[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015222646A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015222646A
JP2015222646A JP2014106429A JP2014106429A JP2015222646A JP 2015222646 A JP2015222646 A JP 2015222646A JP 2014106429 A JP2014106429 A JP 2014106429A JP 2014106429 A JP2014106429 A JP 2014106429A JP 2015222646 A JP2015222646 A JP 2015222646A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
material layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014106429A
Other languages
Japanese (ja)
Inventor
智明 ▲高▼井
智明 ▲高▼井
Tomoaki Takai
淳子 天野
Junko Amano
淳子 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2014106429A priority Critical patent/JP2015222646A/en
Publication of JP2015222646A publication Critical patent/JP2015222646A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery superior in high-rate endurance characteristic.SOLUTION: A nonaqueous electrolyte secondary battery according to the present invention comprises: an electrode body of a laminate structure including a positive electrode 50 including a positive electrode active material layer 54, a negative electrode 60 including a negative electrode active material layer 64 and a separator 70 for electrically isolating the positive and negative electrodes from each other. In the nonaqueous electrolyte secondary battery, a micro bubble buildup region 80 where micro bubbles having an average diameter of 10 μm or less are built up is formed between the negative electrode active material layer 64 and the separator 70.

Description

本発明は、非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池(リチウム二次電池)等の非水電解液二次電池は、既存の電池に比べて軽量且つエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として好ましく用いられている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries (lithium secondary batteries) are lighter and have higher energy density than existing batteries. It is used as a driving power source. Particularly, lithium ion secondary batteries that are lightweight and obtain high energy density are preferably used as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). Yes.

特開2009−289609号公報JP 2009-289609 A 国際公開第2013/108396号International Publication No. 2013/108396

ところで、非水電解液二次電池の用途(例えば車両の駆動用電源)のなかには、大きな充電レート(ハイレート)での充放電を繰り返す態様で使用されることが想定されるものがある。かかる電池には、ハイレート充放電の繰り返しに起因して発生し得る性能低下(電池抵抗の上昇等)の改善、即ちハイレート充放電に対する耐久性(ハイレート耐久特性)の向上が求められる。   Meanwhile, some non-aqueous electrolyte secondary battery applications (for example, power sources for driving a vehicle) are assumed to be used in such a manner that charging and discharging are repeated at a large charge rate (high rate). Such a battery is required to improve performance degradation (e.g., increase in battery resistance) that may occur due to repeated high-rate charge / discharge, that is, to improve durability against high-rate charge / discharge (high-rate durability characteristics).

ハイレート充放電を繰り返した非水電解液二次電池では、電極体内に浸透した非水電解液および塩の一部が電極体内を移動することによって、電極体内の塩濃度(電荷担体濃度、例えばリチウムイオン濃度)に場所による偏り(例えば、部分的な塩濃度の低下)が生じる場合がある。例えば、放電時には負極活物質から電荷担体が放出されるため負極活物質(負極活物質層)の体積が縮小するが、かかる負極活物質の体積の縮小の際に負極活物質層(負極)中に浸透している非水電解液が移動(例えば、負極活物質層の外部へ移動)することがある。塩濃度が相対的に低い部分では電池反応が相対的に遅くなり、電池全体としてのハイレート充放電性能(例えば入出力特性)が低下する虞がある。また、塩濃度が相対的に高い部分では電池反応が集中するため当該部分の劣化が促進される虞がある。これらの事象はいずれもハイレート耐久特性の低下要因になり得る。   In a non-aqueous electrolyte secondary battery that has repeatedly performed high-rate charge / discharge, a portion of the non-aqueous electrolyte and salt that have permeated into the electrode body migrates within the electrode body, so that the salt concentration in the electrode body (charge carrier concentration, for example, lithium There may be a deviation in ion concentration) depending on the location (for example, a partial decrease in salt concentration). For example, since the charge carrier is released from the negative electrode active material during discharge, the volume of the negative electrode active material (negative electrode active material layer) is reduced. When the volume of the negative electrode active material is reduced, the volume of the negative electrode active material layer (negative electrode) In some cases, the non-aqueous electrolyte that has permeated into the electrode moves (for example, moves outside the negative electrode active material layer). In a portion where the salt concentration is relatively low, the battery reaction is relatively slow, and there is a possibility that the high-rate charge / discharge performance (for example, input / output characteristics) of the entire battery is lowered. Further, since the battery reaction concentrates at a portion where the salt concentration is relatively high, there is a possibility that deterioration of the portion is promoted. Any of these events can be a factor in reducing the high-rate endurance characteristics.

特許文献1には、非水電解液が電極体外部へ流出することを防止することを目的として負極活物質層の一部に凹部を形成する技術が記載されている。本発明者らの検討によると、かかる技術によって非水電解液が電極体外部へ流出することは防止できるものの、電極体内(特に負極活物質層とセパレータとの対向面)での非水電解液の移動を抑制するには不十分であった。そのため、ハイレート耐久特性を向上する観点からは、負極活物質層内の塩濃度ムラ(例えば、局所的な塩濃度の低下)の抑制について改善の余地が認められた。また、特許文献1に記載の技術によると、凹部の形成面積に応じて負極活物質層の形成面積が減少し、電池容量が低下してしまうという背反があった。   Patent Document 1 describes a technique of forming a recess in a part of the negative electrode active material layer for the purpose of preventing the nonaqueous electrolyte from flowing out of the electrode body. According to the study by the present inventors, the non-aqueous electrolyte can be prevented from flowing out of the electrode body by such a technique, but the non-aqueous electrolyte in the electrode body (particularly, the surface facing the negative electrode active material layer and the separator). It was insufficient to suppress the movement of Therefore, from the viewpoint of improving the high-rate durability characteristics, there is room for improvement in suppressing salt concentration unevenness (for example, local decrease in salt concentration) in the negative electrode active material layer. Moreover, according to the technique described in Patent Document 1, there is a tradeoff in that the formation area of the negative electrode active material layer is reduced according to the formation area of the recess, and the battery capacity is reduced.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、電池容量を低下させることなく、ハイレート耐久特性(特にハイレート充放電に伴う電池抵抗の増大抑制)に優れた非水電解液二次電池を提供することである。   The present invention has been made in view of the above points, and its main purpose is non-aqueous electrolysis excellent in high-rate durability characteristics (particularly, suppression of increase in battery resistance accompanying high-rate charge / discharge) without reducing battery capacity. It is to provide a liquid secondary battery.

本発明者らは、過充電時に非水電解液(典型的には非水電解液中に添加しておいた過充電添加剤)が分解する際に負極活物質(負極活物質層)表面に生じるガスに着目した(特許文献2参照)。そして、鋭意検討の結果、負極活物質層とセパレータとの間にマイクロバブル(気泡)を配置することが、負極活物質層中の非水電解液の移動の抑制に効果的であることを見出し、本発明を完成するに至った。   When the non-aqueous electrolyte solution (typically, the over-charge additive added to the non-aqueous electrolyte solution) is decomposed during overcharge, the present inventors have applied the surface of the negative electrode active material (negative electrode active material layer) to the surface. Attention was paid to the generated gas (see Patent Document 2). As a result of intensive studies, it has been found that the arrangement of microbubbles (bubbles) between the negative electrode active material layer and the separator is effective in suppressing the movement of the non-aqueous electrolyte in the negative electrode active material layer. The present invention has been completed.

上記目的を実現すべく、本発明により、正極活物質層を備える正極と、負極活物質層を備える負極と、該正負極を電気的に隔離するセパレータとの積層構造を有する電極体を備える非水電解液二次電池であって、上記負極活物質層とセパレータとの間に平均直径10μm以下のマイクロバブルが集積したマイクロバブル集積領域が形成されていることを特徴とする非水電解液二次電池が提供される。   In order to achieve the above object, according to the present invention, there is provided an electrode body having a laminated structure of a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and a separator that electrically isolates the positive and negative electrodes. A nonaqueous electrolyte secondary battery, wherein a microbubble integration region in which microbubbles having an average diameter of 10 μm or less are integrated is formed between the negative electrode active material layer and the separator. A secondary battery is provided.

かかる構成とすることで、負極活物質層の形成可能領域を縮小することなく、負極活物質層内での非水電解液の移動を抑制することができる。特に、負極活物質層とセパレータとが対向する対向面において、該対向面に対して垂直方向である負極活物質層からセパレータ方向への非水電解液の移動、並びに、該対向面に対して水平方向である電極体中央部から電極体端部方向への非水電解液の移動を効果的に抑制することができる。これにより、負極活物質層内の塩濃度(電荷担体濃度、例えばリチウムイオン濃度)の偏り(例えば局所的な塩濃度の低下)を高度に抑制可能である。したがって、電池容量の維持とハイレート耐久特性の向上とを両立した非水電解液二次電池の提供を実現することができる。   With such a configuration, it is possible to suppress the movement of the non-aqueous electrolyte in the negative electrode active material layer without reducing the area where the negative electrode active material layer can be formed. In particular, in the facing surface where the negative electrode active material layer and the separator face each other, the non-aqueous electrolyte moves from the negative electrode active material layer in the direction perpendicular to the facing surface to the separator, and the facing surface It is possible to effectively suppress the movement of the non-aqueous electrolyte from the central portion of the electrode body, which is the horizontal direction, toward the end portion of the electrode body. Thereby, the deviation (for example, local fall of salt concentration) of the salt concentration (charge carrier concentration, for example, lithium ion concentration) in a negative electrode active material layer can be suppressed highly. Therefore, it is possible to provide a non-aqueous electrolyte secondary battery that can maintain both battery capacity and improve high-rate durability characteristics.

ここで、本明細書において上記マイクロバブルとは、直径がマイクロメートルオーダー又はそれ以下のサイズである微細な気泡のことであり、電池ケース内で発生する直径が10μm以下(特に好ましくは5μm以下)の気泡は、ここでいうマイクロバブルに包含される典型例である。なお、マイクロバブルの気泡の直径の下限値は特に限定されないが、典型的には直径0.1μm以上であり、より好ましいものは直径1μm以上である。   Here, in the present specification, the microbubble means a fine bubble having a diameter of the order of a micrometer or less, and a diameter generated in the battery case is 10 μm or less (particularly preferably 5 μm or less). These bubbles are typical examples included in the microbubbles referred to herein. The lower limit of the diameter of the microbubbles is not particularly limited, but typically the diameter is 0.1 μm or more, and more preferably the diameter is 1 μm or more.

本発明の一実施形態に係る非水電解液二次電池の内部構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the internal structure of the nonaqueous electrolyte secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電極体の積層構造を模式的に示す断面図である。It is sectional drawing which shows typically the laminated structure of the electrode body which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる非水電解液二次電池においてマイクロバブル集積層を形成する際の電圧特性を示すグラフである。It is a graph which shows the voltage characteristic at the time of forming a microbubble integrated layer in the non-aqueous-electrolyte secondary battery concerning one Embodiment of this invention. 図3におけるマイクロバブル形成範囲の電極体断面の電子顕微鏡(SEM)写真である。It is an electron microscope (SEM) photograph of the electrode body cross section of the microbubble formation range in FIG. 図3における電解液分解範囲における電極体断面の電子顕微鏡写真(SEM)写真である。It is an electron micrograph (SEM) photograph of the electrode body cross section in the electrolytic solution decomposition range in FIG. 一実施例と一比較例の電池それぞれのサイクル回数と内部抵抗増加率との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of each of the battery of one Example and one comparative example, and an internal resistance increase rate.

以下、適宜図面を参照しながら、本発明の好適な実施形態をリチウムイオン二次電池を例として説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施し得る。また、リチウムイオン二次電池は一例であり、本発明の技術思想は、その他の電荷担体(例えばナトリウムイオン)を備える他の非水電解液二次電池(例えばナトリウムイオン二次電池)にも適用される。   Hereinafter, a suitable embodiment of the present invention will be described by taking a lithium ion secondary battery as an example, with appropriate reference to the drawings. Note that matters other than matters specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be implemented based on the contents disclosed in the present specification and common general technical knowledge in the field. Further, the lithium ion secondary battery is an example, and the technical idea of the present invention is also applied to other non-aqueous electrolyte secondary batteries (for example, sodium ion secondary batteries) provided with other charge carriers (for example, sodium ions). Is done.

図1に示すリチウムイオン二次電池100は、大まかにいって、扁平形状の捲回電極体20と非水電解液(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されている。電池ケース30は、一端(電池の通常の使用状態における上端部に相当する。)に開口部を有する箱形(すなわち有底直方体状)のケース本体32と、該ケース本体32の開口部を封止する蓋体34とから構成される。電池ケース30の材質としては、例えば、アルミニウム、ステンレス鋼、ニッケルめっき鋼といった軽量で熱伝導性の良い金属材料が好ましく用いられ得る。   A lithium ion secondary battery 100 shown in FIG. 1 is roughly divided into a flat rectangular battery case (that is, an outer container) 30 in which a flat wound electrode body 20 and a nonaqueous electrolyte (not shown) are flat. Contained. The battery case 30 has a box-shaped (that is, bottomed rectangular parallelepiped) case main body 32 having an opening at one end (corresponding to the upper end in a normal use state of the battery), and the opening of the case main body 32 is sealed. And a lid 34 to be stopped. As a material of the battery case 30, for example, a light metal material having a good thermal conductivity such as aluminum, stainless steel, or nickel-plated steel can be preferably used.

また、図1に示すように、蓋体34には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル(例えば設定開弁圧0.3MPa〜1.0MPa程度)以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36と、非水電解液を注入するための注入口(図示せず)が設けられている。また、電池ケース30の内部には電池ケース30の内圧上昇により作動する電流遮断機構(Current Interrupt Device、CID)が設けられてもよい。   Further, as shown in FIG. 1, the lid 34 has positive and negative terminals 42 and 44 for external connection and the internal pressure of the battery case 30 at a predetermined level (for example, a set valve opening pressure of about 0.3 MPa to 1.0 MPa). A thin-walled safety valve 36 set so as to release the internal pressure when it rises above and an inlet (not shown) for injecting a non-aqueous electrolyte are provided. In addition, a current interrupt device (CID) that operates when the internal pressure of the battery case 30 is increased may be provided inside the battery case 30.

ここに開示される捲回電極体20は、図1および図2に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極60とを、2枚の長尺状のセパレータ70を介して積層した積層体が長尺方向に捲回され、扁平形状に成形されている。このような捲回電極体は、例えば、上記積層体を捲回した捲回体を側面方向から押しつぶして拉げさせることによって、扁平形状に成形することができる。   As shown in FIGS. 1 and 2, the wound electrode body 20 disclosed herein includes a positive electrode active material layer along a longitudinal direction on one side or both sides (here, both sides) of an elongated positive electrode current collector 52. The negative electrode 60 in which the negative electrode active material layer 64 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long negative electrode current collector 62. The laminated body laminated | stacked through the elongate separator 70 is wound by the elongate direction, and is shape | molded by the flat shape. Such a wound electrode body can be formed into a flat shape by, for example, crushing and ablating the wound body obtained by winding the laminated body from the side surface direction.

捲回電極体20の捲回軸方向の中央部分には、図1に示すように、捲回コア部分(即ち、正極50の正極活物質層54と、負極60の負極活物質層64と、セパレータ70とが積層されてなる積層構造)が形成されている。また、捲回電極体20の捲回軸方向の両端部では、正極活物質層非形成部分52aおよび負極活物質層非形成部分62aの一部が、それぞれ捲回コア部分から外方にはみ出ている。かかる正極側はみ出し部分(正極活物質層非形成部分52a)および負極側はみ出し部分(負極活物質層非形成部分62a)には、正極集電板42aおよび負極集電板44aがそれぞれ付設され、正極端子42および負極端子44とそれぞれ電気的に接続されている。   As shown in FIG. 1, a wound core portion (that is, a positive electrode active material layer 54 of the positive electrode 50, a negative electrode active material layer 64 of the negative electrode 60, and A laminated structure in which the separator 70 is laminated) is formed. In addition, at both ends in the winding axis direction of the wound electrode body 20, the positive electrode active material layer non-formed portion 52a and the negative electrode active material layer non-formed portion 62a partially protrude outward from the wound core portion. Yes. The positive electrode side protruding portion (positive electrode active material layer non-forming portion 52a) and the negative electrode side protruding portion (negative electrode active material layer non-forming portion 62a) are respectively provided with a positive electrode current collecting plate 42a and a negative electrode current collecting plate 44a. The terminal 42 and the negative terminal 44 are electrically connected to each other.

正極50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。正極活物質層54は、少なくとも正極活物質を含有する。かかる正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5、LiFePO等)が挙げられる。正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、アセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、PVDF等を使用し得る。 Examples of the positive electrode current collector 52 constituting the positive electrode 50 include an aluminum foil. The positive electrode active material layer 54 contains at least a positive electrode active material. Examples of the positive electrode active material include lithium composite metal oxides such as a layered structure and a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiFePO 4, etc.). The positive electrode active material layer 54 can include components other than the active material, such as a conductive material and a binder. As the conductive material, carbon black such as acetylene black (AB) and other (such as graphite) carbon materials can be suitably used. PVDF or the like can be used as the binder.

このような正極50は、例えば以下のように作成することができる。まず、正極活物質と必要に応じて用いられる材料とを適当な溶媒(例えばN−メチル−2−ピロリドン)に分散させ、ペースト状(スラリー状)の組成物を調製し、次に、該組成物の適当量を正極集電体52の表面に付与した後、乾燥によって溶媒を除去することによって形成することができる。また、必要に応じて適当なプレス処理を施すことによって正極活物質層54の性状(例えば、平均厚み、活物質密度、空孔率等)を調整し得る。   Such a positive electrode 50 can be produced as follows, for example. First, a positive electrode active material and a material used as necessary are dispersed in an appropriate solvent (for example, N-methyl-2-pyrrolidone) to prepare a paste-like (slurry) composition, and then the composition It can be formed by applying an appropriate amount of the product to the surface of the positive electrode current collector 52 and then removing the solvent by drying. Moreover, the properties (for example, average thickness, active material density, porosity, etc.) of the positive electrode active material layer 54 can be adjusted by performing an appropriate press treatment as necessary.

負極60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64は、少なくとも負極活物質を含有する。かかる負極活物質としては、例えば、黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、スチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボメチルセルロース(CMC)等を使用し得る。   Examples of the negative electrode current collector 62 constituting the negative electrode 60 include copper foil. The negative electrode active material layer 64 contains at least a negative electrode active material. As such a negative electrode active material, for example, a carbon material such as graphite, hard carbon, and soft carbon can be used. The negative electrode active material layer 64 can include components other than the active material, such as a binder and a thickener. As the binder, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carbomethylcellulose (CMC) can be used.

このような負極60は、例えば上述の正極50の場合と同様にして作製することができる。即ち、負極活物質と必要に応じて用いられる材料とを適当な溶媒(例えばイオン交換水)に分散させ、ペースト状(スラリー状)の組成物を調製し、次に、該組成物の適当量を負極集電体62の表面に付与した後、乾燥によって溶媒を除去することによって形成することができる。また、必要に応じて適当なプレス処理を施すことによって負極活物質層64の性状(例えば、平均厚み、活物質密度、空孔率等)を調整し得る。   Such a negative electrode 60 can be produced, for example, in the same manner as in the case of the positive electrode 50 described above. That is, a negative electrode active material and materials used as necessary are dispersed in a suitable solvent (for example, ion-exchanged water) to prepare a paste (slurry) composition, and then an appropriate amount of the composition Is applied to the surface of the negative electrode current collector 62 and then the solvent is removed by drying. Further, the properties (for example, average thickness, active material density, porosity, etc.) of the negative electrode active material layer 64 can be adjusted by performing an appropriate press treatment as necessary.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。   Examples of the separator 70 include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer).

ここに開示される非水電解液二次電池100には、図2に示すように、上記負極活物質層64のセパレータ70との対向面(即ち、負極活物質層64とセパレータ70との間)に、好ましくは直径が10μm以下のマイクロバブルが集積したマイクロバブル集積領域80が形成されている。マイクロバブルの直径(集積しているマイクロバブルの平均直径)を10μm以下とすることで、電池反応の進行を阻害することなく、負極活物質層中の非水電解液の移動を抑制することができる。
なお、上記マイクロバブル集積領域80を構成するマイクロバブルの合計量(総体積)は特に限定されないが、本発明者らの検討によると、電極体20内に含浸した非水電解液の1体積%程度に相当する量(体積)のマイクロバブルが集積したマイクロバブル集積領域80を備えた非水電解液二次電池100は、本発明の効果を高レベルに発揮することが可能であった。
As shown in FIG. 2, the non-aqueous electrolyte secondary battery 100 disclosed herein has a surface facing the separator 70 of the negative electrode active material layer 64 (that is, between the negative electrode active material layer 64 and the separator 70). ), Preferably a microbubble integrated region 80 in which microbubbles having a diameter of 10 μm or less are integrated. By controlling the diameter of the microbubbles (the average diameter of the accumulated microbubbles) to 10 μm or less, the movement of the non-aqueous electrolyte in the negative electrode active material layer can be suppressed without inhibiting the progress of the battery reaction. it can.
The total amount (total volume) of the microbubbles constituting the microbubble accumulation region 80 is not particularly limited, but according to the study by the present inventors, 1% by volume of the nonaqueous electrolytic solution impregnated in the electrode body 20 The nonaqueous electrolyte secondary battery 100 provided with the microbubble accumulation region 80 in which microbubbles corresponding to the degree (volume) were accumulated was able to exhibit the effects of the present invention at a high level.

このようなマイクロバブル集積領域80は、過充電添加剤を含有する非水電解液を備えた非水電解液二次電池100を所定の充電状態まで充電することで形成することができる(図3参照)。具体的には、正負極間電位が所定以上の充電状態(典型的には過充電状態)の電池内では、正極50(正極活物質表面)で非水電解液中の過充電添加剤が酸化分解され、さらに該分解物が負極60(負極活物質表面)で還元されることにより、負極活物質層64(負極活物質)表面に気体が発生する。典型的には、正極50において過充電添加剤が酸化されることで水素イオンが発生し、かかる水素イオンが非水電解液中を拡散して負極60付近まで移動し、負極60表面で還元されて水素ガスとなる。かかる気体の発生を適宜コントロールすることにより、本発明の実施に好適なマイクロバブル集積領域80を形成することができる。   Such a microbubble accumulation region 80 can be formed by charging a non-aqueous electrolyte secondary battery 100 including a non-aqueous electrolyte containing an overcharge additive to a predetermined charged state (FIG. 3). reference). Specifically, in a battery in a charged state (typically an overcharged state) in which the potential between the positive and negative electrodes is equal to or higher than a predetermined level, the overcharge additive in the non-aqueous electrolyte is oxidized at the positive electrode 50 (positive electrode active material surface). By being decomposed, and further, the decomposed product is reduced at the negative electrode 60 (negative electrode active material surface), gas is generated on the negative electrode active material layer 64 (negative electrode active material) surface. Typically, hydrogen ions are generated by oxidation of the overcharge additive in the positive electrode 50, and the hydrogen ions diffuse in the non-aqueous electrolyte and move to the vicinity of the negative electrode 60 and are reduced on the surface of the negative electrode 60. It becomes hydrogen gas. By appropriately controlling the generation of such gas, a microbubble integrated region 80 suitable for the implementation of the present invention can be formed.

即ち、非水電解液としては、典型的には有機溶媒(非水溶媒)中に、支持塩と、過充電添加剤を含有させたものを用いることができる。   That is, as the nonaqueous electrolytic solution, typically, an organic solvent (nonaqueous solvent) containing a supporting salt and an overcharge additive can be used.

非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。   As the non-aqueous solvent, various organic solvents such as carbonates, ethers, esters, nitriles, sulfones, lactones and the like used in electrolytes of general lithium ion secondary batteries are used without particular limitation. Can do. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like. Such a non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types as appropriate.

支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩を好適に用いることができる。特に好ましい支持塩として、LiPFが挙げられる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。 As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , or LiClO 4 can be suitably used. Particularly preferred support salt include LiPF 6. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less.

過充添加剤としては、所定の充電状態において負極活物質層64表面(典型的には負極活物質層64とセパレータ70との間)に気体(マイクロバブル)を発生し得る化合物であれば特に限定されず、従来の非水電解液二次電池において過充電添加剤(ガス発生剤)として用い得るもののなかから1種又は2種以上を使用することができる。具体的な化合物(略称および該化合物の有する凡その酸化電位(vs. Li/Li+))としては、ビフェニル(BP;4.4V)、シクロヘキシルベンゼン(CHB;4.6V)、メチルフェニルカーボネート(MPhC;4.8V)、オルト−ターフェニル(OTP;4.3V)等が例示される。マイクロバブル集積領域80の形成性の観点からは、特にBPおよびCHBが好ましい。なお、各化合物の酸化電位は、従来公知の3極式セルを用いた測定方法により測定できる。上記過充電添加剤の含有量は、例えば非水電解液100質量%に対して0.05質量%以上5質量%以下が好ましい。 The overcharge additive is particularly a compound that can generate gas (microbubbles) on the surface of the negative electrode active material layer 64 (typically, between the negative electrode active material layer 64 and the separator 70) in a predetermined charged state. Without limitation, one or two or more of those that can be used as an overcharge additive (gas generating agent) in a conventional non-aqueous electrolyte secondary battery can be used. Specific compounds (abbreviation and approximate oxidation potential (vs. Li / Li + ) of the compound) include biphenyl (BP; 4.4V), cyclohexylbenzene (CHB; 4.6V), methylphenyl carbonate ( MPhC; 4.8V), ortho-terphenyl (OTP; 4.3V) and the like. From the viewpoint of the formability of the microbubble integrated region 80, BP and CHB are particularly preferable. The oxidation potential of each compound can be measured by a measurement method using a conventionally known tripolar cell. The content of the overcharge additive is preferably 0.05% by mass or more and 5% by mass or less with respect to 100% by mass of the non-aqueous electrolyte, for example.

次に、マイクロバブル集積領域80を形成する方法について説明する。上述のとおり、マイクロバブル集積領域80は、過充電添加剤を含有する非水電解液を備えた非水電解液二次電池100を所定の充電状態まで充電することによって、当該電池の通常使用開始前に予め形成しておくことができる。例えば、図3および図4に示すように、正極電位が所定の値(典型的には、非水電解液に含有する過充電添加剤の酸化電位)に到達するまで充電を行うことで形成可能である。上記所定の充電電位(例えば正極電位)の値を低く設定しすぎると負極活物質層64の表面(典型的には負極活物質層64とセパレータ70との間)にマイクロバブル(図4中の白い点)が発生しないため好ましくない。一方で、上記所定の充電電位(例えば正極電位)を高く設定しすぎると、図5に示すように、負極活物質層64表面で発生した気泡どうしが合体(結合)して巨大な気泡となってしまうため好ましくない。例えば、使用する過充電添加剤の酸化電位以上であり、且つ該酸化電位よりも0.2V高い電位以下の範囲内の電位に上記所定の充電電位(例えば正極電位)を設定することが好ましい。具体的には、過充電添加剤としてBPを用いる場合であれば、正極電位が4.4V以上(より好ましくは4.45V以上)4.6V以下の範囲となるまで充電を行うことで、好適なマイクロバブル集積領域80を形成することができる。或いはまた、図3に示すように、上記所定の充電状態を正極容量の80%〜90%の充電状態としてもよい。   Next, a method for forming the microbubble integrated region 80 will be described. As described above, the microbubble accumulation region 80 starts normal use of the battery by charging the non-aqueous electrolyte secondary battery 100 including the non-aqueous electrolyte containing the overcharge additive to a predetermined charged state. It can be formed in advance. For example, as shown in FIGS. 3 and 4, it can be formed by charging until the positive electrode potential reaches a predetermined value (typically, the oxidation potential of the overcharge additive contained in the non-aqueous electrolyte). It is. When the value of the predetermined charging potential (for example, positive electrode potential) is set too low, microbubbles (in FIG. 4, typically between the negative electrode active material layer 64 and the separator 70) are formed on the surface of the negative electrode active material layer 64. White spots are not generated, which is not preferable. On the other hand, if the predetermined charging potential (for example, positive electrode potential) is set too high, bubbles generated on the surface of the negative electrode active material layer 64 are united (bonded) to form huge bubbles as shown in FIG. This is not preferable. For example, it is preferable to set the predetermined charging potential (for example, the positive electrode potential) to a potential within a range that is equal to or higher than the oxidation potential of the overcharge additive to be used and is 0.2 V higher than the oxidation potential. Specifically, when BP is used as an overcharge additive, it is preferable to charge until the positive electrode potential is 4.4 V or higher (more preferably 4.45 V or higher) and 4.6 V or lower. A microbubble integrated region 80 can be formed. Alternatively, as shown in FIG. 3, the predetermined charging state may be a charging state of 80% to 90% of the positive electrode capacity.

上記マイクロバブル集積領域80の形成は、例えば充電開始から上記所定の充電状態に到達するまで定電流で充電する方式(定電流充電、CC充電)により行うことができる。低すぎる充電レートでの充電はマイクロバブル集積領域80の形成効率が低下する(該領域の形成に要する時間が長くなる)虞がある。一方で、高すぎる充電レートでの充電では、マイクロバブルの形成性が低下する(正極での過充電添加剤の分解反応と、負極での気体発生反応が十分に進行しない)虞がある。このため、例えば、3C以上10C以下(より好ましくは5±1C程度、例えば5C)の充電レートとすることが好ましい。   The microbubble integrated region 80 can be formed, for example, by a method (constant current charging, CC charging) in which charging is performed with a constant current from the start of charging until the predetermined charging state is reached. Charging at a charging rate that is too low may reduce the formation efficiency of the microbubble integrated region 80 (the time required to form the region will be long). On the other hand, when charging at a charging rate that is too high, there is a risk that the formation of microbubbles will be reduced (the decomposition reaction of the overcharge additive at the positive electrode and the gas generation reaction at the negative electrode will not proceed sufficiently). For this reason, it is preferable to set it as the charge rate of 3 C or more and 10 C or less (more preferably about 5 ± 1 C, for example, 5 C).

なお、好適なマイクロバブル集積領域80を形成する方法として、非水電解液二次電池100を上記所定の充電状態まで充電した後で、比較的低い充電レートで一定時間充電を継続してもよい。かかる低レート充電により所望量のマイクロバブルを形成することができる。かかる低レート充電の条件は、使用する非水電解液の構成や電解液量によって適宜設定することができるが、例えば後述の実施例に記載した電池構成であれば、当該電池を所定の充電状態(正極電位が4.5V(vs. Li/Li+)の充電状態)に到達した後、1Cの充電レートで約5分間充電することで、電極体内に含浸した非水電解液の約1体積%のマイクロバブルを形成することができる。
ここで、本明細書において「1C」とは、理論容量より予測した電池容量(Ah)を一時間で充電することができる電流値を意味し、例えば電池容量が24Ahの場合は1C=24Aである。
As a preferred method for forming the microbubble accumulation region 80, after the non-aqueous electrolyte secondary battery 100 is charged to the predetermined charging state, charging may be continued for a certain time at a relatively low charging rate. . A desired amount of microbubbles can be formed by such low rate charging. Such low-rate charging conditions can be appropriately set depending on the configuration of the non-aqueous electrolyte to be used and the amount of the electrolyte. For example, if the battery configuration is described in the examples below, the battery is in a predetermined charged state. After reaching (charged state of positive electrode potential 4.5V (vs. Li / Li + )), about 1 volume of non-aqueous electrolyte impregnated in the electrode body by charging for about 5 minutes at a charge rate of 1C. % Microbubbles can be formed.
Here, “1C” in this specification means a current value that can charge the battery capacity (Ah) predicted from the theoretical capacity in one hour. For example, when the battery capacity is 24 Ah, 1C = 24A. is there.

また、好適なマイクロバブル集積領域80を形成する方法として、非水電解液二次電池100を適当な圧力で拘束した状態で非水電解液二次電池100を充電処理してもよい。かかる方法により、高効率にマイクロバブル集積領域80を形成することができる。例えば、ここに開示される非水電解液二次電池100を、複数個の単電池を所定の拘束圧で拘束した組電池を構成する単電池として用いる場合には、当該組電池の構築後(即ち単電池の拘束を終了した後)で上記マイクロバブル集積領域80の形成(即ち、適当な充電処理)を行うことが好ましい。或いはまた、例えば、塩濃度(電荷担体濃度、例えばリチウムイオン濃度)の部分的な低下が生じやすい領域(典型的には捲回電極体の扁平面の中央部分)を周囲よりも大きな拘束圧で拘束した状態で上記マイクロバブルの形成(即ち、適当な充電処理)を行うことで、該領域に対して重点的にマイクロバブル集積領域80を形成可能である。これにより、ハイレート耐久特性の向上に高レベルで貢献し得るマイクロバブル集積領域80を短時間で形成することができる。なお、上記拘束圧の大きさは、従来の非水電解液二次電池と同程度とすることができる。   Further, as a suitable method for forming the microbubble accumulation region 80, the nonaqueous electrolyte secondary battery 100 may be charged in a state where the nonaqueous electrolyte secondary battery 100 is restrained with an appropriate pressure. By this method, the microbubble integrated region 80 can be formed with high efficiency. For example, when the non-aqueous electrolyte secondary battery 100 disclosed herein is used as a unit cell constituting an assembled battery in which a plurality of unit cells are constrained at a predetermined restraining pressure, after the assembly of the assembled battery ( That is, it is preferable to form the microbubble integrated region 80 (that is, an appropriate charging process) after the cell is restrained. Alternatively, for example, a region (typically the central portion of the flat surface of the wound electrode body) in which a partial decrease in salt concentration (charge carrier concentration, for example, lithium ion concentration) is likely to occur is greater than the surrounding pressure. By forming the microbubbles in a restrained state (that is, an appropriate charging process), the microbubble integrated region 80 can be formed with a focus on the region. As a result, the microbubble integrated region 80 that can contribute to the improvement of the high-rate durability characteristics at a high level can be formed in a short time. In addition, the magnitude | size of the said restraint pressure can be made comparable as the conventional nonaqueous electrolyte secondary battery.

上記マイクロバブル集積領域80の形成は、従来の非水電解液二次電池の製造と同様の条件での初期充電処理に続けて(例えば初期充電処理のうちの一部として)行うことができる。或いはまた、適当な目的での使用(典型的にはハイレート充放電を行う環境下での使用)により内部抵抗が上昇した非水電解液二次電池100に対して再度上記マイクロバブル集積領域80の形成(即ち、適当な充電処理)を行うことで、電池の使用により減少したマイクロバブルを補充することが可能である。これにより、再度の充電処理(マイクロバブル集積領域の形成)を行うという簡便な処理によって、非水電解液の移動抑制効果とそれによる電池抵抗の上昇抑制効果とを長期間にわたって維持することが可能となる。   The formation of the microbubble integrated region 80 can be performed following the initial charging process under the same conditions as those for manufacturing a conventional non-aqueous electrolyte secondary battery (for example, as part of the initial charging process). Alternatively, the microbubble integrated region 80 is again formed in the non-aqueous electrolyte secondary battery 100 whose internal resistance has been increased by use for an appropriate purpose (typically, use in an environment where high-rate charge / discharge is performed). By performing the formation (that is, the appropriate charging process), it is possible to replenish the microbubbles that have decreased due to the use of the battery. This makes it possible to maintain the effect of suppressing the movement of the non-aqueous electrolyte and the effect of suppressing the increase in battery resistance over a long period of time by a simple process of performing the recharging process (formation of the microbubble accumulation region). It becomes.

ここで開示される非水電解液二次電池は各種用途に利用可能であるが、優れたハイレート耐久特性(特にハイレート充放電に伴う電池抵抗の増大抑制)を備えていることを特徴とする。従って、かかる特徴を活かして、例えばプラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)等の車両に搭載される駆動用電源として好適に利用し得る。   The non-aqueous electrolyte secondary battery disclosed herein can be used for various applications, but is characterized by having excellent high-rate durability characteristics (particularly, suppression of increase in battery resistance associated with high-rate charge / discharge). Therefore, taking advantage of this feature, for example, it can be suitably used as a driving power source mounted on a vehicle such as a plug-in hybrid vehicle (PHV), a hybrid vehicle (HV), or an electric vehicle (EV).

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

以下の材料、プロセスによって、例1(比較例)および例2(実施例)に係るリチウムイオン二次電池(非水電解液二次電池)を構築した。   Lithium ion secondary batteries (nonaqueous electrolyte secondary batteries) according to Example 1 (Comparative Example) and Example 2 (Example) were constructed by the following materials and processes.

正極の作製は以下の手順で行った。正極活物質粉末としてのLiNi0.33Co0.33Mn0.33(LNCM)と、導電材としてのABと、バインダとしてのPVDFとを、LNCM:AB:PVDF=91:6:3の質量比でN−メチルピロリドン(NMP)と混合し、正極活物質層形成用スラリーを調製した。このスラリーを、長尺状のアルミニウム箔(正極集電体)の両面に帯状に塗布して乾燥、プレスすることにより、正極を作製した。 The positive electrode was produced by the following procedure. LiNi 0.33 Co 0.33 Mn 0.33 O 2 (LNCM) as a positive electrode active material powder, AB as a conductive material, and PVDF as a binder, LNCM: AB: PVDF = 91: 6: 3 Was mixed with N-methylpyrrolidone (NMP) at a mass ratio of 2 to prepare a positive electrode active material layer forming slurry. The slurry was applied in a strip shape on both sides of a long aluminum foil (positive electrode current collector), dried and pressed to produce a positive electrode.

負極の作製は以下の手順で行った。負極活物質としての黒鉛(C)と、バインダとしてのSBRと、増粘剤としてのCMCとを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、負極活物質層形成用スラリーを調製した。このスラリーを、長尺状の銅箔(負極集電体)の両面に帯状に塗布して乾燥、プレスすることにより、負極を作製した。   The negative electrode was produced according to the following procedure. Graphite (C) as a negative electrode active material, SBR as a binder, and CMC as a thickener are mixed with ion-exchanged water at a mass ratio of C: SBR: CMC = 98: 1: 1 to form a negative electrode A slurry for forming an active material layer was prepared. The slurry was applied in a strip shape on both sides of a long copper foil (negative electrode current collector), dried and pressed to prepare a negative electrode.

上述の方法で作製した正極および負極を、多孔質ポリエチレン層の両面に多孔質ポリプロピレン層が形成された三層構造のセパレータ2枚を介して長尺方向に重ねあわせ、長尺方向に捲回した後に押しつぶして拉げることで扁平形状の捲回電極体を作製した。   The positive electrode and the negative electrode produced by the above method were overlapped in the longitudinal direction via two separators having a three-layer structure in which a porous polypropylene layer was formed on both sides of the porous polyethylene layer, and wound in the longitudinal direction. Later, flattened wound electrode bodies were fabricated by crushing and labbing.

次いで、上記捲回電極体を電池ケースの内部に収容し、電池ケースの開口部から非水電解液を注入し、当該開口部を気密に封止し、例1および例2にかかる電池組立体を構築した。ここで、例1にかかる電池組立体の構築には、上記非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=30:40:30の体積比で含む混合溶媒に、支持塩としてのLiPFを1.1mol/Lの濃度で溶解させたものを用いた。一方、例2にかかる電池組立体の構築には、上記例1に用いた非水電解液中にさらに過充電添加剤としてビフェニルを非水電解液100質量%あたり1.0質量%含有させたものを用いた。 Next, the wound electrode body is accommodated in the battery case, a nonaqueous electrolyte is injected from the opening of the battery case, the opening is hermetically sealed, and the battery assembly according to Example 1 and Example 2 Built. Here, in the construction of the battery assembly according to Example 1, ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were used as the non-aqueous electrolyte. EC: DMC: EMC = 30 : A solution obtained by dissolving LiPF 6 as a supporting salt at a concentration of 1.1 mol / L in a mixed solvent containing a volume ratio of 40:30 was used. On the other hand, in the construction of the battery assembly according to Example 2, 1.0 mass% of biphenyl was further contained as an overcharge additive in 100 mass% of the non-aqueous electrolyte in the non-aqueous electrolyte used in Example 1 above. A thing was used.

上述のとおり構築した各例にかかる電池組立体に対して25℃の温度条件下において初期充電(マイクロバブル集積領域の形成を含む)を行い、例1、2にかかる非水電解液二次電池を作製した。具体的には、まず、1Cの充電レート(電流値)で正負極端子間の電圧が4.1Vになるまで定電流充電(CC充電)を行った後、電流値が0.02Cになるまで定電圧充電(CV充電)を行った。そして、5Cの充電レートで正極電位が4.5VになるまでCC充電を行い、その後さらに1Cの充電レートで5分間CC充電を行った。   The battery assemblies according to the examples constructed as described above were initially charged (including the formation of a microbubble integrated region) under a temperature condition of 25 ° C., and the nonaqueous electrolyte secondary batteries according to Examples 1 and 2 Was made. Specifically, first, constant current charging (CC charging) is performed until the voltage between the positive and negative terminals becomes 4.1 V at a charging rate (current value) of 1 C, and then the current value becomes 0.02 C. Constant voltage charging (CV charging) was performed. Then, CC charging was performed until the positive electrode potential became 4.5 V at a charging rate of 5 C, and then CC charging was further performed for 5 minutes at a charging rate of 1 C.

[ハイレート耐久試験]
上記のとおり作製した例1及び例2にかかる各電池について、ハイレート耐久試験(高負荷充放電サイクル試験)を行った後の内部抵抗増加率(%)を測定することで、ハイレート耐久特性(高負荷特性)を評価した。具体的には以下のとおりに行った。
まず、上記各例にかかる電池について、サイクル試験前のIV抵抗(初期IV抵抗)を以下の条件で測定した。即ち、25℃の温度条件下、1CでSOC(State of Carge)60%の充電状態に調製した後、15Cで10秒間の定電流放電を行い、この時の電流(I)−電圧(V)のプロット値の一次近似直線の傾きからサイクル試験前のIV抵抗(初期IV抵抗)を求めた。
次に、上記各例にかかる電池に対して、充放電を2500サイクル繰り返した。1サイクルの充放電条件は、25℃の温度条件下、20Cで10秒間の定電流電圧放電を行い10秒の休止後、5Cで40秒間定電流電圧充電を行い10秒の休止を行うものであった。そして、各例にかかる電池について、500回の充放電サイクル毎にサイクル試験後のIV抵抗を上記初期IV抵抗の測定と同様の方法で測定した。
そして、次式:内部抵抗増加率(%)=サイクル試験後のIV抵抗/初期IV抵抗×100;より内部抵抗増加率(%)を求めた。各例に係る電池における500サイクル毎の内部抵抗増加率(%)をプロットしたグラフを図6に示す。
[High-rate endurance test]
About each battery concerning Example 1 and Example 2 produced as mentioned above, by measuring the internal resistance increase rate (%) after performing a high-rate endurance test (high load charge / discharge cycle test), high-rate endurance characteristics (high Load characteristics). Specifically, it was performed as follows.
First, for the batteries according to the above examples, the IV resistance (initial IV resistance) before the cycle test was measured under the following conditions. That is, after adjusting to a state of charge of SOC (State of Charge) 60% at 1 C under a temperature condition of 25 ° C., a constant current discharge is performed at 15 C for 10 seconds, and current (I) -voltage (V) at this time The IV resistance before the cycle test (initial IV resistance) was determined from the slope of the first-order approximate straight line of the plot values.
Next, charge and discharge were repeated 2500 cycles for the batteries according to the above examples. The charge / discharge conditions for one cycle are: constant current voltage discharge for 10 seconds at 20C under a temperature condition of 25 ° C, pause for 10 seconds, then constant current voltage charge for 40 seconds at 5C and pause for 10 seconds. there were. And about the battery concerning each example, IV resistance after a cycle test was measured by the method similar to the measurement of the said initial IV resistance for every 500 charging / discharging cycles.
Then, the internal resistance increase rate (%) was obtained from the following formula: internal resistance increase rate (%) = IV resistance after cycle test / initial IV resistance × 100; FIG. 6 shows a graph plotting the internal resistance increase rate (%) every 500 cycles in the battery according to each example.

図6に示すように、例1(比較例)にかかる電池は、ハイレート充放電の繰り返しに比例して内部抵抗増加率は増加し続け、2500サイクルの充放電後には内部抵抗増加率が200%(即ち、初期抵抗の2倍の抵抗値)を超えた。これに対して、例2(実施例)にかかる電池の内部抵抗増加率は、500サイクルのハイレート充放電後から2500サイクルの充放電後までほぼ一定であり、その値も120%以下と低かった。このことは、例2にかかる電池では、負極活物質層とセパレータの間に直径10μm以下のマイクロバブルが集積したマイクロバブル集積領域が形成され、それによりハイレート充放電の繰り返しによる負極活物質層中の非水電解液の移動とそれに伴う負極活物質層中での塩濃度(電荷担体濃度、例えばリチウムイオン濃度)の局所的な減少を抑制することができたためと考えられる。
以上の結果より、負極活物質層とセパレータの間に直径10μm以下のマイクロバブルが集積したマイクロバブル集積領域を形成することで、高いハイレート耐久特性(高負荷特性、典型的にはハイレート充電に伴う抵抗増加の抑制)を実現し得ることを確認した。
As shown in FIG. 6, in the battery according to Example 1 (comparative example), the rate of increase in internal resistance continued to increase in proportion to the repetition of high-rate charge / discharge, and the rate of increase in internal resistance was 200% after 2500 cycles of charge / discharge. (That is, a resistance value that is twice the initial resistance). On the other hand, the rate of increase in internal resistance of the battery according to Example 2 (Example) was almost constant from 500 cycles after high-rate charge / discharge to 2500 cycles after charge / discharge, and the value was as low as 120% or less. . This is because, in the battery according to Example 2, a microbubble accumulation region in which microbubbles having a diameter of 10 μm or less are accumulated between the negative electrode active material layer and the separator, and thereby, in the negative electrode active material layer due to repeated high-rate charge / discharge. This is considered to be because the local decrease of the salt concentration (charge carrier concentration, for example, lithium ion concentration) in the negative electrode active material layer accompanying the movement of the non-aqueous electrolyte was suppressed.
From the above results, by forming a microbubble accumulation region in which microbubbles having a diameter of 10 μm or less are accumulated between the negative electrode active material layer and the separator, high high-rate durability characteristics (high load characteristics, typically associated with high-rate charging) It was confirmed that the suppression of increase in resistance can be realized.

上述のとおり、ここで開示される技術によれば、電池容量の維持と優れた耐久特性(高負荷特性)とを両立した非水電解液二次電池を提供することができる。   As described above, according to the technology disclosed herein, it is possible to provide a non-aqueous electrolyte secondary battery that achieves both maintenance of battery capacity and excellent durability characteristics (high load characteristics).

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
30 電池ケース
32 電池ケース本体
34 蓋体
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータ
80 マイクロバブル集積領域
100 非水電解液二次電池(リチウムイオン二次電池)
20 Winding electrode body 30 Battery case 32 Battery case body 34 Cover body 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector plate 44 Negative electrode terminal 44a Negative electrode current collector plate 50 Positive electrode 52 Positive electrode current collector 52a Positive electrode active material layer non-formed part 54 Positive electrode Active material layer 60 Negative electrode 62 Negative electrode current collector 62a Negative electrode active material layer non-formed portion 64 Negative electrode active material layer 70 Separator 80 Microbubble integrated region 100 Nonaqueous electrolyte secondary battery (lithium ion secondary battery)

Claims (1)

正極活物質層を備える正極と、負極活物質層を備える負極と、該正負極を電気的に隔離するセパレータとの積層構造を有する電極体を備える非水電解液二次電池であって、
前記負極活物質層とセパレータとの間に平均直径10μm以下のマイクロバブルが集積したマイクロバブル集積領域が形成されている、非水電解液二次電池。
A non-aqueous electrolyte secondary battery including an electrode body having a laminated structure of a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and a separator that electrically isolates the positive and negative electrodes,
A non-aqueous electrolyte secondary battery in which a microbubble accumulation region in which microbubbles having an average diameter of 10 μm or less are accumulated is formed between the negative electrode active material layer and the separator.
JP2014106429A 2014-05-22 2014-05-22 Nonaqueous electrolyte secondary battery Pending JP2015222646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014106429A JP2015222646A (en) 2014-05-22 2014-05-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014106429A JP2015222646A (en) 2014-05-22 2014-05-22 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015222646A true JP2015222646A (en) 2015-12-10

Family

ID=54785562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106429A Pending JP2015222646A (en) 2014-05-22 2014-05-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015222646A (en)

Similar Documents

Publication Publication Date Title
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5668993B2 (en) Sealed nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6044842B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5888551B2 (en) Manufacturing method of sealed lithium secondary battery
JP6024990B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2010225291A (en) Lithium-ion secondary battery and method of manufacturing the same
JP2013084400A (en) Sealed lithium secondary battery
JP2014053174A (en) Method of manufacturing lithium ion secondary battery
KR101707335B1 (en) Nonaqueous electrolyte secondary battery
US9917296B2 (en) Nonaqueous electrolyte secondary battery
JP2018106903A (en) Lithium ion secondary battery
JP5620499B2 (en) Non-aqueous electrolyte battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
JP2017054739A (en) Secondary battery
KR101833597B1 (en) Method of manufacturing lithium ion secondary battery
JP5975291B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2017130317A (en) Nonaqueous electrolyte secondary battery having wound electrode body
JP2020080255A (en) Non-aqueous electrolyte secondary battery
US11302905B2 (en) Negative electrode of nonaqueous lithium-ion secondary battery and nonaqueous lithium-ion secondary battery using same
JP7365566B2 (en) Non-aqueous electrolyte secondary battery
JP2017054736A (en) Electrolytic solution for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2017050156A (en) Nonaqueous electrolyte secondary battery
CN114583244B (en) Lithium ion secondary battery
JP2015222646A (en) Nonaqueous electrolyte secondary battery
JP2022139577A (en) Manufacturing method of non-aqueous electrolyte secondary battery