by the chain block. To lift 40 can be assembled the purification casing 40 to the engine 1. That is, the purification casing 40 can be smoothly mounted on the engine 1 using the suspension body 101 and the suspension fitting 102 without the operator lifting the purification casing 40 by himself.

上記の記載並びに図11から明らかなように、前記浄化ケーシング40の排気ガス移動方向一端側に前記吊り下げ体101が配置される一方、前記浄化ケーシング40の排気ガス移動方向他端側に吊り下げ金具102が配置されており、前記浄化ケーシング40の排気ガス移動方向の長手軸線Aと交差する方向にそれぞれの開口穴103,104が位置するように、前記吊り下げ体101と前記吊り下げ金具102とを排気ガス移動方向の両側に離間させて対峙させているから、前記吊り下げ体101と前記吊り下げ金具102の対角線方向の位置関係によって、重量物である前記浄化ケーシング40を安定した姿勢で吊り下げでき、例えばフライホイルハウジング10のDPF取付け部80と、連結脚体77及び固定脚体79との位置合せを簡単に行える。従って、排気ガス浄化装置2の組付け作業性を向上できる。   As is clear from the above description and FIG. 11, the suspension body 101 is disposed on one end side of the purification casing 40 in the exhaust gas movement direction, and is suspended on the other end side of the purification casing 40 in the exhaust gas movement direction. A metal fitting 102 is arranged, and the suspension body 101 and the metal fitting 102 are arranged so that the respective opening holes 103 and 104 are located in the direction intersecting the longitudinal axis A of the purification casing 40 in the exhaust gas movement direction. Are separated from each other in the exhaust gas movement direction and face each other, so that the purification casing 40, which is a heavy object, has a stable posture according to the positional relationship in the diagonal direction between the suspension body 101 and the suspension fitting 102. For example, alignment of the DPF mounting portion 80 of the flywheel housing 10 with the connecting leg 77 and the fixed leg 79 is possible. Easily performed. Therefore, the assembly workability of the exhaust gas purification device 2 can be improved.

上記の記載並びに図10及び図11から明らかなように、前記浄化ケーシング40の排気ガス移動方向の長手軸線A回りに、前記厚板フランジ59,60,73,74の取付け角度を変更可能に構成されているから、前記厚板フランジ59,60,73,74の形状(前記吊り下げ体101の形成位置)を変更することなく、浄化入口管41や浄化出口管42の連結方向(前記エンジン1に対する前記排気ガス浄化装置2の取付け仕様)に対して前記吊り下げ体101の位置を簡単に変更でき、前記排気ガス浄化装置2の組付け作業性の更なる向上に寄与できる。   As apparent from the above description and FIGS. 10 and 11, the attachment angle of the thick plate flanges 59, 60, 73, 74 can be changed around the longitudinal axis A in the exhaust gas movement direction of the purification casing 40. Therefore, the connecting direction of the purification inlet pipe 41 and the purification outlet pipe 42 (the engine 1) without changing the shape of the thick plate flanges 59, 60, 73, 74 (the position where the suspended body 101 is formed). The position of the suspended body 101 can be easily changed with respect to the mounting specification of the exhaust gas purification device 2), and it is possible to contribute to further improvement of the assembly workability of the exhaust gas purification device 2.

上記の記載並びに図7〜図12から明らかなように、エンジン1が排出した排気ガスを浄化する複数のフィルタ体43,44と、前記各フィルタ体43,44を内蔵する複数の内側ケース46,48,50と、前記各内側ケース46,48,50を内蔵する複数の外側ケース47,49,51とを備えており、前記各外側ケース47,49,51を排気ガス移動方向に並べて連結することによって、浄化ケーシング40を構成している排気ガス浄化装置において、前記浄化ケーシング40の排気ガス移動方向の両端部を塞ぐ蓋体は、内蓋体53,64と外蓋体54,65との二重構造に構成されており、前記浄化ケーシング40を前記エンジン1に搭載した状態で前記外蓋体54,65において少なくとも下部に位置する箇所に、前記内蓋体53,64と前記外蓋体54,56との間に溜まる水を排出させる第1水抜き穴107が形成されているから、前記浄化ケーシング40の排気ガス移動方向の両端部を、前記内蓋体53,64と前記外蓋体54,65との二重構造で塞いで断熱性を確保したものでありながら、結露や雨水等によって前記内蓋体53,64と前記外蓋体54,65との間に溜まる水を前記第1水抜き穴107から排出でき、排気ガス浄化装置2の水抜き性がよくなる。このため、前記排気ガス浄化装置2の耐腐食性能が向上する。   As apparent from the above description and FIGS. 7 to 12, a plurality of filter bodies 43, 44 that purify the exhaust gas exhausted by the engine 1, and a plurality of inner cases 46 that house the filter bodies 43, 44. 48, 50 and a plurality of outer cases 47, 49, 51 containing the respective inner cases 46, 48, 50, and the outer cases 47, 49, 51 arranged side by side in the exhaust gas movement direction. Thus, in the exhaust gas purification apparatus constituting the purification casing 40, the lids that close both ends of the purification casing 40 in the exhaust gas movement direction are the inner lid bodies 53, 64 and the outer lid bodies 54, 65. The inner lid body is configured in a double structure and is located at least at the lower part of the outer lid bodies 54 and 65 with the purification casing 40 mounted on the engine 1. 3 and 64 and the outer lid bodies 54 and 56 are formed with first drain holes 107 for discharging water accumulated therein, both ends of the purification casing 40 in the exhaust gas movement direction are connected to the inner lid. The inner lid bodies 53 and 64 and the outer lid bodies 54 and 65 are sealed by a double structure of the bodies 53 and 64 and the outer lid bodies 54 and 65 so as to ensure heat insulation. Can be discharged from the first drain hole 107, so that the drainage of the exhaust gas purification device 2 is improved. For this reason, the corrosion resistance performance of the exhaust gas purification device 2 is improved.

また、前記第1水抜き穴107は、前記外蓋体54,65において排気ガス移動方向の中心線(長手軸線A)を基準にした放射方向の位置に形成されているから、前記浄化ケーシング40の排気ガス移動方向の両端部を同一形状の前記外蓋体54,65で塞ぐことが可能になる。このため、構成部品点数を減少させてコスト低減に寄与できる。しかも、前記外蓋体54,65の形状を変更することなく、前記浄化ケーシング40の排気ガス移動方向の各端部に対して、前記外蓋体54,65の前記中心線(長手軸線A)回りの取り付け向きを簡単に変更できる。ひいては、前記外側ケース(例えば触媒外側ケース47や消音外側ケース51)の前記エンジン1に対する取り付け向きの自由度を高められる。   Further, since the first drain hole 107 is formed at a radial position with respect to the center line (longitudinal axis A) in the exhaust gas movement direction in the outer lid bodies 54 and 65, the purification casing 40. It is possible to close both ends in the exhaust gas movement direction with the outer lid bodies 54 and 65 having the same shape. For this reason, it can contribute to cost reduction by reducing the number of components. Moreover, the center line (longitudinal axis A) of the outer lid bodies 54 and 65 with respect to each end of the purification casing 40 in the exhaust gas movement direction without changing the shape of the outer lid bodies 54 and 65. You can easily change the direction of mounting around. As a result, the degree of freedom of the mounting direction of the outer case (for example, the catalyst outer case 47 and the silencer outer case 51) with respect to the engine 1 can be increased.

更に、前記浄化ケーシング40を前記エンジン1に搭載した状態で、前記各外側ケース47,49において少なくとも下部に位置する箇所に、前記内側ケース46,48と前記外側ケース47,49との間に溜まる水を排出させる第2水抜き穴108が形成されているから、前記浄化ケーシング40を、前記内側ケース46,48と前記外側ケース47,49との二重構造に構成して断熱性を確保したものでありながら、結露や雨水等によって前記内側ケース46,48と前記外側ケース47,49との間に溜まる水を前記第2水抜き穴108から排出でき、前記排気ガス浄化装置2の水抜き性がよくなる。このため、前記排気ガス浄化装置2の耐腐食性能の更なる向上に寄与できる。   Further, in a state where the purification casing 40 is mounted on the engine 1, it accumulates between the inner cases 46 and 48 and the outer cases 47 and 49 at a position located at least in the lower case 47 and 49. Since the second drain hole 108 for discharging water is formed, the purification casing 40 is configured in a double structure of the inner cases 46 and 48 and the outer cases 47 and 49 to ensure heat insulation. However, water accumulated between the inner cases 46 and 48 and the outer cases 47 and 49 due to condensation, rain water, or the like can be discharged from the second drain hole 108, and the exhaust gas purifier 2 can be drained. Sexuality improves. For this reason, it can contribute to the further improvement of the corrosion resistance performance of the exhaust gas purification device 2.

上記の記載並びに図13及び図14から明らかなように、エンジン1が排出した排気ガスを浄化する複数のフィルタ体43,44と、前記各フィルタ体43,44を内蔵する複数の浄化ケース46〜51からなる浄化ケーシング40とを備えており、前記浄化ケーシング40には浄化入口管41及び浄化出口管42を有している排気ガス浄化装置2において、前記浄化入口管41に取り付けられる接続フランジ体110の開口縁部を前記浄化入口管41の方向に突出させることによって、前記接続フランジ体110に環状突起部111が形成されており、前記接続フランジ体110の前記環状突起部111が前記浄化入口管41に溶接固定されているので、前記接続フランジ体110の平坦部から、前記浄化入口管41の先端外周側との溶接部分が離間することになる。このため、溶接によって前記浄化入口管41に前記接続フランジ体110を固着するにも拘らず、溶接による高熱の悪影響が前記接続フランジ体110に及び難く、前記接続フランジ体110の平坦部の平面度を維持できる。従って、排気ガス浄化装置2破損の要因となる応力が前記接続フランジ体110に局所的に生ずるおそれを抑制できる。   As is clear from the above description and FIGS. 13 and 14, a plurality of filter bodies 43, 44 that purify the exhaust gas discharged from the engine 1, and a plurality of purification cases 46-that incorporate the filter bodies 43, 44. 51, and the purification casing 40 includes a purification inlet pipe 41 and a purification outlet pipe 42. In the exhaust gas purification apparatus 2, the connection flange body attached to the purification inlet pipe 41 is provided. By projecting the opening edge of 110 in the direction of the purification inlet pipe 41, an annular protrusion 111 is formed on the connection flange body 110, and the annular protrusion 111 of the connection flange body 110 is formed on the purification inlet. Since it is welded and fixed to the pipe 41, welding from the flat part of the connection flange body 110 to the outer peripheral side of the distal end of the purification inlet pipe 41 So that the minute apart. For this reason, although the connection flange body 110 is fixed to the purification inlet pipe 41 by welding, the adverse effect of high heat due to welding is unlikely to reach the connection flange body 110, and the flatness of the flat portion of the connection flange body 110 Can be maintained. Accordingly, it is possible to suppress the possibility that stress that causes damage to the exhaust gas purification device 2 is locally generated in the connection flange body 110.

上記の記載並びに図13及び図14から明らかなように、前記各浄化ケース46〜51は、前記各フィルタ体43,44を内蔵する複数の内側ケース46,48,50と、前記各内側ケース46,48,50を収容する複数の外側ケース47,49,51とにより構成されており、前記浄化入口管41は二重筒構造に構成されているから、前記浄化ケーシング40だけでなく前記浄化入口管41においても断熱性能が向上する。従って、前記浄化ケーシング40内での排気ガスの温度低下を抑制できる。また、前記エンジン1の配置スペース(例えば作業機械のボンネット)内の温度上昇を防止して、ヒートバランス悪化を抑制できる。   As is clear from the above description and FIGS. 13 and 14, each of the purification cases 46 to 51 includes a plurality of inner cases 46, 48, and 50 containing the filter bodies 43 and 44, and the inner cases 46. , 48, 50 and a plurality of outer cases 47, 49, 51, and the purification inlet pipe 41 has a double cylinder structure, so that not only the purification casing 40 but also the purification inlet Also in the pipe 41, the heat insulation performance is improved. Therefore, it is possible to suppress the temperature drop of the exhaust gas in the purification casing 40. Moreover, the temperature rise in the arrangement | positioning space (for example, hood of a working machine) of the said engine 1 can be prevented, and heat balance deterioration can be suppressed.

上記の記載並びに図9に示すように、前記浄化出口管42は前記浄化ケーシング40を貫通しており、前記浄化出口管40の閉塞側の端部が二重壁構造に構成されているから、前記浄化ケーシング40及び前記浄化入口管41だけでなく前記浄化出口管42においても断熱性能が向上する。従って、前記浄化ケーシング40内での排気ガスの温度低下をより一層抑制できる。また、前記エンジン1の配置スペース(例えば作業機械のボンネット)内の温度上昇を防止して、ヒートバランス悪化をより確実に抑制できる。   As shown in the above description and FIG. 9, the purification outlet pipe 42 penetrates the purification casing 40, and the closed side end of the purification outlet pipe 40 is configured in a double wall structure. The heat insulation performance is improved not only in the purification casing 40 and the purification inlet pipe 41 but also in the purification outlet pipe 42. Therefore, the temperature drop of the exhaust gas in the purification casing 40 can be further suppressed. Moreover, the temperature rise in the arrangement | positioning space (for example, hood of a working machine) of the said engine 1 can be prevented, and a heat balance deterioration can be suppressed more reliably.

上記の記載並びに図15から明らかなように、吸気マニホールド6に新気を供給するための吸気管35と、シリンダヘッド5の上面側を覆うヘッドカバー8内に配置された潤滑油分離用のブリーザ室38とが、ブローバイガス戻し管37を介して接続されているエンジン装置であって、前記吸気管35に導入された新気の温度を検出する新気温度センサ120が、前記吸気管35に取り付けられているから、エンジン1に対する前記新気温度センサ120の取付け位置(レイアウト)を常に一定にでき、前記エンジン1に対して常に同じ条件(位置)で新気温度を計測できる。このため、検出結果に対する補正が不要であり、簡単な構成でエンジン制御の精度を維持できる。新気温度の検出構造を低コストに構成できる。   As apparent from the above description and FIG. 15, the intake pipe 35 for supplying fresh air to the intake manifold 6, and the breather chamber for separating lubricating oil disposed in the head cover 8 covering the upper surface side of the cylinder head 5. 38 is an engine device connected via a blow-by gas return pipe 37, and a fresh air temperature sensor 120 for detecting the temperature of fresh air introduced into the intake pipe 35 is attached to the intake pipe 35. Therefore, the mounting position (layout) of the fresh air temperature sensor 120 with respect to the engine 1 can always be made constant, and the fresh air temperature can always be measured with respect to the engine 1 under the same conditions (position). For this reason, correction for the detection result is unnecessary, and the accuracy of engine control can be maintained with a simple configuration. The structure for detecting the fresh air temperature can be configured at low cost.

上記の記載並びに図15から明らかなように、前記新気温度センサ120は、前記吸気管35において前記ブローバイガス戻し管37との接続部123よりも吸気上流側に位置しているから、新気にブローバイガスを混合する前に新気温度を検出できる。ブローバイガス中の潤滑油によって前記新気温度センサ120が汚損するのを防止できる。   As is clear from the above description and FIG. 15, the fresh air temperature sensor 120 is located on the intake air upstream side of the connection portion 123 with the blow-by gas return pipe 37 in the intake pipe 35. The fresh air temperature can be detected before mixing the blow-by gas. The fresh air temperature sensor 120 can be prevented from being contaminated by the lubricating oil in the blow-by gas.

上記の記載並びに図15から明らかなように、前記吸気管35の上面側にセンサ取付け台124が一体形成されており、前記センサ取付け台124に前記新気温度センサ120が着脱可能にボルト締結されており、前記新気温度センサ120に設けられた新気用配線コネクタ125の接続方向が前記吸気管35の長手方向に沿うように設定されているから、前記新気用配線コネクタ125に接続されるハーネスを前記吸気管35に沿わせることができ、ハーネスの存在が邪魔にならないのである。   As apparent from the above description and FIG. 15, a sensor mounting base 124 is integrally formed on the upper surface side of the intake pipe 35, and the fresh air temperature sensor 120 is detachably bolted to the sensor mounting base 124. Since the connection direction of the fresh air wiring connector 125 provided in the fresh air temperature sensor 120 is set along the longitudinal direction of the intake pipe 35, the fresh air wiring connector 125 is connected to the fresh air wiring connector 125. Therefore, the presence of the harness does not get in the way.

なお、本願発明は、前述の実施形態に限定されるものではなく、様々な態様に具体化できる。本願発明における各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。   In addition, this invention is not limited to the above-mentioned embodiment, It can be embodied in various aspects. The structure of each part in this invention is not limited to embodiment of illustration, A various change is possible in the range which does not deviate from the meaning of this invention.

1 エンジン
2 DPF(排気ガス浄化装置)
5 シリンダヘッド
6 吸気マニホールド
8 ヘッドカバー
35 吸気管
37 ブローバイガス戻し管
38 ブリーザ室
120 新気温度センサ
121 混合ガス温度センサ
122 EGRガス温度センサ
123 接続部
124 センサ取付け台
125 新気用配線コネクタ
1 Engine 2 DPF (Exhaust Gas Purifier)
5 Cylinder head 6 Intake manifold 8 Head cover 35 Intake pipe 37 Blow-by gas return pipe 38 Breather chamber 120 Fresh air temperature sensor 121 Mixed gas temperature sensor 122 EGR gas temperature sensor 123 Connection 124 Sensor mounting base 125 Fresh air wiring connector

Claims (3)

吸気マニホールド及び排気マニホールドが左右に振り分けて配置されるとともに冷却ファン及びフライホイルハウジングが前後に振り分けて配置されており、前記排気マニホールドからの排気ガスを浄化する排気ガス浄化装置と、前記排気マニホールドからのEGRガス及び新気を混合させて前記吸気マニホールドに供給するEGR装置と、前記排気マニホールドからの排気により新気を圧縮するターボ過給機と、シリンダヘッドの上面側を覆うヘッドカバー内に配置された潤滑油分離用のブリーザ室とを備えるエンジン装置であって、
前記タービン過給機のコンプレッサケースの吸気入口側と連通する吸気管と前記ブリーザ室とが、ブローバイガス戻し管を介して接続されており、前記吸気管に導入された新気の温度を検出する新気温度センサが、前記吸気管において前記ブローバイガス戻し管との接続部よりも吸気上流側となる位置に取り付けられていることを特徴とするエンジン装置。
An intake manifold and an exhaust manifold are arranged separately on the right and left, and a cooling fan and a flywheel housing are arranged on the front and back, and an exhaust gas purification device that purifies the exhaust gas from the exhaust manifold, and the exhaust manifold Of EGR gas and fresh air are mixed and supplied to the intake manifold, a turbocharger that compresses fresh air by exhaust from the exhaust manifold, and a head cover that covers the upper surface side of the cylinder head. An engine device comprising a breather chamber for separating lubricating oil,
An intake pipe communicating with the intake inlet side of the compressor case of the turbine supercharger and the breather chamber are connected via a blow-by gas return pipe to detect the temperature of fresh air introduced into the intake pipe. An engine apparatus, wherein a fresh air temperature sensor is attached to the intake pipe at a position on the intake upstream side of a connection portion with the blow-by gas return pipe.
前記EGR装置及び前記タービン過給機が前記シリンダヘッド左右に振り分けて配置され、前記ブリーザ室が前記ヘッドカバーの前記フライホイルハウジング側に配置されており、
前記タービン過給機のコンプレッサケースの吸気入口が前記冷却ファン側に向く一方で前記タービン過給機のタービンケースの排気出口が前記フライホイルハウジング側に向いており、
前記吸気管と前記ブローバイガス戻し管との接続部が、前記コンプレッサケースの吸気出口よりも前記冷却ファン側に設けられることを特徴とする請求項1に記載のエンジン装置。
The EGR device and the turbine supercharger are arranged separately on the left and right sides of the cylinder head, and the breather chamber is arranged on the flywheel housing side of the head cover,
The inlet of the compressor case of the turbine supercharger faces the cooling fan side, while the exhaust outlet of the turbine case of the turbine supercharger faces the flywheel housing,
The engine device according to claim 1, wherein a connection portion between the intake pipe and the blow-by gas return pipe is provided closer to the cooling fan than an intake outlet of the compressor case.
前記コンプレッサケースの吸気出口側と連結して圧縮させた新気を前記EGR装置過給管が前記シリンダヘッドを跨ぐように設置されていることを特徴とする請求項2に記載のエンジン装置。   The engine apparatus according to claim 2, wherein fresh air compressed by being connected to an intake outlet side of the compressor case is installed so that the EGR apparatus supercharging pipe straddles the cylinder head.
JP2015253063A 2015-12-25 2015-12-25 Engine equipment Active JP6067092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015253063A JP6067092B2 (en) 2015-12-25 2015-12-25 Engine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015253063A JP6067092B2 (en) 2015-12-25 2015-12-25 Engine equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011286237A Division JP2013133796A (en) 2011-12-27 2011-12-27 Engine device

Publications (2)

Publication Number Publication Date
JP2016065544A true JP2016065544A (en) 2016-04-28
JP6067092B2 JP6067092B2 (en) 2017-01-25

Family

ID=55805174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015253063A Active JP6067092B2 (en) 2015-12-25 2015-12-25 Engine equipment

Country Status (1)

Country Link
JP (1) JP6067092B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6865154B2 (en) 2017-12-18 2021-04-28 ヤンマーパワーテクノロジー株式会社 engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275525A (en) * 1985-05-29 1986-12-05 Nissan Motor Co Ltd Supercharged pressure control device for turbocharger
JP2010180794A (en) * 2009-02-06 2010-08-19 Yanmar Co Ltd Egr device, and engine device with the same to be mounted on working vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275525A (en) * 1985-05-29 1986-12-05 Nissan Motor Co Ltd Supercharged pressure control device for turbocharger
JP2010180794A (en) * 2009-02-06 2010-08-19 Yanmar Co Ltd Egr device, and engine device with the same to be mounted on working vehicle

Also Published As

Publication number Publication date
JP6067092B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2013099979A1 (en) Engine device
WO2013108724A1 (en) Exhaust gas purification device
JP5390281B2 (en) Exhaust gas purification device
EP2889464B1 (en) Engine device
US20150204221A1 (en) Engine apparatus
US9752479B2 (en) Engine apparatus
WO2013108667A1 (en) Exhaust gas purifier
JP2014025403A (en) Engine device
JP2013160145A (en) Exhaust emission control device
JP5909098B2 (en) Exhaust gas purification device
JP6067092B2 (en) Engine equipment
JP2013160146A (en) Exhaust emission control device
JP5872301B2 (en) Exhaust gas purification device
JP2013148035A (en) Exhaust emission control system
JP2014040836A (en) Engine device
JP5898714B2 (en) Engine equipment
JP5364149B2 (en) Exhaust gas purification device
JP5537538B2 (en) Exhaust gas purification device
JP2014040834A (en) Engine device
JP2017145805A (en) Engine device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6067092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350