[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016044561A - Fuel injection control device and fuel injection control method - Google Patents

Fuel injection control device and fuel injection control method Download PDF

Info

Publication number
JP2016044561A
JP2016044561A JP2014167390A JP2014167390A JP2016044561A JP 2016044561 A JP2016044561 A JP 2016044561A JP 2014167390 A JP2014167390 A JP 2014167390A JP 2014167390 A JP2014167390 A JP 2014167390A JP 2016044561 A JP2016044561 A JP 2016044561A
Authority
JP
Japan
Prior art keywords
injection
fuel
amount
fuel injection
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014167390A
Other languages
Japanese (ja)
Other versions
JP6367045B2 (en
Inventor
真一郎 植松
Shinichiro Uematsu
真一郎 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2014167390A priority Critical patent/JP6367045B2/en
Publication of JP2016044561A publication Critical patent/JP2016044561A/en
Application granted granted Critical
Publication of JP6367045B2 publication Critical patent/JP6367045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device which can reduce deviation between a target amount and an actual injection amount in target amounts which are different from each other, and a fuel injection control method.SOLUTION: A fuel injection control device 50 comprises a storage part 53 which stores an injection character map 54, and an injection control part which calculates a target amount of a fuel injection valve 13, and drives the fuel injection valve in a drive time based on the target amount and the fuel injection character map 54. The fuel injection control device 50 calculates a second target amount which is obtained by adding an oscillation component to a first target amount which corresponds to a drive state as the target amount, and drives the fuel injection valve 13 in a trial time being a drive time of the second target amount. Furthermore, the fuel injection control device calculates an air-fuel ratio of a cylinder 12 corresponding to the fuel injection valve 13 which is driven for the trial time on the basis of a detection value of an air-fuel ratio sensor 36, and calculates a correction injection amount based on the air-fuel ratio and an air amount which is sucked by the cylinder 12. Then, the fuel injection control device corrects the fuel character map 54 on the basis of correction data 56 which are constituted of a plurality of pieces of data which are obtained by making the trial time and the correction injection amount associated with each other.SELECTED DRAWING: Figure 1

Description

本発明は、燃料噴射弁からの噴射量を制御する燃料噴射制御装置及び燃料噴射制御方法に関する。   The present invention relates to a fuel injection control device and a fuel injection control method for controlling an injection amount from a fuel injection valve.

従来から、エンジンシステムは、駆動時に開弁する燃料噴射弁の駆動時間が燃料噴射制御装置によって制御される。燃料噴射制御装置は、例えばエンジン回転数やアクセル開度に基づくエンジンの運転状態に応じた燃料量を目標量として演算する。そして燃料噴射制御装置は、燃料噴射弁の駆動時間と該駆動時間に対する噴射量との関係を示す噴射特性から目標量に対応する駆動時間を求め、その求めた駆動時間だけ燃料噴射弁を駆動する。   2. Description of the Related Art Conventionally, in an engine system, a drive time of a fuel injection valve that opens during driving is controlled by a fuel injection control device. The fuel injection control device calculates, for example, the fuel amount corresponding to the engine operating state based on the engine speed and the accelerator opening as the target amount. The fuel injection control device obtains a drive time corresponding to the target amount from the injection characteristic indicating the relationship between the drive time of the fuel injection valve and the injection amount with respect to the drive time, and drives the fuel injection valve for the obtained drive time. .

一方、経年劣化等に起因して燃料噴射弁の噴射特性が変化すると、目標量と実際の噴射量との乖離が大きくなる。こうした乖離は、エンジンの出力低下や排気ガスの浄化能力の低下を招く。そのため、特許文献1には、実際の噴射量を目標量に近づけるべく、気筒内の平均有効圧力と目標平均有効圧力との乖離から算出される噴射量補正係数に基づいて、目標量に対する駆動時間を補正する技術が開示されている。   On the other hand, when the injection characteristic of the fuel injection valve changes due to deterioration over time, the difference between the target amount and the actual injection amount increases. Such divergence leads to a decrease in engine output and a reduction in exhaust gas purification ability. For this reason, in Patent Document 1, in order to bring the actual injection amount closer to the target amount, the drive time for the target amount is based on the injection amount correction coefficient calculated from the difference between the average effective pressure in the cylinder and the target average effective pressure. A technique for correcting the above is disclosed.

特開2008−196361号公報JP 2008-196361 A

しかしながら、特許文献1の方法は、噴射量補正係数により目標量に対する駆動時間が一律に増減される。そのため、例えば目標量の少ない場合と目標量の多い場合とで補正すべき量が異なる場合には、実際の噴射量と目標量との乖離が改善されない虞があった。   However, in the method of Patent Document 1, the driving time for the target amount is uniformly increased or decreased by the injection amount correction coefficient. For this reason, for example, when the amount to be corrected is different between when the target amount is small and when the target amount is large, there is a possibility that the difference between the actual injection amount and the target amount may not be improved.

本発明は、相互に異なる目標量において目標量と実際の噴射量との乖離を小さくすることが可能な燃料噴射制御装置及び燃料噴射制御方法を提供することを目的とする。   It is an object of the present invention to provide a fuel injection control device and a fuel injection control method that can reduce the difference between the target amount and the actual injection amount at different target amounts.

上記課題を解決する燃料噴射制御装置は、燃料噴射弁の駆動時間と噴射量との関係を示す噴射特性マップを記憶する記憶部と、エンジンの運転状態に応じた噴射量を第1目標量として演算して前記噴射特性マップから前記第1目標量に対応する前記駆動時間を求め、前記燃料噴射弁の前記駆動時間を前記求めた駆動時間に制御する噴射制御部と、前記エンジンの排気通路に設けられた空燃比センサーの検出値に基づき、前記駆動時間だけ駆動された前記燃料噴射弁に対応する気筒の空燃比を演算する空燃比演算部と、を備え、前記噴射制御部は、前記第1目標量に揺動成分を加えた第2目標量であって、相互に異なる噴射行程において相互に異なる前記第2目標量を演算して、前記噴射特性マップから前記第2目標量に対応する前記駆動時間である試用時間を前記噴射行程ごとに求め、前記燃料噴射弁の前記駆動時間を前記求めた試用時間に制御し、前記試用時間だけ駆動された前記燃料噴射弁に対応する前記気筒に対し、前記気筒が吸入した空気量と前記気筒の空燃比とに基づく燃料量である補正噴射量を前記噴射行程ごとに演算して、前記噴射行程ごとの前記試用時間と前記補正噴射量とから前記噴射特性マップを補正する補正部をさらに備える。   A fuel injection control device that solves the above problems includes a storage unit that stores an injection characteristic map that indicates a relationship between a drive time of a fuel injection valve and an injection amount, and an injection amount that corresponds to an operating state of the engine as a first target amount. An injection control unit that calculates and calculates the drive time corresponding to the first target amount from the injection characteristic map, and controls the drive time of the fuel injection valve to the calculated drive time; and an exhaust passage of the engine An air-fuel ratio calculation unit that calculates an air-fuel ratio of a cylinder corresponding to the fuel injection valve driven for the drive time based on a detection value of an air-fuel ratio sensor provided, and the injection control unit includes the first A second target amount obtained by adding a swing component to one target amount, which is different from each other in different injection strokes, and corresponds to the second target amount from the injection characteristic map. The driving time A certain trial time is obtained for each injection stroke, the driving time of the fuel injection valve is controlled to the obtained trial time, and the cylinder corresponding to the fuel injection valve driven for the trial time is compared with the cylinder The injection characteristic map is calculated from the trial time and the corrected injection amount for each injection stroke by calculating a corrected injection amount that is a fuel amount based on the amount of air sucked in and the air-fuel ratio of the cylinder for each injection stroke. A correction unit is further provided for correcting.

上記課題を解決する燃料噴射方法は、燃料噴射弁の駆動時間と噴射量との関係を示す噴射特性マップを記憶する記憶部と、エンジンの運転状態に応じた噴射量を第1目標量として演算して前記噴射特性マップから前記第1目標量に対応する前記駆動時間を求め、前記燃料噴射弁の前記駆動時間を前記求めた駆動時間に制御する噴射制御部と、前記エンジンの排気通路に設けられた空燃比センサーの検出値に基づき、前記駆動時間だけ駆動された前記燃料噴射弁に対応する気筒の空燃比を演算する空燃比演算部と、を備えた燃料噴射制御装置が行う燃料噴射制御方法であって、前記燃料噴射制御装置は、前記第1目標量に揺動成分を加えた第2目標量であって、相互に異なる噴射行程において相互に異なる前記第2目標量を演算して、前記噴射特性マップから前記第2目標量に対応する前記駆動時間である試用時間を前記噴射行程ごとに求め、前記燃料噴射弁の前記駆動時間を前記求めた試用時間に制御し、前記試用時間だけ駆動された前記燃料噴射弁に対応する前記気筒に対し、前記気筒が吸入した空気量と前記気筒の空燃比とに基づく燃料量である補正噴射量を前記噴射行程ごとに演算して、前記噴射行程ごとの前記試用時間と前記補正噴射量とから前記噴射特性マップを補正する。   A fuel injection method that solves the above problem includes a storage unit that stores an injection characteristic map that indicates a relationship between a drive time of a fuel injection valve and an injection amount, and an injection amount that corresponds to the operating state of the engine is calculated as a first target amount. An injection control unit that obtains the drive time corresponding to the first target amount from the injection characteristic map and controls the drive time of the fuel injection valve to the obtained drive time, and an exhaust passage of the engine And a fuel injection control device comprising: an air-fuel ratio calculation unit that calculates an air-fuel ratio of a cylinder corresponding to the fuel injection valve driven for the drive time based on the detected value of the air-fuel ratio sensor. The fuel injection control apparatus calculates a second target amount that is a second target amount obtained by adding a swing component to the first target amount, and that is different from each other in different injection strokes. The jet A trial time, which is the drive time corresponding to the second target amount, is determined for each injection stroke from a property map, the drive time of the fuel injection valve is controlled to the obtained trial time, and is driven for the trial time. For each of the cylinders corresponding to the fuel injection valve, a corrected injection amount, which is a fuel amount based on the amount of air taken in by the cylinder and the air-fuel ratio of the cylinder, is calculated for each injection stroke. The injection characteristic map is corrected from the trial time and the corrected injection amount.

上記構成によれば、試用時間と該試用時間に対する補正噴射量とを対応付けた1つのデータではなく複数のデータに基づいて噴射特性マップが補正される。これにより、噴射特性マップは、変化後の噴射特性をより反映した噴射特性マップに変更される。その結果、燃料噴射弁の噴射特性が変化しても目標量と実際の噴射量との乖離が小さくなる。しかも、第2目標量が相互に異なる噴射行程において相互に異なるから、エンジンの運転状態が定常状態、すなわち第1目標量が略一定であっても噴射特性マップの補正が可能である。   According to the above configuration, the injection characteristic map is corrected based on a plurality of data instead of one data in which the trial time is associated with the corrected injection amount for the trial time. Thus, the injection characteristic map is changed to an injection characteristic map that more reflects the changed injection characteristic. As a result, even if the injection characteristic of the fuel injection valve changes, the difference between the target amount and the actual injection amount becomes small. In addition, since the second target amounts are different from each other in different injection strokes, the injection characteristic map can be corrected even when the engine is in a steady state, that is, the first target amount is substantially constant.

上記燃料噴射装置は、前記エンジンが有する複数の燃料噴射弁のうちで噴射特性が変化した前記燃料噴射弁である補正対象を検出する補正対象検出部をさらに備え、前記記憶部は、前記複数の燃料噴射弁について前記噴射特性マップを各別に記憶し、前記噴射制御部は、前記補正対象の前記第2目標量を演算して、前記補正対象に対応する前記噴射特性マップから前記試用時間を求め、前記補正対象の駆動時間を前記求めた試用時間に制御し、前記補正部は、前記補正対象に対応する前記噴射特性マップを補正することが好ましい。   The fuel injection device further includes a correction target detection unit that detects a correction target that is the fuel injection valve whose injection characteristic has changed among the plurality of fuel injection valves of the engine, and the storage unit includes the plurality of fuel injection valves. The injection characteristic map is separately stored for each fuel injection valve, and the injection control unit calculates the second target amount of the correction target and obtains the trial time from the injection characteristic map corresponding to the correction target. Preferably, the drive time of the correction target is controlled to the obtained trial time, and the correction unit corrects the injection characteristic map corresponding to the correction target.

上記構成によれば、エンジンが複数の燃料噴射弁を有している場合、噴射特性の変化した燃料噴射弁が補正対象として検出され、その補正対象に対応する噴射特性マップが補正される。これにより、噴射特性が変化した燃料噴射弁に対応する噴射特性マップを各別に補正することができる。   According to the above configuration, when the engine has a plurality of fuel injection valves, the fuel injection valve whose injection characteristic has changed is detected as a correction target, and the injection characteristic map corresponding to the correction target is corrected. Thereby, the injection characteristic map corresponding to the fuel injection valve in which the injection characteristic has changed can be corrected separately.

上記燃料噴射制御装置において、前記補正対象検出部は、前記エンジンの運転状態が定常状態にあるときに前記補正対象の検出を行うことが好ましい。
上記構成によれば、定常状態においては全気筒の空燃比が安定していることから、噴射特性が変化した燃料噴射弁を高い確度の下で検出することができる。
In the fuel injection control apparatus, it is preferable that the correction target detection unit detects the correction target when the operating state of the engine is in a steady state.
According to the above configuration, since the air-fuel ratios of all the cylinders are stable in the steady state, it is possible to detect the fuel injection valve whose injection characteristic has changed with high accuracy.

上記燃料噴射制御装置において、前記空燃比演算部は、前記エンジンが有する複数の気筒の各々について前記空燃比を演算し、前記補正対象検出部は、前記複数の気筒における空燃比の平均値と前記気筒毎の前記空燃比との偏差を演算し、前記偏差が異常値である気筒に燃料を噴射する前記燃料噴射弁を前記補正対象として検出することが好ましい。   In the fuel injection control device, the air-fuel ratio calculation unit calculates the air-fuel ratio for each of a plurality of cylinders of the engine, and the correction target detection unit calculates an average value of the air-fuel ratios in the plurality of cylinders and the air-fuel ratio. Preferably, a deviation from the air-fuel ratio for each cylinder is calculated, and the fuel injection valve that injects fuel into the cylinder having the abnormal deviation is detected as the correction target.

上記構成のように、全気筒の空燃比の平均値と気筒毎の空燃比との偏差が異常値であるか否かによって、定常状態において補正対象を検出することができる。   As described above, the correction target can be detected in a steady state depending on whether or not the deviation between the average value of the air-fuel ratios of all the cylinders and the air-fuel ratio of each cylinder is an abnormal value.

燃料噴射制御装置の一実施形態を搭載したエンジンシステムの概略構成を示す図。The figure which shows schematic structure of the engine system carrying one Embodiment of a fuel-injection control apparatus. 噴射特性マップの一例を模式的に示すグラフ。The graph which shows an example of an injection characteristic map typically. 補正対象を検出する処理の一例を示すフローチャート。The flowchart which shows an example of the process which detects correction | amendment object. 噴射特性マップを補正する処理の一例を示すフローチャート。The flowchart which shows an example of the process which correct | amends an injection characteristic map. 噴射特性マップの補正の一例を模式的に示すグラフ。The graph which shows an example of correction | amendment of an injection characteristic map typically.

図1〜図5を参照して、燃料噴射制御装置の一実施形態について説明する。図1を参照して、燃料噴射制御装置が搭載されるエンジンシステムの全体構成について説明する。
図1に示されるように、エンジンシステムのエンジン10は、シリンダーブロック11に6つの気筒12を有する。エンジン10は、MPI(Multi Point Injection)方式のエンジンであり、気筒12に燃料を噴射する燃料噴射弁13を気筒12毎に有する。シリンダーブロック11には、各気筒12に吸入空気を供給するためのインテークマニホールド14と、各気筒12からの排気ガスが流入するエキゾーストマニホールド15とが接続されている。
With reference to FIGS. 1-5, one Embodiment of a fuel-injection control apparatus is described. With reference to FIG. 1, the whole structure of the engine system in which the fuel injection control device is mounted will be described.
As shown in FIG. 1, the engine 10 of the engine system has six cylinders 12 in a cylinder block 11. The engine 10 is an MPI (Multi Point Injection) engine, and has a fuel injection valve 13 for injecting fuel into the cylinder 12 for each cylinder 12. An intake manifold 14 for supplying intake air to each cylinder 12 and an exhaust manifold 15 into which exhaust gas from each cylinder 12 flows are connected to the cylinder block 11.

インテークマニホールド14に接続される吸気通路16には、上流側から順に、図示されないエアクリーナー、ターボチャージャー17を構成するコンプレッサー18、インタークーラー19、スロットルバルブ20、サージタンク21が設けられている。エキゾーストマニホールド15に接続される排気通路25には、コンプレッサー18に連結軸を介して連結され、ターボチャージャー17を構成するタービン26が設けられている。   In the intake passage 16 connected to the intake manifold 14, an air cleaner (not shown), a compressor 18 constituting a turbocharger 17, an intercooler 19, a throttle valve 20, and a surge tank 21 are provided in order from the upstream side. The exhaust passage 25 connected to the exhaust manifold 15 is provided with a turbine 26 that is connected to the compressor 18 via a connecting shaft and constitutes the turbocharger 17.

エンジンシステムは、吸入空気量センサー30、吸気圧力センサー31、吸気温度センサー32、クランク角センサー34、カム角センサー35、空燃比センサー36、冷却水温センサー37、アクセル開度センサー38を備える。   The engine system includes an intake air amount sensor 30, an intake pressure sensor 31, an intake air temperature sensor 32, a crank angle sensor 34, a cam angle sensor 35, an air-fuel ratio sensor 36, a coolant temperature sensor 37, and an accelerator opening sensor 38.

吸入空気量センサー30は、吸気通路16におけるコンプレッサー18の上流にて、吸気通路16を流れる吸入空気の体積流量である吸入空気量Qaを検出する。吸気圧力センサー31は、サージタンク21における吸気の圧力である吸気圧力Pbを検出する。吸気温度センサー32は、サージタンク21における吸気の温度である吸気温度tiを検出する。クランク角センサー34は、クランクシャフト10aの回転角度であるクランク角CAを検出する。カム角センサー35は、図示されないカムシャフトの回転角度に基づいて、所定の気筒12が圧縮上死点に到達したタイミングで気筒判別信号Gを出力する。空燃比センサー36は、タービン26から流出した排気ガスに含まれる酸素濃度に基づいて、混合気における燃料の重量に対する空気の重量の比である空燃比λを検出する。冷却水温センサー37は、エンジン10を冷却する冷却水の温度である冷却水温twを検出する。アクセル開度センサー38は、アクセルペダル39の踏み込み量であるアクセル開度ACCを検出する。上記各センサー30〜38が出力した信号は、燃料噴射制御装置50(以下、単に制御装置50という。)に入力される。   The intake air amount sensor 30 detects an intake air amount Qa that is a volume flow rate of intake air flowing through the intake passage 16 upstream of the compressor 18 in the intake passage 16. The intake pressure sensor 31 detects an intake pressure Pb that is the pressure of intake air in the surge tank 21. The intake air temperature sensor 32 detects an intake air temperature ti that is the temperature of intake air in the surge tank 21. The crank angle sensor 34 detects a crank angle CA that is a rotation angle of the crankshaft 10a. The cam angle sensor 35 outputs a cylinder discrimination signal G at a timing when a predetermined cylinder 12 reaches the compression top dead center based on a rotation angle of a camshaft (not shown). The air-fuel ratio sensor 36 detects the air-fuel ratio λ, which is the ratio of the weight of air to the weight of fuel in the air-fuel mixture, based on the oxygen concentration contained in the exhaust gas flowing out from the turbine 26. The cooling water temperature sensor 37 detects the cooling water temperature tw that is the temperature of the cooling water that cools the engine 10. The accelerator opening sensor 38 detects an accelerator opening ACC that is a depression amount of the accelerator pedal 39. The signals output from the sensors 30 to 38 are input to a fuel injection control device 50 (hereinafter simply referred to as the control device 50).

制御装置50は、CPU、ROM、及びRAMを有するマイクロコンピューターを中心に構成される。制御装置50は、各センサーからの信号に基づいて各種情報を取得する取得部51と、各種処理を実行する処理部52と、各種制御プログラムや各種データを格納する記憶部53と、を備える。処理部52は、記憶部53に格納された各種制御プログラムと各センサー30〜38から入力される情報とに基づいて各種処理を実行する。   The control device 50 is mainly configured by a microcomputer having a CPU, a ROM, and a RAM. The control device 50 includes an acquisition unit 51 that acquires various types of information based on signals from each sensor, a processing unit 52 that executes various types of processing, and a storage unit 53 that stores various types of control programs and various types of data. The processing unit 52 performs various processes based on various control programs stored in the storage unit 53 and information input from the sensors 30 to 38.

取得部51は、各種センサーからの信号に基づいて、吸入空気量Qa、吸気圧力Pb、吸気温度ti、クランク角CA、気筒判別信号G、空燃比λ、冷却水温tw、及び、アクセル開度ACCを取得する。取得部51は、クランク角センサー34からの信号に基づいてクランクシャフト10aの回転数であるエンジン回転数Neを取得する。   Based on signals from various sensors, the acquisition unit 51 receives the intake air amount Qa, the intake pressure Pb, the intake air temperature ti, the crank angle CA, the cylinder discrimination signal G, the air-fuel ratio λ, the cooling water temperature tw, and the accelerator opening ACC. To get. The acquisition unit 51 acquires the engine speed Ne, which is the rotation speed of the crankshaft 10a, based on the signal from the crank angle sensor 34.

図2に参照されるように、記憶部53は、各種データとして、目標量Gftに対する燃料噴射弁13の駆動時間Trが規定された噴射特性マップ54を燃料噴射弁13毎に各別に格納している。   As shown in FIG. 2, the storage unit 53 stores, as various data, an injection characteristic map 54 in which the drive time Tr of the fuel injection valve 13 with respect to the target amount Gft is defined for each fuel injection valve 13. Yes.

処理部52は、気筒判別信号Gとクランク角センサー34からの信号とに基づき、燃料を噴射させる燃料噴射弁13である噴射対象と該噴射対象の噴射タイミングとを設定する。処理部52は、吸入空気量Qa、吸気圧力Pb、吸気温度ti、エンジン回転数Ne、及び、アクセル開度ACC等に基づき、エンジン10の運転状態に適した燃料の重量である第1目標量Gf1を噴射対象の目標量Gftとして演算する。処理部52は、演算した目標量Gftと噴射特性マップ54とに基づいて噴射対象の駆動時間Trを設定する。処理部52は、噴射対象及び駆動時間Trを示す信号を駆動電流生成部55に出力する。駆動電流生成部55は、処理部52からの信号に基づいて駆動電流を生成し、その生成した駆動電流を噴射対象に出力する。   Based on the cylinder discrimination signal G and the signal from the crank angle sensor 34, the processing unit 52 sets the injection target that is the fuel injection valve 13 that injects fuel and the injection timing of the injection target. The processing unit 52 is a first target amount that is the weight of fuel suitable for the operating state of the engine 10 based on the intake air amount Qa, the intake pressure Pb, the intake air temperature ti, the engine speed Ne, the accelerator opening degree ACC, and the like. Gf1 is calculated as a target amount Gft to be injected. The processing unit 52 sets the drive time Tr to be injected based on the calculated target amount Gft and the injection characteristic map 54. The processing unit 52 outputs a signal indicating the injection target and the driving time Tr to the driving current generating unit 55. The drive current generation unit 55 generates a drive current based on the signal from the processing unit 52, and outputs the generated drive current to the ejection target.

処理部52は、各気筒12の空燃比λを演算する。処理部52は、気筒判別信号Gとクランク角センサー34からの信号とに基づき、気筒12から排出された排気ガスが空燃比センサー36に到達するタイミングを気筒12毎に演算する。処理部52は、そのタイミングにおける空燃比センサー36からの信号に基づき各気筒12の空燃比λを演算する。   The processing unit 52 calculates the air-fuel ratio λ of each cylinder 12. The processing unit 52 calculates the timing at which the exhaust gas discharged from the cylinder 12 reaches the air-fuel ratio sensor 36 for each cylinder 12 based on the cylinder discrimination signal G and the signal from the crank angle sensor 34. The processing unit 52 calculates the air-fuel ratio λ of each cylinder 12 based on the signal from the air-fuel ratio sensor 36 at that timing.

処理部52は、噴射特性の変化した燃料噴射弁13である補正対象を検出する。処理部52は、エンジン10の暖機が完了し、且つ、エンジン10の運転状態が定常状態である場合に補正対象の検出を行う。処理部52は、冷却水温twがエンジン10の暖機が完了したと判断される温度である暖機完了温度tw1以上であることを条件に暖機が完了したことを判断する。定常状態とは、エンジン10の負荷の変動が小さい状態であり、例えば、エンジン回転数Ne、アクセル開度ACC、及び、目標量Gftが略一定の状態である。処理部52は、空燃比λの演算結果から全気筒12の空燃比λの平均値λaveを演算し、その演算した平均値λaveと気筒12の空燃比λとの偏差Δλを気筒12毎に演算する。処理部52は、噴射特性が変化したと判断される閾値Δλthよりも大きい値を異常値として、偏差Δλの絶対値が異常値であるか否かを判断する。処理部52は、偏差Δλの絶対値が異常値である気筒12が存在する場合、その気筒に対応する燃料噴射弁13を補正対象として検出する。   The processing unit 52 detects a correction target that is the fuel injection valve 13 whose injection characteristic has changed. The processing unit 52 detects a correction target when the warm-up of the engine 10 is completed and the operating state of the engine 10 is a steady state. The processing unit 52 determines that the warm-up has been completed on condition that the coolant temperature tw is equal to or higher than the warm-up completion temperature tw1, which is a temperature at which it is determined that the engine 10 has been warmed up. The steady state is a state in which the fluctuation of the load of the engine 10 is small. For example, the engine speed Ne, the accelerator opening ACC, and the target amount Gft are substantially constant. The processing unit 52 calculates the average value λave of the air-fuel ratio λ of all the cylinders 12 from the calculation result of the air-fuel ratio λ, and calculates the deviation Δλ between the calculated average value λave and the air-fuel ratio λ of the cylinder 12 for each cylinder 12. To do. The processing unit 52 determines whether or not the absolute value of the deviation Δλ is an abnormal value with a value larger than the threshold value Δλth determined to have changed the injection characteristic as an abnormal value. When there is a cylinder 12 in which the absolute value of the deviation Δλ is an abnormal value, the processing unit 52 detects the fuel injection valve 13 corresponding to the cylinder as a correction target.

補正対象を検出した処理部52は、補正対象ではない燃料噴射弁13が噴射対象に設定される場合、上記第1目標量Gf1を目標量Gftとして演算する。一方、処理部52は、補正対象である燃料噴射弁13が噴射対象に設定される場合、2以上の所定のサンプリング数だけ、上記第1目標量Gf1に対して揺動成分dを加えた第2目標量Gf2を目標量Gftとして演算する。処理部52は、第2目標量Gf2に対応する駆動時間Trを試用時間Ttとして噴射特性マップ54から求め、その求めた試用時間Ttで燃料噴射弁13を駆動する。揺動成分dは、例えば、第1目標量Gf1に対する加算値や第1目標量Gf1に対する1以上の乗算値であり、補正対象に供給される燃料量が第2目標量Gf2に変更されたことを運転者が体感できない程度であることが好ましい。処理部52は、サンプリング毎に相互に異なる第2目標量Gf2を演算することが好ましい。   When the fuel injection valve 13 that is not the correction target is set as the injection target, the processing unit 52 that has detected the correction target calculates the first target amount Gf1 as the target amount Gft. On the other hand, when the fuel injection valve 13 that is the correction target is set as the injection target, the processing unit 52 adds the swing component d to the first target amount Gf1 by a predetermined sampling number of 2 or more. 2 The target amount Gf2 is calculated as the target amount Gft. The processing unit 52 obtains the driving time Tr corresponding to the second target amount Gf2 from the injection characteristic map 54 as the trial time Tt, and drives the fuel injection valve 13 at the obtained trial time Tt. The swing component d is, for example, an addition value for the first target amount Gf1 or a multiplication value of 1 or more for the first target amount Gf1, and the amount of fuel supplied to the correction target is changed to the second target amount Gf2. It is preferable that the driver cannot experience this. It is preferable that the processing unit 52 calculates a second target amount Gf2 that is different from one another for each sampling.

処理部52は、サンプリング毎に、第1目標量Gf1の演算に用いた吸入空気量Qa、吸気圧力Pb、吸気温度ti、及び、エンジン回転数Ne等に基づいて、気筒12が吸入した空気の重量である空気量Gaを演算する。処理部52は、上記空気量Gaと、補正対象に対応する気筒12の空燃比λとに基づいて、補正対象の噴射量である補正噴射量Gfcを演算する。処理部52は、試用時間Ttと補正噴射量Gfcとを対応付けたデータを記憶部53の所定領域にサンプリング数だけ格納することで補正データ56を生成する。   For each sampling, the processing unit 52 determines the amount of air taken in by the cylinder 12 based on the intake air amount Qa, the intake pressure Pb, the intake air temperature ti, and the engine speed Ne used for the calculation of the first target amount Gf1. The air amount Ga which is weight is calculated. Based on the air amount Ga and the air-fuel ratio λ of the cylinder 12 corresponding to the correction target, the processing unit 52 calculates a correction injection amount Gfc that is the correction target injection amount. The processing unit 52 generates correction data 56 by storing data in which the trial time Tt and the correction injection amount Gfc are associated with each other in the predetermined area of the storage unit 53 by the number of samplings.

処理部52は、補正データ56に基づいて補正対象に対応する噴射特性マップ54を補正する。処理部52は、例えば特定の関数を用いた最小二乗法で近似線を求め、その求めた近似線から各目標量Gftの駆動時間Trを求めることで噴射特性マップを補正する。   The processing unit 52 corrects the injection characteristic map 54 corresponding to the correction target based on the correction data 56. For example, the processing unit 52 obtains an approximate line by a least square method using a specific function, and corrects the injection characteristic map by obtaining the drive time Tr of each target amount Gft from the obtained approximate line.

このように処理部52は、噴射制御部、空燃比演算部、噴射量演算部、補正部として機能する。また、サンプリング数は、噴射特性マップ54の補正方法に応じたサンプリング数であって、補正後の噴射特性マップ54に十分な信頼性が得られるサンプリング数であることが好ましい。   Thus, the processing unit 52 functions as an injection control unit, an air-fuel ratio calculation unit, an injection amount calculation unit, and a correction unit. The number of samplings is preferably the number of samplings according to the correction method of the injection characteristic map 54 and the number of samplings with which sufficient reliability can be obtained in the corrected injection characteristic map 54.

図3を参照して、補正対象を検出する処理の一例について説明する。この処理は、エンジン10の始動と噴射特性マップ54の補正とを開始のタイミングとして有する。
図3に示されるように、処理部52は、まず、エンジン10の運転状態が暖機完了後の定常状態であるか否かを判断する(ステップS11)。エンジン10の運転状態が暖機完了後の定常状態ではない場合(ステップS11:NO)、処理部52は、一連の処理を一旦終了する。
With reference to FIG. 3, an example of processing for detecting a correction target will be described. This process includes starting the engine 10 and correcting the injection characteristic map 54 as the start timing.
As shown in FIG. 3, the processing unit 52 first determines whether or not the operating state of the engine 10 is a steady state after completion of warm-up (step S11). When the operating state of the engine 10 is not a steady state after completion of warm-up (step S11: NO), the processing unit 52 once ends a series of processes.

一方、エンジン10の運転状態が暖機完了後の定常状態である場合(ステップS11:YES)、処理部52は、各気筒12の空燃比λを演算する(ステップS12)。また処理部52は、全気筒12の空燃比λの平均値λaveを演算する(ステップS13)。   On the other hand, when the operating state of the engine 10 is a steady state after completion of warm-up (step S11: YES), the processing unit 52 calculates the air-fuel ratio λ of each cylinder 12 (step S12). Further, the processing unit 52 calculates an average value λave of the air-fuel ratios λ of all the cylinders 12 (step S13).

次のステップS14にて処理部52は、空燃比λと平均値λaveとの偏差Δλを気筒12毎に演算し、燃料噴射弁13の噴射特性が変化したと判断される閾値Δλthよりも絶対値の大きい偏差Δλが存在するか否かを判断する。偏差Δλの全てが閾値Δλth以下である場合(ステップS14:NO)、処理部52は、一連の処理を一旦終了する。   In the next step S14, the processing unit 52 calculates the deviation Δλ between the air-fuel ratio λ and the average value λave for each cylinder 12, and is an absolute value greater than the threshold value Δλth at which it is determined that the injection characteristic of the fuel injection valve 13 has changed. It is determined whether or not there is a large deviation Δλ. When all the deviations Δλ are equal to or smaller than the threshold value Δλth (step S14: NO), the processing unit 52 once ends a series of processing.

一方、閾値Δλthよりも絶対値の大きい偏差Δλが存在する場合(ステップS14:YES)、処理部52は、その偏差Δλの気筒12に対応する燃料噴射弁13を補正対象に設定する(ステップS15)。そして処理部52は、補正対象に対応する噴射特性マップ54を補正する処理を実行する。   On the other hand, when there is a deviation Δλ having an absolute value larger than the threshold value Δλth (step S14: YES), the processing unit 52 sets the fuel injection valve 13 corresponding to the cylinder 12 having the deviation Δλ as a correction target (step S15). ). And the process part 52 performs the process which correct | amends the injection characteristic map 54 corresponding to correction object.

図4を参照して、噴射特性マップ54を補正する処理の一例について説明する。
図4に示されるように、処理部52は、まず、取得部51を介して各種情報を取得する(ステップS21)。次のステップS22において、処理部52は、噴射対象に設定される燃料噴射弁13が補正対象であるか否かを判断する(ステップS22)。噴射対象が補正対象でない場合(ステップS22:NO)、処理部52は、ステップS21の処理に移行する。一方、噴射対象が補正対象である場合(ステップS22:YES)、処理部52は、目標量Gftとして第2目標量Gf2を演算する(ステップS23)。処理部52は、第2目標量Gf2に対応する駆動時間Trを試用時間Ttとして補正対象を駆動する(ステップS24)。
An example of processing for correcting the injection characteristic map 54 will be described with reference to FIG.
As illustrated in FIG. 4, the processing unit 52 first acquires various types of information via the acquisition unit 51 (step S21). In the next step S22, the processing unit 52 determines whether or not the fuel injection valve 13 set as an injection target is a correction target (step S22). When the injection target is not the correction target (step S22: NO), the processing unit 52 proceeds to the process of step S21. On the other hand, when the injection target is the correction target (step S22: YES), the processing unit 52 calculates the second target amount Gf2 as the target amount Gft (step S23). The processing unit 52 drives the correction target with the driving time Tr corresponding to the second target amount Gf2 as the trial time Tt (step S24).

次のステップS25において、処理部52は、補正対象の燃料噴射弁13に対応する気筒12の空燃比λを演算する。また、処理部52は、ステップS26において、ステップS21にて取得した吸入空気量Qa、吸気圧力Pb、及び、吸気温度tiに基づく空気量Gaと、ステップS25にて演算した空燃比λとに基づき補正噴射量Gfcを演算する。   In the next step S25, the processing unit 52 calculates the air-fuel ratio λ of the cylinder 12 corresponding to the fuel injection valve 13 to be corrected. Further, in step S26, the processing unit 52 is based on the intake air amount Qa, the intake pressure Pb, the air amount Ga based on the intake air temperature ti acquired in step S21, and the air-fuel ratio λ calculated in step S25. The corrected injection amount Gfc is calculated.

次に処理部52は、ステップS23にて演算した第2目標量Gf2に基づく試用時間Ttと、ステップS26にて演算した補正噴射量Gfcとを対応付けて記憶部53の所定領域に格納し(ステップS27)、補正データ56を構築する。次に処理部52は、補正対象のサンプリングが完了したか否かを判断する(ステップS28)。   Next, the processing unit 52 associates the trial time Tt based on the second target amount Gf2 calculated in step S23 with the corrected injection amount Gfc calculated in step S26, and stores it in a predetermined area of the storage unit 53 ( Step S27), the correction data 56 is constructed. Next, the processing unit 52 determines whether or not the correction target sampling is completed (step S28).

サンプリングが完了していない場合(ステップS28:NO)、処理部52は、再びステップS21の処理に移行する。一方、サンプリングが完了した場合(ステップS28:YES)、処理部52は、補正データ56に基づいて補正対象の噴射特性マップ54を補正し(ステップS29)、一連の処理を終了する。   When the sampling is not completed (step S28: NO), the processing unit 52 proceeds to the process of step S21 again. On the other hand, when the sampling is completed (step S28: YES), the processing unit 52 corrects the injection characteristic map 54 to be corrected based on the correction data 56 (step S29), and ends the series of processes.

上述した構成の制御装置50の作用について説明する。
制御装置50は、噴射特性が変化した燃料噴射弁13を検出し、その燃料噴射弁13に対応する噴射特性マップ54を補正する。制御装置50は、試用時間Ttと補正噴射量Gfcとを対応付けた複数のデータで構成される補正データ56に基づき噴射特性マップ54を補正する。
The operation of the control device 50 configured as described above will be described.
The control device 50 detects the fuel injection valve 13 whose injection characteristic has changed, and corrects the injection characteristic map 54 corresponding to the fuel injection valve 13. The control device 50 corrects the injection characteristic map 54 based on correction data 56 composed of a plurality of data in which the trial time Tt and the correction injection amount Gfc are associated with each other.

すなわち、図5に示されるように、1つのサンプリングに基づき目標量Gftに対する駆動時間Trが一律に増減される場合、基礎噴射特性60は、図5における(Gft1,Tr1)のみに基づく平行移動により噴射特性61へと補正される。一方、上述した噴射特性マップ54の補正では、(Gft1,Tr1)に加え、(Gft2,Tr2)及び(Gft3,Tr3)が加味される。そのため、変化後の噴射特性をより反映した噴射特性62へと噴射特性マップ54が補正されることから、目標量Gftと実際の噴射量との乖離が小さくなる。   That is, as shown in FIG. 5, when the driving time Tr with respect to the target amount Gft is uniformly increased or decreased based on one sampling, the basic injection characteristic 60 is obtained by parallel movement based only on (Gft1, Tr1) in FIG. The injection characteristic 61 is corrected. On the other hand, in the correction of the injection characteristic map 54 described above, (Gft2, Tr2) and (Gft3, Tr3) are added in addition to (Gft1, Tr1). Therefore, since the injection characteristic map 54 is corrected to the injection characteristic 62 that more reflects the changed injection characteristic, the difference between the target amount Gft and the actual injection amount is reduced.

そして、補正対象の目標量Gftが噴射行程毎に異なる第2目標量Gf2に設定されることによって、たとえエンジン10の運転状態が第1目標量Gf1の変化の小さい定常状態であっても、複数のサンプリングに基づいて噴射特性マップ54を補正可能である。   Then, by setting the target amount Gft to be corrected to the second target amount Gf2 that is different for each injection stroke, even if the operating state of the engine 10 is a steady state where the change in the first target amount Gf1 is small, a plurality of target amounts Gft2 are set. The injection characteristic map 54 can be corrected based on the sampling.

上記実施形態の燃料噴射制御装置50によれば、以下に列挙する効果が得られる。
(1)噴射特性マップ54は、複数のサンプリングに基づいて補正される。その結果、目標量Gftと実際の噴射量との乖離が小さくなる。
According to the fuel injection control device 50 of the above embodiment, the effects listed below can be obtained.
(1) The injection characteristic map 54 is corrected based on a plurality of samplings. As a result, the difference between the target amount Gft and the actual injection amount becomes small.

(2)複数の燃料噴射弁13の中から補正対象が検出され、補正対象に対応する噴射特性マップ54が補正される。その結果、複数の燃料噴射弁13のうちでただ1つの燃料噴射弁13が補正対象として検出されたとしても、他の燃料噴射弁13に対応する噴射特性マップ54に影響を与えることなく、補正対象に対応する噴射特性マップ54だけを補正することができる。   (2) A correction target is detected from the plurality of fuel injection valves 13, and the injection characteristic map 54 corresponding to the correction target is corrected. As a result, even if only one fuel injection valve 13 among the plurality of fuel injection valves 13 is detected as a correction target, the correction is made without affecting the injection characteristic map 54 corresponding to the other fuel injection valves 13. Only the injection characteristic map 54 corresponding to the object can be corrected.

(3)エンジン10の運転状態が定常状態であるときに補正対象の検出が行われる。定常状態においては、エンジン10に対する負荷の変動が小さく全気筒の空燃比が安定していることから、噴射特性の変化した燃料噴射弁13を高い確度で検出することができる。   (3) The correction target is detected when the operating state of the engine 10 is a steady state. In the steady state, since the fluctuation of the load on the engine 10 is small and the air-fuel ratios of all the cylinders are stable, it is possible to detect the fuel injection valve 13 whose injection characteristics have changed with high accuracy.

(4)また、定常状態においては、空燃比λの平均値λaveと気筒12毎の空燃比λとの偏差Δλに基づいて補正対象を検出することができる。
なお、上記実施形態は、以下のように適宜変更して実施することもできる。
・処理部52は、補正対象検出部として、偏差Δλの絶対値が閾値Δλthよりも大きい気筒12に対応する燃料噴射弁13を補正対象として検出している。すなわち、偏差Δλが正の値の場合に異常値と判断される閾値、偏差Δλが負の値である場合に異常値と判断される閾値、これらが同じ大きさである。これに限らず、処理部52は、偏差Δλが正の値である場合の閾値と偏差Δλが負の値である場合の閾値とが異なる大きさでもよい。この構成によれば、例えば燃料噴射弁13の劣化特性に応じて閾値が設定可能である。
(4) In a steady state, the correction target can be detected based on the deviation Δλ between the average value λave of the air-fuel ratio λ and the air-fuel ratio λ for each cylinder 12.
In addition, the said embodiment can also be suitably changed and implemented as follows.
The processing unit 52 detects, as a correction target detection unit, the fuel injection valve 13 corresponding to the cylinder 12 whose absolute value of the deviation Δλ is larger than the threshold value Δλth as a correction target. That is, a threshold value that is determined as an abnormal value when the deviation Δλ is a positive value, a threshold value that is determined as an abnormal value when the deviation Δλ is a negative value, and these are the same size. The processing unit 52 is not limited to this, and the threshold value when the deviation Δλ is a positive value may be different from the threshold value when the deviation Δλ is a negative value. According to this configuration, for example, the threshold value can be set according to the deterioration characteristic of the fuel injection valve 13.

・処理部52は、補正対象検出部として、例えば、空燃比センサー36からの信号に基づき演算される空燃比λ、第1目標量Gf1と空気量Gaとに基づき演算される空燃比λ1、これらの偏差Δλ1の絶対値が閾値Δλ1thよりも大きいか否かを条件として補正対象を検出してもよい。この構成によれば、上記(1)(2)に準ずる効果が得られるとともに、エンジン10の運転状態が定常状態である場合に限らず、例えば加速状態であっても補正対象を検出することができる。   The processing unit 52 serves as a correction target detection unit, for example, an air-fuel ratio λ calculated based on a signal from the air-fuel ratio sensor 36, an air-fuel ratio λ1 calculated based on the first target amount Gf1 and the air amount Ga, these The correction target may be detected on the condition that the absolute value of the deviation Δλ1 is larger than the threshold value Δλ1th. According to this configuration, the effects equivalent to the above (1) and (2) can be obtained, and the correction target can be detected not only when the operation state of the engine 10 is in a steady state but also in an acceleration state, for example. it can.

また、上記構成において、閾値Δλ1thは、一定の値であってもよいし、エンジン10の運転状態に応じて変動する値であってもよい。閾値Δλ1thが変動する場合、閾値Δλ1thは、例えばエンジン10の定常状態にて最小値であることが好ましい。   In the above configuration, the threshold value Δλ1th may be a constant value or a value that varies according to the operating state of the engine 10. When the threshold value Δλ1th varies, the threshold value Δλ1th is preferably a minimum value in a steady state of the engine 10, for example.

・処理部52は、補正対象検出部として、例えばエンジン10の定常状態において、クランク角センサー34からの信号に基づくエンジン回転数Neの変化に基づいて、補正対象を特定してもよい。   The processing unit 52 may specify the correction target as a correction target detection unit based on a change in the engine speed Ne based on a signal from the crank angle sensor 34 in a steady state of the engine 10, for example.

・制御装置50は、各気筒12に流入する吸気に対して燃料を噴射することにより各気筒12に対する燃料の供給を行うSPI(Single Point Inlection)方式のエンジンにも適用可能である。   The control device 50 can also be applied to a single point injection (SPI) engine that supplies fuel to each cylinder 12 by injecting fuel to the intake air flowing into each cylinder 12.

・吸入空気量センサー30は、吸気通路16を流れる吸入空気の質量流量を検出してもよい。こうした場合、空気量Gaは、吸入空気量センサー30の検出値である。
・制御装置50が適用されるエンジン10は、ガソリンエンジンやガスエンジン、ディーゼルエンジンであってもよい。
・第1目標量Gf1は、例えば外気温や燃料の温度を加味して演算されてもよい。
The intake air amount sensor 30 may detect the mass flow rate of intake air flowing through the intake passage 16. In such a case, the air amount Ga is a detection value of the intake air amount sensor 30.
The engine 10 to which the control device 50 is applied may be a gasoline engine, a gas engine, or a diesel engine.
The first target amount Gf1 may be calculated taking into account, for example, the outside air temperature or the fuel temperature.

・第1目標量Gf1に揺動成分dを加味した第2目標量Gf2が特定の燃料噴射弁13の目標量Gftに設定されることにより、次のようなことも具現化可能である。   By setting the second target amount Gf2 obtained by adding the swing component d to the first target amount Gf1 as the target amount Gft of the specific fuel injection valve 13, the following can also be realized.

例えば、燃料噴射弁13の噴射特性が略同じであり、且つ、エンジン10が定常状態にあることを条件に、特定の燃料噴射弁13の目標量Gftを第2目標量Gf2に設定する。この場合、特定の燃料噴射弁13に対応する気筒12の空燃比λは、他の気筒12の空燃比λとは異なる値である。こうした空燃比λの違いに基づいて、特定の燃料噴射弁13に対応する気筒から排出された排気ガスが空燃比センサー36に到達するタイミングを把握することができる。すなわち、気筒12毎に空燃比センサー36までの距離が異なる場合であっても、空燃比センサー36が出力する信号のうちでどの部分が上記特定の燃料噴射弁13に対応するかを把握することができる。   For example, the target amount Gft of the specific fuel injection valve 13 is set to the second target amount Gf2 on condition that the injection characteristics of the fuel injection valve 13 are substantially the same and the engine 10 is in a steady state. In this case, the air-fuel ratio λ of the cylinder 12 corresponding to the specific fuel injection valve 13 is different from the air-fuel ratio λ of the other cylinders 12. Based on the difference in the air-fuel ratio λ, it is possible to grasp the timing at which the exhaust gas discharged from the cylinder corresponding to the specific fuel injection valve 13 reaches the air-fuel ratio sensor 36. That is, even when the distance to the air-fuel ratio sensor 36 is different for each cylinder 12, it is possible to grasp which portion of the signal output from the air-fuel ratio sensor 36 corresponds to the specific fuel injection valve 13. Can do.

また例えば、特定の燃料噴射弁13に対応する気筒12の空燃比λが、他の気筒12の空燃比λと同じ値である場合や正常範囲から逸脱した値である場合には、特定の燃料噴射弁13が正常か異常かを判断することも可能である。   Further, for example, when the air-fuel ratio λ of the cylinder 12 corresponding to the specific fuel injection valve 13 is the same value as the air-fuel ratio λ of the other cylinders 12 or a value deviating from the normal range, the specific fuel It is also possible to determine whether the injection valve 13 is normal or abnormal.

また例えば、特定の燃料噴射弁13に対応する気筒12の空燃比λと他の気筒12の空燃比λとの差分、第1目標量Gf1と第2目標量Gf2との差分、これらに基づいて空燃比センサー36の劣化度合いや異常の有無の判断も可能である。   Further, for example, the difference between the air-fuel ratio λ of the cylinder 12 corresponding to the specific fuel injection valve 13 and the air-fuel ratio λ of the other cylinder 12, the difference between the first target amount Gf1 and the second target amount Gf2, based on these It is also possible to determine the degree of deterioration of the air-fuel ratio sensor 36 and the presence or absence of abnormality.

10…エンジン、10a…クランクシャフト、11…シリンダーブロック、12…気筒、13…燃料噴射弁、14…インテークマニホールド、15…エキゾーストマニホールド、16…吸気通路、17…ターボチャージャー、18…コンプレッサー、19…インタークーラー、20…スロットルバルブ、21…サージタンク、25…排気通路、26…タービン、30…吸入空気量センサー、31…吸気圧力センサー、32…吸気温度センサー、34…クランク角センサー、35…カム角センサー、36…空燃比センサー、37…冷却水温センサー、38…アクセル開度センサー、39…アクセルペダル、50…燃料噴射制御装置、51…取得部、52…処理部、53…記憶部、54…噴射特性マップ、55…駆動電流生成部、56…補正データ、60…基礎噴射特性、61,62…噴射特性。   DESCRIPTION OF SYMBOLS 10 ... Engine, 10a ... Crankshaft, 11 ... Cylinder block, 12 ... Cylinder, 13 ... Fuel injection valve, 14 ... Intake manifold, 15 ... Exhaust manifold, 16 ... Intake passage, 17 ... Turbocharger, 18 ... Compressor, 19 ... Intercooler, 20 ... throttle valve, 21 ... surge tank, 25 ... exhaust passage, 26 ... turbine, 30 ... intake air amount sensor, 31 ... intake air pressure sensor, 32 ... intake air temperature sensor, 34 ... crank angle sensor, 35 ... cam angle Sensor: 36 ... Air-fuel ratio sensor, 37 ... Cooling water temperature sensor, 38 ... Accelerator opening sensor, 39 ... Accelerator pedal, 50 ... Fuel injection control device, 51 ... Acquisition unit, 52 ... Processing unit, 53 ... Storage unit, 54 ... Injection characteristic map, 55... Drive current generator, 56. , 60 ... the basic injection characteristic, 61, 62 ... injection characteristics.

Claims (5)

燃料噴射弁の駆動時間と噴射量との関係を示す噴射特性マップを記憶する記憶部と、
エンジンの運転状態に応じた噴射量を第1目標量として演算して前記噴射特性マップから前記第1目標量に対応する前記駆動時間を求め、前記燃料噴射弁の前記駆動時間を前記求めた駆動時間に制御する噴射制御部と、
前記エンジンの排気通路に設けられた空燃比センサーの検出値に基づき、前記駆動時間だけ駆動された前記燃料噴射弁に対応する気筒の空燃比を演算する空燃比演算部と、
を備え、
前記噴射制御部は、前記第1目標量に揺動成分を加えた第2目標量であって、相互に異なる噴射行程において相互に異なる前記第2目標量を演算して、前記噴射特性マップから前記第2目標量に対応する前記駆動時間である試用時間を前記噴射行程ごとに求め、前記燃料噴射弁の前記駆動時間を前記求めた試用時間に制御し、
前記試用時間だけ駆動された前記燃料噴射弁に対応する前記気筒に対し、前記気筒が吸入した空気量と前記気筒の空燃比とに基づく燃料量である補正噴射量を前記噴射行程ごとに演算して、前記噴射行程ごとの前記試用時間と前記補正噴射量とから前記噴射特性マップを補正する補正部をさらに備える
燃料噴射制御装置。
A storage unit for storing an injection characteristic map indicating a relationship between a drive time of the fuel injection valve and an injection amount;
The injection amount corresponding to the operating state of the engine is calculated as a first target amount, the drive time corresponding to the first target amount is obtained from the injection characteristic map, and the drive time of the fuel injection valve is obtained. An injection controller that controls the time,
An air-fuel ratio calculating section for calculating an air-fuel ratio of a cylinder corresponding to the fuel injection valve driven for the drive time based on a detection value of an air-fuel ratio sensor provided in an exhaust passage of the engine;
With
The injection control unit calculates a second target amount, which is a second target amount obtained by adding a swing component to the first target amount, and is different from each other in different injection strokes, from the injection characteristic map Obtaining a trial time, which is the drive time corresponding to the second target amount, for each injection stroke, and controlling the drive time of the fuel injection valve to the obtained trial time;
For the cylinder corresponding to the fuel injection valve driven for the trial time, a corrected injection amount, which is a fuel amount based on the air amount sucked by the cylinder and the air-fuel ratio of the cylinder, is calculated for each injection stroke. The fuel injection control device further includes a correction unit that corrects the injection characteristic map from the trial time and the corrected injection amount for each injection stroke.
前記エンジンが有する複数の燃料噴射弁のうちで噴射特性が変化した前記燃料噴射弁である補正対象を検出する補正対象検出部をさらに備え、
前記記憶部は、前記複数の燃料噴射弁について前記噴射特性マップを各別に記憶し、
前記噴射制御部は、前記補正対象の前記第2目標量を演算して、前記補正対象に対応する前記噴射特性マップから前記試用時間を求め、前記補正対象の駆動時間を前記求めた試用時間に制御し、
前記補正部は、前記補正対象に対応する前記噴射特性マップを補正する
請求項1に記載の燃料噴射制御装置。
A correction target detection unit for detecting a correction target that is the fuel injection valve whose injection characteristic has changed among the plurality of fuel injection valves of the engine;
The storage unit stores the injection characteristic map for each of the plurality of fuel injection valves,
The injection control unit calculates the second target amount of the correction target, calculates the trial time from the injection characteristic map corresponding to the correction target, and sets the driving time of the correction target to the calculated trial time. Control
The fuel injection control device according to claim 1, wherein the correction unit corrects the injection characteristic map corresponding to the correction target.
前記補正対象検出部は、
前記エンジンの運転状態が定常状態にあるときに前記補正対象の検出を行う
請求項2に記載の燃料噴射制御装置。
The correction target detection unit
The fuel injection control device according to claim 2, wherein the correction target is detected when the operating state of the engine is in a steady state.
前記空燃比演算部は、
前記エンジンが有する複数の気筒の各々について前記空燃比を演算し、
前記補正対象検出部は、
前記複数の気筒における空燃比の平均値と前記気筒毎の前記空燃比との偏差を演算し、前記偏差が異常値である気筒に燃料を噴射する前記燃料噴射弁を前記補正対象として検出する
請求項2又は3に記載の燃料噴射制御装置。
The air-fuel ratio calculation unit is
Calculating the air-fuel ratio for each of a plurality of cylinders of the engine;
The correction target detection unit
A deviation between an average value of air-fuel ratios in the plurality of cylinders and the air-fuel ratio for each cylinder is calculated, and the fuel injection valve that injects fuel into a cylinder having the abnormal deviation is detected as the correction target. Item 4. The fuel injection control device according to Item 2 or 3.
燃料噴射弁の駆動時間と噴射量との関係を示す噴射特性マップを記憶する記憶部と、
エンジンの運転状態に応じた噴射量を第1目標量として演算して前記噴射特性マップから前記第1目標量に対応する前記駆動時間を求め、前記燃料噴射弁の前記駆動時間を前記求めた駆動時間に制御する噴射制御部と、
前記エンジンの排気通路に設けられた空燃比センサーの検出値に基づき、前記駆動時間だけ駆動された前記燃料噴射弁に対応する気筒の空燃比を演算する空燃比演算部と、を備えた燃料噴射制御装置が行う燃料噴射制御方法であって、
前記燃料噴射制御装置は、
前記第1目標量に揺動成分を加えた第2目標量であって、相互に異なる噴射行程において相互に異なる前記第2目標量を演算して、前記噴射特性マップから前記第2目標量に対応する前記駆動時間である試用時間を前記噴射行程ごとに求め、前記燃料噴射弁の前記駆動時間を前記求めた試用時間に制御し、
前記試用時間だけ駆動された前記燃料噴射弁に対応する前記気筒に対し、前記気筒が吸入した空気量と前記気筒の空燃比とに基づく燃料量である補正噴射量を前記噴射行程ごとに演算して、前記噴射行程ごとの前記試用時間と前記補正噴射量とから前記噴射特性マップを補正する
燃料噴射制御方法。
A storage unit for storing an injection characteristic map indicating a relationship between a drive time of the fuel injection valve and an injection amount;
The injection amount corresponding to the operating state of the engine is calculated as a first target amount, the drive time corresponding to the first target amount is obtained from the injection characteristic map, and the drive time of the fuel injection valve is obtained. An injection controller that controls the time,
An air-fuel ratio calculation unit that calculates an air-fuel ratio of a cylinder corresponding to the fuel injection valve driven for the drive time based on a detection value of an air-fuel ratio sensor provided in an exhaust passage of the engine; A fuel injection control method performed by a control device,
The fuel injection control device includes:
A second target amount obtained by adding a swing component to the first target amount, and calculating the second target amount that is different from each other in different injection strokes, from the injection characteristic map to the second target amount. A trial time that is the corresponding drive time is obtained for each injection stroke, and the drive time of the fuel injection valve is controlled to the obtained trial time,
For the cylinder corresponding to the fuel injection valve driven for the trial time, a corrected injection amount, which is a fuel amount based on the air amount sucked by the cylinder and the air-fuel ratio of the cylinder, is calculated for each injection stroke. A fuel injection control method for correcting the injection characteristic map from the trial time and the corrected injection amount for each injection stroke.
JP2014167390A 2014-08-20 2014-08-20 Fuel injection control device and fuel injection control method Active JP6367045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014167390A JP6367045B2 (en) 2014-08-20 2014-08-20 Fuel injection control device and fuel injection control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014167390A JP6367045B2 (en) 2014-08-20 2014-08-20 Fuel injection control device and fuel injection control method

Publications (2)

Publication Number Publication Date
JP2016044561A true JP2016044561A (en) 2016-04-04
JP6367045B2 JP6367045B2 (en) 2018-08-01

Family

ID=55635367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167390A Active JP6367045B2 (en) 2014-08-20 2014-08-20 Fuel injection control device and fuel injection control method

Country Status (1)

Country Link
JP (1) JP6367045B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263694A (en) * 1992-03-23 1993-10-12 Mazda Motor Corp Failure sensing device for fuel supply system
JP2008128160A (en) * 2006-11-24 2008-06-05 Denso Corp Control device of internal combustion engine
JP2013181486A (en) * 2012-03-02 2013-09-12 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263694A (en) * 1992-03-23 1993-10-12 Mazda Motor Corp Failure sensing device for fuel supply system
JP2008128160A (en) * 2006-11-24 2008-06-05 Denso Corp Control device of internal combustion engine
JP2013181486A (en) * 2012-03-02 2013-09-12 Toyota Motor Corp Control device for internal combustion engine

Also Published As

Publication number Publication date
JP6367045B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
US8011231B2 (en) Control apparatus for internal combustion engine
EP2284378A2 (en) Engine control apparatus
JP4861915B2 (en) Control device for internal combustion engine
US7448360B2 (en) Controller of internal combustion engine
JP2008261289A (en) Abnormality diagnostic device of air-fuel ratio sensor
JP6286236B2 (en) Engine system abnormality determination device
JP2011043125A (en) In-cylinder gas quantity estimating device of internal combustion engine
JP2002180889A (en) Detection method of intake temperature after supercharging, operation controller and cooling abnormality detector for intercooler in supercharging internal combustion engine system
JP2005048659A (en) Fuel temperature estimation device
JP2009250075A (en) Fuel injection amount control device and fuel injection system
JP6367045B2 (en) Fuel injection control device and fuel injection control method
JP2012207656A (en) Control device of internal combustion engine
US20130110378A1 (en) Control Device of Engine
JP5493585B2 (en) Control device for internal combustion engine
JP2005320964A (en) Injection quantity control device of diesel engine
JP4710716B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009180098A (en) Fuel controller of engine
JP2008101478A (en) Fuel injection control device
US10502156B2 (en) Engine controller based on atmospheric pressure
JP2019183694A (en) Cetane number estimation device
JP5637098B2 (en) Control device for internal combustion engine
US20060150962A1 (en) Air-fuel ratio feedback control apparatus for engines
JP5712819B2 (en) Control device for internal combustion engine
JP2005201163A (en) Control device for internal combustion engine
JP2005256832A (en) Secondary air supply system for internal combustion engine, and fuel injection amount control device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6367045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250