JP2016042233A - Flow rate measuring system for cool air from porous opening type double floor panels - Google Patents
Flow rate measuring system for cool air from porous opening type double floor panels Download PDFInfo
- Publication number
- JP2016042233A JP2016042233A JP2014165184A JP2014165184A JP2016042233A JP 2016042233 A JP2016042233 A JP 2016042233A JP 2014165184 A JP2014165184 A JP 2014165184A JP 2014165184 A JP2014165184 A JP 2014165184A JP 2016042233 A JP2016042233 A JP 2016042233A
- Authority
- JP
- Japan
- Prior art keywords
- double floor
- ict equipment
- opening
- ict
- cool air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、データセンタ・通信ビルにおける二重床空調システムの、多孔開口式二重床パネルの冷気流速計測システムに関し、より詳細には、二重床下から噴き上がる冷気の開口場所における相対的な流速の大きさを計測するシステムに関する。 TECHNICAL FIELD The present invention relates to a cold flow velocity measurement system for a double-floored double-floor panel in a double-floor air conditioning system in a data center / communication building, and more particularly, relative to the opening location of the cold air blowing from below the double floor. The present invention relates to a system for measuring the magnitude of a flow velocity.
近年、インターネット及びICT(Information and Communication Technology)サービス等の普及に伴い、通信ビル及びデータセンタ等に設置された機器による電力の消費が大幅に増加している。特に、通信機器やサーバーマシン(以下、ICT機器)の高機能化・高密度化によって、これらの機器から生じる発熱量が急速に増加してきている。 In recent years, with the spread of the Internet and ICT (Information and Communication Technology) services and the like, power consumption by devices installed in communication buildings, data centers, and the like has increased significantly. In particular, the amount of heat generated from these devices is rapidly increasing due to the higher functionality and higher density of communication devices and server machines (hereinafter referred to as ICT devices).
通信ビル及びデータセンタ等に設置されたICT機器は、適温に温調された専用の稼働ルーム(空間)内に、複数台を整然と整列させた状態にして設置されている。 ICT devices installed in communication buildings, data centers, and the like are installed in a state where a plurality of units are arranged in an orderly manner in a dedicated operation room (space) that is temperature-controlled at an appropriate temperature.
図1は、ICT機器が設置された、ICT機器稼動ルームの構成を示す側面図である(特許文献1参照)。ICT機器稼働ルーム100には、ICT機器111−1〜mが収納され、1又は複数列に配列されたICT機器専用ラック(機器収納架)110−1〜nと、ICT機器から排出された暖気101を回収し、ICT機器を冷却する冷気102を供給する空調機120とが配置されている。ICT機器稼働ルーム100の床面は2重床構造に形成され、床131と二重床132との間に、空調機120からの冷気102が供給されるフリーアクセスフロア130が形成される。 FIG. 1 is a side view showing the configuration of an ICT equipment operating room in which ICT equipment is installed (see Patent Document 1). In the ICT equipment operating room 100, ICT equipment 111-1 to 111-m are stored, and racks (device storage racks) 110-1 to 110-n arranged in one or more rows and warm air discharged from the ICT equipment. An air conditioner 120 that collects 101 and supplies cold air 102 that cools the ICT equipment is disposed. The floor surface of the ICT equipment operating room 100 is formed in a double floor structure, and a free access floor 130 to which the cold air 102 from the air conditioner 120 is supplied is formed between the floor 131 and the double floor 132.
ICT機器専用ラック110−1〜nは、それぞれICT機器111−1〜mのうちの1台分の横幅と奥行きを有し、ICT機器111−1〜mのうちの複数台が上下方向の間に隙間を確保しつつ平行に積み上げる形態でラック側面に取付支持されている。空調機120は、上面がICT機器111−1〜mから排出された暖気101の吸込面であり底面がICT機器111−1〜mへの冷気102の供給面である。冷気102は、空調機120から二重床132下のフリーアクセスフロア130内に供給される。ICT専用ラック110−1〜nの設置位置の脇は、フリーアクセスフロア130内の冷気をICT機器111−1〜mに対して排出するための開口パネル133−1〜nが敷かれ、二重床の一部を構成している。 Each of the ICT equipment dedicated racks 110-1 to 110-n has a width and a depth corresponding to one of the ICT equipments 111-1 to 111-m, and a plurality of the ICT equipments 111-1 to 111-m are arranged in the vertical direction. Are mounted and supported on the side of the rack in a form of being stacked in parallel while ensuring a gap. In the air conditioner 120, the upper surface is a suction surface of the warm air 101 discharged from the ICT devices 111-1 to 111-m, and the bottom surface is a supply surface of the cold air 102 to the ICT devices 111-1 to 111-m. The cold air 102 is supplied from the air conditioner 120 into the free access floor 130 below the double floor 132. Next to the installation positions of the ICT dedicated racks 110-1 to 110-n, opening panels 133-1 to 133-n for discharging the cool air in the free access floor 130 to the ICT devices 111-1 to 111-m are laid. It is part of the floor.
空調機120から二重床132下のフリーアクセスフロア130内に排出された冷気102は、開口パネル133−1〜nの開口(孔)を通り、ICT機器稼働ルーム100内の二重床132上に噴き出し、ICT機器専用ラック110−1〜n内のICT機器111−1〜mに供給される。冷気102はICT機器111−1〜mにより暖められ暖気101となり、空調機130の上面から回収される。 The cold air 102 discharged from the air conditioner 120 into the free access floor 130 below the double floor 132 passes through the openings (holes) of the opening panels 133-1 to 133-n and is on the double floor 132 in the ICT equipment operating room 100. And supplied to the ICT devices 111-1 to 111-m in the ICT device dedicated racks 110-1 to 110-n. The cold air 102 is heated by the ICT devices 111-1 to 111-m to become the warm air 101 and is collected from the upper surface of the air conditioner 130.
空調機120からの冷気102は、フリーアクセスフロア130内に供給されるため、ICT機器111−1〜mにより暖められた暖気101との混合が抑制され、ICT機器111−1〜mの冷却の効率化を図ることができる。 Since the cold air 102 from the air conditioner 120 is supplied into the free access floor 130, mixing with the warm air 101 heated by the ICT devices 111-1 to 111-m is suppressed, and the cooling of the ICT devices 111-1 to 111-m is suppressed. Efficiency can be improved.
図2(a)及び(b)は、それぞれICT機器稼動ルーム100の二重床132に設置される開口パネル133−1〜nの例を示す斜視図である。開口パネル133−1〜nは、パネル表面に図2(a)に示すような丸い孔、または図2(b)に示すような四角の孔が多数設けられ、それぞれの孔開き箇所から空気が噴き上がる多孔開口式二重床パネルが一般的である。 2A and 2B are perspective views showing examples of the opening panels 133-1 to 133-n installed on the double floor 132 of the ICT equipment operating room 100. The opening panels 133-1 to 133-n are provided with a large number of round holes as shown in FIG. 2A or square holes as shown in FIG. Spouted perforated double floor panels are common.
図3は、図1のICT機器稼動ルーム100における冷気及び暖気の様子を表した図である。図3(a)ICT機器稼動ルーム100の上面図であり、図3(b)は図3(a)のA−A´における断面の冷気及び暖気のCFD(数値流体解析)の解析結果を示す図である。図中の網掛け部分の色の濃い部分が流速が早く、色の薄い部分は流速が遅い部分である。図2(a)又は(b)の多孔開口式二重床パネルは、図3(b)に示すように、フリーアクセスフロア内の圧力分布、及びフリーアクセスフロア内に設置されたケーブル等の障害物有無等々の種々の要因により、同一の開口径を有していたとしても、前記空調機の位置と開口位置との関係によって噴き上がる流量が変化することが一般的である。このため、データセンタにおいてICT機器を効率的に冷却する場合、多孔開口式二重床パネル(開口パネル133−1〜n)から噴き上がる冷気の各位置での流量の相対的な大きさを知ることが重要となる。 FIG. 3 is a diagram showing the state of cool air and warm air in the ICT equipment operating room 100 of FIG. FIG. 3 (a) is a top view of the ICT equipment operating room 100, and FIG. 3 (b) shows the CFD (computational fluid analysis) analysis results of cold air and warm air in section AA ′ in FIG. 3 (a). FIG. In the figure, the shaded portion of the shaded portion has a high flow rate, and the lightly colored portion has a slow flow rate. As shown in FIG. 3 (b), the perforated double floor panel shown in FIG. 2 (a) or 2 (b) has a pressure distribution in the free access floor and obstructions such as cables installed in the free access floor. Even if the same opening diameter is provided due to various factors such as the presence or absence of an object, it is common that the flow rate of the jet changes depending on the relationship between the position of the air conditioner and the opening position. For this reason, when the ICT equipment is efficiently cooled in the data center, the relative magnitude of the flow rate at each position of the cold air that blows out from the perforated-open double floor panel (open panel 133-1 to n) is known. It becomes important.
ここで、図4は、図1のICT機器稼動ルーム100における冷気及び暖気の様子を表した図である。図4(a)ICT機器稼動ルーム100の上面図であり、図4(b)は図4(a)のB−B´における断面の冷気及び暖気のPIV(粒子画像流速測定法)による計測結果を示す図であり、図4(c)は図4(a)のB−B´における断面の冷気及び暖気ICT機器稼動ルーム100のB−B´における冷気及び暖気のCFD(数値流体解析)による解析結果を示す図である。 Here, FIG. 4 is a diagram showing the state of cold air and warm air in the ICT equipment operating room 100 of FIG. FIG. 4 (a) is a top view of the ICT equipment operating room 100, and FIG. 4 (b) is a measurement result by PIV (Particle Image Velocity Measurement Method) of cold and warm air in a cross section at BB ′ in FIG. 4 (a). FIG. 4C is a cross-sectional view of cold air and warm air in BB ′ of FIG. 4A according to CFD (computational fluid analysis) of cold air and warm air in BB ′ of the ICT equipment operating room 100. It is a figure which shows an analysis result.
多孔開口式二重床パネル(開口パネル133−1〜n)の各設置位置での噴き上がる流体(冷気)の流速を測定した際、多孔開口式二重床パネルの孔開き箇所の近傍に風速計を設置し、計測することが考えられた。 When the flow velocity of the fluid (cold air) spouted at each installation position of the perforated double floor panel (open panels 133-1 to n) is measured, the wind speed is in the vicinity of the perforated portion of the perforated double floor panel. It was considered to install a meter and measure.
通常、ICT機器稼動ルームにおいて開口パネルからの噴き上がり流体の流速を計測するのには、1つの風速センサを用いて、複数場所を移動しながら計測する。常設のセンサを複数置くと、風速センサがあることで、通路の通行の邪魔になり、また、開口パネルの孔を通る空気の障害物になり、空気の循環を阻害する要因にもなるからである。 Usually, in order to measure the flow velocity of the fluid ejected from the opening panel in the ICT equipment operating room, measurement is performed while moving a plurality of places by using one wind speed sensor. If there are multiple permanent sensors, the presence of a wind speed sensor will obstruct passage of the passage, and it will become an obstacle to air passing through the hole in the opening panel, which will also hinder air circulation. is there.
しかし、図4(b)又は(c)に示すように、同一の多孔開口式二重床パネルであっても孔開き箇所の位置によって流速が大きく異なるため、1つの風速センサを用いて流速を測定する場合、多孔開口式二重床パネルの各設置位置にて、それぞれ特定の孔開き箇所で流速を測定すると、多孔開口式二重床パネルの各設置位置での噴き上がる流体の流速の相対的大小を正しく測定できず、各開口パネルと空調機との位置関係による噴き上がり流体の流速の相対的な大小を測定することができなかった。従って、正確な流速を測定するために孔開き箇所を複数点測定して平均を取ることが強いられ、1枚の多孔開口式二重床パネルから噴き上がる風速を測定するのに複数の穴あき箇所からの噴き上がり流体の流速を計測させる必要があった。 However, as shown in FIG. 4 (b) or (c), even with the same porous aperture type double floor panel, the flow rate varies greatly depending on the position of the perforated part. When measuring, if the flow velocity is measured at each specific opening location at each installation position of the perforated double floor panel, the relative flow rate of the fluid that spouts at each installation position of the perforated double floor panel is measured. The relative magnitude of the flow velocity of the spouted fluid due to the positional relationship between each opening panel and the air conditioner could not be measured. Therefore, in order to measure the accurate flow velocity, it is compelled to measure several points at the perforated points and take the average, and to measure the wind speed spouted from one perforated double floor panel It was necessary to measure the flow velocity of the fluid ejected from the location.
上記の課題を解決するために、本発明は、このような孔開き箇所が多数設けられた多孔開口式二重床パネルにおいて、二重床より噴き上がる流体の流速を短時間かつ少ない測定回数で測定し、流速の大小を計測するシステムを提供することを目的としている。 In order to solve the above-described problems, the present invention provides a porous opening type double floor panel provided with a large number of perforated portions, and the flow rate of the fluid spouted from the double bed can be reduced in a short time and with a small number of measurements. The purpose is to provide a system that measures and measures the magnitude of the flow velocity.
上記目的を達成するために、本発明の第1の態様は、ICT機器稼動ルーム内のICT機器を冷却する冷気の流速を計測するシステムであって、空調機からの冷気が下を流れ、ICT機器が上面に配置される二重床と、前記二重床の前記ICT機器が配置される脇に設置された開口パネルであって、前記二重床の一部を構成し、前記二重床の下を流れる冷気を、前記ICT機器稼動ルーム内の前記ICT機器に供給するための複数の小さな孔が開口する、開口パネルと、前記開口パネル上に配置され、前記開口パネルの孔からの冷気を整流する流体吸引ノズルであって、流入口が前記開口パネルに向かって拡径したラッパ形状であり、前記流入口は、前記開口パネル上の複数の孔に跨る開口径を有する、流体吸引ノズルと、前記流体吸引ノズルの流出口に設置され、前記流体吸引ノズルからの冷気の流速を計測する、風速計とを備えることを特徴とする。 In order to achieve the above object, according to a first aspect of the present invention, there is provided a system for measuring a flow rate of cool air that cools ICT equipment in an ICT equipment operating room, in which cool air from an air conditioner flows downward, and ICT A double floor on which equipment is arranged, and an open panel installed on the side of the double floor on which the ICT equipment is arranged, constituting a part of the double floor, A plurality of small holes for supplying the cold air flowing under the ICT equipment in the ICT equipment operating room, an opening panel disposed on the opening panel, and the cold air from the openings of the opening panel A fluid suction nozzle for rectifying the fluid, the inlet having a trumpet shape whose diameter is expanded toward the opening panel, and the inlet has an opening diameter spanning a plurality of holes on the opening panel. And the fluid suction nose Is installed in the outlet to measure the flow rate of the cold air from the fluid suction nozzles, characterized in that it comprises a wind gauge.
また、本発明の第2の態様は、第1の態様のシステムであって、前記風速計には、処理装置が接続され、前記処理装置において前記風速計からの信号を処理し、記憶することを特徴とする。 Further, a second aspect of the present invention is the system according to the first aspect, wherein a processing device is connected to the anemometer, and a signal from the anemometer is processed and stored in the processing device. It is characterized by.
また、本発明の第3の態様は、第1又は第2の態様のシステムであって、前記流体吸引ノズルは、前記流入口の開口径と前記流出口の開口径との比が、4以上対3で拡径されていることを特徴とする。 A third aspect of the present invention is the system according to the first or second aspect, wherein the fluid suction nozzle has a ratio of an opening diameter of the inlet to an opening diameter of the outlet of 4 or more. The diameter is increased by a pair 3.
本発明によれば、多孔開口式二重床パネルから噴き上がる流速の、空調機との位置関係によって異なる流速の相対的大小を、各パネル一度の測定で測定することが可能である。 According to the present invention, it is possible to measure the relative magnitude of the flow velocity that is spouted from the perforated-opening double floor panel depending on the positional relationship with the air conditioner by measuring each panel once.
以下、図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図5は、本発明の一実施形態にかかる多孔開口式二重床パネルの噴き上がり流速計測システムが導入されたICT機器稼動ルーム500の構造を示す図である。ICT機器稼動ルーム500には、ICT機器511−1〜mが収納され、1又は複数列に配列されたICT機器専用ラック(機器収納架)510−1〜nと、ICT機器から排出された暖気を回収し、ICT機器を冷却する冷気を供給する空調機520とが配置されている。ICT機器稼働ルーム500の床面は2重床構造に形成され、床531と二重床532との間に、空調機520からの冷気が供給されるフリーアクセスフロア530が形成される。 FIG. 5 is a diagram showing a structure of an ICT equipment operating room 500 in which a system for measuring a flow velocity of a blow-up type double floor panel according to an embodiment of the present invention is introduced. In the ICT equipment operating room 500, ICT equipment 511-1 to m are stored, racks for exclusive use of ICT equipment (device storage racks) 510-1 to 510-n arranged in one or a plurality of rows, and warm air discharged from the ICT equipment. And an air conditioner 520 that supplies cool air for cooling the ICT equipment. The floor surface of the ICT equipment operating room 500 is formed in a double floor structure, and a free access floor 530 to which cold air from the air conditioner 520 is supplied is formed between the floor 531 and the double floor 532.
ICT機器専用ラック510−1〜nは、それぞれICT機器511−1〜mのうちの1台分の横幅と奥行きを有し、ICT機器511−1〜mのうちの複数台が上下方向の間に隙間を確保しつつ平行に積み上げる形態でラック側面に取付支持されている。空調機620は、上面がICT機器511−1〜mから排出された暖気501の吸込面であり底面がICT機器511−1〜mへの冷気502の供給面である。冷気502は、空調機520から二重床532下のフリーアクセスフロア530内に供給される。ICT専用ラック510−1〜nの設置位置の脇には、フリーアクセスフロア530内の冷気をICT機器511−1〜mに対して排出するための多孔開口式二重床パネルである開口パネル533−1〜nが敷かれ、二重床の一部を構成している(開口パネルの数とICTラックの数は同数でなくともよい)。 Each of the ICT equipment dedicated racks 510-1 to 510-n has a width and a depth corresponding to one of the ICT equipments 511-1 to 511-1m, and a plurality of the ICT equipment 511-1 to 51m are between the vertical directions. Are mounted and supported on the side of the rack in a form of being stacked in parallel while ensuring a gap. In the air conditioner 620, the upper surface is a suction surface for the warm air 501 discharged from the ICT devices 511-1 to 511-m, and the bottom surface is a supply surface for the cold air 502 to the ICT devices 511-1 to m. The cold air 502 is supplied from the air conditioner 520 into the free access floor 530 below the double floor 532. Beside the installation positions of the ICT dedicated racks 510-1 to n, an opening panel 533 which is a porous opening type double floor panel for discharging the cool air in the free access floor 530 to the ICT equipment 511-1 to m. -1 to n are laid and constitute a part of the double floor (the number of opening panels and the number of ICT racks may not be the same).
空調機520から二重床532下のフリーアクセスフロア530内に提供された冷気502は、開口パネル533−1〜nの開口(孔)を通り、ICT機器稼働ルーム500内の二重床532上に噴き出し、ICT機器専用ラック510−1〜n内のICT機器511−1〜mに供給される。冷気502はICT機器511−1〜mにより暖められ暖気501となり、空調機520の上面から回収される。 The cold air 502 provided in the free access floor 530 below the double floor 532 from the air conditioner 520 passes through the openings (holes) of the open panels 533-1 to n and is on the double floor 532 in the ICT equipment operating room 500. And are supplied to the ICT devices 511-1 to 511-m in the ICT device dedicated racks 510-1 to 510-n. The cool air 502 is heated by the ICT devices 511-1 to 511-1m to become warm air 501 and is collected from the upper surface of the air conditioner 520.
開口パネル533−1〜nのいずれかの上面には、開口パネル533−1〜nの複数の孔開き箇所から噴き上がる流体を吸引するための流体吸引ノズル534と、吸引した流体の流速を計測するための風速計535と、風速計535の信号を処理・記録するための処理装置536とが設置される。 On the upper surface of any one of the opening panels 533-1 to n, a fluid suction nozzle 534 for sucking fluid ejected from a plurality of openings of the opening panels 533-1 to n and the flow velocity of the sucked fluid is measured. An anemometer 535 for processing and a processing device 536 for processing and recording the signal of the anemometer 535 are installed.
流体吸引ノズル534及び風速計535は、開口パネル533−1〜nのいずれかの上に設置し、開口パネルからの噴き上がり冷気の風速を計測する。一定時間経過後、流体吸引ノズル534及び風速計535の設置場所を変更し、開口パネル533−1〜nの前回計測場所とは別の場所の噴き上がり冷気の風速を計測する。このようにして、開口パネル533−1〜n上の複数個所の噴き上がり冷気の風速を計測する。 The fluid suction nozzle 534 and the anemometer 535 are installed on any one of the opening panels 533-1 to 533 -n, and measure the wind speed of the cold air blown up from the opening panel. After a certain period of time, the installation location of the fluid suction nozzle 534 and the anemometer 535 is changed, and the wind speed of the cold air blown up at a location different from the previous measurement location of the opening panels 533-1 to n is measured. In this way, the wind speed of the cool air blown up at a plurality of positions on the opening panels 533-1 to 533-n is measured.
図6は、図5のICT機器稼動ルーム500内の開口パネルの噴き上がり流速計測システムの開口パネルと流体吸引ノズルとの構成を示す図であり、図7は、開口パネルに形成された孔と流体吸引ノズルとの大きさを比較した図である。 FIG. 6 is a diagram showing the configuration of the opening panel and the fluid suction nozzle of the spout flow velocity measurement system for the opening panel in the ICT equipment operating room 500 of FIG. 5, and FIG. 7 shows the holes formed in the opening panel. It is the figure which compared the magnitude | size with a fluid suction nozzle.
流体吸引ノズル620は、開口パネル610に形成された複数の孔611から噴き上がる流体601を吸引し、流速を測定するため、流れの上流方向である床方向に拡径したラッパ形状であり、開口パネル610の真上の近傍の位置に配置される。冷気(流体601)を吸引する側である流体吸引ノズル620の流入口621は、孔の設けられた場所によってばらつきのある流体601の流速をそれぞれ整流し、それぞれの場所の流体601のばらつきによる計測誤差の影響を軽減するため、図7に示すように、開口パネル610の複数の孔611に跨る径を有する。流体吸引ノズル620は、流入口(621)の径と流出口(622)の径の比が4以上:3で拡径されている。 The fluid suction nozzle 620 has a trumpet shape whose diameter is increased in the floor direction, which is the upstream direction of the flow, in order to suck the fluid 601 ejected from the plurality of holes 611 formed in the opening panel 610 and measure the flow velocity. It is disposed at a position near the panel 610. The inlet 621 of the fluid suction nozzle 620 on the side for sucking cold air (fluid 601) rectifies the flow rate of the fluid 601 that varies depending on the place where the hole is provided, and measures the variation due to the variation of the fluid 601 in each location. In order to reduce the influence of the error, the diameter spans the plurality of holes 611 of the opening panel 610 as shown in FIG. The fluid suction nozzle 620 is enlarged in a ratio of the diameter of the inlet (621) to the outlet (622) of 4 or more: 3.
また、風速計630は、吸引した流体601の流速を計測するため、流体吸引ノズル620の流れの下流方向(流出口622側)に設置されている。風速計630は、流体吸引ノズル620によって整流された流体601の、垂直方向に噴き上がる流速を測定するため、流体吸引ノズル620の流れの下流方向(流出口622の真上)の近傍の位置に、流体601の垂直成分を測定する向きに配置される。風速計630は、流速の時間変動を処理するため、信号を記録・処理するための処理装置640に、信号線641により接続される。なお、処理装置640は、図5のようにICT機器稼動ルーム500の中に設置してもよいし、ICT機器稼動ルーム500の外に設置してもよい。 The anemometer 630 is installed in the downstream direction (outlet 622 side) of the flow of the fluid suction nozzle 620 in order to measure the flow velocity of the sucked fluid 601. The anemometer 630 measures the flow velocity of the fluid 601 rectified by the fluid suction nozzle 620 in the vertical direction, so that the anemometer 630 is positioned at a position near the downstream direction of the fluid suction nozzle 620 (directly above the outlet 622). , Arranged to measure the vertical component of the fluid 601. The anemometer 630 is connected by a signal line 641 to a processing device 640 for recording and processing signals in order to process time fluctuations in the flow velocity. The processing device 640 may be installed in the ICT equipment operating room 500 as shown in FIG. 5 or may be installed outside the ICT equipment operating room 500.
開口パネル610に設けられた複数の孔から吹き上がる流体は、流体吸引ノズル620の流入口601に入り、整流され、流出口622に設けられた風速計630により計測される。開口パネル610の各孔611から噴き上がる流体は、孔611が設けられた場所及び時間により変化し、それぞれ一定の風速により噴き上がることはないが、開口パネル610の複数の孔611に跨る流体吸引ノズル620により整流されるため、開口パネル610の一定範囲の流体の流速をまとめて計測することができ、開口場所及び時間による噴き上がり流体の流速のばらつきが軽減される。 The fluid blown up from the plurality of holes provided in the opening panel 610 enters the inlet 601 of the fluid suction nozzle 620, is rectified, and is measured by the anemometer 630 provided at the outlet 622. The fluid that spouts from each hole 611 of the opening panel 610 varies depending on the place and time at which the hole 611 is provided and does not spout at a constant wind speed, but the fluid suction across the plurality of holes 611 of the opening panel 610 Since the flow is rectified by the nozzle 620, the flow velocity of the fluid in a certain range of the opening panel 610 can be collectively measured, and variation in the flow velocity of the jetted fluid due to the opening location and time is reduced.
本発明においては、開口パネルの一定範囲の流体の流速をまとめて計測することができ、開口場所及び時間による噴き上がり流体の流速のばらつきが軽減される。したがって、噴き上がり流体の流速の安定した計測結果が得られ、各パネルと空調機との位置関係によって異なる相対的な流速の大小を測定することができる。 In the present invention, the flow velocity of the fluid in a certain range of the opening panel can be collectively measured, and variations in the flow velocity of the jetted fluid due to the opening location and time are reduced. Therefore, a stable measurement result of the flow velocity of the spouted fluid can be obtained, and the relative flow velocity that varies depending on the positional relationship between each panel and the air conditioner can be measured.
したがって、少ない測定回数により各パネルと空調機との位置関係によって異なる相対的な流速の大小を測定することができる、つまり、人の測定に要する稼働が少なくすむ。また、噴き上がり流体の流速の安定した計測結果が得られる。 Therefore, it is possible to measure the relative flow velocity that varies depending on the positional relationship between each panel and the air conditioner with a small number of measurements, that is, the operation required for human measurement is reduced. In addition, a stable measurement result of the flow velocity of the jetted fluid can be obtained.
[実施例]
図8は、本発明にかかる多孔開口式二重床パネルの噴き上がり流速計測システムにおけるICT機器稼動ルーム800内の機器配置の一例を示す図である。ICT機器稼動ルーム800内には二重床上にICT機器を収納したICT機器専用ラック810−1〜5と、空調機820が設置されている。空調機820は、ICT機器稼動ルーム800の長手方向の一端の壁面に隣接して設置され、ICT専用ラック810−1〜5は、ICT機器稼動ルーム800の長手方向に、空調機820側から順に810−1、810−2、810−3、810−4、810−5の順に一列に配列されている。空調機820とICT専用ラック810−1との距離は1800[mm]である。また、フリーアクセスフロアの天地幅は450[mm]である。
[Example]
FIG. 8 is a diagram showing an example of equipment arrangement in the ICT equipment operation room 800 in the system for measuring the flow velocity of a blown-up double floor panel according to the present invention. In the ICT equipment operation room 800, ICT equipment dedicated racks 810-1 to 810-5 in which ICT equipment is stored on a double floor and an air conditioner 820 are installed. The air conditioner 820 is installed adjacent to the wall surface at one end in the longitudinal direction of the ICT equipment operation room 800, and the ICT dedicated racks 810-1 to 810-5 are arranged in order from the air conditioner 820 side in the longitudinal direction of the ICT equipment operation room 800. 810-1, 810-2, 810-3, 810-4, and 810-5 are arranged in a line in this order. The distance between the air conditioner 820 and the ICT dedicated rack 810-1 is 1800 [mm]. The vertical width of the free access floor is 450 [mm].
ICT機器専用ラック810−1〜5それぞれの脇には2枚ずつ、合計10枚の開口パネル830−1〜10が、長手方向がICT機器稼動ルーム800の長手方向と直行するような方向に、それぞれ隣接して並んで配置されている。開口パネル830−1〜10のそれぞれは全長1200[mm]、全幅300[mm]であり、14[mm]φの開口孔が縦・横6[mm]間隔で複数形成された開口群を複数有している。 A total of 10 open panels 830-1 to 10-2 on each side of each ICT equipment rack 810-1 to 5, in a direction in which the longitudinal direction is perpendicular to the longitudinal direction of the ICT equipment operating room 800, They are arranged next to each other. Each of the opening panels 830-1 to 830-10 has a total length of 1200 [mm] and a total width of 300 [mm], and includes a plurality of aperture groups in which a plurality of 14 [mm] φ aperture holes are formed at intervals of 6 [mm] vertically and horizontally. Have.
流体吸引ノズル840および風速計850は、開口パネルの複数の開口群のうちのひとつの開口群の上部に設置される。流体吸引ノズル840は、拡径された流入口径が70[mm]、流出口径が46[mm]、全長が70[mm]であり、流入口が多孔開口式二重床パネルから高さ100[mm]の位置に、開口パネルに対して拡径する向きに配置される。 The fluid suction nozzle 840 and the anemometer 850 are installed on the upper part of one of the plurality of opening groups of the opening panel. The fluid suction nozzle 840 has an expanded inlet diameter of 70 [mm], an outlet diameter of 46 [mm], a total length of 70 [mm], and the inlet is 100 [height] from the perforated double floor panel. mm] in the direction of expanding the diameter relative to the opening panel.
風速計850は、容積式・電磁計測式・超音波式等々様々あるが、本実施例では熱式質量流量計を用い、流体吸引ノズル840から噴出された流体の垂直成分の流速を0[mm/s]〜4[mm/s]のレンジ幅で測定するため、流体吸引ノズル840の流出口部分、即ち多孔開口式二重床パネルから高さ170[mm]に、流体吸引ノズル840の流出口の中心付近に垂直成分を測定する向きで配置される。 There are various types of anemometers 850 such as a positive displacement type, an electromagnetic measurement type, and an ultrasonic type. In this embodiment, a thermal mass flowmeter is used, and the flow velocity of the vertical component of the fluid ejected from the fluid suction nozzle 840 is 0 [mm. / S] to 4 [mm / s], the flow rate of the fluid suction nozzle 840 from the outlet portion of the fluid suction nozzle 840, that is, the height of 170 [mm] from the double-opened double floor panel is measured. It is arranged in the direction of measuring the vertical component near the center of the exit.
開口パネルの噴き上がり流体は、それぞれ、空調機820からそれぞれ2100[mm]、2700[mm]、3300[mm]、3800[mm]の位置において測定される(開口パネル830−2、4、6、8上)。ここで、流体吸引ノズル840及び風速計850が取り付けられる位置を、空調機側から順にA点、B点、C点、D点として、開口パネルから噴き上がる流体を計測する。また、比較例として、A点、B点、C点、D点と同じ位置に、流体吸引ノズル840を使用せずに、風速計850のみにより開口パネルの噴き上がり流体の流速を計測する(空調機側からそれぞれA´点、B´点、C´点、D´点とする)。 The fluid ejected from the opening panel is measured from the air conditioner 820 at positions 2100 [mm], 2700 [mm], 3300 [mm], and 3800 [mm], respectively (opening panels 830-2, 4, 6). , 8 top). Here, the fluid spouted from the opening panel is measured with the positions at which the fluid suction nozzle 840 and the anemometer 850 are attached in order from the air conditioner side as A point, B point, C point, and D point. As a comparative example, the flow velocity of the fluid ejected from the opening panel is measured only by the anemometer 850 without using the fluid suction nozzle 840 at the same position as the points A, B, C, and D (air conditioning). (A ′ point, B ′ point, C ′ point, D ′ point from the machine side).
図9は、図8の多孔開口式二重床パネルの噴き上がり流速計測システムの流速計測の測定結果を示す図である。吹き上がり流体の流速は、それぞれ一定時間、流体吸引ノズ840を移動させて、A点、B点、C点、D点、D´点、C´点、B´点、A´点の順に計測する。図9のグラフの水平軸は時間、垂直軸は各測定箇所での風速計850の出力信号であり、風速計850からの出力が大きいほど風速が早いことを表わす。 FIG. 9 is a diagram showing the measurement result of the flow velocity measurement of the spout flow velocity measurement system of the porous aperture type double floor panel of FIG. The flow velocity of the blown-up fluid is measured in the order of point A, point B, point C, point D, point D ′, point C ′, point B ′, and point A ′ by moving the fluid suction nose 840 for a certain period of time. To do. The horizontal axis of the graph of FIG. 9 is time, and the vertical axis is the output signal of the anemometer 850 at each measurement location. The larger the output from the anemometer 850, the faster the wind speed.
本測定結果より、本実施例の流体計測ノズルを用いたA点、B点、C点、D点の測定結果は、流速の相対的大小がA<<B<C<<Dと見て取れる。一方、流体吸引ノズルを用いることなく多孔開口式二重床パネルから高さ170[mm]の位置に風速計を配置したA´点、B´点、C´点、D´点では、噴出し位置及び噴出し流体の流量の時間変動によるばらつきがあるため、流体吸引ノズルを設置した場合のように流速の相対的大小を見てとることができない。 From the measurement results, it can be seen that the measurement results at points A, B, C, and D using the fluid measurement nozzle of the present example are relative to the flow velocity as A << B << C << D. On the other hand, at the points A ′, B ′, C ′, and D ′ where an anemometer is arranged at a height of 170 mm from the perforated-open double floor panel without using a fluid suction nozzle Since the position and the flow rate of the ejected fluid vary due to time fluctuation, it is impossible to see the relative magnitude of the flow velocity as in the case where the fluid suction nozzle is installed.
以上のように、本発明における一実施形態によれば、多孔開口式二重床パネルから噴き上がる流速の、空調機との位置関係によって異なる相対的大小を、各パネル一度の測定で測定することが可能である。 As described above, according to one embodiment of the present invention, the relative magnitude of the flow velocity spouted from the perforated double floor panel, which varies depending on the positional relationship with the air conditioner, is measured by measuring each panel once. Is possible.
100、500、800 ICT機器稼動ルーム
101、501 暖気
102、502 冷気
110−1〜n、510−1〜n、810−1〜4 ICT機器専用ラック
111−1〜m、501−1〜m ICT機器
120、520、820 空調機
130、530 フリーアクセスフロア
131、531 床
132、532 二重床
133−1〜n、533−1〜n、610、830−1〜10 開口パネル
534、620、840 流体吸引ノズル
535、630、850 風速計
536、640 処理装置
611 孔
621 流入口
622 流出口
641 信号線
100, 500, 800 ICT equipment operation room 101, 501 Warm air 102, 502 Cold air 110-1 to n, 510-1 to n, 810-1 to 4 ICT equipment dedicated rack 111-1 to m, 501-1 to m ICT Equipment 120, 520, 820 Air conditioner 130, 530 Free access floor 131, 531 Floor 132, 532 Double floor 133-1-n, 533-1-n, 610, 830-1-10 Open panel 534, 620, 840 Fluid suction nozzles 535, 630, 850 Anemometers 536, 640 Processing device 611 Hole 621 Inlet 622 Outlet 641 Signal line
Claims (3)
空調機からの冷気が下を流れ、ICT機器が上面に配置される二重床と、
前記二重床の前記ICT機器が配置される脇に設置された開口パネルであって、前記二重床の一部を構成し、前記二重床の下を流れる冷気を、前記ICT機器稼動ルーム内の前記ICT機器に供給するための複数の小さな孔が開口する、開口パネルと、
前記開口パネル上に配置され、前記開口パネルの孔からの冷気を整流する流体吸引ノズルであって、流入口が前記開口パネルに向かって拡径したラッパ形状であり、前記流入口は、前記開口パネル上の複数の孔に跨る開口径を有する、流体吸引ノズルと、
前記流体吸引ノズルの流出口に設置され、前記流体吸引ノズルからの冷気の流速を計測する、風速計と
を備えることを特徴とするシステム。 A system for measuring the flow rate of cold air that cools ICT equipment in an ICT equipment operating room,
A double floor where the cold air from the air conditioner flows down and the ICT equipment is placed on the top surface;
An opening panel installed on the side where the ICT equipment of the double floor is arranged, and constitutes a part of the double floor, and cool air flowing under the double floor is converted into the ICT equipment operating room. An aperture panel in which a plurality of small holes for supplying to the ICT equipment in the aperture are opened;
A fluid suction nozzle that is disposed on the opening panel and rectifies cool air from a hole of the opening panel, and has an inlet formed in a trumpet shape with a diameter increasing toward the opening panel. A fluid suction nozzle having an opening diameter across a plurality of holes on the panel;
An anemometer installed at the outlet of the fluid suction nozzle and measuring the flow rate of the cold air from the fluid suction nozzle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014165184A JP2016042233A (en) | 2014-08-14 | 2014-08-14 | Flow rate measuring system for cool air from porous opening type double floor panels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014165184A JP2016042233A (en) | 2014-08-14 | 2014-08-14 | Flow rate measuring system for cool air from porous opening type double floor panels |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016042233A true JP2016042233A (en) | 2016-03-31 |
Family
ID=55591977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014165184A Pending JP2016042233A (en) | 2014-08-14 | 2014-08-14 | Flow rate measuring system for cool air from porous opening type double floor panels |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016042233A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109521493A (en) * | 2017-09-19 | 2019-03-26 | 杉野机械股份有限公司 | Foreign body detecting device and foreign matter checking method |
-
2014
- 2014-08-14 JP JP2014165184A patent/JP2016042233A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109521493A (en) * | 2017-09-19 | 2019-03-26 | 杉野机械股份有限公司 | Foreign body detecting device and foreign matter checking method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4261519A (en) | Air distribution system | |
Harpham et al. | Flow field of practical dual rectangular jets | |
US20140298839A1 (en) | Air-conditioning system | |
Zumbrunnen et al. | Convective heat transfer distributions on a plate cooled by planar water jets | |
CN107664263B (en) | A kind of gas bath device and control method and application | |
CN105588700A (en) | Evaluation device and method for complex flow regime and heat transfer effect of swirling impinging jet | |
Schmidt et al. | Raised-floor data center: perforated tile flow rates for various tile layouts | |
JP2016042233A (en) | Flow rate measuring system for cool air from porous opening type double floor panels | |
EP2631013B1 (en) | Coating thickness and distribution control wiping nozzle with excellent pressure uniformity | |
Bragança et al. | Airflow characteristics and thermal comfort generated by a multi-cone ceiling diffuser with and without inserted lobes | |
JP2003232544A (en) | Rectifying/distributing device for thermal stratifying heat storage tank | |
Firat et al. | Flow past a hollow cylinder with two spanwise rows of holes | |
Arghode et al. | Air flow management in raised floor data centers | |
CN108760368B (en) | Method for judging typical operating conditions of aerosol nozzle | |
US4214706A (en) | Air distribution system | |
Jung et al. | Pin-fin heat sink modeling and characterization | |
JP4796575B2 (en) | Cooling header for steel sheet cooling equipment | |
Cho et al. | The characteristics of wall confluent jets for ventilated enclosures | |
Enayatollahi et al. | Characterising the heat and mass transfer coefficients for a crossflow interaction of air and water | |
Mahalingam et al. | Ultrathin synthetic jets for thermal management of consumer electronics | |
KR102136291B1 (en) | Two-phase flow identification method | |
JP5451931B1 (en) | Server rack indoor system | |
JP2000241205A (en) | Fluid vibration type flow meter | |
Karimipanah et al. | Decay of momentum and velocity in an axisymmetric impinging jet | |
Cao et al. | Plane-air-jet corner zone modelling in a room ventilated by an active chilled beam |