[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015220891A - Resonator and wireless power supply system - Google Patents

Resonator and wireless power supply system Download PDF

Info

Publication number
JP2015220891A
JP2015220891A JP2014103627A JP2014103627A JP2015220891A JP 2015220891 A JP2015220891 A JP 2015220891A JP 2014103627 A JP2014103627 A JP 2014103627A JP 2014103627 A JP2014103627 A JP 2014103627A JP 2015220891 A JP2015220891 A JP 2015220891A
Authority
JP
Japan
Prior art keywords
power
resonator
coil
resonance
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014103627A
Other languages
Japanese (ja)
Inventor
真一郎 拮石
Shinichiro Haneishi
真一郎 拮石
圭介 服田
Keisuke Fukuda
圭介 服田
高木 桂二
Keiji Takagi
桂二 高木
善徳 辻村
Yoshinori Tsujimura
善徳 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014103627A priority Critical patent/JP2015220891A/en
Publication of JP2015220891A publication Critical patent/JP2015220891A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resonator and a wireless power supply system, capable of easily achieving satisfactory transmission efficiency, using a magnetic field resonance method.SOLUTION: A resonator 30 for use in the wireless power supply system which transmits power based on the magnetic field resonance method includes: a resonance coil (winding coil) 32 having a predetermined resonant frequency; a support member 31 for supporting the resonance coil 32; and an electric field concentration part 33, which is composed of a dielectric ceramic material having permittivity higher than the permittivity of the material of the support member 31, and disposed in a part of a surface vicinity region of the resonance coil 32. Thus, an electric field between the lines of the resonance coil 32 is concentrated to the electric field concentration part 33 of high permittivity. This enables a reduced loss and an increased Q value of the resonance coil 32.

Description

本発明は、共振器間の磁場の共鳴を利用して送電装置から受電装置に非接触で電力を伝送する無線給電システムに関する。   The present invention relates to a wireless power feeding system that uses a magnetic field resonance between resonators to transmit electric power from a power transmitting device to a power receiving device in a contactless manner.

従来から、送電装置から受電装置に対して非接触で電力を伝送する無線給電システムが要望されている。無線給電システムを実現するための手法としては、電磁誘導を利用した技術や電磁波を利用した技術などが提案されている。近年、無線給電システムに適用可能な技術として、共振器間の磁場の共鳴を利用して送電装置から受電装置に電力を伝送する磁界共鳴方式が注目されている。例えば、特許文献1には、所定距離だけ離して対向配置した2つの共振器の磁場の共鳴により、一方の共振器から他方の共振器に電力を伝送する磁界共鳴方式の基礎的概念が開示されている。また例えば、非特許文献1には、磁界共鳴方式に用いるアンテナとしての共振コイルにおいて高いQ値を実現するための手法が示されている。また例えば、非特許文献2には、磁界共鳴方式において得られる最大の伝送効率に関して理論的な検討がなされており、各々の共振器のQ値を高めることにより伝送効率の向上が可能であることが示されている。また例えば、特許文献2には、無線給電システムの適用対象として電気自動車やプラグインハイブリッド車を想定し、磁界共鳴方式を利用して、車両下部に配設した共振コイルから、車両内に設けた共振コイルに電力を伝送する技術が開示されている。   Conventionally, there is a demand for a wireless power feeding system that transmits power from a power transmission device to a power reception device in a contactless manner. As a technique for realizing a wireless power feeding system, a technique using electromagnetic induction, a technique using electromagnetic waves, and the like have been proposed. In recent years, as a technique applicable to a wireless power feeding system, a magnetic field resonance method in which electric power is transmitted from a power transmission device to a power reception device by using resonance of a magnetic field between resonators has attracted attention. For example, Patent Document 1 discloses a basic concept of a magnetic field resonance method in which electric power is transmitted from one resonator to the other resonator by resonance of magnetic fields of two resonators arranged to face each other at a predetermined distance. ing. Further, for example, Non-Patent Document 1 discloses a method for realizing a high Q value in a resonance coil as an antenna used in a magnetic field resonance method. Further, for example, Non-Patent Document 2 has theoretically studied the maximum transmission efficiency obtained in the magnetic field resonance method, and it is possible to improve the transmission efficiency by increasing the Q value of each resonator. It is shown. Further, for example, in Patent Document 2, an electric vehicle or a plug-in hybrid vehicle is assumed as an application target of a wireless power feeding system, and a magnetic resonance method is used to provide a wireless power feeding system in a vehicle from a resonance coil disposed in a lower portion of the vehicle. A technique for transmitting power to a resonance coil is disclosed.

特表2009−501510号公報Special table 2009-501510 特開2009−106136号公報JP 2009-106136 A

藤枝智之、鈴木雅美、「磁界共鳴方式電力伝送用低損失アンテナの検討」、PIONEER R&D、Vol.21、No.1/2012、p.11−15Tomoyuki Fujieda, Masami Suzuki, “Examination of low-loss antenna for magnetic field resonance power transmission”, PIONEER R & D, Vol. 21, no. 1/2012, p. 11-15 松木英敏、他、「非接触電力伝送技術の最前線」、シーエムシー出版、p.7(2009年8月)Hidetoshi Matsuki, et al., “Frontiers of Non-contact Power Transmission Technology”, CM Publishing, p. 7 (August 2009)

上述の無線給電システムにおける共振器は、例えば、銅線等の巻線コイルを用いた共振コイルと、その共振コイルの形状を確保するための機械的強度を有する支持部材とにより構成される。無線給電システムにおいて共振器を用いて交流電力を伝送する場合、良好な伝送効率を保つには、共振コイルの損失が大きくなってQ値が低下することを防止する必要がある。しかし、上述の構造の共振器を用いる場合、コイル線間の電位差により発生した電界が支持部材を通過することにより、支持部材が誘電体として作用するので、共振コイルの損失(誘電体損)の増加によってQ値が低下し、伝送効率が低下するという問題がある。一方、支持部材に用いる材料は、機械的強度やコストを勘案すると、一般的な樹脂材料等を用いることが望ましく、その場合の損失の増加は避けられない。以上のように、磁界共鳴方式を利用した従来の無線給電システムにおいては、共振コイル及び支持部材を備える共振器を用いて高い伝送効率で電力を伝送することが困難であった。   The resonator in the above-described wireless power feeding system includes, for example, a resonance coil using a winding coil such as a copper wire, and a support member having mechanical strength for ensuring the shape of the resonance coil. When transmitting AC power using a resonator in a wireless power feeding system, in order to maintain good transmission efficiency, it is necessary to prevent the loss of the resonance coil from increasing and the Q value from decreasing. However, in the case of using the resonator having the above-described structure, the electric field generated by the potential difference between the coil wires passes through the support member, so that the support member acts as a dielectric, so that the loss of the resonance coil (dielectric loss) There is a problem that the Q value is lowered by the increase, and the transmission efficiency is lowered. On the other hand, as the material used for the support member, it is desirable to use a general resin material or the like in consideration of mechanical strength and cost. In this case, an increase in loss is unavoidable. As described above, in the conventional wireless power feeding system using the magnetic field resonance method, it is difficult to transmit power with high transmission efficiency using the resonator including the resonance coil and the support member.

本発明はこれらの問題を解決するためになされたものであり、良好な伝送効率を容易に実現可能な共振器及び無線給電システムを提供することを目的とする。   The present invention has been made to solve these problems, and an object of the present invention is to provide a resonator and a wireless power feeding system that can easily realize good transmission efficiency.

上記課題を解決するために、本発明の共振器は、主に磁場の共鳴を利用して送電側共振器から受電側共振器に電力を伝送する無線給電システムにおける共振器であって、所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、前記共振コイルを支持する支持部材と、前記共振コイルの表面近傍領域の一部に配置され、前記支持部材の材料の誘電率よりも高い誘電率を有する高誘電率の誘電体セラミック材料からなる電界集中部とを備えて構成される。   In order to solve the above-described problems, a resonator according to the present invention is a resonator in a wireless power feeding system that transmits power from a power transmission side resonator to a power reception side resonator mainly using resonance of a magnetic field, A resonance coil that mutually converts alternating-current power and electromagnetic energy at a resonance frequency, a support member that supports the resonance coil, and a part of a region near the surface of the resonance coil, and a dielectric of the material of the support member And an electric field concentrating portion made of a dielectric ceramic material with a high dielectric constant having a dielectric constant higher than the dielectric constant.

本発明の共振器によれば、磁場の共鳴を利用する非接触の電力伝送方式(磁界共鳴方式)の無線給電システムにおいて、送電側及び受電側の各共振器を構成する共振コイルは、支持部材により支持されるとともに、自身の表面近傍領域の一部には、支持部材の材料よりも高い誘電率の誘電体セラミック材料からなる電界集中部が配置されている。よって、共振器の動作時に共振コイルの線間に発生した電界は、相対的に損失が少ない誘電体セラミック材料を通過するので、共振コイルのQ値を高めることができる。そして、このようにQ値の高い共振コイルを用いて送電側及び受電側の共振器間で電磁界エネルギーを伝送する際、良好な伝送効率を実現することができる。なお、「共振コイルの表面近傍領域」としては、共振コイルの表面に接するか、あるいは、共振コイルの表面からの距離が共振コイルを形成する巻線コイルの線間ピッチより小さい領域であることが望ましい。   According to the resonator of the present invention, in the wireless power feeding system of the non-contact power transmission method (magnetic field resonance method) using magnetic field resonance, the resonance coil constituting each resonator on the power transmission side and the power reception side is the support member. In addition, an electric field concentration portion made of a dielectric ceramic material having a dielectric constant higher than that of the material of the support member is disposed in a part of the vicinity of the surface of the surface. Therefore, since the electric field generated between the lines of the resonance coil during the operation of the resonator passes through the dielectric ceramic material with relatively little loss, the Q value of the resonance coil can be increased. And when transmitting electromagnetic field energy between the resonators on the power transmission side and the power reception side using the resonance coil having a high Q value in this way, good transmission efficiency can be realized. The “region in the vicinity of the surface of the resonance coil” is a region that is in contact with the surface of the resonance coil or that the distance from the surface of the resonance coil is smaller than the line pitch of the winding coil that forms the resonance coil. desirable.

本発明の共振器において、電界集中部を構成する誘電体セラミック材料は、比誘電率εrを8以上とし、誘電正接tanδを10−2以下とすることが望ましい。誘電体セラミック材料の比誘電率εrが8に満たないと、共振コイルの線間の電界を集中させてQ値を高める効果が不十分になるし、誘電体セラミック材料の誘電正接tanδが10−2を超えると、誘電体損の増加によりQ値が低下するからである。 In the resonator of the present invention, it is desirable that the dielectric ceramic material constituting the electric field concentration portion has a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −2 or less. If the relative dielectric constant εr of the dielectric ceramic material is less than 8, the effect of increasing the Q value by concentrating the electric field between the lines of the resonant coil becomes insufficient, and the dielectric loss tangent tan δ of the dielectric ceramic material is 10 −. This is because when the ratio exceeds 2 , the Q value decreases due to an increase in dielectric loss.

本発明の共振器において、前述の電界集中部は、共振コイルの表面近傍領域のうち面積比で10%以上の領域に設定することが望ましい。電界集中部の領域が面積比で10%に満たないと、Q値が低下するためである。ただし、電界集中部の領域を面積比で10%程度に設定したとしも所望のQ値を確保できるので、共振器の機械的強度を確保しつつ、誘電体セラミック材料による重量増加を抑制することができる。   In the resonator according to the present invention, it is desirable that the electric field concentrating portion described above is set in an area ratio of 10% or more in the area near the surface of the resonance coil. This is because the Q value decreases if the area of the electric field concentration portion is less than 10% in area ratio. However, even if the area of the electric field concentration portion is set to about 10% in area ratio, the desired Q value can be secured, so that the increase in weight due to the dielectric ceramic material can be suppressed while ensuring the mechanical strength of the resonator. Can do.

本発明の共振器においては、多様な構造の共振コイルを用いることができる。例えば、スパイラル型の巻線コイルにより構成された共振コイルや、ヘリカル型の巻線コイルにより構成された共振コイルを採用してもよい。   In the resonator of the present invention, a variety of resonant coils can be used. For example, a resonance coil constituted by a spiral type winding coil or a resonance coil constituted by a helical type winding coil may be adopted.

また、上記課題を解決するために、本発明の無線給電システムは、主に磁場の共鳴を利用して送電装置から受電装置に電力を伝送する無線給電システムであって、前記送電装置は、所定の周波数の交流電力を供給する電源と、前記電源から供給された前記交流電力に共振し、前記交流電力を電磁界エネルギーとして送電する送電側共振器と、を備え、前記受電装置は、前記送電側共振コイルと前記磁場の共鳴により結合し、前記電磁界エネルギーを交流電力として受電する受電側共振器と、前記受電側共振器により受電された前記交流電力により動作する回路部と、を備え、前記送電側共振器及び前記受電側共振器の各々は、所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、前記共振コイルを支持する支持部材と、前記共振コイルの表面近傍領域の一部に配置され、前記支持部材の材料の誘電率よりも高い誘電率を有する高誘電率の誘電体セラミック材料からなる電界集中部とを備えて構成される。   In order to solve the above-described problem, a wireless power feeding system according to the present invention is a wireless power feeding system that mainly transmits power from a power transmission device to a power reception device by using resonance of a magnetic field. A power source that supplies alternating-current power of a frequency, and a power-transmission-side resonator that resonates with the alternating-current power supplied from the power source and transmits the alternating-current power as electromagnetic energy, and the power receiving device includes the power transmission A power receiving side resonator coupled with a side resonance coil by resonance of the magnetic field and receiving the electromagnetic field energy as AC power, and a circuit unit that operates by the AC power received by the power receiving side resonator, Each of the power transmission side resonator and the power reception side resonator includes a resonance coil that mutually converts AC power and electromagnetic energy having a predetermined resonance frequency, and a support that supports the resonance coil. And an electric field concentration portion made of a dielectric ceramic material having a high dielectric constant and having a dielectric constant higher than that of the material of the support member, disposed in a part of a region near the surface of the resonance coil. Is done.

本発明の無線給電システムによれば、上述の特徴を有する共振器を、送電装置の送電側共振器と、受電装置の受電側共振器のそれぞれに適用することができる。よって、送電装置においては、電源から供給される交流電力に共振する送電側共振器が電磁界エネルギーを伝送し、受電装置においては、受電側共振器が電磁界エネルギーを受け取って後段の回路部に交流電力を出力する。例えば、本発明の無線給電システムは、電気自動車やプラグインハイブリッド車などの車両への電源供給などの多様な用途に利用することができる。なお、本発明の無線給電システムにおける共振器の構造は上述した通りであり、電界集中部への電界の集中により共振コイルのQ値を高める効果を得られる点も同様である。   According to the wireless power feeding system of the present invention, the resonator having the above characteristics can be applied to each of the power transmission side resonator of the power transmission device and the power reception side resonator of the power reception device. Therefore, in the power transmission device, the power transmission side resonator that resonates with the AC power supplied from the power supply transmits the electromagnetic field energy, and in the power reception device, the power reception side resonator receives the electromagnetic field energy and enters the subsequent circuit unit. Output AC power. For example, the wireless power feeding system of the present invention can be used for various applications such as power supply to vehicles such as electric vehicles and plug-in hybrid vehicles. The structure of the resonator in the wireless power feeding system of the present invention is as described above, and the same is true in that the effect of increasing the Q value of the resonance coil can be obtained by the concentration of the electric field on the electric field concentration portion.

本発明によれば、共振コイルと支持部材を備える共振器において、共振コイルの表面近傍領域の一部に配置した高誘電率の誘電体セラミック材料からなる電界集中部を設けたので、損失の発生を抑制して共振コイルのQ値を高めることができ、共振器間の良好な伝送効率を確保し得る無線給電システムを実現することができる。   According to the present invention, in the resonator including the resonance coil and the support member, the electric field concentration portion made of the dielectric ceramic material having a high dielectric constant is provided in a part of the region near the surface of the resonance coil, so that loss is generated. It is possible to increase the Q value of the resonance coil by suppressing the above, and it is possible to realize a wireless power feeding system that can ensure good transmission efficiency between the resonators.

本発明を適用した無線給電システムの一構成例を示すブロック図である。It is a block diagram which shows one structural example of the radio | wireless electric power feeding system to which this invention is applied. 送電装置における送電側共振器及びそれに関連する回路部分と、受電装置における受電側共振器及びそれに関連する回路部分との等価回路の一例を示す図である。It is a figure which shows an example of the equivalent circuit of the power transmission side resonator and its related circuit part in a power transmission apparatus, and the power receiving side resonator and its related circuit part in a power receiving apparatus. 本実施形態の共振器の構造例を示す図である。It is a figure which shows the structural example of the resonator of this embodiment. 本実施形態の共振器内に発生する電界について模式的に説明する図である。It is a figure which illustrates typically the electric field which generate | occur | produces in the resonator of this embodiment. 本実施形態の巻線コイルのQ値をシミュレーションにより検証した結果を示す図である。It is a figure which shows the result of having verified Q value of the winding coil of this embodiment by simulation. 本実施形態の巻線コイルの表面近傍領域のうち上述の電界集中部としての誘電体セラミック部材が配置された領域が占める面積比とQ値との関係についてシミュレーションにより検証した結果を示す図である。It is a figure which shows the result of having verified by simulation about the relationship between the area ratio and Q value which the area | region where the dielectric ceramic member as said electric field concentration part is arrange | positioned among the surface vicinity area | regions of the winding coil of this embodiment occupies. . 本実施形態の一変形例に係る共振器の構造例を示す図である。It is a figure which shows the structural example of the resonator which concerns on one modification of this embodiment.

以下、本発明の好適な実施形態について、図面を参照しながら説明する。ただし、以下に述べる実施形態は本発明の技術思想を適用した形態の一例であって、本発明が本実施形態の内容により限定されることはない。   Preferred embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is an example of a form to which the technical idea of the present invention is applied, and the present invention is not limited by the content of the present embodiment.

図1は、本発明を適用した無線給電システムの一構成例を示すブロック図である。図1に示す無線給電システムは、送電装置1から受電装置2に非接触(無線)で電力を伝送するシステムである。例えば、車両に内蔵された受電装置2に対し、地面や路面に配設された送電装置1から非接触で給電を行う無線給電システムを挙げることができる。   FIG. 1 is a block diagram showing a configuration example of a wireless power feeding system to which the present invention is applied. The wireless power feeding system illustrated in FIG. 1 is a system that transmits power from the power transmission device 1 to the power reception device 2 in a contactless (wireless) manner. For example, a wireless power feeding system that feeds power to the power receiving device 2 built in the vehicle in a non-contact manner from the power transmitting device 1 disposed on the ground or road surface can be given.

図1に示すように、送電装置1は、AC/DCコンバータ10と、高周波電源11と、整合回路12と、送電側共振器13と、無線通信部14と、制御部15とを含んで構成される。また、受電装置2は、受電側共振器20と、整合回路21と、整流器22と、バッテリ23と、負荷回路24と、無線通信部25と、制御部26とを含んで構成される。   As shown in FIG. 1, the power transmission device 1 includes an AC / DC converter 10, a high frequency power source 11, a matching circuit 12, a power transmission side resonator 13, a wireless communication unit 14, and a control unit 15. Is done. The power receiving device 2 includes a power receiving resonator 20, a matching circuit 21, a rectifier 22, a battery 23, a load circuit 24, a wireless communication unit 25, and a control unit 26.

送電装置1において、AC/DCコンバータ10は、商用電源等の交流電力を直流電力に変換する。高周波電源11は、AC/DCコンバータ10から供給される直流電力を用いて所定の周波数の高周波電力を発生する発振器である。整合回路12は、高周波電力を供給する高周波電源11の出力側と後段の送電側共振器13とのインピーダンス整合を行う。送電側共振器13は、整合回路12を介して供給される高周波電力を受け、その所定の周波数で共振して電磁界エネルギーを生成する共振器である。送電側共振器13の具体的な構造と作用については後述する。   In the power transmission device 1, the AC / DC converter 10 converts AC power from a commercial power source or the like into DC power. The high frequency power supply 11 is an oscillator that generates high frequency power of a predetermined frequency using DC power supplied from the AC / DC converter 10. The matching circuit 12 performs impedance matching between the output side of the high frequency power supply 11 that supplies high frequency power and the power transmission side resonator 13 in the subsequent stage. The power transmission side resonator 13 is a resonator that receives high frequency power supplied via the matching circuit 12 and resonates at a predetermined frequency to generate electromagnetic field energy. The specific structure and operation of the power transmission side resonator 13 will be described later.

受電装置2において、受電側共振器20は、送電装置1の送電側共振器13と磁気的に結合し、磁界共鳴に基づき上述の所定の周波数で共振して高周波電力を発生する共振器である。本実施形態において、受電側共振器20は、基本的に送電装置1の送電側共振器13と同一の構造としてよい。整合回路21は、受電側共振器20と後段の整流器22とのインピーダンス整合を行う。整流器22は、整合回路21を経由して供給される高周波電力を整流して直流電力に変換する。蓄電器として機能するバッテリ23は、整流器22を介して供給される電力を蓄える二次電池である。負荷回路24は、バッテリ23から供給される放電電流に応じて動作する回路であって、受電装置2の取り付け対象に含まれる多様な構成要素が想定される。   In the power receiving device 2, the power receiving resonator 20 is a resonator that is magnetically coupled to the power transmitting resonator 13 of the power transmitting device 1 and resonates at the predetermined frequency based on the magnetic field resonance to generate high frequency power. . In the present embodiment, the power reception side resonator 20 may basically have the same structure as the power transmission side resonator 13 of the power transmission device 1. The matching circuit 21 performs impedance matching between the power-receiving-side resonator 20 and the subsequent rectifier 22. The rectifier 22 rectifies the high-frequency power supplied via the matching circuit 21 and converts it into DC power. The battery 23 that functions as a storage battery is a secondary battery that stores electric power supplied via the rectifier 22. The load circuit 24 is a circuit that operates in accordance with the discharge current supplied from the battery 23, and various components included in the attachment target of the power receiving device 2 are assumed.

一方、送電装置1の制御部15は、送電装置1の全体の動作を制御する。同様に、受電装置2の制御部26は、受電装置2の全体の動作を制御する。各々の制御部15、26は、例えば、無線給電システムにより定められた処理を実行するプロセッサと、データおよびプログラムを記憶するメモリを含む。また、送電装置1の無線通信部14と受電装置2の無線通信部25は、上述の送電側共振器13及び受電側共振器20の間の電力の伝送とは別に、それぞれの制御部15、26で必要な情報を無線により相互に伝送する手段であり、例えば、送受信回路とアンテナを含んで構成される。   On the other hand, the control unit 15 of the power transmission device 1 controls the overall operation of the power transmission device 1. Similarly, the control unit 26 of the power receiving device 2 controls the overall operation of the power receiving device 2. Each control unit 15 and 26 includes, for example, a processor that executes processing determined by the wireless power feeding system, and a memory that stores data and programs. In addition, the wireless communication unit 14 of the power transmission device 1 and the wireless communication unit 25 of the power reception device 2 are respectively connected to the control units 15 separately from the transmission of power between the power transmission side resonator 13 and the power reception side resonator 20 described above. 26 is a means for transmitting necessary information to each other wirelessly, and includes, for example, a transmission / reception circuit and an antenna.

次に、図1の無線給電システムのうち、送電側共振器13及び受電側共振器20の構造及び動作について説明する。本実施形態において、送電側共振器13及び受電側共振器20は、いずれも所定の共振周波数の交流電力と電磁界エネルギーを相互に変換する共振コイルを含み、送電側共振器13及び受電側共振器20を比較的近い距離で対向させて配置して両者を磁気的に結合させた状態で用いられる。このような状態で、送電側共振器13から主に磁界エネルギーが受電側共振器20に伝送され、いわゆる磁界共鳴方式に基づく非接触の電力伝送が可能となる。   Next, the structure and operation of the power transmission side resonator 13 and the power reception side resonator 20 in the wireless power feeding system of FIG. 1 will be described. In the present embodiment, each of the power transmission side resonator 13 and the power reception side resonator 20 includes a resonance coil that mutually converts AC power and electromagnetic field energy of a predetermined resonance frequency, and the power transmission side resonator 13 and the power reception side resonance. It is used in a state in which the container 20 is disposed facing each other at a relatively close distance and both are magnetically coupled. In such a state, magnetic field energy is mainly transmitted from the power transmission side resonator 13 to the power reception side resonator 20, and non-contact power transmission based on a so-called magnetic field resonance method becomes possible.

図2は、送電装置1における送電側共振器13及びそれに関連する回路部分と、受電装置2における受電側共振器20及びそれに関連する回路部分との等価回路の一例を示している。送電装置1においては、発振器11aとインピーダンスZoの直列回路の部分は図1の高周波電源11に相当し、インダクタンスL1、容量C1、抵抗R1の直列回路の部分は図1の送電側共振器13に相当し、両者が接続されている。また、受電装置2においては、インダクタンスL2、容量C2、抵抗R2の直列回路の部分は図1の受電側共振器20に相当し、その回路部分と負荷(図1のバッテリ23又は負荷回路24)が接続されている。このように、送電側共振器13と受電側共振器20は同一の等価回路で表されるので、磁界の結合によって同一の共振周波数で共振(共鳴)する。   FIG. 2 shows an example of an equivalent circuit of the power transmission side resonator 13 and the circuit portion related thereto in the power transmission device 1 and the power reception side resonator 20 and the circuit portion related thereto in the power reception device 2. In the power transmission device 1, the part of the series circuit of the oscillator 11a and the impedance Zo corresponds to the high frequency power supply 11 of FIG. 1, and the part of the series circuit of the inductance L1, the capacitor C1, and the resistor R1 is connected to the power transmission side resonator 13 of FIG. Correspondingly, both are connected. Further, in the power receiving device 2, the portion of the series circuit of the inductance L2, the capacitance C2, and the resistor R2 corresponds to the power receiving side resonator 20 in FIG. 1, and the circuit portion and the load (battery 23 or load circuit 24 in FIG. 1). Is connected. Thus, since the power transmission side resonator 13 and the power reception side resonator 20 are represented by the same equivalent circuit, they resonate (resonate) at the same resonance frequency by coupling of magnetic fields.

送電側共振器13及び受電側共振器20において、インダクタンスLは共振コイルの部分のサイズや巻数に依存して定まり、容量Cは共振コイルの配線間の寄生容量(浮遊容量)に依存して定まる。図2の等価回路において、1対の送電側共振器13及び受電側共振器20の回路部分は、1対のコイルが電磁誘導を生じる回路形式と同様に表現される。ただし、電磁誘導の場合は、コイルに磁性体が用いられるためQ値が極めて低くなって1対のコイルの距離が離れると電力の伝送が困難となるのに対し、本実施形態では、後述の構造及び材料によって共振コイルのQ値を高くできるので、送電側共振器13と受電側共振器20がある程度距離が離れたとしても、磁界結合によって効率的に電力を伝送することができる。   In the power transmission side resonator 13 and the power reception side resonator 20, the inductance L is determined depending on the size and the number of turns of the resonance coil portion, and the capacitance C is determined depending on the parasitic capacitance (stray capacitance) between the wirings of the resonance coil. . In the equivalent circuit of FIG. 2, the circuit portions of the pair of power transmission side resonator 13 and the power reception side resonator 20 are expressed in the same manner as a circuit form in which a pair of coils generate electromagnetic induction. However, in the case of electromagnetic induction, since a magnetic material is used for the coil, the Q value becomes extremely low and transmission of power becomes difficult when the distance between the pair of coils is increased. Since the Q value of the resonance coil can be increased depending on the structure and material, even if the power transmission side resonator 13 and the power reception side resonator 20 are separated from each other to some extent, power can be efficiently transmitted by magnetic field coupling.

ここで、送電側共振器13から受電側共振器20への伝送効率ηは、次の(1)式のfom(性能指数)に関係する。
fom=k(Q1・Q2)1/2 (1)
ただし、k:結合係数
Q1:送電側共振器13の共振コイルのQ値
Q2:受電側共振器20の共振コイルのQ値
Here, the transmission efficiency η from the power transmission side resonator 13 to the power reception side resonator 20 is related to the fom (performance index) of the following equation (1).
fom = k (Q1 · Q2) 1/2 (1)
Where k: coupling coefficient Q1: Q value of resonance coil of power transmission side resonator 13 Q2: Q value of resonance coil of power reception side resonator 20

(1)式において、結合係数kは、送電側共振器13と受電側共振器20の各共振コイル同士の間隔(エアギャップ)に依存し、間隔が大きくなるほど低下する。すなわち、各共振コイルの配置の制約に応じた所与の結合係数kに対し、上述のQ1、Q2が高くなるほど、伝送効率ηを向上させることができる。一般に、角周波数ωにおける共振コイルのQ値は、(2)式により与えられる。
Q=ωL/r (2)
ただし、L:インダクタンス
r:抵抗
In the equation (1), the coupling coefficient k depends on the interval (air gap) between the resonance coils of the power transmission side resonator 13 and the power reception side resonator 20, and decreases as the interval increases. That is, the transmission efficiency η can be improved as the above-described Q1 and Q2 become higher with respect to a given coupling coefficient k according to the restrictions on the arrangement of the resonance coils. In general, the Q value of the resonance coil at the angular frequency ω is given by equation (2).
Q = ωL / r (2)
Where L: inductance r: resistance

(2)式において、抵抗rは、誘電体損、導体損、放射損などの損失の和で表される。本実施形態では、送電側共振器13及び受電側共振器20の構造に基づき共振コイルの損失を低減することにより、共振コイルのQ値の向上を図るものであるが、詳しくは後述する。   In the equation (2), the resistance r is represented by the sum of losses such as dielectric loss, conductor loss, and radiation loss. In the present embodiment, the Q value of the resonance coil is improved by reducing the loss of the resonance coil based on the structure of the power transmission side resonator 13 and the power reception side resonator 20, which will be described in detail later.

次に、図1の送電側共振器13及び受電側共振器20の構造について説明する。上述したように、送電側共振器13及び受電側共振器20の基本構造は同じであるため、以下では、送電側共振器13及び受電側共振器20の両方に適合する共振器30を想定して説明を行うものとする。まず、本実施形態の共振器30の構造例について図3を参照して説明する。図3に示す共振器30は、円板状の支持部材31と、支持部材31の内部の導体からなるスパイラル型の巻線コイル32(本発明の共振コイル)と、巻線コイル32の表面の一部の領域に配置された誘電体セラミック部材33(本発明の電界集中部)とにより構成される。   Next, the structure of the power transmission side resonator 13 and the power reception side resonator 20 of FIG. 1 is demonstrated. As described above, since the basic structures of the power transmission side resonator 13 and the power reception side resonator 20 are the same, in the following, a resonator 30 that is compatible with both the power transmission side resonator 13 and the power reception side resonator 20 is assumed. Will be described. First, a structural example of the resonator 30 of the present embodiment will be described with reference to FIG. A resonator 30 shown in FIG. 3 includes a disk-shaped support member 31, a spiral winding coil 32 (resonance coil of the present invention) made of a conductor inside the support member 31, and a surface of the winding coil 32. It is comprised with the dielectric ceramic member 33 (electric field concentration part of this invention) arrange | positioned in a one part area | region.

図3の構造例において、支持部材31は、共振器30の全体を支持する筐体としての役割があり、例えば、一般的な樹脂材料により形成される。図3の例では、支持部材31は所定の厚みを有する円板状の部材であり、中央に円形の開口部31aが設けられている。支持部材31の形状及び構造は、図3の例には限られないが、巻線コイル32の一定の形状を確保でき、かつ十分な機械的強度を得られる構造を有することが望ましい。支持部材31の内部には、巻線コイル32及び誘電体セラミック部材33が固定された状態で配置されている。なお、支持部材31の内部は、例えば樹脂材料で充填してもよいが、支持部材31の内部に空間が存在してもよい。   In the structural example of FIG. 3, the support member 31 has a role as a housing that supports the entire resonator 30, and is formed of, for example, a general resin material. In the example of FIG. 3, the support member 31 is a disk-shaped member having a predetermined thickness, and a circular opening 31a is provided at the center. The shape and structure of the support member 31 are not limited to the example of FIG. 3, but it is desirable that the support member 31 has a structure that can ensure a certain shape of the winding coil 32 and obtain sufficient mechanical strength. A winding coil 32 and a dielectric ceramic member 33 are disposed inside the support member 31 in a fixed state. The inside of the support member 31 may be filled with, for example, a resin material, but a space may exist inside the support member 31.

巻線コイル32は、支持部材31の厚さ方向の略中央の位置に配置され、スパイラル状に巻いた状態の線状導体(例えば、銅線)により構成される。巻線コイル32のサイズ、巻き数、巻線コイル32を構成する線状導体の線径及び線間ピッチは、共振器30のサイズ、共振周波数、Q値などの設計条件に応じて適切に決定することができる。なお、巻線コイル32は、支持部材31の内部に配置する構造に限らず、支持部材31の表面に配置する構造としてもよい。   The winding coil 32 is arranged at a substantially central position in the thickness direction of the support member 31 and is constituted by a linear conductor (for example, copper wire) wound in a spiral shape. The size and number of turns of the winding coil 32, and the wire diameter and pitch between the linear conductors constituting the winding coil 32 are appropriately determined according to design conditions such as the size, resonance frequency, and Q value of the resonator 30. can do. The winding coil 32 is not limited to the structure arranged inside the support member 31, and may be arranged on the surface of the support member 31.

巻線コイル32の両端は開放(オープン)されていてもよいし、あるいは回路素子に接続されていてもよい。巻線コイル32の両端が開放されている状態で共振器30に給電するには、例えば、近傍に配置したループ素子を介して共振器30に給電すればよい。また、共振器30に対し、巻線コイル32の一端にキャパシタを直列に接続してもよいし、巻線コイル32の両端にキャパシタを並列に接続してもよい。このようなキャパシタの容量値を適切に設定することにより、共振器30の共振周波数やQ値を調整することができる。   Both ends of the winding coil 32 may be open (open) or may be connected to a circuit element. In order to supply power to the resonator 30 with both ends of the winding coil 32 open, for example, power may be supplied to the resonator 30 via a loop element arranged in the vicinity. Further, with respect to the resonator 30, a capacitor may be connected in series to one end of the winding coil 32, or a capacitor may be connected in parallel to both ends of the winding coil 32. By appropriately setting the capacitance value of such a capacitor, the resonance frequency and Q value of the resonator 30 can be adjusted.

誘電体セラミック部材33は、高誘電率のセラミック材料により形成された複数の板状部材であり、巻線コイル32の表面近傍の領域のうち一部に配置されている。誘電体セラミック部材33の材料は、少なくとも支持部材31の材料の誘電率よりも高い誘電率を有している。誘電体セラミック部材33の材料としては、比誘電率εrが8以上で、かつ、誘電正接tanδが10−2以下の誘電体セラミック材料を用いることが望ましい。なお、支持部材31の一般的な樹脂材料としては、例えば、比誘電率εrが2程度となる。支持部材31及び誘電体セラミック部材33の各誘電率の相違により、巻線コイル32の巻線間に発生する電界を誘電体セラミック部材33に集中させて巻線コイル32のQ値を高めることができるが、具体的な作用及び効果については後述する。 The dielectric ceramic member 33 is a plurality of plate-like members formed of a ceramic material having a high dielectric constant, and is disposed in a part of the region near the surface of the winding coil 32. The material of the dielectric ceramic member 33 has a dielectric constant higher than at least the dielectric constant of the material of the support member 31. As a material of the dielectric ceramic member 33, it is desirable to use a dielectric ceramic material having a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −2 or less. In addition, as a general resin material of the support member 31, for example, the relative dielectric constant εr is about 2. Due to the difference in dielectric constant between the support member 31 and the dielectric ceramic member 33, the electric field generated between the windings of the winding coil 32 can be concentrated on the dielectric ceramic member 33 to increase the Q value of the winding coil 32. However, specific actions and effects will be described later.

図3の例では、誘電体セラミック部材33として、巻線コイル32の周方向の所定位置に配置された3個の板状部材が示されているが、誘電体セラミック部材33を構成する板状部材の個数や配置は制約されない。この場合、誘電体セラミック部材33を1個の板状部材で構成してもよい。ただし、誘電体セラミック部材33を構成する1個又は複数の板状部材は、巻線コイル32の表面近傍の全部の領域を覆う程度のサイズであると共振器30の軽量化を阻害するので、巻線コイル32の表面近傍の一部の領域を覆う程度のサイズとすることが望ましい。また、図3では省略しているが、電界の集中の効果を高めるには、巻線コイル32の両側(上部及び下部)の表面に誘電体セラミック部材33を配置することが望ましい。   In the example of FIG. 3, as the dielectric ceramic member 33, three plate-like members arranged at predetermined positions in the circumferential direction of the winding coil 32 are shown, but the plate-like shape constituting the dielectric ceramic member 33 is shown. The number and arrangement of members are not limited. In this case, the dielectric ceramic member 33 may be composed of a single plate-like member. However, since the one or more plate-like members constituting the dielectric ceramic member 33 are of a size that covers the entire area near the surface of the winding coil 32, the weight reduction of the resonator 30 is hindered. It is desirable to have a size that covers a part of the area near the surface of the winding coil 32. Although omitted in FIG. 3, it is desirable to dispose the dielectric ceramic member 33 on the surfaces of both sides (upper and lower) of the winding coil 32 in order to enhance the effect of concentration of the electric field.

本実施形態の共振器30の設計条件は、無線給電システムの形態や用途に応じた多様な選択が可能である。例えば、巻線コイル32の寸法パラメータを含む設計条件の具体例としては、共振周波数を10MHzとしたとき、巻数が6、コイル内径が200mm、線間ピッチが1mm、円形断面の線状導体の線径が0.96mmのように設定することができる。なお、誘電体セラミック部材33の厚さは、例えば、5mmに設定することができる。   The design conditions of the resonator 30 of this embodiment can be selected in various ways according to the form and application of the wireless power feeding system. For example, as a specific example of design conditions including the dimensional parameters of the winding coil 32, when the resonance frequency is 10 MHz, the number of turns is 6, the inner diameter of the coil is 200 mm, the pitch between lines is 1 mm, and the wire of the linear conductor having a circular cross section The diameter can be set to 0.96 mm. The thickness of the dielectric ceramic member 33 can be set to 5 mm, for example.

ここで、図4を用いて、本実施形態の共振器30内に発生する電界について模式的に説明する。まず、図4(A)は、本実施形態との比較のため、誘電体セラミック部材33を設けない場合の共振器30の部分的な断面構造を拡大して示している。一方、図4(B)は、本実施形態の図3の構造のうち、誘電体セラミック部材33が配置された領域の部分的な断面構造を拡大して示している。図4(A)、(B)においては、誘電体セラミック部材33の有無を除いて、同様の構造である。すなわち、巻線コイル32が支持部材31の厚さ方向の略中央に固定され、複数の線状導体が一定間隔(線間ピッチ)で並ぶ構造で表される。なお、巻線コイル32を構成する線状導体は円形断面で表されるが、方形断面であってもよい。また、誘電体セラミック部材33は、巻線コイル32を上部表面と下部表面から挟み込むように配置されている。   Here, the electric field generated in the resonator 30 of this embodiment will be schematically described with reference to FIG. First, FIG. 4A shows an enlarged partial cross-sectional structure of the resonator 30 when the dielectric ceramic member 33 is not provided for comparison with the present embodiment. On the other hand, FIG. 4B shows an enlarged partial cross-sectional structure of a region where the dielectric ceramic member 33 is arranged in the structure of FIG. 3 of the present embodiment. 4A and 4B, the structure is the same except for the presence or absence of the dielectric ceramic member 33. That is, the winding coil 32 is fixed to substantially the center of the support member 31 in the thickness direction, and a plurality of linear conductors are arranged at regular intervals (interline pitch). In addition, although the linear conductor which comprises the coil 32 is represented by a circular cross section, a square cross section may be sufficient. The dielectric ceramic member 33 is arranged so as to sandwich the winding coil 32 from the upper surface and the lower surface.

図4(A)、(B)においては、巻線コイル32の隣接する線状導体の間に発生する電界の様子をそれぞれ矢印(電気力線)で示している。通常、共振器30間に伝送される電磁界エネルギーとして磁界が主であるため、巻線コイル32の線間の電界は伝送には寄与しない。しかし、巻線コイル32のQ値の低下を抑制するには、巻線コイル32の線間の電界が誘電体材料を通過する際の損失(主に誘電体損)を小さくする必要がある。まず、比較例の図4(A)は、巻線コイル32の線間の電界が支持部材31の樹脂材料を通過するが、樹脂材料の誘電率が低いため、電界が広がって分布するとともに、比較的大きな損失が発生する。これに対し、本実施形態の図4(B)では、巻線コイル32の線間の電界は、誘電率が高い誘電体セラミック部材33の内部に集中し、その外側では極めて小さくなる。この場合、誘電体セラミック部材33の誘電率が高いほど、誘電体セラミック部材33の電界の集中の度合(電気力線の密度)が強くなり、それによる損失を低下させることができる。ただし、図4(B)において、巻線コイル32と誘電体セラミック部材33の間に樹脂材料等が存在すると、そこを電界が通過して損失が発生するので、巻線コイル32と誘電体セラミック部材33はできるだけ密着させた状態で配置すること望ましい。このように、本実施形態の図4(B)の構造を採用すると、比較例の図4(A)の構造に比べ、巻線コイル32の線間の電界の損失を抑制し、そのQ値を高める効果が得られる。   4A and 4B, the state of the electric field generated between the adjacent linear conductors of the winding coil 32 is indicated by arrows (electric lines of force), respectively. Usually, since the magnetic field is mainly used as the electromagnetic field energy transmitted between the resonators 30, the electric field between the wires of the winding coil 32 does not contribute to the transmission. However, in order to suppress a decrease in the Q value of the winding coil 32, it is necessary to reduce the loss (mainly dielectric loss) when the electric field between the lines of the winding coil 32 passes through the dielectric material. First, in FIG. 4A of the comparative example, the electric field between the wires of the winding coil 32 passes through the resin material of the support member 31, but since the dielectric constant of the resin material is low, the electric field spreads and is distributed. A relatively large loss occurs. On the other hand, in FIG. 4B of the present embodiment, the electric field between the wires of the winding coil 32 is concentrated inside the dielectric ceramic member 33 having a high dielectric constant, and becomes extremely small outside thereof. In this case, the higher the dielectric constant of the dielectric ceramic member 33, the stronger the concentration of electric field (density of electric lines of force) of the dielectric ceramic member 33, and the loss caused thereby can be reduced. However, in FIG. 4B, if a resin material or the like is present between the winding coil 32 and the dielectric ceramic member 33, an electric field passes through the resin material and loss occurs, so that the winding coil 32 and the dielectric ceramic are generated. It is desirable to arrange the member 33 in a state of being in close contact as much as possible. As described above, when the structure of FIG. 4B of the present embodiment is adopted, the loss of the electric field between the wires of the winding coil 32 is suppressed and the Q value thereof is compared with the structure of FIG. 4A of the comparative example. The effect of increasing

図5は、本実施形態の巻線コイル32のQ値をシミュレーションにより検証した結果を示している。図5においては、所定の条件下で、巻線コイル32のみを設けた構造S0と、支持部材31及び巻線コイル32を設けた構造S1(図4(A)の構造)と、支持部材31、巻線コイル32、誘電体セラミック部材33を設けた構造(図4(B)の構造)であって誘電体セラミック部材33の材料の比誘電率εrとしてεr=10、30にそれぞれ設定した構造S2、S3に関し、それぞれのQ値を比較している。このうち、巻線コイル32のみを設けた構造S0は材料の損失が無視でき、最も高いQ値が得られるので、これを基準に他の構造の良否を判断することができる。   FIG. 5 shows the result of verifying the Q value of the winding coil 32 of the present embodiment by simulation. In FIG. 5, under a predetermined condition, a structure S0 provided with only the winding coil 32, a structure S1 provided with the support member 31 and the winding coil 32 (structure shown in FIG. 4A), and the support member 31. , A structure in which the winding coil 32 and the dielectric ceramic member 33 are provided (structure of FIG. 4B), in which the relative dielectric constant εr of the material of the dielectric ceramic member 33 is set to εr = 10 and 30, respectively. With respect to S2 and S3, the respective Q values are compared. Of these, the structure S0 provided with only the winding coil 32 can ignore material loss, and the highest Q value can be obtained. Therefore, the quality of other structures can be judged based on this.

図4(A)の構造S1のQ値は、構造S0のQ値に比べ大きく低下している。すなわち、前述のように、支持部材31の材料の損失に起因するQ値の劣化が確認された。これに対し、本実施形態の図4(B)の構造S2、S3の各Q値は、構造S1のQ値よりも大幅に向上し、構造S0に比べたQ値の低下は比較的小さい範囲にとどまる。また、εr=10の場合の構造S2よりも、εr=30の場合の構造S3の方が高いQ値が得られることがわかる。よって、他の条件が同様であれば、前述したように、誘電体セラミック部材33の誘電率を高くすることで、Q値の向上の効果を高めることができる。   The Q value of the structure S1 in FIG. 4A is significantly lower than the Q value of the structure S0. That is, as described above, the deterioration of the Q value due to the material loss of the support member 31 was confirmed. On the other hand, the Q values of the structures S2 and S3 in FIG. 4B according to the present embodiment are significantly improved from the Q value of the structure S1, and the decrease in the Q value compared to the structure S0 is relatively small. Stay on. It can also be seen that the structure S3 in the case of εr = 30 can obtain a higher Q value than the structure S2 in the case of εr = 10. Therefore, if the other conditions are the same, as described above, the effect of improving the Q value can be enhanced by increasing the dielectric constant of the dielectric ceramic member 33.

次に図6は、本実施形態の巻線コイル32の表面近傍領域のうち上述の電界集中部としての誘電体セラミック部材33が配置された領域が占める面積比とQ値との関係についてシミュレーションにより検証した結果を示している。例えば、前述の図3の構造では、巻線コイル32の表面近傍領域の30%程度の面積比で誘電体セラミック部材33が配置されているが、この面積比を増減したときのQ値の変化が問題となる。図6においては、Q値の比較のため、支持部材31及び巻線コイル32のみを設けた場合(図5の構造S1)の特性C0(図6の左端)を示し、巻線コイル32のみを設けた場合(図5の構造S0)の特性C3(図6の右端)を示す。そして、面積比0〜100%の範囲内で、図5の構造S2、S3に関連して、εr=10の誘電体セラミック部材33の特性C1と、εr=30の誘電体セラミック部材33の特性C2とをそれぞれ示している。なお、図6のシミュレーションでは、支持部材31はεr=2程度の一般樹脂を用い、共振周波数が約10MHzの巻線コイル32を用いた。   Next, FIG. 6 shows, by simulation, the relationship between the area ratio and the Q value occupied by the above-described region where the dielectric ceramic member 33 as the electric field concentration portion is disposed in the region near the surface of the winding coil 32 of the present embodiment. The verified result is shown. For example, in the structure of FIG. 3 described above, the dielectric ceramic member 33 is arranged at an area ratio of about 30% of the region near the surface of the winding coil 32. The change in the Q value when the area ratio is increased or decreased. Is a problem. 6 shows a characteristic C0 (left end in FIG. 6) in the case where only the support member 31 and the winding coil 32 are provided (structure S1 in FIG. 5) for comparison of the Q value, and only the winding coil 32 is shown. The characteristic C3 (right end of FIG. 6) of the case where it is provided (structure S0 of FIG. 5) is shown. Then, within the range of 0 to 100% of the area ratio, the characteristic C1 of the dielectric ceramic member 33 with εr = 10 and the characteristic of the dielectric ceramic member 33 with εr = 30 in relation to the structures S2 and S3 in FIG. C2 is shown respectively. In the simulation of FIG. 6, the support member 31 is made of a general resin having εr = 2 and a winding coil 32 having a resonance frequency of about 10 MHz.

図6に示すように、特性C1、C2のいずれとも上記面積比が10%を下回るとQ値が急激に低下する。また、上記面積比が10〜100%の範囲では、特性C1、C2のいずれともQ値が安定するが、εr=10の特性C1に比べεr=30の特性C2の方が高いQ値が得られることがわかる。よって、巻線コイル32の表面近傍領域で誘電体セラミック部材33の面積比を10%以上に設定することが望ましく、その範囲内で誘電体セラミック部材33の誘電率が高い方がQ値の向上に有利である。また、面積比が100%の場合は誘電体セラミック材料の重量が増加するという問題がある。面積比が100%でなくとも、面積比で10%程度に設定されていれば所望のQ値を確保できる。そのため、誘電体セラミック部材33を巻線コイル32の表面近傍領域の一部に配置すれば、共振器30の機械的強度を確保しつつ、誘電体セラミック材料による重量増加を抑制することができる。   As shown in FIG. 6, when the area ratio is lower than 10% in both the characteristics C1 and C2, the Q value is rapidly decreased. Also, when the area ratio is in the range of 10 to 100%, the Q value of both the characteristics C1 and C2 is stable, but the characteristic C2 with εr = 30 has a higher Q value than the characteristic C1 with εr = 10. I understand that Therefore, it is desirable to set the area ratio of the dielectric ceramic member 33 to 10% or more in the region near the surface of the winding coil 32, and the higher the dielectric constant of the dielectric ceramic member 33 within that range, the higher the Q value. Is advantageous. Further, when the area ratio is 100%, there is a problem that the weight of the dielectric ceramic material increases. Even if the area ratio is not 100%, a desired Q value can be secured if the area ratio is set to about 10%. Therefore, if the dielectric ceramic member 33 is disposed in a part of the surface vicinity region of the winding coil 32, the increase in weight due to the dielectric ceramic material can be suppressed while ensuring the mechanical strength of the resonator 30.

以上説明したように、本実施形態の共振器30を採用することにより、支持部材31の材料よりも誘電率が高い誘電体セラミック部材33を巻線コイル32の表面近領域の一部に配置し、それを電界集中部として作用させることで、Q値の高い共振器30を実現し、無線給電システムにおける伝送効率の向上が可能となる。この場合、巻線コイル32の表面近傍領域に占める誘電体セラミック部材33の面積比は10%程度確保すればよいため、共振器30の重量増加にはつながらず、誘電体セラミック部材33の割れ等の問題を回避して機械的強度を高めるのに適した構造を実現することができる。   As described above, by employing the resonator 30 of the present embodiment, the dielectric ceramic member 33 having a dielectric constant higher than that of the material of the support member 31 is arranged in a part of the region near the surface of the winding coil 32. By making it act as an electric field concentrator, a resonator 30 having a high Q value is realized, and transmission efficiency in the wireless power feeding system can be improved. In this case, since the area ratio of the dielectric ceramic member 33 occupying the region near the surface of the winding coil 32 should be about 10%, the weight of the resonator 30 is not increased, and the dielectric ceramic member 33 is cracked. Thus, it is possible to achieve a structure suitable for avoiding this problem and increasing the mechanical strength.

図3〜図6においては、本実施形態の共振器30として、スパイラル型の巻線コイル32を用いる構造例を説明したが、巻線コイル32の構造例には多様な変形例がある。図7は、本実施形態の一変形例に係る共振器40として、円筒状の支持部材41と、ヘリカル型の巻線コイル42と、誘電体セラミック部材43とにより構成される構造例を示している。支持部材41は、中空状に加工され、その円筒側面に巻線コイル42が配置されている。また、巻線コイル42の外側の表面の一部の領域には、誘電体セラミック部材43(図7では4個の板状部材)が配置されている。支持部材41及び誘電体セラミック部材43の材料及び両者の誘電率の関係については、図3の共振器30と同様である。   3 to 6, the structural example using the spiral wound coil 32 as the resonator 30 of the present embodiment has been described. However, the structural example of the wound coil 32 has various modifications. FIG. 7 shows a structural example including a cylindrical support member 41, a helical winding coil 42, and a dielectric ceramic member 43 as a resonator 40 according to a modification of the present embodiment. Yes. The support member 41 is processed into a hollow shape, and a winding coil 42 is disposed on the side surface of the cylinder. A dielectric ceramic member 43 (four plate-like members in FIG. 7) is disposed in a partial region on the outer surface of the winding coil 42. The materials of the support member 41 and the dielectric ceramic member 43 and the relationship between the dielectric constants of the materials are the same as those of the resonator 30 of FIG.

図7の変形例の巻線コイル42のサイズ、巻き数、線状導体の線径及び線間ピッチなどは、図3の巻線コイル32と同様、共振器40の設計条件に応じて適切に決定することができる。また、誘電体セラミック部材43を構成する板状部材の個数や配置が制約されない点についても同様である。図7の変形例を採用する場合であっても、図4を用いて説明した通り、巻線コイル42の巻線間に発生する電界を誘電体セラミック部材43に集中させて巻線コイル42のQ値を高める効果が得られる。   The size, the number of turns, the wire diameter of the linear conductor, the pitch between the wires, and the like of the winding coil 42 of the modified example of FIG. 7 are appropriately set according to the design conditions of the resonator 40 as in the winding coil 32 of FIG. Can be determined. The same applies to the point that the number and arrangement of the plate-like members constituting the dielectric ceramic member 43 are not restricted. Even when the modified example of FIG. 7 is adopted, as described with reference to FIG. 4, the electric field generated between the windings of the winding coil 42 is concentrated on the dielectric ceramic member 43 so that the winding coil 42 The effect of increasing the Q value is obtained.

なお、図7の変形例の支持部材41は、円筒状に限られず、例えば、矩形状に形成してもよい。この場合、矩形状の支持部材41の断面矩形の側面に沿って巻線コイル42を配置し、その外側の一又は複数の所定箇所にそれぞれ板状部材からなる誘電体セラミック43を配置すればよい。この場合、巻線コイル42が周囲に巻かれた支持部材41の内部は、空芯状には限られず、所定の誘電率を有する部材を挿入してもよい。   In addition, the support member 41 of the modification of FIG. 7 is not restricted to a cylindrical shape, For example, you may form in a rectangular shape. In this case, the winding coil 42 may be disposed along the side of the rectangular support member 41 having a rectangular cross section, and the dielectric ceramic 43 made of a plate member may be disposed at one or a plurality of predetermined locations outside the winding coil 42. . In this case, the inside of the support member 41 around which the winding coil 42 is wound is not limited to an air core shape, and a member having a predetermined dielectric constant may be inserted.

以上、本実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で多様な変更を施すことができる。例えば、本実施形態の無線給電システムとして、図1の構成例を示したが、これに限られることなく、本発明の構造上の特徴を具備する共振器を用いる限り、多様な構成の無線給電システムに対して本発明を適用することができる。また、本発明を適用可能な無線給電システムの用途として、車両への電源供給に言及したが、例えば、携帯電話やノートPCなどの情報端末、TV、家電機器、照明機器、ゲーム機器、医療機器、産業機器など多様な用途の無線給電システムに対して本発明の適用が可能である。さらに、その他の点についても上記実施形態により本発明の内容が限定されるものではなく、本発明の作用効果を得られる限り、上記実施形態に開示した内容には限定されることなく適宜に変更可能である。   The contents of the present invention have been specifically described above based on the present embodiment, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, the configuration example of FIG. 1 is shown as the wireless power supply system of the present embodiment, but the present invention is not limited to this, and as long as the resonator having the structural features of the present invention is used, wireless power supply having various configurations is possible. The present invention can be applied to a system. In addition, as a use of the wireless power supply system to which the present invention can be applied, reference is made to power supply to vehicles. For example, information terminals such as mobile phones and notebook PCs, TVs, home appliances, lighting devices, game devices, and medical devices The present invention can be applied to wireless power feeding systems for various uses such as industrial equipment. Further, the contents of the present invention are not limited by the above-described embodiment with respect to other points, and the contents disclosed in the above-described embodiment are not limited to the contents disclosed in the above-described embodiments as long as the effects of the present invention can be obtained. Is possible.

1…送電装置
2…受電装置
10…AC/DCコンバータ
11…高周波電源
12…整合回路
13…送電側共振器
14…無線通信部
15…制御部
20…受電側共振器
21…整合回路
22…整流器
23…バッテリ
24…負荷回路
25…無線通信部
26…制御部
30、40…共振器
31、41…支持部材
32、42…巻線コイル
33、43…誘電体セラミック部材
DESCRIPTION OF SYMBOLS 1 ... Power transmission apparatus 2 ... Power reception apparatus 10 ... AC / DC converter 11 ... High frequency power supply 12 ... Matching circuit 13 ... Power transmission side resonator 14 ... Wireless communication part 15 ... Control part 20 ... Power reception side resonator 21 ... Matching circuit 22 ... Rectifier DESCRIPTION OF SYMBOLS 23 ... Battery 24 ... Load circuit 25 ... Wireless communication part 26 ... Control part 30, 40 ... Resonator 31, 41 ... Support member 32, 42 ... Winding coil 33, 43 ... Dielectric ceramic member

Claims (8)

主に磁場の共鳴を利用して送電側共振器から受電側共振器に電力を伝送する無線給電システムにおける共振器であって、
所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、
前記共振コイルを支持する支持部材と、
前記共振コイルの表面近傍領域の一部に配置され、前記支持部材の材料の誘電率よりも高い誘電率を有する高誘電率の誘電体セラミック材料からなる電界集中部と、
を備えることを特徴とする共振器。
A resonator in a wireless power feeding system that mainly uses magnetic field resonance to transmit power from a power transmitting resonator to a power receiving resonator,
A resonant coil that mutually converts AC power and electromagnetic energy of a predetermined resonant frequency;
A support member for supporting the resonance coil;
An electric field concentration portion made of a dielectric ceramic material having a high dielectric constant and having a dielectric constant higher than the dielectric constant of the material of the support member, disposed in a part of a region near the surface of the resonant coil;
A resonator comprising:
前記誘電体セラミック材料は、比誘電率εrが8以上であり、誘電正接tanδが10−2以下であることを特徴とする請求項1に記載の共振器。 2. The resonator according to claim 1, wherein the dielectric ceramic material has a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −2 or less. 前記共振コイルの前記表面近傍領域のうち、前記電界集中部が配置された領域は面積比で10%以上に設定されることを特徴とする請求項1から2のいずれか1項に記載の共振器。   3. The resonance according to claim 1, wherein the area where the electric field concentration portion is arranged in the area near the surface of the resonance coil is set to 10% or more by area ratio. 4. vessel. 前記共振コイルは、スパイラル型の巻線コイルにより構成されていることを特徴とする請求項1から3のいずれか1項に記載の共振器   The resonator according to any one of claims 1 to 3, wherein the resonance coil is configured by a spiral wound coil. 前記共振コイルは、ヘリカル型の巻線コイルにより構成されていることを特徴とする請求項1から3のいずれか1項に記載の共振器   The resonator according to any one of claims 1 to 3, wherein the resonance coil is constituted by a helical winding coil. 主に磁場の共鳴を利用して送電装置から受電装置に電力を伝送する無線給電システムであって、
前記送電装置は、
所定の周波数の交流電力を供給する電源と、
前記電源から供給された前記交流電力に共振し、前記交流電力を電磁界エネルギーとして送電する送電側共振器と、
を備え、
前記受電装置は、
前記送電側共振コイルと前記磁場の共鳴により結合し、前記電磁界エネルギーを交流電力として受電する受電側共振器と、
前記受電側共振器により受電された前記交流電力により動作する回路部と、
を備え、
前記送電側共振器及び前記受電側共振器の各々は、
所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、
前記共振コイルを支持する支持部材と、
前記共振コイルの表面近傍領域の一部に配置され、前記支持部材の材料の誘電率よりも高い誘電率を有する高誘電率の誘電体セラミック材料からなる電界集中部と、
を備えることを特徴とする無線給電システム。
A wireless power feeding system that mainly uses magnetic field resonance to transmit power from a power transmitting device to a power receiving device,
The power transmission device is:
A power supply for supplying AC power of a predetermined frequency;
A power transmission-side resonator that resonates with the AC power supplied from the power source and transmits the AC power as electromagnetic energy;
With
The power receiving device is:
A power receiving side resonator coupled with the power transmitting side resonance coil by resonance of the magnetic field and receiving the electromagnetic field energy as AC power;
A circuit unit that operates by the AC power received by the power-receiving-side resonator;
With
Each of the power transmission side resonator and the power reception side resonator is:
A resonant coil that mutually converts AC power and electromagnetic energy of a predetermined resonant frequency;
A support member for supporting the resonance coil;
An electric field concentration portion made of a dielectric ceramic material having a high dielectric constant and having a dielectric constant higher than the dielectric constant of the material of the support member, disposed in a part of a region near the surface of the resonant coil;
A wireless power feeding system comprising:
前記誘電体セラミック材料は、比誘電率εrが8以上であり、誘電正接tanδが10−2以下であることを特徴とする請求項6に記載の無線給電システム。 The wireless power feeding system according to claim 6, wherein the dielectric ceramic material has a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −2 or less. 前記共振コイルの前記表面近傍領域のうち、前記電界集中部が配置された領域は面積比で10%以上に設定されることを特徴とする請求項6から7のいずれか1項に記載の無線給電システム。
8. The radio according to claim 6, wherein, of the region near the surface of the resonance coil, a region in which the electric field concentration portion is disposed is set to 10% or more in area ratio. Power supply system.
JP2014103627A 2014-05-19 2014-05-19 Resonator and wireless power supply system Pending JP2015220891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103627A JP2015220891A (en) 2014-05-19 2014-05-19 Resonator and wireless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103627A JP2015220891A (en) 2014-05-19 2014-05-19 Resonator and wireless power supply system

Publications (1)

Publication Number Publication Date
JP2015220891A true JP2015220891A (en) 2015-12-07

Family

ID=54779876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103627A Pending JP2015220891A (en) 2014-05-19 2014-05-19 Resonator and wireless power supply system

Country Status (1)

Country Link
JP (1) JP2015220891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126936A1 (en) * 2017-12-25 2019-07-04 深圳先进技术研究院 Novel structure of high-permittivity pad for magnetic resonance imaging
CN113661596A (en) * 2019-03-28 2021-11-16 爱欧艾日本株式会社 Wireless power feeding system having battery-mounted device fitted to power receiving device on which lamp unit is mounted

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126936A1 (en) * 2017-12-25 2019-07-04 深圳先进技术研究院 Novel structure of high-permittivity pad for magnetic resonance imaging
CN113661596A (en) * 2019-03-28 2021-11-16 爱欧艾日本株式会社 Wireless power feeding system having battery-mounted device fitted to power receiving device on which lamp unit is mounted

Similar Documents

Publication Publication Date Title
JP5934934B2 (en) Wireless power transmission system
Chatterjee et al. Design optimisation for an efficient wireless power transfer system for electric vehicles
US9947462B2 (en) Wireless power transmission system, power transmitting device, and power receiving device
JP5172050B2 (en) Wireless power transmission device
JP2018533238A (en) Single-layer multimode antenna for wireless power transfer using magnetic field coupling
JP2011142748A (en) Wireless power supply system
JP6168500B2 (en) Wireless power transmission device, power transmission device, and power reception device
JP2013102593A (en) Magnetic coupling unit and magnetic coupling system
JP2019532612A (en) Wireless power transmitter, wireless power transmission system, and wireless power transmission system driving method
KR101174400B1 (en) Space-adaptive self-resonator for wireless power transfer based on resonance
JP2014138509A (en) Resonator, and radio power feeding system
JP6164720B2 (en) Coupled resonator type wireless power transmission system
JP2015220891A (en) Resonator and wireless power supply system
CN114407689B (en) Unmanned submarine wireless charging anti-roll uniform magnetic field magnetic coupling mechanism
JP2016004990A (en) Resonator
KR101985022B1 (en) Wireless Power Relay Apparatus and Wireless Power Transmission System
JP2016010168A (en) Resonator and wireless power supply system
US9601269B2 (en) Resonant coil, wireless power transmitter using the same, wireless power receiver using the same
KR20120116801A (en) A wireless power transmission circuit, a wireless power transmitter and receiver
CN105932789B (en) Transformer and power panel
JP2014003773A (en) Wireless power transmission apparatus and wireless power transmission method
JP2013081331A (en) Non-contact power transmission apparatus
KR20190068909A (en) Apparatus for transmitting device wireless power based on electric resonance
JP2017195707A (en) Wireless power supply device
JP2012039674A (en) Resonance coil