[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016058247A - リチウムイオン二次電池用電極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用電極及びリチウムイオン二次電池 Download PDF

Info

Publication number
JP2016058247A
JP2016058247A JP2014184010A JP2014184010A JP2016058247A JP 2016058247 A JP2016058247 A JP 2016058247A JP 2014184010 A JP2014184010 A JP 2014184010A JP 2014184010 A JP2014184010 A JP 2014184010A JP 2016058247 A JP2016058247 A JP 2016058247A
Authority
JP
Japan
Prior art keywords
active material
lithium ion
electrode
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014184010A
Other languages
English (en)
Inventor
晴菜 倉田
Haruna Kurata
晴菜 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2014184010A priority Critical patent/JP2016058247A/ja
Publication of JP2016058247A publication Critical patent/JP2016058247A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】
高出力が要求されるリチウムイオン二次電池用電極において、活物質層中の電子伝導性とリチウムイオン伝導性を十分に確保し、出力特性の高いリチウムイオン二次電池用電極及びリチウムイオン二次電池を提供することを目的としている。
【解決手段】
集電体1の表面に、粒状活物質4、バインダー及び導電助剤を含む活物質層5が積層されたリチウムイオン二次電池用電極10であって、前記活物質層5は、前記集電体1の面方向に低空隙率領域(活物質の密度が高い領域)3と高空隙率領域(活物質お密度が低い領域)2とを有し、且つ、前記高空隙率領域2の層厚が前記粒状活物質の平均粒径の1〜10倍の範囲で、前記低空隙率領域と前記高空隙率領域との密度の差が0.2〜0.7g/cmの範囲であることを特徴とするリチウムイオン二次電池用電極である。
【選択図】図2

Description

本発明は、リチウムイオン二次電池用電極に関するものであり、特に出力特性を向上させうるリチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池に関するものである。
ノート型パーソナルコンピュータや携帯電話といったモバイル機器の電源としてすでに多く採用されているリチウムイオン二次電池は、近年、ハイブリッド車(xEV)や電気自動車(EV)等に搭載されるなど新たな分野で注目が集まっている。特に近年ハイブリッド車は種類が増加して市場が成長しており、それぞれの特徴に応じてリチウムイオン二次電池にも様々な性能が要求されている。例えば、μHEV用電池はコスト競争力の他に回生エネルギーを効率よく回収するため高速充放電性能つまりは高出力密度が特に重要視されている。
リチウムイオン二次電池は、通常、リチウムイオンを可逆に吸蔵、放出できるリチウム含有金属酸化物を含む正極活物質層を集電体上に形成した正極と、炭素やシリコン材料を含む負極活物質層を集電体に形成した負極とが、絶縁体であるセパレータを介して対向して金属缶やラミネートパックなどの電池用外装材に収納される構成を有しており、そこに数種類のカーボネート系混合有機溶媒に六フッ化リン酸リチウム(LiPF)などのリチウム塩を溶解した非水電解液を添加、含浸させて作製されている。
電池用外装材への電極、セパレータの収納方法は外装材の形状により異なるが、例えばラミネートパックではある規格に打ち抜いた電極とセパレータを交互にスタックする方法、缶形状の外装材では電極とセパレータを交互に重ねて捲回する方法などがある。
従来、リチウムイオン二次電池の電極を製造する際には、活物質やバインダー、導電助剤などを含む活物質スラリーを調製し、これを集電体の表面に均一に塗布することによって、活物質層が形成されている。
このような従来の手法で作製された電極を備える電池ではそれほど高くない出力で充放電を行う場合には、均一な組成を有する活物質層においても均一に充放電反応が進行しうる。しかしながら、車載用の電池に要求されるようなより高い出力での充放電反応に対しては、従来の手法で作製された均一な組成を有する活物質層では、集電体から活物質への電子伝導性と、電解液か活物質層へのリチウムイオンの伝導が両立せず、十分な充放電反応が進行しないという問題がある。
以上の観点から、一般に活物質層の膜厚が薄い方が高出力でも十分な充放電反応を進行させることができる。しかしながら、電池パック内に収納されたリチウムイオン二次電池用電極では電解液は主に電極端部から含浸されていくため、電池容量を大きくするために大面積化した電極では膜厚を薄くするだけでは、集電体から活物質への電子伝導性と、電解液か活物質層へのリチウムイオンの伝導が両立しない。
集電体から活物質への電子伝導性を向上させるためには、活物質層を高密度化し、集電体と活物質、導電助剤の接点を増加させることが有効だが、活物質層の空孔体積が減少すると電解液が活物質層へ含浸しにくくなる。一方、空孔体積を十分に確保すると活物質層の電子伝導性が悪化するだけでなく、集電体への密着性が低下してサイクル特性が低下する他、電極が厚くなり電池としてのエネルギー密度が低下する。
そのため、例えば特許文献1のように、炭素質材料で成形した負極において、厚み方向に気孔率分布を持たせ、内部の高嵩密度部分でエネルギー密度を確保し、外部の低嵩密度部分で電解液浸透性を確保することができる。
また、特許文献2では活物質合剤がそれぞれ集電体に塗着された正負極板を備えた非水電解液二次電池において、前記正負極板の少なくとも一方は、前記活物質合剤の密度が面方向一側から他側へ向けてほぼ一定割合で変化する密度変化部分を有しており、高密度の部分で活物質割合が大きくなりエネルギー密度を向上させることができると共に、低密度の部分で非水電解液の含浸する空隙が確保され入出力特性を向上させることができる。
特開平8−138650号公報 特開2009−259502
しかしながら、特許文献1では、気孔率分布は厚み方向にのみ備えられていることから電極面内方向の電解液の含浸については検討されておらず、出力特性の確保が十分ではない。また、特許文献2においては、捲回された電極の巻き内・巻き外での電解液の含浸性については検討されているが、電極の短辺方向の電解液含浸性については検討されておらず、出力特性の確保が十分ではない。
そこで本発明は、高出力が要求されるリチウムイオン二次電池用電極において、活物質層中の電子伝導性とリチウムイオン伝導性を十分に確保し、出力特性の高いリチウムイオン二次電池用電極及びリチウムイオン二次電池を提供することを目的としている。
本発明者は鋭意検討を行なった結果、活物質層の面方向において、空隙率の異なる部分を形成することによって、電極面方向の電子伝導性とリチウムイオン伝導性がそれぞれ向上し、上記課題を解決することができることを見出し、本発明を完成するに至った。
本発明の請求項1に係る発明は、集電体の表面に、粒状活物質、バインダー及び導電助剤を含む活物質層が積層されたリチウムイオン二次電池用電極であって、
前記活物質層は、
前記集電体の面方向に低空隙率領域(活物質の密度が高い領域)と高空隙率領域(活物質の密度が低い領域)とを有し、
前記高空隙率領域の層厚が前記粒状活物質の平均粒径の1〜10倍の範囲で、
且つ、前記低空隙率領域と前記高空隙率領域との密度の差が0.2〜0.7g/cmの範囲であることを特徴とするリチウムイオン二次電池用電極である。
また、請求項2の発明は、前記高空隙率領域が前記集電体の面方向の端部から中心部まで連続して形成されていることを特徴とする請求項1に記載のリチウムイオン二次電池用電極である。
また、請求項3の発明は、前記活物質層の最表面を占める前記高空隙率領域の面積は前記低空隙率領域の面積より小さいことを特徴とする請求項1または2に記載のリチウムイオン二次電池用電極である。
また、請求項4の発明は、前記集電体の厚み方向に対して、面積率の異なる前記低空隙率領域と前記高空隙率領域からなる活物質層が多層に積層されてなることを特徴とする請求項1〜3のいずれかに記載のリチウムイオン二次電池用電極である。
また、請求項5の発明は、前記高空隙率領域の左右上下に隣接する前記低空隙率領域同士の間隔が1mm以下であることを特徴とする請求項1〜4のいずれかに記載のリチウムイオン二次電池用電極である。
また、請求項6の発明は、前記粒状活物質の平均粒径が15μm以下であることを特徴とする請求項1〜5のいずれかに記載のリチウムイオン二次電池用電極である。
また、請求項7の発明は、請求項1〜6のいずれかに記載のリチウムイオン二次電池用電極を用いたことを特徴とするリチウムイオン二次電池である。
また、請求項8の発明は、前記リチウムイオン二次電池用電極が捲回され、且つ、電極面中央から捲回方向と垂直の電極端部へ向けて連続した高空隙率領域を有していることを特徴とする請求項7に記載のリチウムイオン二次電池である。
本発明の請求項1によれば、前記活物質層の高空隙率領域の層厚を前記粒状活物質の平均粒径(D50)の1〜10倍の範囲とすることにより、優れた電子伝導性と出力特性が得られる。前記層厚が10倍を超えると、集電体から活物質までの距離が遠くなり、前述の効果が得にくくなる。なお、本発明でいう平均粒径(D50)とはメジアン径であり、粉体をある粒子径から二つに分けたときに、大きい側と小さい側とが等量となる径を意味する。
また、前記集電体の面方向に低空隙率領域と高空隙率領域とを形成することにより、低空隙率領域(活物質の密度が高い領域)では集電体と活物資との接点が増大させることができ、また、高空隙率領域(活物質の密度が低い領域)では電解液の浸入を向上させることができる。これらの双方の効果により、電子及びリチウムイオンの伝導性を向上させ、高い出力特性を得ることができる。
また、前記低空隙率領域(活物質の密度が高い領域)の密度が高過ぎると電解液の浸入が阻害され充放電反応が進行しない領域ができる可能性があり、前記高空隙率領域(活物質の密度が低い領域)の密度が低すぎると密着性が不足してサイクル特性が低下する可能性がある。発明者等は鋭意研究の結果、前記低空隙率領域と前記高空隙率領域との密度の差を0.2〜0.7g/cmの範囲とすることにより、サイクル特性が低下することなく最適な充放電反応を行うことが出来ることを見出した。
本発明の請求項2によれば、前記高空隙率領域を前記集電体の面方向の端部から中心部まで連続して形成することで、電極端部から中心部への電解液の浸入がより容易となり、電極中心部でも十分な電子及びリチウムイオンの伝導性が得られ、安定した出力特性を得ることができる。
また、請求項3によれば、前記活物質層の最表面を占める前記高空隙率領域の面積を前記低空隙率領域の面積より小さくすることで、集電体に対する前記活物質層全体の密着性を高いレベルで保持することができ、サイクル特性の低下を防ぐことができる。
本発明の請求項4によれば、前記集電体の厚み方向に対して、面積率の異なる前記低空隙率領域と前記高空隙率領域からなる活物質層が多層に積層することで、前記活物質層の
外側から内側への電解液の浸入がより容易となり、電極中心部でも十分な電子及びリチウムイオンの伝導性が得られ、安定した出力特性を得ることができる。
また、請求項5によれば、前記高空隙率領域の左右上下に隣接する前記低空隙率領域同士の間隔を1mm以下とすることで、集電体に対する前記活物質層全体の密着性を高いレベルで保持することができ、サイクル特性の低下を防ぐことができる。
また、請求項6によれば、前記粒状活物質の平均粒径(D50)を15μm以下とすることで、前記活物質層の層厚を薄くしてもスジムラ等の欠陥のない安定した前記活物質層を形成することができる。
上記で説明したように、本発明によれば電子伝導性とリチウムイオン伝導性を十分に確保した、出力特性の高いリチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池を提供することができる。
本発明の一例を示す二次電池用電極10の概略図1。 (a)本発明の一例を示す二次電池用電極10の断面模式図。 (b)上記の平面模式図。 本発明の一例を示す二次電池用電極10の概略図2。 本発明の一例を示す二次電池用電極10の概略図3。 本発明を適用した円筒型リチウムイオン二次電池20の断面模式図。 本発明を適用した二次電池の放電容量維持率。
以下に、本発明の実施の形態に係るリチウムイオン二次電池用電極について説明する。なお、本発明の実施の形態は、以下に記載する実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の実施の形態の範囲に含まれうるものである。
図1は、本発明の一例を示すリチウムイオン二次電池用電極10の概略図1である。集電体1上に形成されたリチウムイオン二次電池用電極の活物質層5は、活物質4とバインダー、および導電助剤などを含む組成物から形成され、低空隙率領域(活物質の密度が高い領域、以下、高密部と記す)3と高空隙率領域(活物質の密度が低い領域、以下、低密部と記す)2とで構成されている。
前記低密部2の密度としては1.0〜2.8g/cm程度が好ましく、前記高密部3の密度としては1.5〜3.5g/cm程度が好ましい。それぞれの密度の最適値は活物質材料によって異なり、すなわち正極か負極かによっても異なる。
前記低密部2の密度が低すぎると密着性が低下して、サイクル特性が低下する場合がある。また、前記高密部3の密度が高過ぎると、電解液の含浸が阻害されてしまい充放電反応が進行しない領域ができてしまう。一方で、両者の密度の差が少なすぎると、発明の効果を十分に得ることができなくなる。発明者等は鋭意研究の末、その差が0.2〜0.7g/cmの範囲であることが望ましいという結果を得た。
活物質層5の構成について、詳細に説明する。図2(a)は、本発明の一例を示す二次電池用電極10の断面模式図である。活物質層5の膜厚は活物質4の平均粒径(D50)の10倍以下である。10倍より大きい場合には、集電体1から活物質層5の表面近傍の活物質までの距離が遠くなり、十分な電子伝導性が確保されず、出力特性が低下する場合
がある。
図2(b)は、本発明の一例を示す二次電池用電極10の平面模式図である。活物質層5は低密部2と高密部3から構成されており、活物質層5の面方向の端部から中心まで低密部2が連続して形成されていれば、低密部2の形状は特に限定されることはない。例えば、図1に示すように一方の端部から他方の端部まで連続した低密部2が形成されていてもよく、また図3および図4に示した概略図のように低密部が形成されてもよい。低密部2が面方向の端部から中心まで連続して形成されていない場合には、電解液の含浸が不足して、電極中心部で十分なリチウムイオン伝導性が確保されず、出力特性が低下する場合がある。
活物質層5を構成する低密部2の面積は特に限定されず、高密部3の面積と比較して小さければよい。高密部3の面積よりも低密部2の面積が同等以上の場合には、活物質層5全体の密着性が低下してサイクル特性が低下する場合や、活物質層5全体の電子伝導性が低下して出力特性が低下する場合がある。
活物質層5を構成する低密部2を挟んで隣接する高密部3の間隔は1mm以下であることが望ましく、密着性および電子伝導性の確保し十分な出力特性得ることを考慮すると、より好ましくは膜厚の10倍以下が好ましい。
本発明の活物質層5は、活物質4とバインダー、および導電助剤などの混合物に溶媒を加えたスラリーを集電体1に塗布乾燥させた後に、部分的にプレスしてプレス部分を高密部3とすることにより形成することができる。上記溶媒は上記バインダー樹脂を溶解可能であれば、特に限定されず、N−メチルピロリドン、N,N−ジメチルホルムアミドなどの有機溶剤や水が挙げられる。
集電体1としては、二次電池用の集電体材料として従来用いられている材料を適宜採用すればよい。例えば、アルミニウム、ニッケル、銅、鉄、ステンレス鋼(SUS)、チタン等が挙げられ、集電体にかかる電池作動電位や電子伝導性を考慮して選択することが好ましい。こうした集電体1の一般的な厚さは、8〜30μm程度である。
活物質4として正極活物質を用いる場合は、リチウムの吸蔵放出が可能なものであればよく、公知のリチウムイオン二次電池用の正極活物質を用いることができる。例えば、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウム鉄酸化物およびリチウムニッケルマンガン酸化物、リチウムニッケルコバルト酸化物、リチウムニッケルマンガンコバルト酸化物、リチウム遷移金属リン酸化合物等を用いることができる。なお、正極活物質として、上記活物質を複数混合させて用いてもよい。
活物質4として負極活物質を用いる場合は、リチウムの吸蔵放出が可能なものであればよく、公知のリチウムイオン二次電池用の負極活物質を用いることができる。例えば、黒鉛系炭素材料、ハードカーボン、ソフトカーボン、活性炭などのカーボン材料、リチウムチタン酸化物などのリチウム金属酸化物、シリコン、スズなどのLi合金金属等を用いることができる。なお、負極活物質として、上記活物質を複数混合させて用いてもよい。
活物質4の平均粒径(D50)は15μm以下が望ましい。15μm以上であると、活物質層5の膜厚を薄くした場合にスジや粒子詰まりなどの欠陥がなく活物質層5を塗布形成することが困難になり、充放電性能が低下する場合がある。一方で、スジや粒子詰まりを避けるために膜厚を厚くした場合には、集電体1から活物質層5の表面近傍の活物質までの距離が遠くなり、十分な電子伝導性が確保されず、出力特性が低下する場合がある。
本発明のリチウムイオン二次電池用電極は、導電助剤を含有していてもよい。導電助剤としては、カーボンブラックや天然黒鉛、人造黒鉛、さらには、酸化チタンや酸化ルテニウムなどの金属酸化物、金属ファイバーなどが使用できる。なかでもストラクチャー構造を呈するカーボンブラックが好ましく、特にその一種であるファーネスブラックやケッチェンブラック、アセチレンブラック(AB)が好ましく用いられる。尚、カーボンブラックとその他の導電助剤、例えば、気相成長炭素繊維(VGCF)との混合系も好ましく用いられる。
上記導電助剤の含有量は活物質重量に対して、1重量%以上90重量%未満であることが好ましい。1重量%未満であると、導電性が不足して電極抵抗が増加する場合があり、90重量%以上であると、活物質量が不足してリチウム吸蔵容量が低下してしまうことがある。
本発明のリチウムイオン二次電池用電極は、バインダーを含有していてもよい。バインダーとしては、活物質と導電助剤との混合物を集電体へ密着できれば特に限定されず、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素含有バインダーや合成ゴム系バインダー等が挙げられる。
本発明のリチウムイオン二次電池用電極に含まれるバインダーは、全活物質重量に対し、3重量%以上40重量%以下であることが望ましい。3重量%より少ない場合、十分な結着をすることができず、40重量%より大きい場合には、電極体積あたりの容量が大きく低下する。より好ましくは3重量%以上25重量%以下である。
図5は本発明を適用した円筒型リチウムイオン二次電池20の断面模式図である。図5を参照して、本発明の実施の形態に係るリチウムイオン二次電池について説明する。
本発明を適用した円筒型リチウムイオン二次電池20は、電池容器としてニッケルメッキを施された鉄製の有底円筒状電池缶11を有している。電池缶11には、帯状に形成された正極10a、負極10b、およびセパレータ12が断面渦巻状に捲回されて収容されている。
セパレータ12は、対向配置された正極10aと負極10bとの間に配置されており、セパレータ12によって正極10aと負極10bは電気的に絶縁されている。セパレータ12としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン製の微孔膜、芳香族ポリアミド樹脂製の微孔膜、不織布、無機セラミック粉末を含む多孔質の樹脂コート等を用いることができる。
正極10a、負極10bおよびセパレータ12の捲回群の上側には、一端を正極集電体1aに固定されたリボン状のアルミニウム製正極タブ端子13が導出されている。正極タブ端子13の他端は、電池缶11の上部に配置され正極外部端子となる円盤状の上蓋14の下面に超音波溶接で接合されている。一方、捲回群の下側には、一端を負極集電体1bに固定されたリボン状のニッケル製負極タブ端子15が導出されている。負極タブ端子13の他端は、電池缶11の内底面に抵抗溶接で接合されている。すなわち、正極タブ端子13および負極タブ端子15は、それぞれ捲回群の両端面から互いに反対側に導出されている。また、図示はされていないが捲回群の上下両側には樹脂製の絶縁板がそれぞれ配されているほか、捲回群の外周面全周にも絶縁被覆が施されている。
電池缶11の上部にはグルービングが施されている。上蓋14は、グルービング部分に嵌合するように設計されたガスケット16を介して電池缶11の上部にカシメ固定されている。このため、リチウムイオン二次電池20の内部は密封されている。ガスケット16
は、短絡防止や電解液の漏出を防止するための部材であり、ポリプロピレン等の絶縁性の材質を用いることができる。
また、電池缶11内には、溶媒と電解質から構成された非水電解液が充填されている。本発明のリチウムイオン二次電池に用いる電解液の溶媒には、ジメチルカーボネート、ジエチルカーボネートなどの低粘度の鎖状炭酸エステルと、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの高誘電率の環状炭酸エステル、γ‐ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホランおよびこれらの混合溶媒等を挙げることができる。
電解液に含まれる電解質は特に制限がなく、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiN(CFSO、LiI、LiAlCl等およびそれらの混合物等が挙げられる。好ましくはLiBF、LiPF、のうちの1種または2種以上を混合したリチウム塩がよい。
以下に、本発明に係るリチウムイオン二次電池用電極およびその製造方法について、具体的な実施例および比較例を挙げて説明する。なお、本発明は下記実施例によって制限されるものではない。
(実施例1)
<正極の作製>
正極活物質として平均粒径(D50)が12μmのリチウムマンガン酸化物、導電助剤としてアセチレンブラック、バインダーとしてポリフッ化ビニリデン(PVdF)をそれぞれ88:7:5の比率で混合してプラネタリーミキサーで混練し、溶媒としてN−メチル−2−ピロリドンを適量添加して粘度調整を施して、リチウムイオン二次電池用正極スラリーを得た。
正極集電体としてはアルミニウム箔(20μm厚)を使用し、その上に上記で調整した正極スラリーを乾燥後塗膜が50μmとなるようにダイコータにて塗布し、乾燥させて塗膜を得た。次に、前記正極塗膜上に石英製モールドを設置してロールプレスし、正極を完成させた。前記モールドは幅100μm深さ30μmの溝が電極の長辺方向に200μm間隔で形成された形状を使用した。得られた正極について電子顕微鏡で膜厚を確認した結果、低密部の膜厚は33μmであり、高密部の膜厚は28μmであった。
<負極の作製>
次に、負極活物質として天然黒鉛、導電助剤としてアセチレンブラック、バインダーとしてスチレンブタジエンゴム、増粘材としてカルボキシメチルセルロースをそれぞれ90:8:1:1の比率で混合してディスパーで混練し、溶媒として純水を適量添加して粘度調整を施して、リチウムイオン二次電池用負極スラリーを得た。
得られた負極スラリーを負極集電体へダイコータにて塗布し、乾燥させて塗膜を得た。負極集電体としては銅箔(10μm厚)を使用した。負極活物質層は正極活物質層の容量と比較して、1.1倍になるように目付け量を調整して塗布した。
<セルの作製>
得られた正極と負極とを、セパレータ(型番2200、セルガード製)を介して対向させて捲回し、タブ付けして電池缶へ封入し、その後下記電解液を注入してリチウムイオン
二次電池を作製した。なお、電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DMC)の3:7(体積比)の混合溶液に、LiPF6を1Mとなるように加え、さらにビニレンカーボネート(VC)を2重量%添加したものを使用した。
(実施例2)
モールドとして、幅100μm深さ30μmの溝が電極の短辺方向の中心当たる位置に1本に存在し、中心の溝から電極の短辺方向の端部に当たる位置までの長さを有する幅100μm深さ30μmの溝が、200μm間隔で形成された形状のモールドを使用して正極を作製した以外は実施例1と同様にして、リチウムイオン二次電池を作製した。なお、低密部の膜厚は33μmであり、高密部の膜厚は28μmであった。
(実施例3)
モールドとして、幅500μm深さ30μmの溝が1000μm間隔で形成された形状のモールドを使用して正極を作製した以外は実施例1と同様にして、リチウムイオン二次電池を作製した。なお、低密部の膜厚は33μmであり、高密部の膜厚は28μmであった。
(実施例4)
モールドとして、幅100μm深さ30μmの溝が電極の短辺方向に200μm間隔で形成された形状のモールドを使用して正極を作製した以外は実施例1と同様にして、リチウムイオン二次電池を作製した。なお、低密部の膜厚は33μmであり、高密部の膜厚は28μmであった。
(比較例1)
モールドを使用せずにプレスして正極を作製した以外は実施例1と同様にしてリチウムイオン二次電池を作製した。なお、活物質層の膜厚は28μmであった。
(比較例2)
正極スラリーを乾燥後塗膜が150μmとなるように塗布して正極を作製した以外は実施例1と同様にしてリチウムイオン二次電池を作製した。なお、低密部の膜厚は105μmであり、高密部の膜厚は85μmであった。
<評価>
各実施例および比較例で作製したリチウムイオン二次電池に対して、放電レート試験を行った。充放電は、3.0V〜4.2Vで行なった。初めに初期放電容量評価として0.2Cでの定電流充放電を1回行い、続いて1C、5C、10C,20Cで放電レート試験を行った。放電レート試験時の充電はすべて0.2Cで行った。各電池について、0.2Cを100%としたときの放電レートごとの放電容量維持率を、図6に示す。
<比較結果>
1Cにおいては、実施例1〜4および比較例1〜2で大きな差は見られないが、2C以上の高出力条件では実施例1〜4は比較例1および比較例2よりも放電容量維持率が良好であることがわかった。よって、低密部と高密部を有する実施例1〜4は、面内での空隙率が均一な比較例1よりも電解液が含浸しやすくリチウムイオン伝導性が確保されていると考えられる。一方、比較例2は実施例1〜4と同様に低密部と高密部を有するが、膜厚が厚いため、厚み方向で電解液が浸透しにくく十分なリチウムイオン伝導性が確保できなかったと考えられる。以上より本発明の効果が確認できた。
本発明によれば、活物質層の膜厚が活物質粒径(D50)の10倍以下である電極にお
いて、活物質層の面方向で比較的空隙率が高い低密部と比較的空隙率が小さい高密部とを有し、活物質層の面方向の端部から中心部まで低密部が連続して形成されていることによって、電極面方向の電子伝導性とリチウムイオン伝導性を十分に確保でき、高出力特性が向上するという効果を奏するので、産業上の利用価値が高い。したがって、本発明のリチウムイオン二次電池用負極は高耐久性が要求される電気自動車の駆動用蓄電池や各種エネルギーの蓄電設備、家庭用蓄電設備などの蓄電池として好適に活用することができる。
1・・・・集電体
1a・・・正極集電体
1b・・・負極集電体
2・・・・高空隙率領域(活物質の密度の低い領域、低密部)
3・・・・低空隙率領域(活物質の密度の高い領域、高密部)
4・・・・活物質
5・・・・活物資層
10・・・リチウムイオン二次電池用電極
10a・・正極
10b・・負極
11・・・電池缶
12・・・セパレータ
13・・・正極タブ端子
14・・・上蓋
15・・・負極タブ端子
16・・・ガスケット
20・・・リチウムイオン二次電池

Claims (8)

  1. 集電体の表面に、粒状活物質、バインダー及び導電助剤を含む活物質層が積層されたリチウムイオン二次電池用電極であって、
    前記活物質層は、
    前記集電体の面方向に低空隙率領域と高空隙率領域とを有し、
    前記高空隙率領域の層厚が前記粒状活物質の平均粒径の1〜10倍の範囲で、
    且つ、前記低空隙率領域と前記高空隙率領域との密度の差が0.2〜0.7g/cmの範囲であることを特徴とするリチウムイオン二次電池用電極。
  2. 前記高空隙率領域が前記集電体の面方向の端部から中心部まで連続して形成されていることを特徴とする請求項1に記載のリチウムイオン二次電池用電極。
  3. 前記活物質層の最表面を占める前記高空隙率領域の面積は前記低空隙率領域の面積より小さいことを特徴とする請求項1または2に記載のリチウムイオン二次電池用電極。
  4. 前記集電体の厚み方向に対して、面積率の異なる前記低空隙率領域と前記高空隙率領域からなる活物質層が多層に積層されてなることを特徴とする請求項1〜3のいずれかに記載のリチウムイオン二次電池用電極。
  5. 前記高空隙率領域の左右上下に隣接する前記低空隙率領域同士の間隔が1mm以下であることを特徴とする請求項1〜4のいずれかに記載のリチウムイオン二次電池用電極。
  6. 前記粒状活物質の平均粒径が15μm以下であることを特徴とする請求項1〜5のいずれかに記載のリチウムイオン二次電池用電極。
  7. 請求項1〜6のいずれかに記載のリチウムイオン二次電池用電極を用いたことを特徴とするリチウムイオン二次電池。
  8. 前記リチウムイオン二次電池用電極が捲回され、且つ、電極面中央から捲回方向と垂直の電極端部へ向けて連続した高空隙率領域を有していることを特徴とする請求項7に記載のリチウムイオン二次電池。
JP2014184010A 2014-09-10 2014-09-10 リチウムイオン二次電池用電極及びリチウムイオン二次電池 Pending JP2016058247A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014184010A JP2016058247A (ja) 2014-09-10 2014-09-10 リチウムイオン二次電池用電極及びリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014184010A JP2016058247A (ja) 2014-09-10 2014-09-10 リチウムイオン二次電池用電極及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
JP2016058247A true JP2016058247A (ja) 2016-04-21

Family

ID=55758807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184010A Pending JP2016058247A (ja) 2014-09-10 2014-09-10 リチウムイオン二次電池用電極及びリチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP2016058247A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180241043A1 (en) * 2017-02-23 2018-08-23 Panasonic Intellectual Property Management Co., Lt Lithium-ion secondary battery and method of manufacture thereof
JPWO2017217319A1 (ja) * 2016-06-13 2018-12-06 株式会社村田製作所 リチウムイオン二次電池
JP2019507460A (ja) * 2016-07-04 2019-03-14 エルジー・ケム・リミテッド 負極および前記負極を含む二次電池
CN109509867A (zh) * 2018-12-29 2019-03-22 长虹三杰新能源有限公司 一种锂离子电池极片
WO2019193882A1 (ja) * 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 非水電解質二次電池用電極板及び非水電解質二次電池
CN113196518A (zh) * 2018-11-13 2021-07-30 日本汽车能源株式会社 锂离子二次电池及其制造方法
CN114300652A (zh) * 2022-01-06 2022-04-08 中化国际(控股)股份有限公司 电极极片、其制备方法和应用
US20220285693A1 (en) * 2021-03-04 2022-09-08 Sk On Co., Ltd. Lithium secondary battery
JP2022539769A (ja) * 2019-06-28 2022-09-13 寧徳時代新能源科技股▲分▼有限公司 電極シート、電気化学装置及びその装置
CN115249785A (zh) * 2021-04-27 2022-10-28 比亚迪股份有限公司 电池正极片及其制备方法和应用
CN115280540A (zh) * 2020-03-19 2022-11-01 松下知识产权经营株式会社 电池用电极和电池
WO2023079974A1 (ja) * 2021-11-05 2023-05-11 株式会社村田製作所 二次電池用電極および二次電池用電極の製造方法
WO2024067363A1 (zh) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池和电池包及用电装置
WO2024181049A1 (ja) * 2023-02-28 2024-09-06 パナソニックエナジー株式会社 二次電池用正極および二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138650A (ja) * 1994-11-01 1996-05-31 Dainippon Ink & Chem Inc 非水電解液二次電池用炭素質電極板および二次電池
JP2013051209A (ja) * 2012-11-06 2013-03-14 Nissan Motor Co Ltd 電池用電極
JP2013251213A (ja) * 2012-06-04 2013-12-12 Hitachi Ltd リチウムイオン二次電池用負極、リチウムイオン二次電池用負極を用いたリチウムイオン二次電池、および、それらの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138650A (ja) * 1994-11-01 1996-05-31 Dainippon Ink & Chem Inc 非水電解液二次電池用炭素質電極板および二次電池
JP2013251213A (ja) * 2012-06-04 2013-12-12 Hitachi Ltd リチウムイオン二次電池用負極、リチウムイオン二次電池用負極を用いたリチウムイオン二次電池、および、それらの製造方法
JP2013051209A (ja) * 2012-11-06 2013-03-14 Nissan Motor Co Ltd 電池用電極

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017217319A1 (ja) * 2016-06-13 2018-12-06 株式会社村田製作所 リチウムイオン二次電池
JP2019507460A (ja) * 2016-07-04 2019-03-14 エルジー・ケム・リミテッド 負極および前記負極を含む二次電池
US11043692B2 (en) 2016-07-04 2021-06-22 Lg Chem, Ltd. Negative electrode and secondary battery including the same
US10847803B2 (en) * 2017-02-23 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Lithium-ion secondary battery and method of manufacture thereof
JP2018137187A (ja) * 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 リチウムイオン二次電池およびその製造方法
CN108511787A (zh) * 2017-02-23 2018-09-07 松下知识产权经营株式会社 锂离子二次电池及其制造方法
US20180241043A1 (en) * 2017-02-23 2018-08-23 Panasonic Intellectual Property Management Co., Lt Lithium-ion secondary battery and method of manufacture thereof
CN108511787B (zh) * 2017-02-23 2022-07-26 松下知识产权经营株式会社 锂离子二次电池及其制造方法
WO2019193882A1 (ja) * 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 非水電解質二次電池用電極板及び非水電解質二次電池
US20210013482A1 (en) * 2018-04-06 2021-01-14 Panasonic Intellectual Property Management Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2019193882A1 (ja) * 2018-04-06 2021-04-08 パナソニックIpマネジメント株式会社 非水電解質二次電池用電極板及び非水電解質二次電池
CN111971820A (zh) * 2018-04-06 2020-11-20 松下知识产权经营株式会社 非水电解质二次电池用电极板及非水电解质二次电池
US12218383B2 (en) 2018-04-06 2025-02-04 Panasonic Intellectual Property Management Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7454795B2 (ja) 2018-04-06 2024-03-25 パナソニックIpマネジメント株式会社 非水電解質二次電池用電極板及び非水電解質二次電池
CN113196518A (zh) * 2018-11-13 2021-07-30 日本汽车能源株式会社 锂离子二次电池及其制造方法
CN113196518B (zh) * 2018-11-13 2023-08-01 日本汽车能源株式会社 锂离子二次电池及其制造方法
CN109509867A (zh) * 2018-12-29 2019-03-22 长虹三杰新能源有限公司 一种锂离子电池极片
JP2022539769A (ja) * 2019-06-28 2022-09-13 寧徳時代新能源科技股▲分▼有限公司 電極シート、電気化学装置及びその装置
JP7430737B2 (ja) 2019-06-28 2024-02-13 寧徳時代新能源科技股▲分▼有限公司 電極シート、電気化学装置及びその装置
CN115280540A (zh) * 2020-03-19 2022-11-01 松下知识产权经营株式会社 电池用电极和电池
US20220285693A1 (en) * 2021-03-04 2022-09-08 Sk On Co., Ltd. Lithium secondary battery
CN115249785A (zh) * 2021-04-27 2022-10-28 比亚迪股份有限公司 电池正极片及其制备方法和应用
WO2023079974A1 (ja) * 2021-11-05 2023-05-11 株式会社村田製作所 二次電池用電極および二次電池用電極の製造方法
CN114300652A (zh) * 2022-01-06 2022-04-08 中化国际(控股)股份有限公司 电极极片、其制备方法和应用
WO2024067363A1 (zh) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池和电池包及用电装置
WO2024181049A1 (ja) * 2023-02-28 2024-09-06 パナソニックエナジー株式会社 二次電池用正極および二次電池

Similar Documents

Publication Publication Date Title
JP2016058247A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
US10749179B2 (en) Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
CN108028413A (zh) 锂二次电池用电极组件和包含其的锂二次电池及电池模块
JPWO2016035289A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
US20180294514A1 (en) Lithium ion secondary battery and method for manufacturing the same
US9673446B2 (en) Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements
JP2014199714A (ja) 非水電解質二次電池用負極およびその非水電解質二次電池
KR20150070971A (ko) 리튬 이온 2차 전지
CN106133952B (zh) 非水电解质二次电池
CN104205474A (zh) 非水电解质二次电池
JP2019140054A (ja) 正極及び非水電解液二次電池
JP6609946B2 (ja) リチウムイオン二次電池用電極、その製造方法及びリチウムイオン二次電池
JP2015037008A (ja) 非水電解質二次電池用の電極活物質層とその製造方法
US10840508B2 (en) Lithium ion secondary battery
CN113097446A (zh) 非水电解质二次电池用负极和非水电解质二次电池
KR20190056844A (ko) 표면 개질된 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
JP2012181978A (ja) 非水電解液電池
CN113097447A (zh) 非水电解质二次电池用负极和非水电解质二次电池
US20190305317A1 (en) Spacer included electrodes structure and its application for high energy density and fast chargeable lithium ion batteries
WO2017056585A1 (ja) 正極活物質、正極およびリチウムイオン二次電池
JP2014165038A (ja) 非水電解質二次電池用電極材料とそれを用いた非水電解質二次電池
JP7003775B2 (ja) リチウムイオン二次電池
JP2012113870A (ja) 二次電池用電極、二次電池、および二次電池用電極の製造方法
EP3358652B1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181030