JP2015218365A - High strength hot-dip galvannealed steel sheet excellent in yield strength and workability - Google Patents
High strength hot-dip galvannealed steel sheet excellent in yield strength and workability Download PDFInfo
- Publication number
- JP2015218365A JP2015218365A JP2014103318A JP2014103318A JP2015218365A JP 2015218365 A JP2015218365 A JP 2015218365A JP 2014103318 A JP2014103318 A JP 2014103318A JP 2014103318 A JP2014103318 A JP 2014103318A JP 2015218365 A JP2015218365 A JP 2015218365A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- strength
- area ratio
- yield strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 84
- 239000010959 steel Substances 0.000 title claims abstract description 84
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 30
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 22
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 230000008520 organization Effects 0.000 claims description 5
- 239000004615 ingredient Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 229910052698 phosphorus Inorganic materials 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 54
- 238000000137 annealing Methods 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 17
- 238000005275 alloying Methods 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 230000009466 transformation Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 229910001335 Galvanized steel Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000008397 galvanized steel Substances 0.000 description 6
- 238000005496 tempering Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910001035 Soft ferrite Inorganic materials 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、自動車用の骨格部材等に使用される高強度合金化溶融亜鉛めっき鋼板に関し、詳しくは、降伏強度と伸びおよび伸びフランジ性の高められた高強度合金化溶融亜鉛めっき鋼板(以下、「GA鋼板」ともいう。)に関する。 The present invention relates to a high-strength alloyed hot-dip galvanized steel sheet used for a framework member for automobiles, and more specifically, a high-strength alloyed hot-dip galvanized steel sheet (hereinafter referred to as “high-strength alloyed hot-dip galvanized steel sheet”). Also referred to as “GA steel plate”.
合金化溶融亜鉛めっき鋼板は、耐食性に優れていることから、自動車用の骨格部材に使用される。自動車用の骨格部材として用いられる鋼板には、車体軽量化による燃費向上を目的として高強度化が求められるとともに、衝突安全性を確保する必要がある。このため、降伏強度の高い高強度合金化溶融亜鉛めっき鋼板が求められている。一方で複雑な形状の部品に成形するために、優れた加工性も要求される。 Alloyed hot-dip galvanized steel sheets are excellent in corrosion resistance, and are therefore used for automobile frame members. Steel sheets used as frame members for automobiles are required to have high strength for the purpose of improving fuel efficiency by reducing the weight of the vehicle body, and it is necessary to ensure collision safety. For this reason, a high strength galvannealed steel sheet having a high yield strength is required. On the other hand, excellent workability is also required in order to form a complex shaped part.
このため、高い降伏強度を有しつつ、伸び(全伸び;El)と伸びフランジ性(穴広げ率;λ)がともに高められた高強度合金化溶融亜鉛めっき鋼板の提供が切望されており、例えば引張強度1180MPa級の鋼板に対しては、降伏強度900MPa以上で、かつ全伸び12%以上で伸びフランジ性λが60%以上のものが要望されている。 For this reason, there is a strong desire to provide a high-strength galvannealed steel sheet having both high yield strength and enhanced elongation (total elongation; El) and stretch flangeability (hole expansion ratio; λ). For example, a steel sheet having a tensile strength of 1180 MPa class is required to have a yield strength of 900 MPa or more, a total elongation of 12% or more, and a stretch flangeability λ of 60% or more.
上記のようなニーズを受けて、種々の組織制御の考え方に基づき、降伏強度、伸び、および伸びフランジ性のバランスを改善した高強度合金化溶融亜鉛めっき鋼板が多数提案されているものの、上記要望レベルを満足させたものはいまだ完成に至っていないのが現状である。 In response to the above needs, a number of high-strength galvannealed steel sheets with improved balance of yield strength, elongation, and stretch flangeability have been proposed based on various structural control concepts. Those that have satisfied the level have not yet been completed.
例えば、特許文献1には、フェライト相とベイナイト相を主体とする複合組織を有する高強度鋼板が提案され、フェライトを微細なTi、Mo等を含む炭化物で析出強化することで、780MPa以上の高強度でも高い降伏比と良好な伸び、伸びフランジ性が得られるとしている。しかしながら、同文献に記載された高強度鋼板は、マルテンサイトに比して軟質なフェライトを相当量(体積率で20%以上)含むことを前提としており(同文献の段落[0015]参照)、軟質なフェライトの導入を極力少なくする(面積率で2%以下)本発明とは、そもそも技術的思想が全く異なる。また、同文献では、Ti、Mo系炭化物の析出強化により高降伏強度を実現したとしているが、その実施例の表4に示されるように、合金化溶融亜鉛めっき処理を施した鋼板では、合金化の際の加熱によりベイナイトが軟質化するために降伏強度YSが800MPaにも達していない。 For example, Patent Document 1 proposes a high-strength steel sheet having a composite structure mainly composed of a ferrite phase and a bainite phase. By precipitation strengthening ferrite with a carbide containing fine Ti, Mo, etc., a high strength of 780 MPa or more is proposed. It is said that high yield ratio, good elongation and stretch flangeability can be obtained even in strength. However, the high-strength steel sheet described in the same document is based on the premise that it contains a considerable amount of soft ferrite (20% or more by volume) compared to martensite (see paragraph [0015] of the same document), The introduction of soft ferrite is minimized (area ratio is 2% or less), and the technical idea is completely different from the present invention. In the same document, it is said that high yield strength is realized by precipitation strengthening of Ti and Mo-based carbides. However, as shown in Table 4 of the example, in the steel sheet subjected to alloying hot dip galvanizing, The yield strength YS does not reach 800 MPa because bainite is softened by heating during the conversion.
また、特許文献2には、フェライトとマルテンサイトを主体とする複合組織鋼板が提案され、フェライト組織において、結晶方位差が10°未満の粒界で囲まれたフェライト粒を多くするとともに、フェライト粒を微細化することで、引張強度が980MPa以上の加工性に優れた高降伏比高強度溶融亜鉛めっき鋼板が得られるとしている。しかしながら、同文献に記載された鋼板は、フェライトの存在を必須とするために、同文献の実施例の表5および表6に示されるように、1例(試験No.2−3)を除いていずれも降伏強度YPが900MPaに達しておらず、また伸びフランジ性も60%以上を達成しているとは考え難い。なお、試験No.2−3は、降伏強度YPが900MPa以上であるが、引張強度TS、伸びELが本発明の要望レベルに達していない。 Patent Document 2 proposes a composite steel sheet mainly composed of ferrite and martensite. In the ferrite structure, ferrite grains surrounded by grain boundaries having a crystal orientation difference of less than 10 ° are increased. It is said that a high yield ratio high-strength hot-dip galvanized steel sheet excellent in workability having a tensile strength of 980 MPa or more can be obtained. However, since the steel sheet described in the literature requires the presence of ferrite, one example (test No. 2-3) is excluded as shown in Table 5 and Table 6 of the examples of the literature. In any case, the yield strength YP does not reach 900 MPa, and the stretch flangeability is hardly considered to be 60% or more. In addition, Test No. In 2-3, the yield strength YP is 900 MPa or more, but the tensile strength TS and the elongation EL do not reach the desired levels of the present invention.
そこで本発明の目的は、降伏強度と伸びおよび伸びフランジ性を兼ね備えた高強度溶融亜鉛めっき鋼板を提供することにある。 Accordingly, an object of the present invention is to provide a high-strength hot-dip galvanized steel sheet having both yield strength and elongation and stretch flangeability.
本発明の第1発明に係る降伏強度と加工性に優れた高強度合金化溶融亜鉛めっき鋼板は、
質量%で、
C:0.05〜0.30%、
Si:0.1〜3.0%
Mn:1.0〜3.0%、
P:0.1%以下、
S:0.01%以下、
N:0.01%以下、
Al:0.001〜0.10%
であり、残部が鉄および不可避的不純物からなる成分組成を有し、
マルテンサイトとオーステナイトよりなる混合組織MAの、組織全体に対する平均面積率VMAが2〜5%であり、
MAの面積率が局部的に前記平均面積率VMAの60%以下となる領域が、組織全体に対する面積割合で10%以下であり、
フェライトの、組織全体に対する平均面積率が2%以下であり、
残部がベイナイトおよびマルテンサイトであり、
転位密度が2.0×1015〜8.0×1015m−2である組織を有する、
ことを特徴とする。
The high-strength galvannealed steel sheet excellent in yield strength and workability according to the first invention of the present invention is
% By mass
C: 0.05 to 0.30%
Si: 0.1-3.0%
Mn: 1.0 to 3.0%
P: 0.1% or less,
S: 0.01% or less,
N: 0.01% or less,
Al: 0.001 to 0.10%
And the balance has a component composition consisting of iron and inevitable impurities,
The mixed structure MA consisting martensite and austenite, the average area ratio V MA with respect to the entire organization is 2-5%,
Area MA area fraction of less than or equal to 60% of the locally the average area ratio V MA is 10% or less in area ratio to the whole organization,
The average area ratio of ferrite to the entire structure is 2% or less,
The balance is bainite and martensite,
A structure having a dislocation density of 2.0 × 10 15 to 8.0 × 10 15 m −2 ;
It is characterized by that.
本発明の第2発明に係る降伏強度と加工性に優れた高強度合金化溶融亜鉛めっき鋼板は、上記第1発明において、
成分組成が、さらに、質量%で、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、
B:0.0002〜0.0050%
の1種または2種以上を含むものである。
The high-strength galvannealed steel sheet excellent in yield strength and workability according to the second invention of the present invention is the above first invention,
Ingredient composition is further mass%,
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
B: 0.0002 to 0.0050%
1 type or 2 types or more are included.
本発明の第3発明に係る降伏強度と加工性に優れた高強度合金化溶融亜鉛めっき鋼板は、上記第1または第2発明において、
成分組成がさらに、質量%で、
Mo:0.01〜1.0%、
Cr:0.01〜1.0%、
Nb:0.01〜0.3%、
Ti:0.01〜0.3%、
V:0.01〜0.3%
の1種または2種以上を含むものである。
The high-strength galvannealed steel sheet excellent in yield strength and workability according to the third invention of the present invention is the above first or second invention,
In addition, the component composition is
Mo: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Nb: 0.01-0.3%
Ti: 0.01 to 0.3%,
V: 0.01 to 0.3%
1 type or 2 types or more are included.
本発明の第4発明に係る降伏強度と加工性に優れた高強度合金化溶融亜鉛めっき鋼板は、上記第1〜第3発明のいずれか1つの発明において、
成分組成が、さらに、質量%で、
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%
の1種または2種を含むものである。
The high-strength galvannealed steel sheet excellent in yield strength and workability according to the fourth invention of the present invention is any one of the first to third inventions,
Ingredient composition is further mass%,
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%
1 type or 2 types are included.
本発明によれば、鋼板の組織として、ベイナイト+マルテンサイトを主要組織とする一方、フェライトの導入を極力制限するとともに、所定量のMAを均一に分散させ、さらに転位密度を所定範囲に制御することで、高降伏強度と伸びおよび伸びフランジ性を兼備した高強度合金化溶融亜鉛めっき鋼板を提供できるようになった。 According to the present invention, as a steel sheet structure, bainite + martensite is a main structure, while introduction of ferrite is limited as much as possible, a predetermined amount of MA is uniformly dispersed, and a dislocation density is controlled within a predetermined range. As a result, it has become possible to provide a high-strength galvannealed steel sheet having both high yield strength and elongation and stretch flangeability.
本発明者らは、上記課題を解決するために種々検討を行った結果、GA鋼板の鋼組織を、ベイナイト+マルテンサイトを主要組織とする一方、フェライトの導入を極力制限するとともに、所定量のMAを均一に分散させ、さらに転位密度を所定範囲に制御することで、高降伏強度と伸びおよび伸びフランジ性を兼備するGA鋼板が得られることを見出し、本発明を完成するに至った。 As a result of various studies to solve the above problems, the present inventors have made the steel structure of the GA steel sheet mainly composed of bainite + martensite, while limiting the introduction of ferrite as much as possible, and a predetermined amount. It was found that a GA steel sheet having both high yield strength and elongation and stretch flangeability can be obtained by uniformly dispersing MA and controlling the dislocation density within a predetermined range, thereby completing the present invention.
以下、まず本発明に係る高強度GA鋼板(以下、「本発明鋼板」ともいう。)を特徴づける組織について説明する。 Hereinafter, the structure characterizing the high-strength GA steel sheet according to the present invention (hereinafter also referred to as “the present steel sheet”) will be described first.
以下、まず本発明鋼板を特徴づける組織について説明する。 Hereinafter, the structure characterizing the steel sheet of the present invention will be described first.
〔本発明鋼板の組織〕
上述したとおり、本発明鋼板は、ベイナイト+マルテンサイトを主要組織とするものであるが、特に、フェライト量が極力制限されるとともに、所定量のMAが均一に分散し、さらに転位密度が所定範囲に制御されている点に特徴を有する。
[Structure of the steel sheet of the present invention]
As described above, the steel sheet of the present invention has bainite + martensite as the main structure, and in particular, the ferrite content is limited as much as possible, a predetermined amount of MA is uniformly dispersed, and the dislocation density is within a predetermined range. It is characterized in that it is controlled.
<マルテンサイトとオーステナイトよりなる混合組織MAの、組織全体に対する平均面積率VMA:2〜5%>
伸びを確保するためにMAの、組織全体に対する平均面積率VMAを2%以上、好ましくは2.4%以上、さらに好ましくは2.8%以上とする必要がある。ただし、MAが多すぎると伸びフランジ性が劣化するため、MAの、組織全体に対する平均面積率VMAは5%以下、好ましくは4.5%以下、さらに好ましくは4%以下に制限する。
<Average area ratio V MA of the mixed structure MA composed of martensite and austenite with respect to the entire structure: 2 to 5%>
In order to ensure the elongation, it is necessary that the average area ratio VMA of MA with respect to the entire structure is 2% or more, preferably 2.4% or more, more preferably 2.8% or more. However, if there is too much MA, the stretch flangeability deteriorates, so the average area ratio VMA of MA with respect to the entire structure is limited to 5% or less, preferably 4.5% or less, more preferably 4% or less.
<MAの面積率が局部的に前記平均面積率VMAの60%以下となる領域:組織全体に対する面積割合で10%以下>
局部的なMAの分散状態を適切に制御することで、伸びと伸びフランジ性のバランスを向上することが可能となる。すなわち、MAは延性の改善に有効であるが、鋼板組織中に不均一に分散すると、鋼板内に変形の不均一が生じ、MAの少ない領域で破壊が生じるために伸びフランジ性が劣化する。そのため、MAの少ない領域を低減し、MAをできるだけ均一分散させる必要がある。具体的には、MAの面積率が局部的に前記平均面積率VMAの60%以下となる領域を、組織全体に対する面積割合で10%以下、好ましくは9%以下、さらに好ましくは8%以下とする。これにより、上記変形の不均一を抑制し、伸びフランジ性を向上させることができる。
<Area where the area ratio of MA is locally 60% or less of the average area ratio VMA : 10% or less in terms of the area ratio with respect to the entire tissue>
By appropriately controlling the local MA dispersion state, it is possible to improve the balance between elongation and stretch flangeability. That is, MA is effective in improving ductility, but if it is dispersed non-uniformly in the steel sheet structure, non-uniform deformation occurs in the steel sheet, and fracture occurs in a region with a small amount of MA, so that stretch flangeability deteriorates. Therefore, it is necessary to reduce the area with less MA and disperse the MA as uniformly as possible. Specifically, a region where the area ratio of the MA is equal to or less than 60% of the locally the average area ratio V MA, 10% in area ratio to the whole organization less, preferably 9% or less, more preferably 8% or less And Thereby, the nonuniformity of the said deformation | transformation can be suppressed and stretch flangeability can be improved.
<フェライトの、組織全体に対する平均面積率:2%以下>
軟質なフェライトの導入を極力少なくすることで、降伏強度が向上するとともに、マルテンサイトとの硬度差に起因するボイド発生を抑制して伸びフランジ性をも高めることができる。このような作用を有効に発揮させるため、フェライトの、組織全体に対する平均面積率は2%以下、好ましくは1.5%以下、さらに好ましくは1%以下に制限する。
<Average area ratio of ferrite to the entire structure: 2% or less>
By reducing the introduction of soft ferrite as much as possible, the yield strength can be improved, and the generation of voids due to the hardness difference from martensite can be suppressed, and the stretch flangeability can be improved. In order to effectively exhibit such an action, the average area ratio of ferrite with respect to the entire structure is limited to 2% or less, preferably 1.5% or less, and more preferably 1% or less.
<残部:ベイナイトおよびマルテンサイト>
強度確保のため、残部はベイナイトおよびマルテンサイトとする。
<Balance: Bainite and martensite>
The balance is bainite and martensite to ensure strength.
<転位密度:2.0×1015〜8.0×1015m−2>
焼入れままのマルテンサイトは、非常に高い転位密度を有する組織であるが、これらの転位の多くが可動転位であることによって降伏強度が低く、また延性にも乏しい。そのため、焼戻しによってマルテンサイト生成時に導入される可動転位を減少させることで、降伏強度と延性を高めることができる。このような作用を有効に発揮させるため、転位密度は8.0×1015m−2以下、好ましくは7.0×1015m−2以下に制限する。ただし、焼戻しを必要以上に行うと、転位密度が過度に減少し、強度が不足するので、転位密度は2.0×1015m−2以上、好ましくは2.5×1015m−2以上、さらに好ましくは3.0×1015m−2以上確保する必要がある。
<Dislocation density: 2.0 × 10 15 to 8.0 × 10 15 m −2 >
Although the as-quenched martensite is a structure having a very high dislocation density, since many of these dislocations are movable dislocations, yield strength is low and ductility is also poor. Therefore, yield strength and ductility can be increased by reducing the movable dislocations introduced during martensite generation by tempering. In order to effectively exhibit such an action, the dislocation density is limited to 8.0 × 10 15 m −2 or less, preferably 7.0 × 10 15 m −2 or less. However, if tempering is performed more than necessary, the dislocation density decreases excessively and the strength is insufficient, so the dislocation density is 2.0 × 10 15 m −2 or more, preferably 2.5 × 10 15 m −2 or more. More preferably, it is necessary to secure 3.0 × 10 15 m −2 or more.
次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。 Next, the component composition which comprises this invention steel plate is demonstrated. Hereinafter, all the units of chemical components are mass%.
〔本発明鋼板の成分組成〕
C:0.05〜0.30%
Cは、鋼板の強度に大きく影響する重要な元素である。Cが少なすぎると強度が不足して引張強度1180MPaを確保できなくなるので、C量は0.05%以上、好ましくは0.07%以上、さらに好ましくは0.1%以上が必要である。一方、C量が過剰になると焼戻し時に粗大な炭化物が析出しやすくなり、伸びフランジ性を劣化させることに加え、溶接性の確保という観点からもC量は低いほうが望ましいため、C量は0.30%以下、好ましくは0.25%以下、さらに好ましくは0.20%以下とする。
[Component composition of the steel sheet of the present invention]
C: 0.05-0.30%
C is an important element that greatly affects the strength of the steel sheet. If the amount of C is too small, the strength is insufficient and a tensile strength of 1180 MPa cannot be ensured, so the C content needs to be 0.05% or more, preferably 0.07% or more, and more preferably 0.1% or more. On the other hand, when the amount of C is excessive, coarse carbides are likely to precipitate during tempering, and in addition to deteriorating stretch flangeability, it is desirable that the amount of C is low from the viewpoint of securing weldability. 30% or less, preferably 0.25% or less, more preferably 0.20% or less.
Si:0.1〜3.0%
Siは、焼戻し時における炭化物粒子の粗大化を抑制する効果を有し、伸びフランジ性向上に寄与するとともに、固溶強化元素として鋼板の降伏強度上昇にも寄与する有用な元素である。このような作用を有効に発揮させるためには、Si量は0.1%以上、好ましくは0.3%以上、さらに好ましくは0.5%以上が必要である。ただし、Si量が過剰になると溶接性が著しく低下するため、3.0%以下、好ましくは2.5%以下、さらに好ましくは2.0%以下とする。
Si: 0.1-3.0%
Si is a useful element that has the effect of suppressing the coarsening of carbide particles during tempering, contributes to improvement in stretch flangeability, and also contributes to an increase in yield strength of the steel sheet as a solid solution strengthening element. In order to effectively exhibit such an action, the amount of Si needs to be 0.1% or more, preferably 0.3% or more, and more preferably 0.5% or more. However, if the amount of Si is excessive, the weldability is remarkably lowered, so that it is 3.0% or less, preferably 2.5% or less, more preferably 2.0% or less.
Mn:1.0〜3.0%
Mnは、上記Siと同様、焼戻し時におけるセメンタイトの粗大化を抑制する効果を有し、伸びフランジ性向上に寄与するとともに、固溶強化元素として鋼板の降伏強度上昇にも寄与する有用な元素である。また、焼入れ性を高めることで、冷却時のフェライト変態を抑制する効果もある。このような作用を有効に発揮させるためには、Mn量は1.0%以上、好ましくは1.3%以上、さらに好ましくは1.6%以上が必要である。ただし、Mn量が過剰になると最終組織中のMA量が過剰になり、逆に伸びフランジ性を劣化させるため、3.0%以下、好ましくは2.7%以下、さらに好ましくは2.4%以下とする。
Mn: 1.0-3.0%
Mn, like Si, has an effect of suppressing the coarsening of cementite during tempering, contributes to the improvement of stretch flangeability, and is a useful element that also contributes to an increase in the yield strength of the steel sheet as a solid solution strengthening element. is there. Moreover, it has the effect of suppressing the ferrite transformation at the time of cooling by improving hardenability. In order to effectively exhibit such an action, the amount of Mn needs to be 1.0% or more, preferably 1.3% or more, more preferably 1.6% or more. However, if the amount of Mn becomes excessive, the amount of MA in the final structure becomes excessive and conversely deteriorates the stretch flangeability. Therefore, it is 3.0% or less, preferably 2.7% or less, more preferably 2.4%. The following.
P:0.1%以下
Pは不純物元素として不可避的に存在し、固溶強化により強度の上昇に寄与するが、旧オーステナイト粒界に偏析し、粒界を脆化させることで曲げ性を劣化させるので、P量は0.1%以下、好ましくは0.05%、さらに好ましくは0.03%以下に制限する。
P: 0.1% or less P is unavoidably present as an impurity element, and contributes to an increase in strength by solid solution strengthening, but segregates at the prior austenite grain boundaries and deteriorates bendability by embrittlement of the grain boundaries. Therefore, the P content is limited to 0.1% or less, preferably 0.05%, and more preferably 0.03% or less.
S:0.01%以下
Sも不純物元素として不可避的に存在し、MnS介在物を形成し、曲げ変形時に亀裂の起点となることで曲げ性を劣化させるので、S量は0.01%以下、好ましくは0.005%以下、さらに好ましくは0.003%以下に制限する。
S: 0.01% or less S is also unavoidably present as an impurity element, forms MnS inclusions, and deteriorates bendability by becoming a starting point of cracks during bending deformation, so the amount of S is 0.01% or less. , Preferably 0.005% or less, more preferably 0.003% or less.
N:0.01%以下
Nも不純物として不可避的に存在し、ひずみ時効により鋼板の加工性を劣化させるので、低いほうが好ましく、0.01%以下、好ましくは0.007%以下、さらに好ましくは0.005%以下とする。
N: 0.01% or less N is also unavoidably present as an impurity, and deteriorates the workability of the steel sheet by strain aging. Therefore, a lower value is preferable, 0.01% or less, preferably 0.007% or less, and more preferably. 0.005% or less.
Al:0.001〜0.10%
Alは脱酸材として添加される有用な元素であり、このような作用を得るには0.001%以上、好ましくは0.01%以上、さらに好ましくは0.03%以上が必要である。ただし、Al量が過剰になると鋼の清浄度を悪化させるので、0.10%以下、好ましくは0.08%以下、さらに好ましくは0.06%以下とする。
Al: 0.001 to 0.10%
Al is a useful element added as a deoxidizing material, and 0.001% or more, preferably 0.01% or more, more preferably 0.03% or more is necessary to obtain such an action. However, if the amount of Al becomes excessive, the cleanliness of the steel is deteriorated, so that it is 0.10% or less, preferably 0.08% or less, more preferably 0.06% or less.
本発明の鋼は上記成分を基本的に含有し、残部は鉄および不可避的不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を含有させることができる。 The steel of the present invention basically contains the above components, and the balance is iron and inevitable impurities. In addition, the following allowable components can be contained as long as the effects of the present invention are not impaired.
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、
B:0.0002〜0.0050%
の1種または2種以上
これらの元素は、焼入れ性を高め、焼鈍加熱によりオーステナイト単相化された組織からのフェライト変態を抑制する効果を有する有用な元素である。このような作用を得るには、各元素とも上記それぞれの下限値以上含有させるのが好ましい。上記元素は単独で含有させてもよいし、2種以上を併用してもかまわない。しかしながら、これらの元素を過剰に含有させても、効果が飽和してしまい、経済的に無駄であるため、各元素とも上記それぞれの上限値以下とする。
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
B: 0.0002 to 0.0050%
One or more of these elements are useful elements having the effect of enhancing the hardenability and suppressing the ferrite transformation from the structure austenitic single-phased by annealing. In order to obtain such an action, it is preferable that each element is contained in the above lower limit value or more. The above elements may be contained alone or in combination of two or more. However, even if these elements are contained excessively, the effect is saturated and it is economically wasteful, so that each element is set to the above upper limit value or less.
Mo:0.01〜1.0%、
Cr:0.01〜1.0%、
Nb:0.01〜0.3%、
Ti:0.01〜0.3%、
V:0.01〜0.3%
の1種または2種以上
これらの元素は、成形性を劣化させずに強度を改善するのに有用な元素である。このような作用を得るには、各元素とも上記それぞれの下限値以上含有させるのが好ましい。上記元素は単独で含有させてもよいし、2種以上を併用してもかまわない。しかしながら、これらの元素を過剰に含有させると、粗大な炭化物が形成され、成形性が劣化するため、各元素とも上記それぞれの上限値以下とする。
Mo: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Nb: 0.01-0.3%
Ti: 0.01 to 0.3%,
V: 0.01 to 0.3%
These elements are useful elements for improving the strength without degrading the moldability. In order to obtain such an action, it is preferable that each element is contained in the above lower limit value or more. The above elements may be contained alone or in combination of two or more. However, if these elements are contained excessively, coarse carbides are formed and formability deteriorates, so that each element is set to the upper limit value or less.
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%
の1種または2種
これらの元素は、介在物を微細化し、破壊の起点を減少させることによって伸びフランジ性を向上させるのに有用な元素である。このような作用を得るには、いずれの元素とも0.0005%以上含有させるのが好ましい。上記元素は単独で使用してもよいし、2種を併用してもかまわない。しかしながら、過剰に含有させると逆に介在物が粗大化して伸びフランジ性が劣化するので、いずれの元素とも0.01%以下とする。
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%
These elements are useful elements for improving the stretch flangeability by refining inclusions and reducing the starting point of fracture. In order to obtain such an action, it is preferable to contain 0.0005% or more of any element. The above elements may be used alone or in combination of two. However, if it is contained excessively, inclusions are coarsened and stretch flangeability deteriorates. Therefore, both elements are made 0.01% or less.
〔本発明鋼板の好ましい製造方法〕
上記した要件を満足する本発明鋼板を製造するためには、以下の製造要件を満足するようにして、鋼板を製造することが好ましい。
[Preferred production method of the steel sheet of the present invention]
In order to manufacture the steel sheet of the present invention that satisfies the above requirements, it is preferable to manufacture the steel sheet so as to satisfy the following manufacturing requirements.
本発明鋼板を製造する際の特徴は、スラブを熱間圧延し冷間圧延した後の熱処理条件にある。そのため、熱間圧延および冷間圧延までの製造方法に関しては、従来公知の製造方法を採用することができる。すなわち、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延、さらには冷間圧延を行えばよい。以下、熱処理条件について、図1に模式的に示す熱処理ヒートパターンを参照しつつ説明する。 The feature in producing the steel sheet of the present invention is the heat treatment conditions after the slab is hot-rolled and cold-rolled. Therefore, a conventionally well-known manufacturing method can be employ | adopted regarding the manufacturing method to hot rolling and cold rolling. That is, a steel having the above component composition is melted to form a slab by ingot forming or continuous casting, and then hot rolling and further cold rolling may be performed. Hereinafter, the heat treatment conditions will be described with reference to the heat treatment heat pattern schematically shown in FIG.
図1に示すように、まず、冷間圧延後の鋼板(冷延材)を、[Ac3点+50℃]〜930℃の焼鈍加熱温度に加熱した後、その焼鈍加熱温度で30〜1200s(焼鈍保持時間)保持する。その後、前記焼鈍加熱温度からMs点〜550℃の一次冷却温度までを15℃/s以上の平均冷却速度(一次冷却速度)で急冷し、その一次冷却温度で10〜50s(一次冷却保持時間)保持する。さらに、この一次冷却温度から[Ms点−100℃]〜[Ms点−30℃]の二次冷却温度までを15℃/s以上の平均冷却速度(二次冷却速度)で急冷し、その二次冷却温度で5s以上(二次冷却保持時間)保持する。そして、この焼鈍された鋼板(焼鈍材)を溶融亜鉛めっき浴へ浸漬し、その後、450〜550℃の合金化処理温度で10〜60s(合金化処理時間)保持して合金化処理を行った後、常温まで冷却する。これにより、本発明鋼板(本発明に係る高強度合金化溶融亜鉛めっき鋼板)が得られる。 As shown in FIG. 1, first, a steel sheet (cold rolled material) after cold rolling is heated to an annealing heating temperature of [Ac3 point + 50 ° C.] to 930 ° C., and then 30 to 1200 s (annealing) at the annealing heating temperature. Hold time) Hold. Thereafter, from the annealing heating temperature to the primary cooling temperature of Ms to 550 ° C. is rapidly cooled at an average cooling rate (primary cooling rate) of 15 ° C./s or more, and the primary cooling temperature is 10 to 50 s (primary cooling holding time). Hold. Furthermore, from the primary cooling temperature to the secondary cooling temperature of [Ms point-100 ° C.] to [Ms point-30 ° C.] is rapidly cooled at an average cooling rate (secondary cooling rate) of 15 ° C./s or more. Hold at the next cooling temperature for 5 seconds or longer (secondary cooling holding time). Then, the annealed steel sheet (annealed material) was immersed in a hot dip galvanizing bath, and then held at an alloying treatment temperature of 450 to 550 ° C. for 10 to 60 s (alloying treatment time) to perform an alloying treatment. Then, cool to room temperature. Thereby, this invention steel plate (high-strength galvannealed steel plate based on this invention) is obtained.
・冷間圧延後の鋼板(冷延材)を[Ac3点+50℃]〜930℃の焼鈍加熱温度に加熱後、30〜1200s(焼鈍保持時間)保持
鋼板をマルテンサイトとベイナイト主要組織にし、フェライト分率を低減することは、本発明鋼板を製造するために重要な要件である。フェライト分率を低減するためには、焼鈍時にオーステナイト単相組織にする必要がある。また、オーステナイト単相組織からのフェライト変態を抑制するためには、オーステナイト粒径を粗大化させ、焼入れ性を高めることが有効である。そのため焼鈍加熱温度はAc3点+50℃以上とする。
-The steel sheet after cold rolling (cold rolled material) is heated to an annealing heating temperature of [Ac3 point + 50 ° C] to 930 ° C and then held for 30 to 1200 s (annealing holding time). Reducing the fraction is an important requirement for producing the steel sheet of the present invention. In order to reduce the ferrite fraction, it is necessary to have an austenite single phase structure during annealing. In order to suppress the ferrite transformation from the austenite single phase structure, it is effective to increase the austenite grain size and improve the hardenability. Therefore, annealing heating temperature shall be Ac3 point +50 degreeC or more.
なお、Ac3点は、鋼板の化学成分から、レスリー著、「鉄鋼材料科学」、幸田成靖 訳、丸善株式会社、1985年、p.273に記載の下記式(1)を用いて求めることができる。
Ac3(℃)=910−203×√C−15.2×Ni+44.7×Si−30×Mn+700×P+400×Al−11×Cr−20×Cu+31.5×Mo+400×Ti+104×∨・・・(1)
ここで、上記式中の元素記号は、各元素の含有量(質量%)を表す。
The Ac3 point is based on the chemical composition of the steel sheet, by Lesley, “Iron & Steel Materials Science”, translation by Koda Narumi, Maruzen Co., Ltd., 1985, p. The following equation (1) described in H.273 can be used.
Ac3 (° C.) = 910−203 × √C−15.2 × Ni + 44.7 × Si-30 × Mn + 700 × P + 400 × Al-11 × Cr-20 × Cu + 31.5 × Mo + 400 × Ti + 104 × ∨ (1 )
Here, the element symbol in the above formula represents the content (% by mass) of each element.
一方、焼鈍加熱温度が高すぎる場合、オーステナイト粒径が過度に粗大化し、成形性が劣化することがある。そのため焼鈍加熱温度は930℃以下とする。また、焼鈍加熱保持時間が短すぎる場合は、オーステナイト変態が十分に進行しないために、最終組織にフェライトが2%を超えて存在することとなり、一方焼鈍加熱保持時間が長すぎる場合は熱処理コストが増大し、生産性が著しく悪化する。そのため、焼鈍保持時間は30〜1200sとする。 On the other hand, if the annealing heating temperature is too high, the austenite grain size may become excessively coarse, and the formability may deteriorate. Therefore, annealing heating temperature shall be 930 degrees C or less. Also, if the annealing heat holding time is too short, the austenite transformation does not proceed sufficiently, so that the ferrite is present in the final structure in excess of 2%. On the other hand, if the annealing heating holding time is too long, the heat treatment cost is high. It increases and productivity is remarkably deteriorated. Therefore, the annealing holding time is 30 to 1200 s.
・焼鈍加熱温度からMs点〜550℃の一次冷却温度までを15℃/s以上の平均冷却速度(一時冷却速度)で急冷し、その一次冷却温度で10〜50s(一時冷却保持時間)保持
この一次冷却の過程では、焼鈍時に生成したオーステナイトを、冷却中にフェライト変態させないことが重要である。このため、一次冷却速度は15℃/s以上、より好ましくは30℃/s以上とする。
-From the annealing heating temperature to the primary cooling temperature of the Ms point to 550 ° C is rapidly cooled at an average cooling rate (temporary cooling rate) of 15 ° C / s or more, and the primary cooling temperature is maintained for 10 to 50 s (temporary cooling holding time). In the primary cooling process, it is important that the austenite generated during annealing is not transformed into ferrite during cooling. For this reason, a primary cooling rate shall be 15 degrees C / s or more, More preferably, it is 30 degrees C / s or more.
そして、この一次冷却の停止後、Ms点〜550℃の一次冷却温度で10〜50s(一次冷却保持時間)保持することで、ミクロ偏析によらず均一にベイナイト変態が生じ、ベイナイトの周囲にC(炭素)が濃化する。その結果、最終組織中にベイナイト周辺に生成したMAが均一に分散することになる。一次冷却温度が高すぎるとフェライトが生成する可能性があり、一方一次冷却温度が低すぎるとミクロ偏析の影響を受けて均一にベイナイトを生成させることができない。そのため、一次冷却温度はMs点〜550℃とし、より好ましい上限は520℃以下とする。 And after stopping this primary cooling, by holding for 10 to 50 s (primary cooling holding time) at a primary cooling temperature of Ms point to 550 ° C., bainite transformation occurs uniformly regardless of microsegregation, and C around the bainite. (Carbon) thickens. As a result, the MA produced around the bainite is uniformly dispersed in the final structure. If the primary cooling temperature is too high, ferrite may be generated. On the other hand, if the primary cooling temperature is too low, bainite cannot be uniformly generated due to the influence of microsegregation. Therefore, primary cooling temperature shall be Ms point -550 degreeC, and a more preferable upper limit shall be 520 degrees C or less.
また、一次冷却保持時間が短すぎるとベイナイト変態量が不足し、MA分散状態の均一化を達成できなくなる。一方、一次冷却保持時間が長すぎるとベイナイト変態が過度に進行するためにMA分率が増加し、伸びフランジ性を阻害する。そのため、一次冷却保持時間は5〜50s、より好ましくは10〜35sとする。 On the other hand, if the primary cooling holding time is too short, the amount of bainite transformation is insufficient, and it becomes impossible to achieve uniform MA dispersion. On the other hand, if the primary cooling holding time is too long, the bainite transformation proceeds excessively, increasing the MA fraction and inhibiting stretch flangeability. Therefore, the primary cooling holding time is 5 to 50 s, more preferably 10 to 35 s.
・一次冷却温度から[Ms点−100℃]〜[Ms点−30℃]の二次冷却温度までを15℃/s以上の平均冷却速度(二次冷却速度)で急冷し、その二次冷却温度で5s以上(二次冷却保持時間)保持
この二次冷却の過程において冷却速度が低すぎると、冷却中にベイナイト変態が生じ、MA分率が増加し、伸びフランジ性を阻害する。そのため、二次冷却速度は15℃/s以上、より好ましくは30℃/s以上とする。
-From the primary cooling temperature to the secondary cooling temperature of [Ms point -100 ° C] to [Ms point -30 ° C] is rapidly cooled at an average cooling rate (secondary cooling rate) of 15 ° C / s or more, and the secondary cooling Holding at a temperature of 5 seconds or more (secondary cooling holding time) If the cooling rate is too low in the secondary cooling process, bainite transformation occurs during cooling, the MA fraction increases, and stretch flangeability is inhibited. Therefore, the secondary cooling rate is 15 ° C./s or more, more preferably 30 ° C./s or more.
なお、Ms点は、鋼板の化学成分から、レスリー著、「鉄鋼材料科学」、幸田成靖 訳、丸善株式会社、1985年、p.231に記載の下記(2)式を用いて求めることができる。
Ms(℃)=516−474×C−33×Mn−17×Ni−17×Cr−21×Mo・・・(2)
ここで、上記式中の元素記号は、各元素の含有量(質量%)を表す。
The Ms point is calculated based on the chemical composition of the steel sheet by Lesley, “Iron & Steel Materials Science”, translated by Kouta Naruse, Maruzen Co., Ltd., 1985, p. The following equation (2) described in H.231 can be used.
Ms (° C.) = 516-474 × C-33 × Mn-17 × Ni-17 × Cr-21 × Mo (2)
Here, the element symbol in the above formula represents the content (% by mass) of each element.
二次冷却温度が[Ms点−30℃]を超えると、マルテンサイトが十分に生成できない。さらに、ベイナイト変態も十分に進行せず、未変態オーステナイトが合金化処理中にも残存し、その後の冷却でマルテンサイトまたはベイナイトに変態する。その結果、焼入れままの組織が最終組織に存在するため、可動転位が多くなり降伏強度が低下する。一方、二次冷却温度が[Ms点-100℃]未満になると、マルテンサイト分率が増加し、ベイナイト分率が低下する。その結果伸びを確保するに十分なMA分率が得られない。そのため、二次冷却温度は[Ms点−100℃]〜[Ms点−30℃]とする。 If the secondary cooling temperature exceeds [Ms point −30 ° C.], martensite cannot be generated sufficiently. Further, the bainite transformation does not proceed sufficiently, untransformed austenite remains during the alloying treatment, and is transformed into martensite or bainite by subsequent cooling. As a result, since the as-quenched structure exists in the final structure, the number of movable dislocations increases and the yield strength decreases. On the other hand, when the secondary cooling temperature is less than [Ms point−100 ° C.], the martensite fraction increases and the bainite fraction decreases. As a result, it is not possible to obtain a sufficient MA fraction to ensure elongation. Therefore, the secondary cooling temperature is set to [Ms point −100 ° C.] to [Ms point −30 ° C.].
二次冷却保持時間が短すぎるとベイナイト変態が完了しないために、合金化処理中に軟質なベイナイトが生成することとなるために降伏強度が低下する。このため、二次冷却保持時間は5s以上とする。二次冷却保持時間の上限は特に制限されないが、長時間保持すると粒界に炭化物が析出し、延性を阻害する場合があるため、70s以下とすることが望ましい。 If the secondary cooling holding time is too short, the bainite transformation is not completed, and soft bainite is generated during the alloying treatment, so that the yield strength is lowered. For this reason, the secondary cooling holding time is set to 5 seconds or more. The upper limit of the secondary cooling holding time is not particularly limited, but if held for a long time, carbides may be precipitated at the grain boundaries and the ductility may be hindered.
・450〜550℃の合金化処理温度で10〜60s(合金化処理時間)保持
一般に合金化処理は、450〜600℃の温度域で60s以下の保持時間で行われる。本発明の推奨製造方法においては合金化処理中に焼戻しを行う。合金化処理温度が低すぎると炭化物が十分析出できず高い降伏強度が得られない。一方で合金化処理温度が高すぎると過度に転位密度が低下して、強度が不足する。そのため、合金化処理温度は450〜550℃、より好ましくは480〜520℃とする。
-Hold for 10 to 60 s (alloying time) at an alloying treatment temperature of 450 to 550 ° C Generally, the alloying treatment is performed in a temperature range of 450 to 600 ° C with a holding time of 60 s or less. In the recommended manufacturing method of the present invention, tempering is performed during the alloying process. If the alloying treatment temperature is too low, carbides cannot be sufficiently precipitated and high yield strength cannot be obtained. On the other hand, when the alloying treatment temperature is too high, the dislocation density is excessively lowered and the strength is insufficient. Therefore, the alloying treatment temperature is 450 to 550 ° C, more preferably 480 to 520 ° C.
また、合金化処理時間は、短すぎると合金化が十分ではなく、長すぎるとMAの分解が生じる。そのため、合金化処理時間は10〜60sとする。 If the alloying treatment time is too short, alloying is not sufficient, and if it is too long, decomposition of MA occurs. Therefore, the alloying treatment time is 10 to 60 seconds.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
〔試験方法〕
下記表1に示すA〜Kの各成分組成を有する鋼を溶製し、厚さ120mmのインゴットを作製し、このインゴットを用いて熱間圧延を行い、厚さ2.8mmとした。これを酸洗した後、厚さ1.4mmになるまで冷間圧延して供試材とし、下記表2に示す各条件で供試材に熱処理およびめっき処理を施した。
〔Test method〕
Steel having each of the components A to K shown in Table 1 was melted to prepare an ingot having a thickness of 120 mm, and hot rolling was performed using the ingot to obtain a thickness of 2.8 mm. After pickling, this was cold-rolled to a thickness of 1.4 mm to obtain a test material, and the test material was subjected to heat treatment and plating treatment under the conditions shown in Table 2 below.
〔測定方法〕
得られた各鋼板を用いて、鋼板板厚1/4部におけるフェライトの平均面積率、MAの平均面積率、MAの分散状態、ならびに転位密度を測定した。また、鋼板の機械的特性を評価するため、降伏強度(YS)、引張強度(TS)、伸び(EL)および伸びフランジ性(λ)についても測定を行った。これらの測定方法については以下に示す。
〔Measuring method〕
Using each of the obtained steel plates, the average area ratio of ferrite, the average area ratio of MA, the dispersed state of MA, and the dislocation density at 1/4 part of the steel plate thickness were measured. Further, in order to evaluate the mechanical properties of the steel sheet, the yield strength (YS), tensile strength (TS), elongation (EL), and stretch flangeability (λ) were also measured. These measurement methods are shown below.
(フェライトの平均面積率)
フェライトの平均面積率については、各鋼板を鏡面研磨し、その表面を3%ナイタール液で腐食して金属組織を顕出させた後、SEM(走査型電子顕微鏡;Scanning Electron Microscope)を用いて板厚1/4部の組織を概略40μm×30μmの領域5視野について倍率2000倍で観察して求めた。具体的には、黒く観察される領域のうち、ポリゴナル(多角形状)で内部に白く観察される炭化物を含まないものをフェライトと定義し、各視野ごとに観察領域全体に対する面積比率よりフェライトの面積率を求め、それら5視野のフェライトの面積率を算術平均してフェライトの平均面積率とした。
(Average area ratio of ferrite)
Regarding the average area ratio of ferrite, each steel plate was mirror-polished, its surface was corroded with 3% nital solution to reveal the metal structure, and then the plate was obtained using SEM (Scanning Electron Microscope). A structure having a thickness of ¼ part was obtained by observing a region of approximately 40 μm × 30 μm and 5 visual fields at a magnification of 2000 times. Specifically, among the regions observed in black, those that are polygonal (polygonal) and do not contain white carbide observed inside are defined as ferrite, and the area of ferrite from the area ratio to the entire observation region for each field of view The average area ratio of the ferrite was obtained by arithmetically averaging the area ratios of the five fields of view.
(MAの平均面積率およびMAの分散状態)
また、MAの平均面積率およびMAの分散状態については、各鋼板を鏡面研磨し、その表面をレペラ液で腐食して金属組織を顕出させた後、光学顕微鏡を用いて板厚1/4部の概略80μm×60μmの領域10視野について倍率1000倍で観察して求めた。
具体的には、白く観察される領域のうち、内部にコントラスト差のないものをMAと定義し、各視野ごとに観察領域全体に対する面積比率よりMAの面積率を求め、それら10視野のMAの面積率を算術平均してMAの平均面積率VMAとした。
また、各視野ごとに上記観察領域を20μm×20μmの小領域に分割し、それぞれの小領域内でのMAの面積率VMA−Lを求め、10視野全部の観察領域の合計面積に対する、下記式(3)を満たす小領域の合計面積の割合を算出した。
VMA−L≦VMA×0.6・・・(3)
(Average area ratio of MA and dispersion state of MA)
Further, regarding the average area ratio of MA and the dispersion state of MA, each steel plate is mirror-polished, its surface is corroded with a repeller liquid to reveal a metal structure, and then the plate thickness is 1/4 using an optical microscope. It was determined by observing at 10 magnifications about 10 fields of an area of approximately 80 μm × 60 μm.
Specifically, an area having no contrast difference inside is defined as MA among the areas observed in white, and the area ratio of MA is obtained from the area ratio with respect to the entire observation area for each field of view. The area ratio was arithmetically averaged to obtain an average area ratio VM of MA .
Further, the observation area is divided into small areas of 20 μm × 20 μm for each visual field, and the area ratio V MA-L of MA in each small area is obtained, and the following is shown for the total area of the observation areas of all ten visual fields: The ratio of the total area of the small regions satisfying Equation (3) was calculated.
V MA-L ≦ V MA × 0.6 (3)
(転位密度)
転位密度については、測定対象となる鋼板にX線を照射し、得られる回折ピークの半価幅を測定することにより算出するものである。具体的には、板厚の1/4深さ位置を測定できるよう試料を調整した後、これをX線回折装置(理学電機製、RAD−RU300)に掛け、X線回折プロファイルを採取した。そして、このX線回折プロファイルを元に、中島らが提案した解析法にしたがって転位密度を算出した(中島ら:「材料とプロセス」、Vol.17(2004)p.396−399参照)。
(Dislocation density)
The dislocation density is calculated by irradiating the steel plate to be measured with X-rays and measuring the half width of the obtained diffraction peak. Specifically, after adjusting the sample so that a ¼ depth position of the plate thickness could be measured, this was applied to an X-ray diffractometer (RAD-RU300, manufactured by Rigaku Corporation), and an X-ray diffraction profile was collected. Based on this X-ray diffraction profile, the dislocation density was calculated according to the analysis method proposed by Nakajima et al. (See Nakajima et al .: “Materials and Processes”, Vol. 17 (2004) p. 396-399).
(降伏強度、引張強度および伸び)
評価対象の各鋼板を用い、圧延方向と直角方向に長軸をとってJIS Z 2201に記載の5号試験片を作製し、JIS Z 2241に従って測定を行うことで降伏強度(YS)、引張強度(TS)および伸び(EL)を求めた。
(Yield strength, tensile strength and elongation)
Yield strength (YS) and tensile strength are obtained by using each steel plate to be evaluated and preparing a test piece No. 5 described in JIS Z 2201 with the long axis in the direction perpendicular to the rolling direction and measuring according to JIS Z 2241. (TS) and elongation (EL) were determined.
(伸びフランジ性)
評価対象の各鋼板を用い、鉄連規格JFST1001に則り、穴拡げ試験を実施して穴拡げ率の測定を行い、これを伸びフランジ性とした。
(Stretch flangeability)
Each steel plate to be evaluated was subjected to a hole expansion test according to the iron standard JFST1001, and the hole expansion rate was measured, and this was defined as stretch flangeability.
〔測定結果〕
測定結果を下記表3に示す。本実施例では、降伏強度(YS)が900MPa以上で、かつ、引張強度(TS)が1180MPa以上で、かつ、伸び(EL)が12%以上で、かつ、伸びフランジ性(λ)が60%以上のものを○で合格とし、降伏強度と伸びおよび伸びフランジ性優れた高強度合金化溶融亜鉛めっき鋼板であると判定した。一方、降伏強度(YS)が900MPa未満、または、引張強度(TS)が1180MPa未満、または、伸び(EL)が12%未満、または、伸びフランジ性(λ)が60%未満のものを×で不合格と判定した。なお、表1〜3の各項目に網掛けを付したものは、本発明の要件、推奨する製造条件、機械的特性等を満足していないことを示す。
〔Measurement result〕
The measurement results are shown in Table 3 below. In this example, the yield strength (YS) is 900 MPa or more, the tensile strength (TS) is 1180 MPa or more, the elongation (EL) is 12% or more, and the stretch flangeability (λ) is 60%. The above was evaluated as “good” and judged as a high-strength galvannealed steel sheet excellent in yield strength, elongation and stretch flangeability. On the other hand, the yield strength (YS) is less than 900 MPa, the tensile strength (TS) is less than 1180 MPa, the elongation (EL) is less than 12%, or the stretch flangeability (λ) is less than 60%. It was determined to be rejected. In addition, what attached | subjected the shading to each item of Tables 1-3 shows that the requirements of this invention, the recommended manufacturing conditions, mechanical characteristics, etc. are not satisfied.
表3に示すように、本発明の要件(上記成分要件および上記組織要件)を充足する発明鋼(鋼No.1、8、11〜17)は、いずれも、降伏強度YSが900MPa以上で、かつ、引張強度TSが1180MPa以上で、かつ、伸びELが12%以上で、かつ、伸びフランジ性λが60%以上を満足しており、降伏強度と伸びおよび伸びフランジ性を兼備した高強度GA鋼板が得られた。 As shown in Table 3, the invention steels (steel Nos. 1, 8, 11 to 17) satisfying the requirements of the present invention (the above component requirements and the above structural requirements) all have a yield strength YS of 900 MPa or more. Moreover, the tensile strength TS is 1180 MPa or more, the elongation EL is 12% or more, and the stretch flangeability λ satisfies 60% or more, and the high strength GA combines the yield strength with the elongation and stretch flangeability. A steel plate was obtained.
これに対して、本発明の要件(上記成分要件および上記組織要件)のうち少なくとも一つを欠く比較鋼(鋼No.2〜7、9、10)は、降伏強度YSと引張強度TSと伸びELと伸びフランジ性λのうち少なくともいずれかの特性が劣っている On the other hand, comparative steels (steel Nos. 2 to 7, 9, and 10) that lack at least one of the requirements of the present invention (the above-described component requirements and the above-described structural requirements) are yield strength YS, tensile strength TS, and elongation At least one of EL and stretch flangeability λ is inferior
例えば、鋼No.2は、表2の製造No.2に示すように、焼鈍後の一次冷却温度が推奨範囲を外れて高すぎるため、冷却中に変態が進行して、表3に示すように、フェライトが多くなりすぎるとともに、MAの分散状態が不均一になり、さらに転位密度も低下し、降伏強度YSと引張強度TSが劣っている。 For example, steel no. 2 is the production No. 2 in Table 2. As shown in FIG. 2, the primary cooling temperature after annealing is too high outside the recommended range, so the transformation proceeds during cooling, and as shown in Table 3, the ferrite is too much and the MA dispersion state is It becomes non-uniform, the dislocation density also decreases, and the yield strength YS and tensile strength TS are inferior.
一方、鋼No.3は、表2の製造No.3に示すように、焼鈍後の一次冷却温度が推奨範囲を外れて低すぎるため、表3に示すように、MAの分散状態が不均一になり、伸びフランジ性λが劣っている。 On the other hand, Steel No. 3 is the production No. of Table 2. As shown in Table 3, since the primary cooling temperature after annealing is too low outside the recommended range, as shown in Table 3, the dispersed state of MA becomes uneven and the stretch flangeability λ is inferior.
また、鋼No.4は、表2の製造No.4に示すように、焼鈍後の冷却時に途中での冷却停止・保持を行っていないため、表3に示すように、MAの分散状態が不均一になり、伸びフランジ性λが劣っている。 Steel No. 4 is the production No. of Table 2. As shown in FIG. 4, since cooling is not stopped or held in the middle of cooling after annealing, as shown in Table 3, the dispersed state of MA becomes uneven and the stretch flangeability λ is inferior.
また、鋼No.5は、表2の製造No.5に示すように、一次冷却保持時間が推奨範囲を外れて長すぎるため、表3に示すように、MAが過度に生成し、伸びフランジ性λが劣っている。 Steel No. 5 is the production No. of Table 2. As shown in Table 5, since the primary cooling holding time is too long outside the recommended range, MA is generated excessively and the stretch flangeability λ is inferior as shown in Table 3.
一方、鋼No.6は、表2の製造No.6に示すように、二次冷却温度が推奨範囲を外れて高すぎ、表3に示すように、MAが不足するとともに、MAの分散状態が不均一になり、降伏強度YSと伸びELと伸びフランジ性が劣っている。 On the other hand, Steel No. 6 shows the production No. in Table 2. As shown in Table 6, the secondary cooling temperature is too high outside the recommended range, and as shown in Table 3, MA is insufficient and the dispersed state of MA becomes uneven, yield strength YS, elongation EL, and elongation. Flangeability is inferior.
一方、鋼No.7は、表2の製造No.7に示すように、二次冷却温度が推奨範囲を外れて低すぎるため、表3に示すように、MAが不足し、伸びELが劣っている。 On the other hand, Steel No. 7 shows the production No. in Table 2. As shown in FIG. 7, the secondary cooling temperature is too low outside the recommended range. Therefore, as shown in Table 3, the MA is insufficient and the elongation EL is inferior.
また、鋼No.9は、表1の鋼種Cに示すように、C含有量が低すぎるとともに、表2の製造No.9に示すように、焼鈍加熱温度が低すぎるため、表3に示すように、MAが不足する一方、フェライトが過剰に生成して、転位密度が不足し、降伏強度YSと引張強度TSと伸びフランジ性λが劣っている。 Steel No. 9 shows the steel No. C in Table 1 and the C content is too low. As shown in Table 9, since the annealing heating temperature is too low, as shown in Table 3, while MA is insufficient, ferrite is generated excessively, dislocation density is insufficient, yield strength YS, tensile strength TS, and elongation. Flange property λ is inferior.
また、鋼No.10は、表1の鋼種Dに示すように、Mn含有量が低すぎるとともに、表2の製造No.10に示すように、焼鈍加熱温度が低すぎるため、表3に示すように、MAが不足する一方、フェライトが過剰に生成し、さらにMAの分散状態が不均一になり、降伏強度YSと引張強度TSと伸びフランジ性λが劣っている。 Steel No. 10 shows the steel No. D in Table 1, the Mn content is too low, and the production No. As shown in Table 10, since the annealing heating temperature is too low, as shown in Table 3, while MA is insufficient, ferrite is generated excessively, and the dispersed state of MA becomes non-uniform, yield strength YS and tensile strength Strength TS and stretch flangeability λ are inferior.
以上のように、本発明の要件を満たすことで、降伏強度と伸びおよび伸びフランジ性を兼備する高強度GA鋼板が得られることが確認された。 As described above, it was confirmed that a high-strength GA steel sheet having both yield strength and elongation and stretch flangeability can be obtained by satisfying the requirements of the present invention.
Claims (4)
C:0.05〜0.30%、
Si:0.1〜3.0%、
Mn:1.0〜3.0%、
P:0.1%以下、
S:0.01%以下、
N:0.01%以下、
Al:0.001〜0.10%
であり、残部が鉄および不可避的不純物からなる成分組成を有し、
マルテンサイトとオーステナイトよりなる混合組織MAの、組織全体に対する平均面積率VMAが2〜5%であり、
MAの面積率が局部的に前記平均面積率VMAの60%以下となる領域が、組織全体に対する面積割合で10%以下であり、
フェライトの、組織全体に対する平均面積率が2%以下であり、
残部がベイナイトおよびマルテンサイトであり、
転位密度が2.0×1015〜8.0×1015m−2である組織を有する、
ことを特徴とする降伏強度と加工性に優れた高強度合金化溶融亜鉛めっき鋼板。 % By mass
C: 0.05 to 0.30%
Si: 0.1 to 3.0%,
Mn: 1.0 to 3.0%
P: 0.1% or less,
S: 0.01% or less,
N: 0.01% or less,
Al: 0.001 to 0.10%
And the balance has a component composition consisting of iron and inevitable impurities,
The mixed structure MA consisting martensite and austenite, the average area ratio V MA with respect to the entire organization is 2-5%,
Area MA area fraction of less than or equal to 60% of the locally the average area ratio V MA is 10% or less in area ratio to the whole organization,
The average area ratio of ferrite to the entire structure is 2% or less,
The balance is bainite and martensite,
A structure having a dislocation density of 2.0 × 10 15 to 8.0 × 10 15 m −2 ;
A high-strength galvannealed steel sheet with excellent yield strength and workability.
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、
B:0.0002〜0.0050%
の1種または2種以上を含むものである、
請求項1に記載の降伏強度と加工性に優れた高強度合金化溶融亜鉛めっき鋼板。 Ingredient composition is further mass%,
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
B: 0.0002 to 0.0050%
Including one or more of
A high-strength galvannealed steel sheet excellent in yield strength and workability according to claim 1.
Mo:0.01〜1.0%、
Cr:0.01〜1.0%、
Nb:0.01〜0.3%、
Ti:0.01〜0.3%、
V:0.01〜0.3%
の1種または2種以上を含むものである、
請求項1または2に記載の降伏強度と加工性に優れた高強度合金化溶融亜鉛めっき鋼板。 In addition, the component composition is
Mo: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Nb: 0.01-0.3%
Ti: 0.01 to 0.3%,
V: 0.01 to 0.3%
Including one or more of
The high-strength galvannealed steel sheet excellent in yield strength and workability according to claim 1 or 2.
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%
の1種または2種を含むものである、
請求項1〜3のいずれか1項に記載の降伏強度と加工性に優れた高強度合金化溶融亜鉛めっき鋼板。 Ingredient composition is further mass%,
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%
Including one or two of the following:
The high-strength galvannealed steel sheet excellent in the yield strength and workability of any one of Claims 1-3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014103318A JP6223905B2 (en) | 2014-05-19 | 2014-05-19 | High strength galvannealed steel sheet with excellent yield strength and workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014103318A JP6223905B2 (en) | 2014-05-19 | 2014-05-19 | High strength galvannealed steel sheet with excellent yield strength and workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015218365A true JP2015218365A (en) | 2015-12-07 |
JP6223905B2 JP6223905B2 (en) | 2017-11-01 |
Family
ID=54778003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014103318A Expired - Fee Related JP6223905B2 (en) | 2014-05-19 | 2014-05-19 | High strength galvannealed steel sheet with excellent yield strength and workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6223905B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017208759A1 (en) * | 2016-05-30 | 2017-12-07 | 株式会社神戸製鋼所 | High-strength steel sheet and method for producing same |
JP2017214648A (en) * | 2016-05-30 | 2017-12-07 | 株式会社神戸製鋼所 | High strength steel sheet and manufacturing method therefor |
JP6323618B1 (en) * | 2017-01-06 | 2018-05-16 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet and manufacturing method thereof |
WO2018127984A1 (en) * | 2017-01-06 | 2018-07-12 | Jfeスチール株式会社 | High strength cold rolled steel sheet and method for manufacturing same |
WO2018216522A1 (en) * | 2017-05-24 | 2018-11-29 | 株式会社神戸製鋼所 | High-strength steel sheet and production method for same |
KR20200003010A (en) * | 2017-05-31 | 2020-01-08 | 가부시키가이샤 고베 세이코쇼 | High strength steel sheet and its manufacturing method |
WO2020080407A1 (en) * | 2018-10-18 | 2020-04-23 | Jfeスチール株式会社 | Steel sheet and manufacturing method therefor |
WO2021187321A1 (en) * | 2020-03-17 | 2021-09-23 | Jfeスチール株式会社 | High-strength steel sheet and method for manufacturing same |
JP7146127B1 (en) | 2022-03-31 | 2022-10-03 | 株式会社神戸製鋼所 | Manufacturing method of high-strength steel sheet |
EP4190921A4 (en) * | 2020-09-07 | 2024-01-17 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel sheet, electrogalvanized steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and manufacturing method of these |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013019047A (en) * | 2011-06-13 | 2013-01-31 | Kobe Steel Ltd | High-strength steel sheet excellent in workability and low temperature brittleness resistance, and method for manufacturing the same |
JP2014198862A (en) * | 2013-03-29 | 2014-10-23 | 大同特殊鋼株式会社 | Colored etchant and etching method capable of identifying retained austenite from other structure |
-
2014
- 2014-05-19 JP JP2014103318A patent/JP6223905B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013019047A (en) * | 2011-06-13 | 2013-01-31 | Kobe Steel Ltd | High-strength steel sheet excellent in workability and low temperature brittleness resistance, and method for manufacturing the same |
JP2014198862A (en) * | 2013-03-29 | 2014-10-23 | 大同特殊鋼株式会社 | Colored etchant and etching method capable of identifying retained austenite from other structure |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017208759A1 (en) * | 2016-05-30 | 2017-12-07 | 株式会社神戸製鋼所 | High-strength steel sheet and method for producing same |
JP2017214648A (en) * | 2016-05-30 | 2017-12-07 | 株式会社神戸製鋼所 | High strength steel sheet and manufacturing method therefor |
CN110177892A (en) * | 2017-01-06 | 2019-08-27 | 杰富意钢铁株式会社 | High strength cold rolled steel plate and its manufacturing method |
WO2018127984A1 (en) * | 2017-01-06 | 2018-07-12 | Jfeスチール株式会社 | High strength cold rolled steel sheet and method for manufacturing same |
US11208704B2 (en) | 2017-01-06 | 2021-12-28 | Jfe Steel Corporation | High-strength cold-rolled steel sheet and method of producing the same |
JP6323618B1 (en) * | 2017-01-06 | 2018-05-16 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet and manufacturing method thereof |
CN110177892B (en) * | 2017-01-06 | 2021-05-28 | 杰富意钢铁株式会社 | High-strength cold-rolled steel sheet and method for producing same |
WO2018216522A1 (en) * | 2017-05-24 | 2018-11-29 | 株式会社神戸製鋼所 | High-strength steel sheet and production method for same |
JP2018197380A (en) * | 2017-05-24 | 2018-12-13 | 株式会社神戸製鋼所 | High strength steel plate and method for producing the same |
KR20190142354A (en) * | 2017-05-24 | 2019-12-26 | 가부시키가이샤 고베 세이코쇼 | High strength steel sheet and its manufacturing method |
KR102297016B1 (en) * | 2017-05-24 | 2021-09-01 | 가부시키가이샤 고베 세이코쇼 | High-strength steel sheet and manufacturing method thereof |
US11332805B2 (en) | 2017-05-24 | 2022-05-17 | Kobe Steel, Ltd. | High-strength steel sheet and production method for same |
KR20200003010A (en) * | 2017-05-31 | 2020-01-08 | 가부시키가이샤 고베 세이코쇼 | High strength steel sheet and its manufacturing method |
US11466337B2 (en) | 2017-05-31 | 2022-10-11 | Kobe Steel, Ltd. | High-strength steel sheet and method for producing same |
KR102312466B1 (en) * | 2017-05-31 | 2021-10-13 | 가부시키가이샤 고베 세이코쇼 | High-strength steel sheet and manufacturing method thereof |
JPWO2020080407A1 (en) * | 2018-10-18 | 2021-02-15 | Jfeスチール株式会社 | Steel plate and its manufacturing method |
WO2020080407A1 (en) * | 2018-10-18 | 2020-04-23 | Jfeスチール株式会社 | Steel sheet and manufacturing method therefor |
JP6973694B1 (en) * | 2020-03-17 | 2021-12-01 | Jfeスチール株式会社 | High-strength steel plate and its manufacturing method |
WO2021187321A1 (en) * | 2020-03-17 | 2021-09-23 | Jfeスチール株式会社 | High-strength steel sheet and method for manufacturing same |
CN115244200A (en) * | 2020-03-17 | 2022-10-25 | 杰富意钢铁株式会社 | High-strength steel sheet and method for producing same |
EP4190921A4 (en) * | 2020-09-07 | 2024-01-17 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel sheet, electrogalvanized steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and manufacturing method of these |
JP7146127B1 (en) | 2022-03-31 | 2022-10-03 | 株式会社神戸製鋼所 | Manufacturing method of high-strength steel sheet |
JP2023150701A (en) * | 2022-03-31 | 2023-10-16 | 株式会社神戸製鋼所 | Method for producing high strength steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP6223905B2 (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6223905B2 (en) | High strength galvannealed steel sheet with excellent yield strength and workability | |
JP5888471B1 (en) | High yield ratio high strength cold-rolled steel sheet and method for producing the same | |
JP5352793B2 (en) | High-strength hot-dip galvanized steel sheet with excellent delayed fracture resistance and method for producing the same | |
JP5667472B2 (en) | High-strength steel sheet excellent in deep drawability at room temperature and warm, and its warm working method | |
JP6234845B2 (en) | High strength galvannealed steel sheet with excellent bake hardenability and bendability | |
US9057123B2 (en) | Hot-rolled steel sheet and method for producing same | |
JP5182386B2 (en) | High-strength cold-rolled steel sheet having a high yield ratio with excellent workability and method for producing the same | |
WO2012067159A1 (en) | High-strength steel plate with excellent formability, warm working method, and warm-worked automotive part | |
JP6965956B2 (en) | High-strength steel plate and its manufacturing method | |
WO2017168957A1 (en) | Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet | |
WO2017168958A1 (en) | Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet | |
JP2016148098A (en) | Ultra high strength steel sheet excellent in yield ratio and workability | |
JP2019002078A (en) | Ultra high strength steel sheet excellent in yield ratio and workability | |
JP6737419B1 (en) | Thin steel sheet and method of manufacturing the same | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP2016113649A (en) | High strength cold rolled steel sheet excellent in processability and high strength alloy molten galvanization steel sheet | |
JP6472692B2 (en) | High-strength steel sheet with excellent formability | |
JP6473022B2 (en) | High-strength steel sheet with excellent formability | |
JP6434348B2 (en) | High strength steel plate with excellent workability | |
JP7006849B1 (en) | Steel sheets, members and their manufacturing methods | |
WO2021172299A1 (en) | Steel sheet, member, and methods respectively for producing said steel sheet and said member | |
WO2021172297A1 (en) | Steel sheet, member, and methods respectively for producing said steel sheet and said member | |
JP4517629B2 (en) | Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof | |
JP2016003352A (en) | Ultrahigh-strength steel plate with excellent collision resistance | |
JP5246283B2 (en) | Low yield ratio high strength cold-rolled steel sheet excellent in elongation and stretch flangeability and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20160603 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160713 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171004 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6223905 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |