[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015219989A - Negative electrode active material for lithium ion secondary battery and method for producing the same - Google Patents

Negative electrode active material for lithium ion secondary battery and method for producing the same Download PDF

Info

Publication number
JP2015219989A
JP2015219989A JP2014100861A JP2014100861A JP2015219989A JP 2015219989 A JP2015219989 A JP 2015219989A JP 2014100861 A JP2014100861 A JP 2014100861A JP 2014100861 A JP2014100861 A JP 2014100861A JP 2015219989 A JP2015219989 A JP 2015219989A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
composite
electrode active
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014100861A
Other languages
Japanese (ja)
Other versions
JP6739142B2 (en
Inventor
徹 津吉
Toru Tsuyoshi
徹 津吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014100861A priority Critical patent/JP6739142B2/en
Publication of JP2015219989A publication Critical patent/JP2015219989A/en
Application granted granted Critical
Publication of JP6739142B2 publication Critical patent/JP6739142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for a lithium ion secondary battery, maintaining high battery capacity and excellent in cycle characteristics and coulomb efficiency characteristics.SOLUTION: A negative electrode active material for a lithium ion secondary battery is obtained by adding a carbonized material to a complex compound which comprises Si or a Si alloy having an average particle size of 0.01-5 μm and carbonaceous matter or carbonaceous matter and graphite, and has an average particle size of 1-40 μm.

Description

本発明は、リチウムイオン2次電池用負極活物質およびその製造方法に関するものである。   The present invention relates to a negative electrode active material for a lithium ion secondary battery and a method for producing the same.

スマートフォン、タブレット型端末などモバイル機器の高性能化やHEV、PHEV、EVなどエネルギー効率の高い車両の普及に伴い、リチウムイオン2次電池に対する要求も複雑化している。例えばモバイル機器では、その使用目的から充電深度(DOD)の深い所で高耐久性・高容量材料が要望されている。一方、EVのような車載用途では充電深度の制御が可能なため、比較的充電深度の浅い所において高容量でサイクル特性が高い電池材料が要望されている。   As mobile devices such as smartphones and tablet terminals become more sophisticated and energy-efficient vehicles such as HEVs, PHEVs, and EVs become more popular, the demand for lithium ion secondary batteries has become more complex. For example, in mobile devices, a material having a high durability and a high capacity is demanded at a deep charging depth (DOD) for the purpose of use. On the other hand, in-vehicle applications such as EV, since the charge depth can be controlled, a battery material having a high capacity and a high cycle characteristic is desired at a place where the charge depth is relatively shallow.

現在、リチウムイオン2次電池の負極材には主に黒鉛が用いられているが、さらなる高容量化のため、理論容量が高く、リチウムイオンを吸蔵・放出可能な元素であるシリコンやスズ等の金属、もしくは他の元素との合金を用いた負極材の開発が活発に行われている。   At present, graphite is mainly used as the negative electrode material of lithium ion secondary batteries. However, for further increase in capacity, the theoretical capacity is high, and elements such as silicon and tin that can absorb and release lithium ions are used. Development of negative electrode materials using metals or alloys with other elements has been actively conducted.

一方、これらのリチウムイオンを吸蔵・放出可能な金属材料からなる活物質は、充放電に伴い、リチウムが金属材料に挿入・脱離することにより、体積の膨張・収縮が起こることが知られている。そのため、Li挿入・脱離に伴う応力により、活物質の微細化が起こり、負極材料の構造破壊により導電性が切断されると言われている。従って、これらの金属材料を用いた負極は繰り返し使用により電池寿命が著しく低下することが課題となっている。   On the other hand, it is known that an active material made of a metal material capable of inserting and extracting lithium ions causes volume expansion / contraction due to insertion / extraction of lithium into / from the metal material during charge / discharge. Yes. Therefore, it is said that the active material is made finer due to stress accompanying Li insertion / desorption, and the conductivity is cut due to structural breakdown of the negative electrode material. Therefore, the negative electrode using these metal materials has a problem that the battery life is remarkably reduced by repeated use.

この課題に対し、これらの金属材料を微粒子化し、炭素質物や黒鉛などで複合化する手法が提案されている。このような複合粒子は、これらの金属材料がリチウムと合金化し、微細化しても炭素質物や黒鉛によって導電性が確保されるため、これらの材料を単独で負極材として用いるよりもサイクル特性が向上することが知られている。例えば、特許文献1には、炭素質物と、平均粒子径が10nm以上200nm以下の、Ag、Zn、Al、Ga、In、Si、Ge、Sn及びPbからなる群より選ばれる少なくとも1種の金属元素からなるナノ金属微粒子とを含有し、該炭素質物、該黒鉛質物及び該ナノ金属微粒子の合計重量に対して、該ナノ金属微粒子を3重量%以上、20重量%以下含有することが開示されている。また、特許文献2には、黒鉛粒子、Si微粒子及び非晶質炭素(A)を含む複合粒子表面に、黒鉛又はカーボンブラックから選ばれる少なくとも1種類以上を含む炭素質粒子が配置されるとともに、該炭素質物負極活物質が、非晶質炭素(B)によって被覆されていることが開示されている。さらに、特許文献3には、黒鉛粒子の周りに珪素及び炭素を少なくとも含有するとともに前記黒鉛粒子より粒子径が小さな複合粒子が分散して配置され、かつ前記黒鉛粒子および前記複合粒子が非晶質炭素膜によって被覆されたことが記載されている。また、特許文献4には、X線回折において、Si(111)に帰属される回折ピークが観察され、その回折線の幅をもとにシーラー法により求めた珪素の結晶の大きさが1〜500nmである、珪素の微結晶が珪素化合物に分散した構造を有する粒子の表面を炭素でコーティングしてなることが開示されている。   In response to this problem, a technique has been proposed in which these metal materials are made into fine particles and combined with carbonaceous material or graphite. Such composite particles have improved cycle characteristics compared to the case where these materials are used alone as a negative electrode material because these metal materials are alloyed with lithium and the conductivity is ensured by carbonaceous materials and graphite even if they are refined. It is known to do. For example, Patent Document 1 discloses a carbonaceous material and at least one metal selected from the group consisting of Ag, Zn, Al, Ga, In, Si, Ge, Sn, and Pb having an average particle diameter of 10 nm to 200 nm. It is disclosed that the nanometal fine particles comprising an element are contained, and the nanometal fine particles are contained in an amount of 3 wt% or more and 20 wt% or less with respect to the total weight of the carbonaceous material, the graphite material, and the nanometal fine particles. ing. In Patent Document 2, carbonaceous particles containing at least one or more selected from graphite or carbon black are arranged on the surface of the composite particles containing graphite particles, Si fine particles, and amorphous carbon (A). It is disclosed that the carbonaceous material negative electrode active material is coated with amorphous carbon (B). Further, in Patent Document 3, composite particles containing at least silicon and carbon around graphite particles and having a particle diameter smaller than that of the graphite particles are dispersed and arranged, and the graphite particles and the composite particles are amorphous. It is described that it was covered with a carbon film. Further, in Patent Document 4, a diffraction peak attributed to Si (111) is observed in X-ray diffraction, and the silicon crystal size determined by the sealer method based on the width of the diffraction line is 1 to It is disclosed that the surface of particles having a structure in which silicon microcrystals of 500 nm are dispersed in a silicon compound is coated with carbon.

特許文献1、2では、金属Siの微細粒子を黒鉛や炭素質物中に均一混合またはSi微粒子の表面を非晶質炭素で被覆を行っているが、サイクル特性が十分に確保できていない。サイクル特性を向上させるために特許文献3、4ではSiOx相中にSiの微結晶を析出させると共に粒子表面を炭素でコーティングする方法を採用している。それによりサイクル特性は向上するものの、非特許文献1において示されているようにSiOx相がLiと反応して電気化学的に不活性なLiSiOに変化するため、初期クーロン効率が著しく低下する。 In Patent Documents 1 and 2, fine particles of metal Si are uniformly mixed in graphite or a carbonaceous material, or the surface of Si fine particles is coated with amorphous carbon, but sufficient cycle characteristics cannot be ensured. In order to improve the cycle characteristics, Patent Documents 3 and 4 employ a method of depositing Si microcrystals in the SiOx phase and coating the particle surface with carbon. As a result, although the cycle characteristics are improved, as shown in Non-Patent Document 1, the SiOx phase reacts with Li and changes to electrochemically inactive Li 4 SiO 4 , so that the initial Coulomb efficiency is significantly reduced. To do.

特開2004−213927公報JP 2004-213927 A 特開2008−277232公報JP 2008-277232 A 特許第4308446号公報Japanese Patent No. 4308446 特許第3952180号公報Japanese Patent No. 3952180

M.Yamada Battery Technology 22,72(2010)M.M. Yamada Battery Technology 22, 72 (2010)

本発明は、SiまたはSi合金(以下、併せて「Si化合物」という)と、炭素質物または炭素質物と黒鉛とを含んで複合化した材料に、炭素化物を高分散に添加混合したリチウムイオン2次電池用負極活物質であり、放電容量が大きく、Si化合物を用いてもサイクル寿命が長く、クーロン効率の高いリチウムイオン2次電池を与える負極活物質およびその製造方法を提供することにある。   The present invention relates to lithium ion 2 in which Si or Si alloy (hereinafter also referred to as “Si compound”) and a carbonaceous material or a composite material containing carbonaceous material and graphite are mixed and mixed with carbonized material in a highly dispersed state. An object is to provide a negative electrode active material for a secondary battery, a negative electrode active material having a large discharge capacity, a long cycle life even when an Si compound is used, and a lithium ion secondary battery having high Coulomb efficiency, and a method for producing the same.

本発明者らは先の課題を解決すべく鋭意検討を重ねた結果、驚くべきことにSi化合物と、炭素質物または炭素質物と黒鉛とを含んでなるリチウムイオン2次電池用負極活物質において、Si化合物と炭素質物と黒鉛とを複合化した後に、炭素化物を添加して高分散混合することによって、Si化合物を使用した場合でも、高容量で、サイクル寿命が長く、クーロン効率の高いリチウムイオン2次電池を与える負極活物質が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that in a negative electrode active material for a lithium ion secondary battery comprising a Si compound and a carbonaceous material or a carbonaceous material and graphite, After compounding Si compound, carbonaceous material, and graphite, lithium ion with high capacity, long cycle life, and high coulomb efficiency even when Si compound is used by adding carbonized material and mixing with high dispersion. The inventors have found that a negative electrode active material that gives a secondary battery can be obtained, and have completed the present invention.

すなわち本発明は、平均粒子径が0.01〜5μmであるSiまたはSi合金と、炭素質物または炭素質物と黒鉛とからなる平均粒子径が1〜40μmである複合化物に、炭素化物を添加してなる混合物であることを特徴とするリチウムイオン2次電池用負極活物質である。   That is, the present invention adds a carbonized product to Si or an Si alloy having an average particle size of 0.01 to 5 μm and a composite material having an average particle size of 1 to 40 μm made of carbonaceous material or carbonaceous material and graphite. A negative electrode active material for a lithium ion secondary battery.

以下、本発明のリチウムイオン2次電池用負極活物質について詳細に説明する。   Hereinafter, the negative electrode active material for a lithium ion secondary battery of the present invention will be described in detail.

本発明でいうSiとは、純度が98%程度の汎用グレードの金属シリコン、純度が2〜4Nのケミカルグレードの金属シリコン、塩素化して蒸留精製した4Nより高純度のポリシリコン、単結晶成長法による析出工程を経た超高純度の単結晶シリコン、半導体製造プロセスで発生したウエハの研磨や切断の屑、プロセスで不良となった廃棄ウエハなど、汎用グレードの金属シリコン以上の純度のものであれば特に限定されない。   In the present invention, Si is a general grade metal silicon having a purity of about 98%, a chemical grade metal silicon having a purity of 2 to 4N, a chlorinated and purified by distillation using 4N, a single crystal growth method Such as ultra-high-purity single-crystal silicon that has undergone a deposition process, wafer polishing and cutting waste generated in the semiconductor manufacturing process, waste wafers that have become defective in the process, etc. There is no particular limitation.

本発明でいうSi合金とは、Siが主成分の合金である。前記Si合金において、Si以外に含まれる元素としては、周期表2〜15族の元素の一つ以上が好ましく、合金に含まれる相の融点が900℃以上となる元素の選択および/または添加量が好ましい。   The Si alloy referred to in the present invention is an alloy containing Si as a main component. In the Si alloy, the element contained other than Si is preferably one or more elements of Groups 2 to 15 of the periodic table, and the selection and / or addition amount of the element having a melting point of the phase contained in the alloy of 900 ° C. or more. Is preferred.

本発明のリチウムイオン2次電池用負極活物質において、Si化合物の平均粒子径(D50)は0.01〜5μmであり、0.05〜0.5μmの範囲がさらに好ましい。0.01μmより小さいと、表面酸化による容量や初期効率の低下が激しく、5μmより大きいと、リチウム挿入による膨張で割れが激しく生じ、サイクル劣化が激しくなりやすい。なお、平均粒子径(D50)はレーザー粒度分布計で測定した体積平均の粒子径である。   In the negative electrode active material for a lithium ion secondary battery of the present invention, the average particle size (D50) of the Si compound is 0.01 to 5 μm, and more preferably 0.05 to 0.5 μm. If it is smaller than 0.01 μm, the capacity and initial efficiency due to surface oxidation are drastically reduced, and if it is larger than 5 μm, cracking is severely caused by expansion due to lithium insertion, and cycle deterioration tends to be severe. The average particle diameter (D50) is a volume average particle diameter measured with a laser particle size distribution meter.

本発明のSi化合物と、炭素質物または炭素質物と黒鉛とからなる複合化物粒子の平均粒子径は1〜40μmである。複合化物粒子の平均粒子径が1μm未満の場合は、嵩高くなって高密度の電極が作製し難くなると共に、粒子径が小さい微粉体であるためハンドリングに難点がある。粒子径が40μmを超えると負極の塗布厚みを厚くしないとシート作製ができないため、電極シート抵抗が大きくなり、放電容量やサイクル特性が低下する。   The average particle diameter of the composite particles composed of the Si compound of the present invention and a carbonaceous material or a carbonaceous material and graphite is 1 to 40 μm. When the average particle diameter of the composite particles is less than 1 μm, it is bulky and it becomes difficult to produce a high-density electrode, and there is a difficulty in handling because it is a fine powder with a small particle diameter. If the particle diameter exceeds 40 μm, the sheet cannot be produced unless the coating thickness of the negative electrode is increased, so that the electrode sheet resistance increases and the discharge capacity and cycle characteristics decrease.

本発明でいう炭素質物とは、非晶質もしくは微結晶の炭素物質であり、2000℃を超える熱処理で黒鉛化する易黒鉛化炭素(ソフトカーボン)と、黒鉛化し難い難黒鉛化炭素(ハードカーボン)がある。   The carbonaceous material referred to in the present invention is an amorphous or microcrystalline carbon material, and easily graphitized carbon (soft carbon) that is graphitized by heat treatment exceeding 2000 ° C. and hard-graphitizable carbon (hard carbon) that is difficult to graphitize. )

本発明でいう黒鉛とは、グラフェン層がc軸に平行な結晶であり、鉱石を精製した天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等があり、原料の形状としては鱗片状、小判状もしくは球状、円柱状もしくはファイバー状等がある。また、それらの黒鉛を酸処理、酸化処理した後、熱処理することにより膨張させ、黒鉛層間の一部が剥離してアコーディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、または超音波等により層間剥離させたグラフェン等も用いることができる。   The graphite referred to in the present invention is a crystal whose graphene layer is parallel to the c-axis, natural graphite obtained by refining ore, artificial graphite obtained by graphitizing the pitch of oil or coal, etc. There are oval or spherical, cylindrical or fiber shapes. In addition, these graphites are subjected to acid treatment, oxidation treatment, and then expanded by heat treatment. Part of the graphite layer is exfoliated to form an accordion shape, or a pulverized product of expanded graphite, or an ultrasonic layer or the like. Exfoliated graphene or the like can also be used.

本発明のリチウムイオン2次電池用負極活物質において、複合化物中に存在するSi化合物の量は、10重量%以上80重量%以下が好ましく、15〜50重量%がさらに好ましい。Si化合物の含有量が10重量%未満の場合、従来の黒鉛に比べて十分に大きい容量が得られず、80重量%より大きい場合、サイクル劣化が激しくなりやすい。   In the negative electrode active material for a lithium ion secondary battery of the present invention, the amount of the Si compound present in the composite is preferably 10% by weight or more and 80% by weight or less, and more preferably 15 to 50% by weight. When the content of the Si compound is less than 10% by weight, a sufficiently large capacity cannot be obtained as compared with the conventional graphite, and when it is more than 80% by weight, the cycle deterioration tends to become severe.

本発明のリチウムイオン2次電池用負極活物質において、複合化物に添加混合する炭素化物の添加量は、複合化物と添加する炭素化物の総量に対して0.5重量%以上99.5重量%以下が好ましく、より好ましくは10〜90重量%、さらに好ましくは20〜80重量%である。   In the negative electrode active material for a lithium ion secondary battery of the present invention, the addition amount of the carbonized product added to and mixed with the composite product is 0.5 wt% or more and 99.5 wt% with respect to the total amount of the composite product and the added carbonized product. The following is preferable, More preferably, it is 10 to 90 weight%, More preferably, it is 20 to 80 weight%.

本発明でいう添加する炭素化物は特に限定するものではないが、導電性を有し、Liの挿入脱離による負極活物質としての充放電容量を有し、サイクル特性やクーロン効率に優れた負極材料が好ましい。具体的には、前記炭素質物や黒鉛等が挙げられる。そのような材料を単独で使用した場合、電気抵抗率が1×10−5Ωm以上、初期放電容量が350mAh/g程度であり、50サイクル後のサイクル容量維持率が95%以上、初回クーロン効率が85%以上、10回目のクーロン効率が98%以上、50回目のクーロン効率が99%以上のものが好ましい。 The carbonized material to be added in the present invention is not particularly limited, but has a conductivity, a charge / discharge capacity as a negative electrode active material due to insertion / extraction of Li, and a negative electrode excellent in cycle characteristics and coulomb efficiency. Material is preferred. Specific examples include the carbonaceous material and graphite. When such a material is used alone, the electrical resistivity is 1 × 10 −5 Ωm or more, the initial discharge capacity is about 350 mAh / g, the cycle capacity maintenance rate after 50 cycles is 95% or more, and the initial Coulomb efficiency Is preferably 85% or more, and the 10th Coulomb efficiency is 98% or more, and the 50th Coulomb efficiency is 99% or more.

本発明のリチウムイオン2次電池用負極活物質において、前記添加する炭素化物の粒子径は0.1〜40μmが好ましい。粒子径が0.1μm未満では、非常に微細な粒子のため、複合化物粒子との均質混合が難しい。粒子径が40μmを超えると負極の塗布厚みを厚くしないとシート作製ができないため、電極シート抵抗が大きくなり、放電容量やサイクル特性が低下する。   In the negative electrode active material for a lithium ion secondary battery of the present invention, the carbonized material to be added preferably has a particle size of 0.1 to 40 μm. When the particle diameter is less than 0.1 μm, it is very fine and difficult to mix with the composite particles. If the particle diameter exceeds 40 μm, the sheet cannot be produced unless the coating thickness of the negative electrode is increased, so that the electrode sheet resistance increases and the discharge capacity and cycle characteristics decrease.

本発明のリチウムイオン2次電池用負極活物質において、複合化物の粒子径に対する添加する炭素化物の平均粒子径の比率(平均粒子径比)は2.5〜300%であり、10〜200%が好ましく、30〜100%がさらに好ましい。平均粒子径比が2.5%未満では複合化物粒子に比べ添加する炭素化物の粒子径が極端に小さくなり、複合化物粒子との均質混合が難しくなる可能性がある。また、平均粒子径比が300%を超えると複合化物粒子の導電性を確保するのが難しくなる可能性がある。   In the negative electrode active material for a lithium ion secondary battery according to the present invention, the ratio of the average particle size of the carbonized product added to the particle size of the composite (average particle size ratio) is 2.5 to 300%, and 10 to 200%. Is preferable, and 30 to 100% is more preferable. If the average particle size ratio is less than 2.5%, the particle size of the carbonized product to be added becomes extremely small as compared with the composite particles, and there is a possibility that homogeneous mixing with the composite particles becomes difficult. Further, if the average particle size ratio exceeds 300%, it may be difficult to ensure the conductivity of the composite particles.

本発明のリチウムイオン2次電池用負極活物質においては、前記Si化合物と炭素質物が共に0.5μm以下の厚みの黒鉛薄層の間に挟まった構造であることが好ましく、その構造が積層および/または網目状に広がって活物質粒子を形成し、該黒鉛薄層が活物質粒子の表面付近で湾曲して複合化物粒子を覆っており、その複合化物粒子の周りに黒鉛または炭素質物が配置していることが好ましい。黒鉛薄層の厚みが0.5μmを超えると黒鉛薄層の電子伝導性が低下する可能性がある。   In the negative electrode active material for a lithium ion secondary battery of the present invention, it is preferable that the Si compound and the carbonaceous material are both sandwiched between thin graphite layers having a thickness of 0.5 μm or less. The active material particles are formed by spreading in a network, and the graphite thin layer is curved near the surface of the active material particles to cover the composite particles, and graphite or carbonaceous matter is arranged around the composite particles. It is preferable. If the thickness of the graphite thin layer exceeds 0.5 μm, the electronic conductivity of the graphite thin layer may be lowered.

次に、本発明のリチウムイオン2次電池用負極活物質の製造方法について説明する。   Next, the manufacturing method of the negative electrode active material for lithium ion secondary batteries of this invention is demonstrated.

本発明のリチウムイオン2次電池用負極活物質の製造方法は、Si化合物、炭素前駆体、さらに必要に応じて黒鉛を混合する工程と、造粒・圧密化する工程と、混合物を粉砕して複合化物粒子を形成する工程と、該複合化物粒子を不活性ガス雰囲気中で焼成する工程と、複合化物と炭素化物とを混合する工程を含むものである。   The method for producing a negative electrode active material for a lithium ion secondary battery according to the present invention comprises a step of mixing an Si compound, a carbon precursor, and, if necessary, a graphite, a step of granulating and compacting, and a pulverizing mixture. The method includes a step of forming composite particles, a step of firing the composite particles in an inert gas atmosphere, and a step of mixing the composite and the carbonized product.

原料であるSi化合物は、平均粒子径(D50)が0.01〜5μmの粉末を使用する。所定の粒子径のSi化合物を得るためには、上述のSi化合物の原料(インゴット、ウエハ、粉末などの状態)を粉砕機で粉砕し、場合によっては分級機を用いる。インゴット、ウエハなどの塊の場合、最初はジョークラッシャー等の粗粉砕機を用いて粉末化することができる。その後、例えば、ボール、ビーズなどの粉砕媒体を運動させ、その運動エネルギーによる衝撃力や摩擦力、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミルや、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザー」などを用いて微粉砕することができる。   As the Si compound as a raw material, a powder having an average particle size (D50) of 0.01 to 5 μm is used. In order to obtain a Si compound having a predetermined particle diameter, the above-described Si compound raw material (ingot, wafer, powder, etc.) is pulverized by a pulverizer, and in some cases, a classifier is used. In the case of a lump such as an ingot or a wafer, it can be first pulverized using a coarse pulverizer such as a jaw crusher. After that, for example, a ball or bead is used to move the grinding medium, and the impact force, frictional force, or compression force of the kinetic energy is used to grind the material to be crushed, the media agitation mill, or the compression force of the roller. Rotation of a roller mill that pulverizes, a jet mill that collides crushed objects with the lining material or collides with each other at high speed, and pulverizes by the impact force of the impact, and a rotor with a fixed hammer, blade, pin, etc. It can be finely pulverized by using a hammer mill, pin mill, disk mill that pulverizes the material to be crushed using the impact force of the colloid, a colloid mill that uses shear force, or a high-pressure wet-on-front collision disperser "Ultimizer". .

粉砕は、湿式、乾式共に用いることができる。さらに微粉砕するには、例えば、湿式のビーズミルを用い、ビーズの径を段階的に小さくすること等により非常に細かい粒子を得ることができる。また、粉砕後に粒度分布を整えるため、乾式分級や湿式分級もしくはふるい分け分級を用いることができる。乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われ、粒子相互間の干渉、粒子の形状、気流の乱れ、速度分布、静電気の影響などで分級効率を低下させないように、分級をする前に前処理(水分、分散性、湿度などの調整)を行うか、使用される気流の水分や酸素濃度を調整して行われる。乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。   The pulverization can be used for both wet and dry processes. For further fine pulverization, very fine particles can be obtained, for example, by using a wet bead mill and gradually reducing the diameter of the beads. In order to adjust the particle size distribution after pulverization, dry classification, wet classification, or sieving classification can be used. In the dry classification, the process of dispersion, separation (separation of fine particles and coarse particles), collection (separation of solid and gas), and discharge are performed sequentially or simultaneously, mainly using air flow. Pre-classification (adjustment of moisture, dispersibility, humidity, etc.) before classification, or the moisture in the airflow used so that the classification efficiency is not lowered due to the influence of shape, air flow disturbance, velocity distribution, static electricity, etc. It is done by adjusting the oxygen concentration. In a dry type in which a classifier is integrated, pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.

別の所定の粒子径のSi化合物を得る方法としては、プラズマやレーザー等でSi化合物を加熱して蒸発させ、不活性ガス中で凝固させて得る方法、ガス原料を用いてCVDやプラズマCVD等で得る方法があり、これらの方法は0.1μm以下の超微粒子を得るのに適している。   As another method for obtaining a Si compound having a predetermined particle size, a method in which the Si compound is heated and evaporated by plasma or laser and solidified in an inert gas, or a CVD or plasma CVD using a gas raw material is used. These methods are suitable for obtaining ultrafine particles of 0.1 μm or less.

原料の炭素前駆体としては、炭素を主体とする炭素系化合物で、不活性ガス雰囲気中での熱処理により炭素質物になるものであれば特に限定されないが、石油系ピッチ、石炭系ピッチ、合成ピッチ、タール類、セルロース、スクロース、ポリ塩化ビニル、ポリビニルアルコール、フェノール樹脂、フラン樹脂、フルフリルアルコール、ポリスチレン、エポキシ樹脂、ポリアクリロニトリル、メラミン樹脂、アクリル樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂等が使用できる。   The carbon precursor of the raw material is not particularly limited as long as it is a carbon-based compound mainly composed of carbon and becomes a carbonaceous material by heat treatment in an inert gas atmosphere, but is not limited to petroleum pitch, coal pitch, or synthetic pitch. , Tars, cellulose, sucrose, polyvinyl chloride, polyvinyl alcohol, phenol resin, furan resin, furfuryl alcohol, polystyrene, epoxy resin, polyacrylonitrile, melamine resin, acrylic resin, polyamideimide resin, polyamide resin, polyimide resin, etc. Can be used.

原料である黒鉛は、天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等が利用でき、鱗片状、小判状もしくは球状、円柱状もしくはファイバー状等が用いられる。また、それらの黒鉛を酸処理、酸化処理した後、熱処理することにより膨張させて黒鉛層間の一部が剥離してアコーディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、または超音波等により層間剥離させたグラフェン等も用いることができる。原料の黒鉛は予め混合工程で使用可能な大きさに整えて使用し、混合前の粒子サイズとしては天然黒鉛や人造黒鉛では1〜100μm、膨張黒鉛もしくは膨張黒鉛の粉砕物、グラフェンでは5μm〜5mm程度である。   As the raw material graphite, natural graphite, artificial graphite obtained by graphitizing the pitch of petroleum or coal, and the like can be used, and scaly, oval or spherical, cylindrical or fiber-like are used. In addition, these graphites are subjected to acid treatment, oxidation treatment, and then expanded by heat treatment, and a portion of the graphite layer is exfoliated to form an accordion shape, or a pulverized product of expanded graphite, or an ultrasonic wave, etc. Exfoliated graphene or the like can also be used. The raw material graphite is preliminarily adjusted to a size that can be used in the mixing process, and the particle size before mixing is 1 to 100 μm for natural graphite or artificial graphite, or 5 μm to 5 mm for expanded graphite or expanded graphite pulverized product, graphene Degree.

これらのSi化合物、炭素前駆体、さらに必要に応じて黒鉛との混合は、炭素前駆体が加熱により軟化、液状化するものである場合は、加熱下でSi化合物、炭素前駆体、さらに必要に応じて黒鉛を混練することによって行うことができる。また、炭素前駆体が溶媒に溶解するものである場合には、溶媒にSi化合物、炭素前駆体、さらに必要に応じて黒鉛を投入し、炭素前駆体が溶解した溶液中でSi化合物、炭素前駆体、さらに必要に応じて黒鉛を分散、混合し、次いで溶媒を除去することで行うことができる。用いる溶媒は、炭素前駆体を溶解できるものであれば特に制限なく使用することができる。例えば、炭素前駆体としてピッチ、タール類を用いる場合には、キノリン、ピリジン、トルエン、ベンゼン、テトラヒドロフラン、クレオソート油等が使用でき、ポリ塩化ビニルを用いる場合には、テトラヒドロフラン、シクロヘキサノン、ニトロベンゼン等が使用でき、フェノール樹脂、フラン樹脂を用いる場合には、エタノール、メタノール等が使用できる。   Mixing with these Si compounds, carbon precursors, and, if necessary, graphite, when the carbon precursors are softened or liquefied by heating, the Si compounds, carbon precursors, and further necessary under heating Accordingly, it can be performed by kneading graphite. When the carbon precursor is dissolved in a solvent, the Si compound, the carbon precursor, and, if necessary, graphite are added to the solvent, and the Si compound and the carbon precursor are dissolved in the solution in which the carbon precursor is dissolved. Body, and if necessary, graphite can be dispersed and mixed, and then the solvent can be removed. The solvent to be used can be used without particular limitation as long as it can dissolve the carbon precursor. For example, when pitch or tar is used as the carbon precursor, quinoline, pyridine, toluene, benzene, tetrahydrofuran, creosote oil or the like can be used, and when polyvinyl chloride is used, tetrahydrofuran, cyclohexanone, nitrobenzene or the like can be used. When phenol resin or furan resin is used, ethanol, methanol or the like can be used.

混合方法としては、炭素前駆体を加熱軟化させる場合は、混練機(ニーダー)を用いることができる。溶媒を用いる場合は、上述の混練機の他、ナウターミキサー、レーディゲミキサー、ヘンシェルミキサ、ハイスピードミキサー、ホモミキサー等を用いることができる。また、これらの装置でジャケット加熱したり、その後、振動乾燥機、パドルドライヤーなどで溶媒を除去する。   As a mixing method, when the carbon precursor is heat-softened, a kneader (kneader) can be used. In the case of using a solvent, in addition to the above-described kneader, a Nauter mixer, a Roedige mixer, a Henschel mixer, a high speed mixer, a homomixer, or the like can be used. Further, the jacket is heated with these apparatuses, and then the solvent is removed with a vibration dryer, a paddle dryer or the like.

これらの装置で、炭素前駆体を固化、または、溶媒除去の過程における撹拌をある程度の時間続けることで、Si化合物、炭素前駆体、さらに必要に応じて黒鉛との混合物は造粒・圧密化される。また、炭素前駆体を固化、または溶媒除去後の混合物をローラーコンパクタ等の圧縮機によって圧縮し、解砕機で粗粉砕することにより、造粒・圧密化することができる。これらの造粒・圧密化物の大きさは、その後の粉砕工程での取り扱いの容易さから0.1〜5mmが好ましい。   With these devices, the carbon precursor is solidified, or stirring in the process of solvent removal is continued for a certain amount of time, so that the Si compound, the carbon precursor, and, if necessary, the mixture with graphite are granulated and consolidated. The Further, the carbon precursor is solidified or the mixture after removing the solvent is compressed by a compressor such as a roller compactor and coarsely pulverized by a crusher, whereby granulation and consolidation can be achieved. The size of the granulated / consolidated product is preferably 0.1 to 5 mm in view of ease of handling in the subsequent pulverization step.

造粒・圧密化物の粉砕方法は、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミル等の乾式の粉砕方法が好ましい。また、粉砕後に粒度分布を整えるため、風力分級、ふるい分け等の乾式分級が用いられる。粉砕機と分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。   The granulated / consolidated material is pulverized by ball mill, medium agitation mill, roller mill for pulverizing using the compressive force of the roller, or lining material to be crushed at high speed. A jet mill that collides with each other or collides with each other and crushes by the impact force of the impact, a hammer mill that crushes the material to be crushed using the impact force of the rotation of a rotor with a fixed hammer, blade, pin, etc. A dry pulverization method such as a pin mill or a disk mill is preferred. In order to adjust the particle size distribution after pulverization, dry classification such as air classification and sieving is used. In the type in which the pulverizer and the classifier are integrated, pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.

粉砕して得られた複合粒子は、アルゴンガスや窒素ガス気流中、もしくは真空など不活性雰囲気中で焼成する。   The composite particles obtained by pulverization are fired in an argon gas or nitrogen gas stream or in an inert atmosphere such as a vacuum.

前記複合化物と炭素化物とを混合する方法は、特に限定しないが、該複合化物と該炭素化物とを水またはアルコール等の有機溶媒等の分散溶媒を用いてスラリー化することが好ましい。それ以外の方法としては、V型ミキサー、スクリューミキサー等の乾式法が挙げられる。   A method of mixing the composite and the carbonized product is not particularly limited, but it is preferable to slurry the composite and the carbonized product using a dispersion solvent such as an organic solvent such as water or alcohol. Other methods include dry methods such as V-type mixers and screw mixers.

前記複合化物と炭素化物とを混合する工程において、電極作製時に必要なバインダーと導電助剤を添加することが可能である。これにより、複合化物と炭素化物、バインダー、導電助剤を一度に添加して調合できるだけでなく、これにより、それらの部材の均質な調製が可能となる。   In the step of mixing the composite and the carbonized product, it is possible to add a binder and a conductive aid necessary for producing the electrode. Thereby, not only the compounded material, the carbonized material, the binder, and the conductive auxiliary agent can be added and prepared at a time, but also the members can be homogeneously prepared.

このようにして得られる本発明のリチウムイオン2次電池用負極活物質は、リチウム2次電池の負極材料として用いることができる。   The negative electrode active material for lithium ion secondary batteries of the present invention thus obtained can be used as a negative electrode material for lithium secondary batteries.

本発明の負極活物質は、例えば、有機系結着剤、導電助剤および溶剤と混練して、シート状、ペレット状等の形状に成形するか、または集電体に塗布し、該集電体と一体化してリチウム2次電池用負極とされる。   The negative electrode active material of the present invention is, for example, kneaded with an organic binder, a conductive additive and a solvent, and formed into a sheet shape, a pellet shape or the like, or applied to a current collector, and the current collector The negative electrode for a lithium secondary battery is integrated with the body.

有機系結着剤としては、例えばポリエチレン、ポリプロピレン、エチレンプロピレンポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、イオン導電性の大きな高分子化合物が使用できる。イオン導電率の大きな高分子化合物としては、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリイミド等が使用できる。有機系結着剤の含有量は、負極材全体に対して3〜20重量%含有させることが好ましい。また、有機系結着剤の他に粘度調整剤として、カルボキシメチルセルロース、ポリアクリル酸ソーダ、その他のアクリル系ポリマー、または脂肪酸エステル等を添加しても良い。   As the organic binder, for example, polyethylene, polypropylene, ethylene propylene polymer, butadiene rubber, styrene butadiene rubber, butyl rubber, and a polymer compound having a large ion conductivity can be used. Polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polyimide and the like can be used as the polymer compound having a high ionic conductivity. The content of the organic binder is preferably 3 to 20% by weight based on the whole negative electrode material. In addition to the organic binder, carboxymethyl cellulose, polysodium acrylate, other acrylic polymers, or fatty acid esters may be added as a viscosity modifier.

導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であれば良く、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維、または天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛などを用いることができる。導電剤の添加量は、負極材全体中に対して0〜20重量%であり、さらには1〜10重量%が好ましい。導電剤量が少ないと、負極材の導電性に乏しい場合があり、初期抵抗が高くなる傾向がある。一方、導電剤量の増加は電池容量の低下につながる恐れがある。   The type of the conductive agent is not particularly limited, and may be any electron-conductive material that does not cause decomposition or alteration in the configured battery. Specifically, Al, Ti, Fe, Ni, Cu, Zn, Ag, Metal powder and metal fiber such as Sn, Si, or graphite such as natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, various resin fired bodies, etc. Etc. can be used. The addition amount of the conductive agent is 0 to 20% by weight, more preferably 1 to 10% by weight, based on the whole negative electrode material. When the amount of the conductive agent is small, the conductivity of the negative electrode material may be poor and the initial resistance tends to be high. On the other hand, an increase in the amount of conductive agent may lead to a decrease in battery capacity.

前記溶剤としては特に制限はなく、N−メチル−2−ピロリドン、ジメチルホルムアミド、イソプロパノール、純水等が挙げられ、その量に特に制限はない。集電体としては、例えばニッケル、銅等の箔、メッシュなどが使用できる。一体化は、例えばロール、プレス等の成形法で行うことができる。   There is no restriction | limiting in particular as said solvent, N-methyl- 2-pyrrolidone, a dimethylformamide, isopropanol, a pure water etc. are mentioned, There is no restriction | limiting in particular in the quantity. As the current collector, for example, a foil such as nickel or copper, a mesh, or the like can be used. The integration can be performed by a molding method such as a roll or a press.

このようにして得られた負極は、セパレータを介して正極を対向して配置し、電解液を注入することにより、従来のシリコンを負極材料に用いたリチウム2次電池と比較して、サイクル特性に優れ、高容量、高初期効率という優れた特性を有するリチウム2次電池を作製することができる。   The negative electrode thus obtained has a cycle characteristic compared to a lithium secondary battery using conventional silicon as a negative electrode material by placing the positive electrode opposite to each other with a separator interposed therebetween and injecting an electrolytic solution. In addition, a lithium secondary battery having excellent characteristics such as high capacity and high initial efficiency can be manufactured.

正極に用いられる材料については、例えばLiNiO、LiCoO、LiMn、LiNiMnCo1−x−y、LiFePO、Li0.5Ni0.5Mn1.5、LiMnO−LiMO(M=Co,Ni,Mn)等を単独または混合して使用することができる。 The material used for the positive electrode, for example LiNiO 2, LiCoO 2, LiMn 2 O 4, LiNi x Mn y Co 1-x-y O 2, LiFePO 4, Li 0.5 Ni 0.5 Mn 1.5 O 4 Li 2 MnO 3 —LiMO 2 (M═Co, Ni, Mn) or the like can be used alone or in combination.

電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、例えばエチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、テトラヒドロフラン、プロピレンカーボネート等の非水系溶剤に溶解させた、いわゆる有機電解液を使用することができる。さらには、イミダゾリウム、アンモニウム、およびピリジニウム型のカチオンを用いたイオン液体を使用することができる。対アニオンは特に限定されるものではないが、BF 、PF 、(CFSO等が挙げられる。イオン液体は前述の有機電解液溶媒と混合して使用することが可能である。電解液には、ビニレンカーボネートやフロロエチレンカーボネートの様なSEI(固体電解質界面層)形成剤を添加することもできる。 As the electrolytic solution, lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 are used as non-aqueous solvents such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, and propylene carbonate. A so-called dissolved organic electrolyte solution can be used. Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used. The counter anion is not particularly limited, and examples thereof include BF 4 , PF 6 , (CF 3 SO 2 ) 2 N − and the like. The ionic liquid can be used by mixing with the organic electrolyte solvent described above. An SEI (solid electrolyte interface layer) forming agent such as vinylene carbonate or fluoroethylene carbonate can also be added to the electrolytic solution.

また、上記塩類をポリエチレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド等やこれらの誘導体、混合物、複合体等に混合された固体電解質を用いることもできる。この場合、固体電解質はセパレータも兼ねることができ、セパレータは不要となる、セパレータとしては、例えばポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはこれらを組み合わせたものを使用することができる。   In addition, a solid electrolyte obtained by mixing the above salts with polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, or the like, or a derivative, mixture, or complex thereof can also be used. In this case, the solid electrolyte can also serve as a separator, and the separator becomes unnecessary. As the separator, for example, a nonwoven fabric mainly composed of polyolefin such as polyethylene or polypropylene, cloth, microporous film, or a combination thereof is used. can do.

その後、充放電装置を用いて電池性能を評価する。電池評価条件は、特に制約はなく、定電流法、定電流定電圧法、定容量法、定電力法、パルス法などが挙げられる。特に、定電流法、定電流定電圧法は、充放電深度(DOD)が100%近くでの電池特性評価として用いられることが多く、定容量法や定電力法は、充放電深度(DOD)が比較的浅い領域での電池評価にも使用することが可能である。   Then, battery performance is evaluated using a charging / discharging device. The battery evaluation conditions are not particularly limited, and examples thereof include a constant current method, a constant current constant voltage method, a constant capacity method, a constant power method, and a pulse method. In particular, the constant current method and the constant current constant voltage method are often used for evaluating battery characteristics when the charge / discharge depth (DOD) is close to 100%, and the constant capacity method and the constant power method are the charge / discharge depth (DOD). However, it can also be used for battery evaluation in a relatively shallow region.

本発明によれば、微粒子のシリコンによる粒子当たりの膨張体積の低減と、緻密な炭素質物との複合化物と黒鉛との高分散混合により、電気伝導パスのネットワークが網目状に広がっているため、繰り返しの充放電時の電気伝導性の低下を抑えることが可能となり、高容量でかつ優れたサイクル特性と、安定したクーロン効率が得られる。   According to the present invention, the network of electrical conduction paths spreads in a network by reducing the expansion volume per particle by silicon of fine particles and by highly dispersed mixing of a composite of a dense carbonaceous material and graphite. It is possible to suppress a decrease in electrical conductivity during repeated charging and discharging, and high capacity and excellent cycle characteristics and stable Coulomb efficiency can be obtained.

実施例1で得られた負極複合化粒子断面のFE−SEMによる低倍率の反射電子像である。2 is a low-magnification backscattered electron image obtained by FE-SEM of the cross-section of the negative electrode composite particles obtained in Example 1. 実施例1で得られた負極複合化粒子断面のFE−SEMによる高倍率の反射電子像である。3 is a high-magnification backscattered electron image obtained by FE-SEM of a cross section of the negative electrode composite particles obtained in Example 1. FIG. 実施例1で得られた負極活物質の電極シート作製後のSEM写真である。2 is a SEM photograph after the production of an electrode sheet of the negative electrode active material obtained in Example 1. 実施例2で得られた負極活物質の電極シート作製後のSEM写真である。4 is a SEM photograph after production of an electrode sheet of a negative electrode active material obtained in Example 2.

以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these Examples.

実施例1
平均粒子径(D50)が7μmのケミカルグレードの金属Si(純度3N)をエタノールに20重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを6時間行い、平均粒子径(D50)が0.3μm、乾燥時のBET表面積が100m/gの超微粒子Siスラリーを得た。
Example 1
A chemical grade metal Si (purity 3N) having an average particle size (D50) of 7 μm was mixed with ethanol in an amount of 20% by weight. An ultrafine Si slurry having a D50) of 0.3 μm and a dry BET surface area of 100 m 2 / g was obtained.

粒子径約0.5mm、厚み約0.02mmの扁平形状をした天然黒鉛を、濃硫酸に硝酸ナトリウム1重量%、過マンガン酸カリウム7重量%を添加した液に24時間浸漬し、その後、水洗して乾燥し、酸処理黒鉛を得た。この酸処理黒鉛を、5g/分の供給速度になるように14L/分の流量の窒素ガスを流動させて電気ヒーターで1150℃に加熱した長さ1m、内径11mmのムライト管に通した。上記加熱処理により酸処理黒鉛中の硫酸が亜硫酸等のガスに分解排出することによって酸処理黒鉛は膨張し、それをステンレス容器で捕集した。熱処理前後の軽装嵩密度の比率より算出した膨張率は350%であった。SEM観察で、黒鉛層が厚み方向に剥離膨張化し、アコーディオン状の形状をした粉末であることが確認された。   A natural graphite having a flat shape with a particle diameter of about 0.5 mm and a thickness of about 0.02 mm is immersed in a solution obtained by adding 1 wt% sodium nitrate and 7 wt% potassium permanganate to concentrated sulfuric acid for 24 hours, and then washed with water. And dried to obtain acid-treated graphite. The acid-treated graphite was passed through a mullite tube having a length of 1 m and an inner diameter of 11 mm, which was heated to 1150 ° C. with an electric heater by flowing nitrogen gas at a flow rate of 14 L / min so as to obtain a supply rate of 5 g / min. As the sulfuric acid in the acid-treated graphite was decomposed and discharged into a gas such as sulfurous acid by the heat treatment, the acid-treated graphite expanded and was collected in a stainless steel container. The expansion coefficient calculated from the ratio of light bulk density before and after heat treatment was 350%. By SEM observation, it was confirmed that the graphite layer exfoliated and expanded in the thickness direction, and was an accordion-shaped powder.

上記超微粒子Siスラリーを86g、上記膨張黒鉛を20.6g、レゾール型のフェノール樹脂(ASBERY社製グレード3772)を12.9g、エタノール3.2Lを撹拌容器に入れて、ホモミキサーで8000rpmで1時間混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で60℃に加熱し、アスピレータで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに12時間乾燥して、約50gの混合乾燥物(軽装嵩密度80g/L)を得た。   86 g of the ultrafine Si slurry, 20.6 g of the expanded graphite, 12.9 g of a resol type phenolic resin (ASBERY grade 3772), and 3.2 L of ethanol were placed in a stirring vessel, and 1 at 8000 rpm with a homomixer. Stir for hours. Thereafter, the mixed solution was transferred to a rotary evaporator, heated to 60 ° C. with a warm bath while rotating, and evacuated with an aspirator to remove the solvent. Thereafter, it was spread on a bat in a fume hood and dried for 2 hours while evacuating, passed through a mesh with a mesh opening of 2 mm, and further dried for 12 hours to obtain about 50 g of a mixed dried product (light bulk density 80 g / L).

この混合乾燥物を3本ロールミルに2回通し、粒度約2mm、軽装嵩密度467g/Lに造粒・圧密化した。   This mixed dried product was passed through a three-roll mill twice, and granulated and consolidated to a particle size of about 2 mm and a lightly packed bulk density of 467 g / L.

次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、21000rpmで15分間粉砕し、同時に球形化し、軽装嵩密度640g/Lの球形化粉末を得た。得られた粉末をアルミナボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。その後、目開き45μmのメッシュを通し、平均粒子径(D50)が18.6μm、軽装嵩密度が753g/Lの複合化物を得た。   Next, this granulated / consolidated product was placed in a new power mill and pulverized at 21000 rpm for 15 minutes while being cooled with water. The obtained powder was put into an alumina boat and fired at a maximum temperature of 900 ° C. for 1 hour while flowing nitrogen gas in a tubular furnace. Thereafter, a mesh having an opening of 45 μm was passed through to obtain a composite having an average particle diameter (D50) of 18.6 μm and a lightly packed bulk density of 753 g / L.

図1に、得られた複合化物粒子をイオンビームで切断した断面のFE−SEMによる反射電子像を示す。複合化物粒子内部は0.05〜1.0μmの長さのSiの微粒子が炭素質物と共に0.02〜0.5μmの厚みの黒鉛薄層に挟まった構造が網目状に広がり、積層していた。この複合化物に添加する炭素化物として、平均粒子径(D50)が12.1μmの市販の天然黒鉛(日本黒鉛製CGB10)を使用した。複合化物と添加した黒鉛の平均粒子径比は65%であった。使用した天然黒鉛の放電容量は365mAh/gであり、50回充放電を繰り返した後の放電容量も365mAh/gと放電容量は殆ど変化しなかった。また、初回クーロン効率は86.6%、10回充放電を繰り返した後のクーロン効率は99.0%、50回充放電を繰り返した後のクーロン効率は99.7%であった。   FIG. 1 shows a reflected electron image obtained by FE-SEM of a cross section obtained by cutting the obtained composite particles with an ion beam. The inside of the composite particles had a structure in which 0.05 to 1.0 μm long Si fine particles and a carbonaceous material were sandwiched between 0.02 to 0.5 μm thick graphite thin layers and spread in a network. . As the carbonized product to be added to the composite, commercial natural graphite (CGB10 made by Nippon Graphite) having an average particle size (D50) of 12.1 μm was used. The average particle size ratio of the composite and added graphite was 65%. The discharge capacity of the natural graphite used was 365 mAh / g, and the discharge capacity after repeated charging and discharging 50 times was 365 mAh / g, and the discharge capacity hardly changed. In addition, the initial Coulomb efficiency was 86.6%, the Coulomb efficiency after repeating 10 times charging / discharging was 99.0%, and the Coulomb efficiency after repeating 50 times charging / discharging was 99.7%.

「リチウムイオン2次電池用負極の作製」
得られた前記複合化物と天然黒鉛(50:50重量%)を負極活物質として秤量し、前記負極活物質を95.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてカルボキシメチルセルロース(CMC)1.5重量%とスチレンブタジエンゴム(SBR)2.5重量%、水とを混合後、自転・公転ミキサー(シンキー製泡取り錬太郎)を用いて負極活物質を分散混合して負極合剤含有スラリーを調製した。
“Preparation of negative electrode for lithium ion secondary battery”
The obtained composite and natural graphite (50:50 wt%) were weighed as a negative electrode active material, and the negative electrode active material was 95.5 wt% (content in the total amount of solid content, the same applies hereinafter). , After mixing acetylene black 0.5% by weight as a conductive aid, carboxymethyl cellulose (CMC) 1.5% by weight and styrene butadiene rubber (SBR) 2.5% by weight, water, and a rotating / revolving mixer ( The negative electrode active material was dispersed and mixed using a thin key foaming refining taro) to prepare a negative electrode mixture-containing slurry.

得られたスラリーを、アプリケータを用いて固形分塗布量が3mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で定置運転乾燥機にて0.5時間乾燥した。この時のシート電極の表面形状のSEM写真を図1に示す。 The obtained slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the solid content was 3 mg / cm 2 and dried at 110 ° C. in a stationary operation dryer for 0.5 hour. An SEM photograph of the surface shape of the sheet electrode at this time is shown in FIG.

乾燥後、13.8mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが30μmの負極合剤層を形成したリチウムイオン2次電池用負極を得た。 After drying, it was punched into a 13.8 mmφ circle, uniaxially pressed under a pressure of 0.6 t / cm 2 , and further heat treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 30 μm. A negative electrode for an ion secondary battery was obtained.

「評価用セルの作製」
評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップした後、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、LiPFを1.2mol/Lの濃度になるように溶解させ、これにフルオロエチレンカーボネートを2体積%添加したものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置(北斗電工製SM−8)に接続した。
"Production of evaluation cells"
In the glove box, the evaluation cell was prepared by dipping the negative electrode, a 24 mmφ polypropylene separator, a 21 mmφ glass filter, a 18 mmφ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in. The electrolyte used was a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1, dissolved LiPF 6 to a concentration of 1.2 mol / L, and added with 2% by volume of fluoroethylene carbonate. did. The cell for evaluation was further put in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to a charge / discharge device (SM-8 manufactured by Hokuto Denko).

「評価条件」
評価用セルは25℃の恒温室にて、サイクル試験した。充電は、3mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初期充放電効率は、初回充放電試験の結果とした。
"Evaluation conditions"
The evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed until the current value reached 0.2 mA at a constant voltage of 0.01 V after charging to 0.01 V at a constant current of 3 mA. The discharge was performed at a constant current of 2 mA up to a voltage value of 1.5 V. The initial discharge capacity and initial charge / discharge efficiency were the results of the initial charge / discharge test.

また、サイクル特性は、前記充放電条件にて50回充放電試験した後の放電容量と初回の放電容量を比較し、そのサイクル容量維持率として評価した。   In addition, the cycle characteristics were evaluated as the cycle capacity maintenance ratio by comparing the discharge capacity after the 50th charge / discharge test under the charge / discharge conditions with the initial discharge capacity.

実施例2
得られた前記複合化物と前記天然黒鉛30:70重量%からなる負極活物質を使用した以外は、実施例1と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価した。
Example 2
A negative electrode active material, a negative electrode, and an evaluation cell were prepared in the same manner as in Example 1 except that the obtained composite and the negative active material composed of 30: 70% by weight of natural graphite were used. did.

比較例1
複合化物として平均粒子径が7μmの市販のシリコン(中国製(阪和工業(株))を使用し、複合化物と前記天然黒鉛30:70重量%からなる負極活物質を使用した以外は、実施例1と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価した。
Comparative Example 1
Except for using a commercially available silicon (manufactured by China (Hanwa Kogyo Co., Ltd.)) having an average particle size of 7 μm as a composite, and using a negative active material consisting of 30% by weight of the composite and natural graphite 30% by weight. A negative electrode active material, a negative electrode, and an evaluation cell were prepared in the same manner as in Example 1, and the cells were evaluated.

比較例2
比較例1の複合化物と前記天然黒鉛40:60重量%からなる負極活物質を使用した以外は、比較例1と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価した。
Comparative Example 2
A negative electrode active material, a negative electrode, and an evaluation cell were prepared in the same manner as in Comparative Example 1 except that the composite material of Comparative Example 1 and the negative electrode active material composed of 40: 60% by weight of natural graphite were used. did.

比較例3
負極活物質として前記天然黒鉛を添加せず、実施例1の複合化物のみを使用した以外は、実施例1と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価した。
Comparative Example 3
A negative electrode active material, a negative electrode, and an evaluation cell were prepared in the same manner as in Example 1, except that the natural graphite was not added as the negative electrode active material and only the composite of Example 1 was used. .

比較例4
負極活物質として前記複合化物を添加せず、前記天然黒鉛のみを使用した以外は、実施例1と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価した。
Comparative Example 4
A negative electrode active material, a negative electrode, and an evaluation cell were prepared in the same manner as in Example 1 except that the composite was not added as the negative electrode active material and only the natural graphite was used.

実施例1〜2の負極活物質作製条件と比較例1〜4の負極活物質作製条件を表1に示す。また、実施例1〜2の結果と比較例1〜4の結果を表2に示す。   The negative electrode active material preparation conditions of Examples 1 and 2 and the negative electrode active material preparation conditions of Comparative Examples 1 to 4 are shown in Table 1. Table 2 shows the results of Examples 1 and 2 and the results of Comparative Examples 1 to 4.

Figure 2015219989
Figure 2015219989

Figure 2015219989
Figure 2015219989

表2から明らかなように、Si、炭素質物、黒鉛を複合化後、黒鉛を添加して作製した負極活物質を使用した実施例1、2のリチウムイオン2次電池は、高容量で、充放電サイクル特性が良好かつクーロン効率の安定が早いことがわかる。   As is clear from Table 2, the lithium ion secondary batteries of Examples 1 and 2 using a negative electrode active material prepared by adding Si after adding Si, a carbonaceous material, and graphite and then adding graphite have a high capacity, It can be seen that the discharge cycle characteristics are good and the coulomb efficiency is stable quickly.

これに対し、Siを炭素質物や黒鉛で複合化せずに、単に黒鉛を添加して作製した負極活物質を用いた比較例1、2のリチウムイオン2次電池は、初回クーロン効率とサイクル容量維持率が大きく低下していることがわかる。さらに、Si、炭素質物と黒鉛を複合化して作製した負極活物質を用いた比較例3では、充放電サイクル特性や10回目のクーロン効率が劣ることがわかる。さらにまた、単に黒鉛を添加して作製した負極活物質は、放電容量が低い。比較例3、4の加重平均値を用いて、実施例1、2の電池特性を計算した結果を計算例1、2に示す。実施例1、2は、計算例1、2に比べ、サイクル容量維持率や10回目のクーロン効率が高く、本発明の複合化物と黒鉛を添加することにより、加重平均予測をはるかに超える電池性能が確保できていることがわかった。   In contrast, the lithium ion secondary batteries of Comparative Examples 1 and 2 using a negative electrode active material prepared by simply adding graphite without compounding Si with a carbonaceous material or graphite have initial Coulomb efficiency and cycle capacity. It can be seen that the maintenance rate is greatly reduced. Furthermore, in Comparative Example 3 using a negative electrode active material prepared by combining Si, a carbonaceous material and graphite, it can be seen that the charge / discharge cycle characteristics and the 10th Coulomb efficiency are inferior. Furthermore, the negative electrode active material produced simply by adding graphite has a low discharge capacity. The calculation results of the battery characteristics of Examples 1 and 2 using the weighted average values of Comparative Examples 3 and 4 are shown in Calculation Examples 1 and 2. Examples 1 and 2 have higher cycle capacity retention ratio and 10th Coulomb efficiency than Calculation Examples 1 and 2, and the battery performance far exceeds the weighted average prediction by adding the composite of the present invention and graphite. It was found that was secured.

本発明であるリチウムイオン2次電池負極活物質およびその製造方法は、高容量で、長寿命が必要とされるリチウムイオン2次電池に利用することができる。   The lithium ion secondary battery negative electrode active material and the manufacturing method thereof according to the present invention can be used for a lithium ion secondary battery that has a high capacity and requires a long life.

11 複合化物断面反射電子像中の黒鉛または炭素化物層(灰色)
12 複合化物断面反射電子像中の微細Si粒子(白色)
13 複合化粒子
14 添加物粒子
11 Graphite or carbonized layer (gray) in cross-sectional backscattered electron image of composite
12 Fine Si particles (white) in cross-sectional backscattered electron image of composite
13 Composite particles 14 Additive particles

Claims (7)

平均粒子径が0.01〜5μmであるSiまたはSi合金と、炭素質物または炭素質物と黒鉛とからなる平均粒子径が1〜40μmである複合化物に、炭素化物を添加してなる混合物であることを特徴とするリチウムイオン2次電池用負極活物質。 It is a mixture obtained by adding carbonized material to Si or Si alloy having an average particle size of 0.01 to 5 μm and a carbonaceous material or a composite material having an average particle size of 1 to 40 μm made of carbonaceous material and graphite. A negative electrode active material for a lithium ion secondary battery. SiまたはSi合金の量は複合化物中の10重量%以上80重量%以下であり、複合化物に添加する炭素化物の量は、複合化物と添加する炭素化物の総量に対して0.5重量%以上99.5重量%以下であることを特徴とする請求項1に記載のリチウムイオン2次電池用負極活物質。 The amount of Si or Si alloy is not less than 10% by weight and not more than 80% by weight in the composite, and the amount of carbonized product added to the composite is 0.5% by weight based on the total amount of composite and added carbonized product. The negative electrode active material for a lithium ion secondary battery according to claim 1, wherein the negative electrode active material is 99.5% by weight or less. 添加する炭素化物の平均粒子径が0.1〜40μmであり、複合化物の粒子径に対する炭素化物の平均粒子径は2.5〜300%であることを特徴とする請求項1または請求項2に記載のリチウムイオン2次電池用負極活物質。 The average particle size of the carbonized product to be added is 0.1 to 40 µm, and the average particle size of the carbonized product is 2.5 to 300% with respect to the particle size of the composite product. The negative electrode active material for lithium ion secondary batteries as described in 2. SiまたはSi合金と炭素質物が共に0.5μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して複合化物粒子を覆っており、その複合化物粒子の周りに黒鉛または炭素質物が配置していることを特徴とする請求項1〜3のいずれか1項に記載のリチウムイオン2次電池用負極活物質。 Si or Si alloy and a carbonaceous material are both sandwiched between thin graphite layers having a thickness of 0.5 μm or less, and the structure spreads in a laminated and / or network form, and the thin graphite layer is active material particles. The lithium according to any one of claims 1 to 3, wherein the composite particle is curved in the vicinity of the surface of the metal, and graphite or carbonaceous matter is disposed around the composite particle. Negative electrode active material for ion secondary battery. SiまたはSi合金、炭素前駆体、さらに必要に応じて黒鉛を混合する工程と、造粒・圧密化する工程と、混合物を粉砕して複合化物粒子を形成する工程と、該複合化物粒子を不活性ガス雰囲気中で焼成する工程と、複合化物と炭素化物とを混合する工程を含むことを特徴とする請求項1〜4のいずれか1項に記載のリチウムイオン2次電池用負極活物質の製造方法。 A step of mixing Si or an Si alloy, a carbon precursor, and optionally graphite, a step of granulating and compacting, a step of pulverizing the mixture to form composite particles, and 5. The negative electrode active material for a lithium ion secondary battery according to claim 1, comprising a step of firing in an active gas atmosphere, and a step of mixing the composite and the carbonized product. Production method. 複合化物と炭素化物とを混合する工程において、該複合化物と該炭素化物とを溶媒を用いてスラリー化することを特徴とする請求項5に記載のリチウムイオン2次電池用負極活物質の製造方法。 6. The production of a negative electrode active material for a lithium ion secondary battery according to claim 5, wherein in the step of mixing the composite and the carbonized product, the composite and the carbonized product are slurried using a solvent. Method. 複合化物と炭素化物とを混合する工程において、電極作製時に必要なバインダーと導電助剤とを添加する工程を含むことを特徴とする請求項6に記載のリチウムイオン2次電池用負極活物質の製造方法。 The step of mixing the composite and the carbonized product includes a step of adding a binder and a conductive additive necessary for producing the electrode. The negative electrode active material for a lithium ion secondary battery according to claim 6, Production method.
JP2014100861A 2014-05-14 2014-05-14 Negative electrode active material for lithium ion secondary battery and method for producing the same Active JP6739142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100861A JP6739142B2 (en) 2014-05-14 2014-05-14 Negative electrode active material for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100861A JP6739142B2 (en) 2014-05-14 2014-05-14 Negative electrode active material for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015219989A true JP2015219989A (en) 2015-12-07
JP6739142B2 JP6739142B2 (en) 2020-08-12

Family

ID=54779223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100861A Active JP6739142B2 (en) 2014-05-14 2014-05-14 Negative electrode active material for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6739142B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121585A1 (en) * 2015-01-29 2016-08-04 Necエナジーデバイス株式会社 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2017149731A1 (en) * 2016-03-03 2017-09-08 株式会社日立製作所 Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery
JP2017183113A (en) * 2016-03-30 2017-10-05 東ソー株式会社 Composite active material for lithium ion secondary battery, and method for manufacturing the same
JP2018029049A (en) * 2016-08-10 2018-02-22 東ソー株式会社 Composite active material for silicon based lithium secondary battery and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2004362789A (en) * 2003-06-02 2004-12-24 Nec Corp Negative electrode material and secondary battery using it
JP2008311209A (en) * 2007-05-17 2008-12-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
JP2013145669A (en) * 2012-01-13 2013-07-25 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2013183717A1 (en) * 2012-06-07 2013-12-12 日本ゼオン株式会社 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2004362789A (en) * 2003-06-02 2004-12-24 Nec Corp Negative electrode material and secondary battery using it
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
JP2008311209A (en) * 2007-05-17 2008-12-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013145669A (en) * 2012-01-13 2013-07-25 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2013183717A1 (en) * 2012-06-07 2013-12-12 日本ゼオン株式会社 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121585A1 (en) * 2015-01-29 2016-08-04 Necエナジーデバイス株式会社 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10490818B2 (en) 2015-01-29 2019-11-26 Envision Aesc Energy Devices Ltd. Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2017149731A1 (en) * 2016-03-03 2017-09-08 株式会社日立製作所 Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery
JP2017183113A (en) * 2016-03-30 2017-10-05 東ソー株式会社 Composite active material for lithium ion secondary battery, and method for manufacturing the same
JP2018029049A (en) * 2016-08-10 2018-02-22 東ソー株式会社 Composite active material for silicon based lithium secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP6739142B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
KR102324577B1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP6572551B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP6432519B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery
JP6617403B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP6759527B2 (en) Negative electrode active material for lithium ion secondary batteries and its manufacturing method
JP7452599B2 (en) Composite active material for lithium secondary batteries
WO2015146864A1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP6961948B2 (en) Composite active material for silicon-based lithium secondary batteries and its manufacturing method
JP6476814B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
WO2016125819A1 (en) Composite active material for lithium secondary cell and method for manufacturing same
JP6961980B2 (en) Composite active material for lithium secondary battery and its manufacturing method
JP2015164127A (en) Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP6451071B2 (en) Carbon silicon negative electrode active material for lithium ion secondary battery and method for producing the same
JP2017134937A (en) Composite active material for lithium secondary battery and method of producing the same
JP6746906B2 (en) Silicon-based particles, negative electrode active material for lithium-ion secondary battery containing the same, and methods for producing the same
JP6808959B2 (en) Composite active material for lithium-ion secondary battery and its manufacturing method
JP6772435B2 (en) Negative electrode active material for lithium ion secondary batteries and its manufacturing method
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP6961981B2 (en) Composite active material for lithium secondary battery and its manufacturing method
TW201640726A (en) Composite active material for lithium secondary cell and method for manufacturing same
JP6379565B2 (en) Non-aqueous secondary battery negative electrode carbon material and non-aqueous secondary battery
JP6705122B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2017168376A (en) Composite active material for lithium secondary battery and manufacturing method of the same
JP2015185444A (en) Carbon material for nonaqueous secondary battery negative electrode and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180808

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200721

R151 Written notification of patent or utility model registration

Ref document number: 6739142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151