[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015214960A - Vertical wind force prime mover rotation suppressing mechanism - Google Patents

Vertical wind force prime mover rotation suppressing mechanism Download PDF

Info

Publication number
JP2015214960A
JP2015214960A JP2014107530A JP2014107530A JP2015214960A JP 2015214960 A JP2015214960 A JP 2015214960A JP 2014107530 A JP2014107530 A JP 2014107530A JP 2014107530 A JP2014107530 A JP 2014107530A JP 2015214960 A JP2015214960 A JP 2015214960A
Authority
JP
Japan
Prior art keywords
wind
vertical
receiving blade
deceleration
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014107530A
Other languages
Japanese (ja)
Other versions
JP5662611B1 (en
Inventor
泰昌 安
Yasumasa Yasu
泰昌 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014107530A priority Critical patent/JP5662611B1/en
Application granted granted Critical
Publication of JP5662611B1 publication Critical patent/JP5662611B1/en
Publication of JP2015214960A publication Critical patent/JP2015214960A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vertical wind force prime mover for satisfying a necessity for reducing the number of components to improve a strength and to reduce a manufacturing cost, for a deceleration mechanism of the case in which an excessive wind force occurs in a vertical shaft wind force prime mover occurs.SOLUTION: A deceleration control rod is arranged at a central part in the vertical wind direction shaft of a vertical axis wind power prime mover, and a deceleration mechanism moving part of an angular wind receiving wind rotation layer is lowered by a linkage action of a thrust bearing so that the angle of a wind-receiving wing can be varied to control the rotation by a wind velocity.

Description

原子力発電所で事故が発生した場合に周辺の広大な地域の放射能の汚染により居住できなくなる危険性や石油ガス等の使用による火力発電所はCO発生の抑制から近年再生可能エネルギーの活用が拡大すると共に投資額が増大している。その中でも太陽光発電や風力発電施設には顕著なものがある。本願発明もこのような観点から従来からある特定の方式の風力発電方式を改良して高効率なものして設置場所が限定されない地産地消型で地域密着型方式による発電設備を設置して風力発生時に発電して枯渇性エネルギーの使用を抑制して電力を最大限活用するようにするものである。勿論風力発電だけで電力需要を満たすことはできず季節や場所に時間帯による変動はあるが風力という自然エネルギーと太陽光や地熱に水力や潮汐力等とも複合的に発電しながらスマートグリットで蓄電設備と組み合わせることにより補完し合いながらな安価な発電コストの電力を調達することが可能となる。In the event of an accident at a nuclear power plant, there is a risk of becoming unable to live due to radioactive contamination in the surrounding vast area, and thermal power plants using oil and gas, etc. have been using renewable energy in recent years due to the suppression of CO 2 generation. As it expands, the amount of investment increases. Among them, there are remarkable solar power generation and wind power generation facilities. From this point of view, the invention of the present application is also improved by improving the conventional wind power generation method of a specific method, and installing a power generation facility by a local production and local consumption type that is highly efficient and does not limit the installation location. It generates electricity when it is generated and suppresses the use of exhaustible energy so as to maximize the use of electric power. Of course, wind power generation alone cannot meet electricity demand, and there are fluctuations depending on the time of the season and place, but electricity is stored with smart grid while generating combined power of natural energy such as wind power, solar power and geothermal power, hydropower and tidal power etc. By combining with equipment, it is possible to procure electric power at low power generation costs while complementing each other.

COを排出しない再生可能エネルギーの1つである風力を利用して大型風車を回転させて発電する方式が脚光を浴び新規建設が増大して、全国各地の条件が整った場所にウィンドファームが建設されている。この風力発電システムの諸条件を分析してみると全てがうまく進行しているとは言えない。大型のプロペラ風車を用いる方式が最も普及しているが長所もあれば短所もあり全てが良好とはいえない。いろいろある環境規制の諸条件をクリアした場所で建設が進んでいるが適地が無尽蔵であるわけでなく制約条件もあり限定されてくる。この方式の欠点は設置場所が限定される事すなわち人里はなれた場所や洋上である事である。大型のウインドファームとしては適しているが都市部までの送電網の建設費も無視できない。地産地消型の風力発電に適した方式の発電システムを完成する必要がある。Wind farms, which are one of the renewable energies that do not emit CO 2 , generate power by rotating large windmills, and new construction has increased. It is being built. When we analyze the conditions of this wind power generation system, it cannot be said that everything is going well. A method using a large-sized propeller wind turbine is most popular, but there are advantages and disadvantages, and not all are good. Construction is progressing in a place where various conditions of environmental regulations have been cleared, but the suitable land is not inexhaustible and is limited due to restrictions. The disadvantage of this method is that the installation location is limited, that is, the location is remote or offshore. Although it is suitable as a large wind farm, the construction cost of the power grid to the city cannot be ignored. It is necessary to complete a power generation system suitable for local production for local consumption wind power generation.

洋上や郊外型の大型のプロペラ方式の風力発電機に対し、これより小型で風レンズを併設した改良型の発電効率を向上したものが開発され普及されようとしているのが特許文献2に提示されている日本国特許第4736003号等である。公園や海岸沿いの比較的それほど広い面積を必要とせずに風力発電機を設置して発電が可能なのでこれから普及する事が予想される。これに対し特許文献1はの方式はさらに小型化をしてビルや工場の屋上に一般家庭の屋根の上等風があるところなら場所を選ばずに設置可能である。風車の回転音もなく、バードストライキングの心配もなく設置でき、発電した電力はすぐに家庭内や事務所工場等に取り込んで使用出来る特長を有する地産地消型である。この方式は垂直軸抗力型で受風翼が風を受け風下側に回転するときは風の抗力を十分に受けて回転し、風下側から風上側に回転するときは風の抵抗を最小にするために風の抗力が最小になるように受風翼を水平状態に角度を変化することができる構造になっている。受風翼が風上側まで回転して次の回転に入るときに受風翼は水平状態から垂直状態に戻して次の受風回転に入ることになる。受風翼の角度を変換する構造が独自の構成による角度変換機構を有するのが特徴である。  Patent Document 2 proposes that an improved power generation efficiency that is smaller in size than that of a large-scale propeller type wind generator on the sea or in the suburbs and that has an improved wind power lens is developed and spread. Japanese Patent No. 4736003 and the like. Since it is possible to generate power by installing a wind power generator without requiring a relatively large area along the park or coast, it is expected to spread. On the other hand, the method of Patent Document 1 can be further reduced in size, and can be installed anywhere regardless of where there is wind on the roof of a general house on the roof of a building or factory. It can be installed without the wind noise of the windmill and without worrying about bird striking, and it is a local production and local consumption type that has the features that the generated power can be immediately taken into the home or office factory. This system is a vertical axis drag type, and when the wind-receiving blades receive the wind and rotate to the leeward side, it fully receives the wind drag and rotates, and when it rotates from the leeward side to the windward side, the wind resistance is minimized. Therefore, the structure is such that the angle of the wind receiving blade can be changed to a horizontal state so that the drag force of the wind is minimized. When the wind vane rotates to the windward side and enters the next rotation, the wind vane returns from the horizontal state to the vertical state and enters the next wind rotation. The structure for converting the angle of the wind receiving blade is characterized by having an angle conversion mechanism with a unique configuration.

特許第5455092号  Japanese Patent No. 5455092 特許第4736003号  Japanese Patent No. 4737603

風力発電機にはいろいろな種類の風車を利用した方式が存在するがおおまかに分けて揚力型、抗力型に分れ、風車の形状で水平型と垂直型に分類できる。ジャイロミル、クロスフロー、ダウリス等の小型のマイクロ風車を発電機を組み合わせ補助電源用として利用されている。大型ではプロペラ風車によるものが郊外の適地に建設され大電力用として送電網を建設して消費地に供給されているが地産地消型でないため建設費用が増大する欠点がある。また前記した垂直型風車も初期起動に難点がありそれぞれ問題がある。技術開発によりかなり改善はされて来てはいるが更なる改造が必要である。結果として回転トルクが低いため出力が小さいので発電機として利用しても発電量が低いために問題がある。特許文献2の風レンズ方式の風力発電機はプロペラ風車の後部外側につば形状の覆いを設置して風車を通過する風力の速度を上げてプロペラの回転数を上げて発電する電力を増大してエネルギー変換効率を上げる方式として開発され大きく従来型のプロペラ風車発電機を改善させている。小型化が可能なので設置場所が大型のプロペラ発電機よりも狭い場所でも設置できるので将来性は期待できし、大型プロペラ風力発電機より電力消費地に近づくこともできる。  There are various types of wind power generators using wind turbines, but they can be roughly divided into lift type and drag type, and can be classified into horizontal type and vertical type according to the shape of the wind turbine. A small micro windmill such as a gyromill, crossflow, or Dauris is combined with a generator and used as an auxiliary power source. Large-sized propeller wind turbines are constructed in suitable suburbs, and a power transmission network is built for high power and supplied to the consumption area. However, there is a disadvantage that the construction cost increases because it is not a local production for local consumption. The vertical windmills described above also have problems in initial startup, and each has its own problems. Although considerable improvements have been made by technological development, further modifications are required. As a result, since the rotational torque is low and the output is small, there is a problem because the amount of power generation is low even when used as a generator. The wind lens type wind power generator of Patent Document 2 increases the power to be generated by increasing the speed of the wind power passing through the windmill and increasing the rotation speed of the propeller by installing a brim-shaped cover outside the rear part of the propeller windmill. It has been developed as a method to increase energy conversion efficiency and greatly improves the conventional propeller wind turbine generator. Since it can be downsized, it can be installed in a place where the installation location is narrower than that of a large propeller generator, so the future can be expected, and it can be closer to the power consumption area than the large propeller wind generator.

この方式はプロペラ風車発電機の形状はやはり大型の部類に属し、地産地消を目指し都市部に設置する場合それなりの面積を必要とする。一般家庭の屋根の上やビルの屋上の塔屋の上に簡単に設置することは工費面から難しい点もある。これに対し特許文献1の発明はこうした観点から更に従来から存在していた垂直型風車に改善を加え風力エネルギーの変換効率の向上を図るために発電機や水力ポンプの原動機として利用する事に着目したものである。  In this method, the shape of the propeller wind turbine generator belongs to a large category, and requires a certain area when installed in urban areas for local production and consumption. Easy installation on the roofs of ordinary households and towers on the roofs of buildings is difficult in terms of construction costs. On the other hand, the invention of Patent Document 1 pays attention to use as a prime mover for generators and hydraulic pumps in order to improve the conversion efficiency of wind energy by improving the conventional vertical wind turbine from this viewpoint. It is a thing.

本願の特許文献1のような垂直型の方式の風車は垂直主軸に直交する状態で風を受風して回転する翼面を有する支軸が90度間隔で4本取り付けられ回転する構造となり、風に対抗している時は空気抵抗が最大で風の力を受けて羽根が風力の作用で垂直軸が駆動され回転するが、一番風下近くなるまで回転するとつぎに風に対して逆行状態になり翼面が同じ状態で回転が進行するとした場合、翼面が同じ状態だと進行する抗力と翼面が反転して同じ状態だと翼面は回転しない。その為反転状態の時点で風に対して90度翼面を翼面取付軸に対して角度を変えることにより、風に対して抵抗が最小となり、反対側の翼面の抗力より反転状態の翼面が風上に向かって回転進行していくものである。そして風上状態まで回転した時点で水平状態になっていた翼面をまた90度回転して元の垂直状態に支軸に取り付けられている翼面を復帰して風に対して最大の抗力を受けられるようにするものである。この状態で次の回転が開始されるものである。このようにして4枚の受風翼が風に対して絶えず角度を変換しながら回転する構成に成っている。  The wind turbine of the vertical type as in Patent Document 1 of the present application has a structure in which four support shafts having blade surfaces that rotate by receiving wind in a state orthogonal to the vertical main shaft are attached and rotated at intervals of 90 degrees, When facing the wind, the air resistance is maximum and the wind force is applied and the blades rotate by the action of the wind force, and the vertical axis is driven to rotate. If the wing surface is in the same state and the rotation proceeds, the wing surface will not rotate if the wing surface is reversed and the wing surface is in the same state. Therefore, by changing the angle of the blade surface relative to the wind at 90 degrees with respect to the wind at the time of the reversal state, the resistance against the wind is minimized, and the reversed blade is affected by the drag of the opposite blade surface. The surface rotates forward toward the windward. Then, the blade surface that was in the horizontal state at the time of rotating to the windward state is rotated 90 degrees again to restore the blade surface attached to the spindle to the original vertical state, and the maximum drag against the wind is obtained. It is intended to be received. In this state, the next rotation is started. In this way, the four wind receiving blades are configured to rotate while constantly changing the angle with respect to the wind.

プロペラ風車発電機では台風や前線が通過する際に風の速度が増して設計速度以上になる場合ピッチ制御やストール制御等のシステムで発電システムの破壊や損壊を防止する装置が付随されているが特許文献1の垂直型風車の特許にも回転速度減速装置が組み込まれている。強風の作用で垂直風力発電機の高速回転による破損を防止するために受風翼回転減速機構が設置されているが本願はこの配置構造を改良変更して構造の簡略化を図り、強風による構造上の強化ならびに製造コストを低減化して発電機の普及促進に寄与するものである。  In the case of a propeller wind turbine generator, when the wind speed increases when the typhoon or the front passes and exceeds the design speed, a device such as pitch control or stall control is attached to prevent the power generation system from being destroyed or damaged. The rotational speed reducer is also incorporated in the patent of the vertical wind turbine of Patent Document 1. In order to prevent damage caused by high-speed rotation of the vertical wind power generator due to the strong wind, a wind-receiving blade rotation speed reduction mechanism has been installed, but this application has been modified to improve the arrangement structure and simplify the structure. It will contribute to the promotion of the spread of generators by strengthening the above and reducing the manufacturing cost.

本願発明では特許文献1における受風翼回転減速機構の構成される構造が変更されて垂直外筒主軸内に減速機構が配置される構造になっている。特許文献1の受風翼回転減速機構は風力原動機上部の風速風向機内にある位置決め制御モーターにより駆動されラック機構をフレーム枠内にラックを連結配置して最終的に受風翼減速角度制御板に作用して受風翼を制御する構造となっているがこの構造だと部品点数が多くなるのと構造上強度不足が懸念される。この問題を本願発明では下部の原動機動力発生部本体内に位置決め制御モーターを配置して下部からから受風翼減速角度制御板に作用する制御棒を配置し、この制御棒に適当な位置にスラストベアリングを連結して配置し、垂直外筒主軸と鉛直風向軸を貫通作用する構造により、受風翼減速角度制御板を下部に押し下げるように作用する構造になっている。  In the present invention, the structure of the wind receiving blade rotation speed reduction mechanism in Patent Document 1 is changed, and the speed reduction mechanism is arranged in the vertical outer cylinder main shaft. The wind receiving blade rotation speed reduction mechanism of Patent Document 1 is driven by a positioning control motor in a wind speed wind direction device above the wind power generator, and the rack mechanism is connected to the rack within the frame frame to finally become a wind receiving blade speed reduction angle control plate. Although it has a structure that acts to control the wind-receiving blade, there is a concern that the structure is insufficient in strength and the number of parts increases. In the present invention, a positioning control motor is disposed in the lower prime mover power generation unit main body, and a control rod acting on the wind receiving blade deceleration angle control plate from the lower portion is disposed in the present invention. Bearings are connected and arranged, and the structure is such that the wind receiving blade deceleration angle control plate is pushed downward by a structure that penetrates the vertical outer cylinder main shaft and the vertical wind direction axis.

本願での垂直風力原動機の構成は特許第5455092号と同じ構成であるが風力減速機構の配置構成が異なり、それぞれ異なる伝達方式で減速機構が作用することになる。特許文献1による方式では駆動モーターから伝達される減速機構に作用する動力伝達作用は風速風向器とフレーム枠と鉛直風向器は一体で垂直外筒主軸に垂直外筒主軸ベアリングを介して独立回転する構造で前記駆動モーターの動力はフレーム枠内に縦横に配置されたラック軸により伝達され受風翼減速角度制御板を下降させて強風時に受風翼の回転を減速させることになるが本願発明による方式ではこの方式と異なり原動機動力発生部本体内に駆動モーター等を配置して垂直外筒主軸内を最上部の受風翼機構部まで貫通する状態で減速作用制御棒が配置されており、それぞれの受風翼部の位置でスラストベアリングが鉛直風向軸と垂直外筒主軸を貫通してはいないが同等の作用するように配置され、受風翼減速角度制御板を下降させ受風翼の角度を変換して回転を抑制する作用をするものである。  The configuration of the vertical wind power generator in the present application is the same as that of Japanese Patent No. 5455092, but the arrangement configuration of the wind speed reduction mechanism is different, and the speed reduction mechanism acts by different transmission methods. In the method according to Patent Document 1, the power transmission action acting on the speed reduction mechanism transmitted from the drive motor is such that the wind speed wind direction device, the frame frame, and the vertical wind direction device are integrated and rotate independently through the vertical outer cylinder main shaft bearing to the vertical outer cylinder main shaft. According to the present invention, the power of the drive motor is transmitted by a rack shaft arranged vertically and horizontally within the frame frame to lower the wind-receiving blade deceleration angle control plate to decelerate the rotation of the wind-receiving blade during strong winds. In this system, unlike this system, a drive motor etc. are arranged in the main body of the prime mover power generation part, and the deceleration action control rod is arranged in a state of penetrating the vertical outer cylinder main shaft to the uppermost wind receiving blade mechanism part, At the position of the wind-receiving blade portion, the thrust bearing is not penetrating the vertical wind direction axis and the vertical outer cylinder main shaft, but is arranged so as to function equally, and the wind-receiving blade deceleration angle control plate is lowered to receive the wind-receiving blade It is to the effect of suppressing rotational converts the angle.

本願方式による受風翼減速角度制御機構にすることにより特許第5455092号では外枠フレームの内部にラックの連結により受風翼角度制御減速機構を作用させていたが本案では原動機動力発生部本体内に伝導ステッピングモーター等から鉛直風向軸内に直接減速作用制御棒に作用して各受風翼層の受風翼減速角度制御板を減速角度制御棒に取り付けられているスラストベアリングにより下降させて受風翼を垂直状態から傾斜した状態に倒して強風時に回転を押さえる作用をするものであり、この機構だと特許文献1の方式より構成する部品点数が少なくなる事と強度面でも強化され故障発生原因が少なることが上げられるので耐久性が向上するので有利となる。  By adopting the wind receiving blade deceleration angle control mechanism according to the present application method, in Japanese Patent No. 5455092, the wind receiving blade angle control deceleration mechanism is operated by connecting the rack to the inside of the outer frame frame. In addition, it acts on the deceleration control rod directly in the vertical wind direction axis from a conduction stepping motor or the like and lowers the receiving blade deceleration angle control plate of each receiving blade layer by a thrust bearing attached to the deceleration angle control rod. The wind blades are tilted from the vertical state and tilted to suppress the rotation during strong winds. With this mechanism, the number of parts is reduced compared to the method of Patent Document 1, and the strength is also strengthened and failure occurs. Since the cause of occurrence is reduced, durability is improved, which is advantageous.

二層式受風翼基本平面図  Basic plan view of double-layer wind receiving blade 二層式受風翼基本背面図  Basic back view of double-layer wind vane 減速作業棒主軸貫通型配置図  Deceleration work rod spindle through layout 減速作業棒スラストベアリング部拡大図  Reduced work rod thrust bearing section enlarged view 二軸集風型平面図  Two-axis airflow type top view 四層式集風型正面図  Four-layer wind collecting front view

受風翼減速角度制御板16を押し下げる減速作用棒 を本願風力発電機の垂直主軸内を貫通するように配置してスラストベアリングを複数配置して鉛直風向軸と垂直外筒主軸が独自の回転動作することによりそれぞれの軸の壁に左右されずに受風翼減速角度制御板を押し下げるように作用するような構造にスラストベアリングを配置して台風などで風力が増した場合に減速作用が必要な時に作用するようする構造となるものである。  The speed reducing rod that pushes down the receiving blade deceleration angle control plate 16 is arranged so as to penetrate through the vertical main shaft of the wind power generator of the present application, and a plurality of thrust bearings are arranged so that the vertical wind direction axis and the vertical outer cylinder main shaft rotate independently. Therefore, if thrust force is arranged in a structure that acts to push down the receiving blade deceleration angle control plate without being influenced by the wall of each shaft, deceleration action is required when wind power increases due to typhoons etc. It is a structure that acts at times.

本願発明の基本となる特許は特許文献1の風力原動機で図1が二層式の平面図で90度間隔で1a,1b,1cが風向(4)の流れによって左回りで回転する。図2の受風翼1aが風を受けて風下まで回転していくと受風翼のカムリング(14)ベアリング(5)が受風翼水平変換板(10)の作用で垂直状態だった受風翼1aが受風翼水平角度変換板(3)に係ると受風翼は(1b)のように水平状態となる。このように受風翼は垂直状態から水平状態を繰り返し回転することになる。規定以上の風速になるとセンサーの信号で制御モーター(36)等の作用でフレーム枠(17),(23)内に配置されたラック機構(40)とプランジャー(39)の連結作用で受風翼減速角度制御板(16)を押し下げて垂直状態の受風翼を押し倒す状態で風の効力を減少させて回転力を制御することになる。これに対し本願発明はこの減速機構を改良して簡素化し、部品点数の減少や減速機構の強度を向上等を行うことを目的になされたものである。その構成は図3のように垂直外筒主軸(9)内の空洞部の中心部に下部の原動機動力発生本体(27)内にある駆動モーター(36)がピニオンギア(37)の回転により減速作用制御棒(59)の下部に切られている歯車に作用して制御棒が下降して上部に組まれているスラストベアリングが下降することによる連結するスラストベアリングと接触回転しながら押し下げることになる。図4の一番外側のスラストベアリング(54)が、減速機構可動部(58)を下降させて受風翼減速角度制御板(16)を下降させることにより角度変換ベアリング(5)が受風翼を直立するのを妨げて角度を付け傾斜させることにより受風翼が受ける風の力を制御して結果的に高速回転を抑制することになる。台風や前線通過時の強風が発生しても風力発電機を停止することなく、回転を制御して発電を継続することは極めて風力発電機では重要な要素であり、停電することなく電力供給を続けることは発電機として必要不可欠な使命である。  The patent which is the basis of the present invention is a wind power generator disclosed in Patent Document 1. FIG. 1 is a two-layer plan view, and 1a, 1b and 1c are rotated counterclockwise by a wind direction (4) at 90 ° intervals. When the wind receiving blade 1a of FIG. 2 receives wind and rotates to the leeward wind, the wind ring receives the cam ring (14) bearing (5) in a vertical state by the action of the wind receiving blade horizontal conversion plate (10). When the blade 1a is related to the wind receiving blade horizontal angle conversion plate (3), the wind receiving blade is in a horizontal state as shown in (1b). In this way, the wind-receiving blade rotates repeatedly from the vertical state to the horizontal state. When the wind speed exceeds the specified value, the wind is received by the coupling action of the rack mechanism (40) and the plunger (39) arranged in the frame frames (17) and (23) by the action of the control motor (36) or the like by the sensor signal. In the state where the blade deceleration angle control plate (16) is pushed down to push down the wind receiving blade in the vertical state, the rotational force is controlled by reducing the wind effect. On the other hand, the present invention has been made for the purpose of improving and simplifying the speed reduction mechanism and reducing the number of parts and improving the strength of the speed reduction mechanism. As shown in FIG. 3, the drive motor (36) in the lower prime mover power generation body (27) is decelerated by the rotation of the pinion gear (37) at the center of the cavity in the vertical outer cylinder main shaft (9). By acting on the gear cut at the lower part of the action control rod (59), the control rod is lowered and the thrust bearing assembled at the upper part is lowered, so that it is pushed down while rotating in contact with the connected thrust bearing. . The outermost thrust bearing (54) in FIG. 4 lowers the speed reduction mechanism movable portion (58) and lowers the wind receiving blade deceleration angle control plate (16), whereby the angle conversion bearing (5) becomes the wind receiving blade. By controlling the wind force received by the wind receiving blades by preventing the upright from standing upright and inclining, the high speed rotation is consequently suppressed. Even if a strong wind occurs when a typhoon or front passes, it is extremely important to control the rotation without stopping the wind power generator and to continue power generation. Continuing is an essential mission as a generator.

本願発明は再生可能エネルギーである風力エネルギーを利用する発電機等となるものであるが燃料が必要がないので経済的な発電機等となるものであり、設置面積が少なく騒音やバードストライキングの心配もなくきわめてコンパクトなものである。年間を通して風が良く吹く場所では極めて電力供給源等として有効である。蓄電池と併用すれば消費電力の小さな家庭等での電源には最適なものとなる。図1、図2の外枠フレーム内に配置されたラック構造による構成を本願方式に改良してシンプルな機構にして図5や図6のように2軸多層構造や集風器を設置することにより更に風力の増強を図り、効率の良い発電量の大きな発電機等にする事が可能となり、その利用範囲は広いものとなる。  The present invention is a generator that uses wind energy, which is a renewable energy, but is an economical generator because it does not require fuel, and has a small installation area and is concerned about noise and bird strikes. It is very compact. It is extremely effective as a power supply source in places where winds blow well throughout the year. When used in combination with a storage battery, it is optimal for a power source in a household with low power consumption. The structure of the rack structure arranged in the outer frame frame of FIGS. 1 and 2 is improved to a simple mechanism by installing the biaxial multilayer structure and the air collector as shown in FIGS. As a result, it is possible to further increase the wind power, and to make an efficient generator with a large amount of power generation, etc., and its use range is wide.

1a 垂直状態受風翼
1b 水平状態受風翼
1c 角度変換状態受風翼
2 受風翼垂直復元補助板
3 受風翼水平角度変換板
4 風方向
5 角度変換ベアリング
6 受風翼復元スプリング
7 水平主軸
8 鉛直風向軸
9 垂直外筒主軸
10 受風翼水平変換補助板
11 角度変換ベアリング接触通過位置
12 受風翼垂直角度変換板補助固定金具
13 受風翼水平角度変換補助板固定金具
14 角度変換カムリング
15 垂直外筒主軸支持ベアリング
16 受風翼減速角度制御板
17 フレーム上部枠
18 風向板
19 風速風向器
20 風速測定発電プロペラ
21 風速センサー
22 PLC(Programmable Logic Controller)
23 フレーム外枠
24 垂直回転主軸
25 垂直外筒主軸下部ベアリング
26 受風翼減速板摺動ベアリング
27 原動機動力発生部本体
28 原動機(発電機、ポンプ)
29 増速歯車
30 垂直主軸
31 垂直軸メーンギャ
32 太陽歯車
33 第一遊星歯車
34 内歯車
35 第二遊星歯車
36 位置決め制御モーター(ステッピングモーター、サーボモーター)
37 位置決め制御モーターピニオンギャー
38 減速機構連結縦軸ラック
39 減速機構ラック縦軸減速板制御棒(プランジャー)
40 減速機構ラック横軸
41 減速機構ラック外軸
42a 湾曲式受風翼垂直状態
42b 湾曲式受風翼水平状態
42c 湾曲式受風翼垂直復帰状態
43 水平式受風翼
44 集風器
45 受風翼回転方向
46 ピニオンギャー
47 アイドルギャー
48 メーンギャー
49 受風翼本体上部回転保持ベアリング
50 受風翼本体下部回転保持ベアリング
51 風向板
52 減速作用棒スラストベアリングスナップリング
53 減速作用棒スラストベアリング
54 鉛直風向軸アウタースラストベアリング
55 鉛直風向軸アウタースラストベアリングスナップベアリング
56 鉛直風向軸インナースラストベアリング
57 鉛直風向軸インナースラストベアリングスナップベアリング
58 減速機構可動器
59 減速作用制御棒
1a Vertical state receiving blade 1b Horizontal state receiving blade 1c Angle conversion state receiving blade 2 Winding blade vertical restoration auxiliary plate 3 Wind receiving blade horizontal angle conversion plate 4 Wind direction 5 Angle conversion bearing 6 Wind receiving blade restoration spring 7 Horizontal Main shaft 8 Vertical wind direction shaft 9 Vertical outer cylinder main shaft 10 Wind receiving blade horizontal conversion auxiliary plate 11 Angle conversion bearing contact passage position 12 Wind receiving blade vertical angle conversion plate auxiliary fixing bracket 13 Wind receiving blade horizontal angle conversion auxiliary plate fixing bracket 14 Angle conversion Cam ring 15 Vertical outer cylinder main shaft support bearing 16 Winding blade deceleration angle control plate 17 Frame upper frame 18 Wind direction plate 19 Wind speed wind direction device 20 Wind speed measuring power generation propeller 21 Wind speed sensor 22 PLC (Programmable Logic Controller)
23 Frame outer frame 24 Vertical rotation main shaft 25 Vertical outer cylinder main shaft lower bearing 26 Wind receiving blade speed reducing plate sliding bearing 27 Motor power generation unit body 28 Motor (generator, pump)
29 Speed increasing gear 30 Vertical main shaft 31 Vertical shaft main gear 32 Sun gear 33 First planetary gear 34 Internal gear 35 Second planetary gear 36 Positioning control motor (stepping motor, servo motor)
37 Positioning control motor pinion gear 38 Reduction mechanism coupling vertical axis rack 39 Reduction mechanism rack vertical axis reduction plate control rod (plunger)
40 Deceleration mechanism rack horizontal shaft 41 Deceleration mechanism rack outer shaft 42a Curved wind receiving blade vertical state 42b Curved wind receiving blade horizontal state 42c Curved wind receiving blade vertical return state 43 Horizontal wind receiving blade 44 Air collector 45 Wind receiving Blade rotation direction 46 Pinion gear 47 Idle gear 48 Main gear 49 Wind receiving blade body upper rotation holding bearing 50 Wind receiving blade body lower rotation holding bearing 51 Wind direction plate 52 Deceleration rod thrust bearing snap ring 53 Deceleration rod thrust bearing 54 Vertical wind direction axis Outer thrust bearing 55 Vertical wind direction shaft outer thrust bearing snap bearing 56 Vertical wind direction shaft inner thrust bearing 57 Vertical wind direction shaft inner thrust bearing snap bearing 58 Deceleration mechanism mover 59 Deceleration action control rod

二層式受風翼基本平面図Basic plan view of double-layer wind receiving blade 二層式受風翼基本背面図Basic back view of double-layer wind vane 減速作業棒主軸貫通型正面図Deceleration work rod spindle through type front view 減速作業棒スラストベアリング部拡大図Reduced work rod thrust bearing section enlarged view 二軸集風型平面図Two-axis airflow type top view 四層式集風型正面図Four-layer wind collecting front view 鉛直風向軸アウターインナーベアリング接続軸平面図Vertical wind direction axis outer inner bearing connection axis plan view

図4に於いて受風翼減速角度制御板(16)を押し下げる減速作用棒(59)を本願風力発電機の垂直主軸内を最上層段の受風翼機構から底部基台内までの垂直外筒主軸内中心部を貫通するように配置してスラストベアリングを複数段配置して鉛直風向軸と垂直外筒主軸が独自の回転動作をしてもそれぞれの軸の壁に左右されずに受風翼減速角度制御板を押し下げるように作用するような構造にスラストベアリングを配置して台風などで風力が増した場合に減速作用が必要な時に作用するような構造となるものである。In FIG. 4, the speed reducing rod (59) that pushes down the wind turbine blade deceleration angle control plate (16) is moved vertically outside the vertical main shaft of the present wind power generator from the top wind turbine mechanism to the bottom base. Even if the vertical wind direction axis and the vertical outer cylinder spindle rotate independently, the wind is received without being influenced by the wall of each axis. A thrust bearing is arranged in a structure that acts to push down the blade deceleration angle control plate, and when the wind power is increased by a typhoon or the like, the structure acts so that a deceleration action is required.

本願発明の基本となる特許は特許文献1の風力原動機で図1が二層式の平面図で90度間隔で1a,1b,1cが風向(4)の流れによって左回りで回転する。図2の受風翼1aが風を受けて風下まで回転していくと受風翼のカムリング(14)ベアリング(5)が受風翼水平変換板(10)の作用で垂直状態だった受風翼1aが受風翼水平角度変換板(3)に係ると受風翼は(1b)のように水平状態となる。このように受風翼は垂直状態から水平状態を繰り返し回転することになる。規定以上の風速になるとセンサー(21)の制御信号でPLC(22)によりステッピングモーター等の制御モーター(36)等の作用でフレーム枠(17),(23)内に配置されたラック機構(40)とプランジャー(39)の連結作用で受風翼減速角度制御板(16)を押し下げて垂直状態の受風翼を押し倒す状態で風の効力を減少させて回転力を制御することになる。これに対し本願発明はこの減速機構を改良して簡素化し、部品点数の減少や減速機構の強度を向上等を行うことを目的になされたものであり、構造の配置が特許文献1とは異なるものでその構成は図3のように垂直外筒主軸(9)内の空洞部の中心部に下部の原動機動力発生本体(27)内にある駆動モーター(36)がピニオンギア(3The patent which is the basis of the present invention is a wind power generator disclosed in Patent Document 1. FIG. 1 is a two-layer plan view, and 1a, 1b and 1c are rotated counterclockwise by a wind direction (4) at 90 ° intervals. When the wind receiving blade 1a of FIG. 2 receives wind and rotates to the leeward wind, the wind ring receives the cam ring (14) bearing (5) in a vertical state by the action of the wind receiving blade horizontal conversion plate (10). When the blade 1a is related to the wind receiving blade horizontal angle conversion plate (3), the wind receiving blade is in a horizontal state as shown in (1b). In this way, the wind-receiving blade rotates repeatedly from the vertical state to the horizontal state. When the wind speed exceeds a specified value, a rack mechanism (40) arranged in the frame frames (17) and (23) by the action of a control motor (36) such as a stepping motor by a PLC (22) using a control signal of the sensor (21). ) And the plunger (39) are connected to push down the wind receiving blade deceleration angle control plate (16) to push down the wind receiving blade in the vertical state, thereby controlling the rotational force by reducing the wind effect. On the other hand, the present invention has been made for the purpose of improving and simplifying the speed reduction mechanism, reducing the number of parts, improving the strength of the speed reduction mechanism, and the like. As shown in FIG. 3, the drive motor (36) in the lower prime mover power generating body (27) is connected to the pinion gear (3) at the center of the cavity in the vertical outer cylinder main shaft (9) as shown in FIG. 7)の回転により減速作用制御棒(59)の下部に切られている歯車に作用して制御棒が下降して上部に組まれている減速作用制御棒スラストベアリング(53)が下降することによる連結するインナースラストベアリング(56)とアウタースラストベアリング(54)が連結接触回転しながら減速角度制御板可動部(58)を押し下げる連結する受風翼減速角度制御板(16)が連動して受風翼を傾斜させてことになる。図4の一番外側のアウタースラストベアリング(54)が、減速機構可動部(58)を下降させて受風翼減速角度制御板(16)を下降させることにより角度変換ベアリング(5)が受風翼を直立するのを妨げて角度を付け傾斜させることにより受風翼が受ける風の力を制御して結果的に高速回転を抑制することになる。インナーベアリング(56)とアウターベアリング(54)は鉛直アウターインナーベアリング接続軸(55)で支持一体化されており、図7のように垂直外筒主軸(9)の軸方向に切削されている溝に嵌合されており、図4の鉛直風向軸スラストベアリング接続軸開口上部可動切削境界部(61)と鉛直風向軸スラストベアリング接続軸開口下部可動切削境界部(60)の間を上下に可動することが出来るので受風翼の回転を制御することになる。台風や前線通過時の強風が発生しても風力発電機を停止することなく、回転を制御して発電を継続することは極めて風力発電機では重要な要素であり、停電することなく電力供給を続けることは発電機として必要不可欠な回転制御機構である。7) by the rotation of the speed reduction control rod (59) by the rotation of 7), the control rod descends and the speed reduction control rod thrust bearing (53) assembled at the top descends. The connected wind receiving blade deceleration angle control plate (16) pushes down the deceleration angle control plate movable portion (58) while the connected inner thrust bearing (56) and outer thrust bearing (54) rotate in contact with each other. The wings are tilted. The outermost outer thrust bearing (54) in FIG. 4 lowers the speed reduction mechanism movable portion (58) and lowers the wind receiving blade deceleration angle control plate (16), whereby the angle conversion bearing (5) receives the wind. By preventing the blades from standing upright and tilting them at an angle, the wind force received by the wind-receiving blades is controlled, and consequently high-speed rotation is suppressed. The inner bearing (56) and the outer bearing (54) are supported and integrated by a vertical outer inner bearing connecting shaft (55), and are grooves cut in the axial direction of the vertical outer cylinder main shaft (9) as shown in FIG. The vertical wind direction axis thrust bearing connecting shaft opening upper movable cutting boundary (61) and the vertical wind direction axis thrust bearing connecting shaft opening lower movable cutting boundary (60) shown in FIG. Therefore, the rotation of the wind vane is controlled. Even if a strong wind occurs when a typhoon or front passes, it is extremely important to control the rotation without stopping the wind power generator and to continue power generation. It is an indispensable rotation control mechanism as a generator.

1a 垂直状態受風翼
1b 水平状態受風翼
1c 角度変換状態受風翼
2 受風翼垂直復元補助板
3 受風翼水平角度変換板
4 風方向
5 角度変換ベアリング
6 受風翼復元スプリング
7 水平主軸
8 鉛直風向軸
9 垂直外筒主軸
10 受風翼水平変換補助板
11 角度変換ベアリング接触通過位置
12 受風翼垂直角度変換板補助固定金具
13 受風翼水平角度変換補助板固定金具
14 角度変換カムリング
15 垂直外筒主軸支持ベアリング
16 受風翼減速角度制御板
17 フレーム上部枠
18 風向板
19 風速風向器
20 風速測定発電プロペラ
21 風速センサー
22 PLC(Programmable Logic Controller)
23 フレーム外枠
24 垂直回転主軸
25 垂直外筒主軸下部ベアリング
26 受風翼減速板摺動ベアリング
27 原動機動力発生部本体
28 原動機(発電機、ポンプ)
29 増速歯車
30 垂直主軸
31 垂直軸メーンギャ
32 太陽歯車
33 第一遊星歯車
34 内歯車
35 第二遊星歯車
36 位置決め制御モーター(ステッピングモーター、サーボモーター)
37 位置決め制御モーターピニオンギャー
38 減速機構連結縦軸ラック
39 減速機構ラック縦軸減速板制御棒(プランジャー)
40 減速機構ラック横軸
41 減速機構ラック外軸
42a 湾曲式受風翼垂直状態
42b 湾曲式受風翼水平状態
42c 湾曲式受風翼垂直復帰状態
43 水平式受風翼
44 集風器
45 受風翼回転方向
46 ピニオンギャー
47 アイドルギャー
48 メーンギャー
49 受風翼本体上部回転保持ベアリング
50 受風翼本体下部回転保持ベアリング
51 風向板
52 減速作用棒スラストベアリングスナップリング
53 減速作用棒スラストベアリング
54 鉛直風向軸アウタースラストベアリング
55 鉛直風向軸アウターインナーベアリング接続軸
56 鉛直風向軸インナースラストベアリング
57 鉛直風向軸スラストベアリングリターンスプリング
58 減速角度制御板可動部
59 減速作用制御棒
60 鉛直風向軸スラストベアリング接続軸開口下部可動切削境界部
61 鉛直風向軸スラストベアリング接続軸開口上部可動切削境界部
1a Vertical state receiving blade 1b Horizontal state receiving blade 1c Angle conversion state receiving blade 2 Winding blade vertical restoration auxiliary plate 3 Wind receiving blade horizontal angle conversion plate 4 Wind direction 5 Angle conversion bearing 6 Wind receiving blade restoration spring 7 Horizontal Main shaft 8 Vertical wind direction shaft 9 Vertical outer cylinder main shaft 10 Wind receiving blade horizontal conversion auxiliary plate 11 Angle conversion bearing contact passage position 12 Wind receiving blade vertical angle conversion plate auxiliary fixing bracket 13 Wind receiving blade horizontal angle conversion auxiliary plate fixing bracket 14 Angle conversion Cam ring 15 Vertical outer cylinder main shaft support bearing 16 Winding blade deceleration angle control plate 17 Frame upper frame 18 Wind direction plate 19 Wind speed wind direction device 20 Wind speed measuring power generation propeller 21 Wind speed sensor 22 PLC (Programmable Logic Controller)
23 Frame outer frame 24 Vertical rotation main shaft 25 Vertical outer cylinder main shaft lower bearing 26 Wind receiving blade speed reducing plate sliding bearing 27 Motor power generation unit body 28 Motor (generator, pump)
29 Speed increasing gear 30 Vertical main shaft 31 Vertical shaft main gear 32 Sun gear 33 First planetary gear 34 Internal gear 35 Second planetary gear 36 Positioning control motor (stepping motor, servo motor)
37 Positioning control motor pinion gear 38 Reduction mechanism coupling vertical axis rack 39 Reduction mechanism rack vertical axis reduction plate control rod (plunger)
40 Deceleration mechanism rack horizontal shaft 41 Deceleration mechanism rack outer shaft 42a Curved wind receiving blade vertical state 42b Curved wind receiving blade horizontal state 42c Curved wind receiving blade vertical return state 43 Horizontal wind receiving blade 44 Air collector 45 Wind receiving Blade rotation direction 46 Pinion gear 47 Idle gear 48 Main gear 49 Wind receiving blade body upper rotation holding bearing 50 Wind receiving blade body lower rotation holding bearing 51 Wind direction plate 52 Deceleration rod thrust bearing snap ring 53 Deceleration rod thrust bearing 54 Vertical wind direction axis Outer thrust bearing 55 Vertical wind direction shaft Outer inner bearing connection shaft 56 Vertical wind direction shaft Inner thrust bearing 57 Vertical wind direction shaft thrust bearing Return spring 58 Deceleration angle control plate movable part 59 Deceleration action control rod 60 Vertical wind direction axis thrust bearing connection shaft Opening lower part movable Cutting Boundary part 61 Vertical wind direction axis Thrust bearing Connection shaft opening Upper movable cutting boundary part

二層式受風翼基本平面図  Basic plan view of double-layer wind receiving blade 二層式受風翼基本背面図  Basic back view of double-layer wind vane 減速作業棒主軸貫通型正面図  Deceleration work rod spindle through type front view 減速作業棒スラストベアリング部拡大図  Reduced work rod thrust bearing section enlarged view 二軸集風型平面図  Two-axis airflow type top view 四層式集風型正面図  Four-layer wind collecting front view

受風翼減速角度制御板16を押し下げる減速作用棒を本願風力発電機の垂直主軸内を貫通するように配置してスラストベアリングを複数配置して鉛直風向軸と垂直外筒主軸が独自の回転動作することによりそれぞれの軸の壁に左右されずに受風翼減速角度制御板を押し下げるように作用するような構造にスラストベアリングを配置して台風などで風力が増した場合に減速作用が必要な時に作用するようする構造となるものである。A speed reducing rod that pushes down the wind receiving blade speed reduction angle control plate 16 is disposed so as to penetrate the vertical main shaft of the wind power generator of the present application, and a plurality of thrust bearings are disposed so that the vertical wind direction axis and the vertical outer cylinder main shaft rotate independently. Therefore, if thrust force is arranged in a structure that acts to push down the receiving blade deceleration angle control plate without being influenced by the wall of each shaft, deceleration action is required when wind power increases due to typhoons etc. It is a structure that acts at times.

本願発明の基本となる特許は特許文献1の風力原動機で図1が二層式の平面図で90度間隔で1a,1b,1cが風向(4)の流れによって左回りで回転する。図2の受風翼1aが風を受けて風下まで回転していくと受風翼のカムリング(14)ベアリング(5)が受風翼水平変換板(10)の作用で垂直状態だった受風翼1aが受風翼水平角度変換板(3)に係ると受風翼は(1b)のように水平状態となる。このように受風翼は垂直状態から水平状態を繰り返し回転することになる。規定以上の風速になるとセンサーの信号で制御モーター(36)等の作用でフレーム枠(17),(23)内に配置されたラック機構(40)とプランジャー(39)の連結作用で受風翼減速角度制御板(16)を押し下げて垂直状態の受風翼を押し倒す状態で風の効力を減少させて回転力を制御することになる。これに対し本願発明はこの減速機構を改良して簡素化し、部品点数の減少や減速機構の強度を向上等を行うことを目的になされたものである。その構成は図3のように垂直外筒主軸(9)内の空洞部の中心部に下部の原動機動力発生本体(27)内にある駆動モーター(36)がピニオンギア(37)の回転により減速作用制御棒(59)の下部に切られている歯車に作用して制御棒が下降して上部に組まれているスラストベアリングが下降することによる連結するスラストベアリングと接触回転しながらThe patent which is the basis of the present invention is a wind power generator disclosed in Patent Document 1. FIG. 1 is a two-layer plan view, and 1a, 1b and 1c are rotated counterclockwise by a wind direction (4) at 90 ° intervals. When the wind receiving blade 1a of FIG. 2 receives wind and rotates to the leeward wind, the wind ring receives the cam ring (14) bearing (5) in a vertical state by the action of the wind receiving blade horizontal conversion plate (10). When the blade 1a is related to the wind receiving blade horizontal angle conversion plate (3), the wind receiving blade is in a horizontal state as shown in (1b). In this way, the wind-receiving blade rotates repeatedly from the vertical state to the horizontal state. When the wind speed exceeds the specified value, the wind is received by the coupling action of the rack mechanism (40) and the plunger (39) arranged in the frame frames (17) and (23) by the action of the control motor (36) or the like by the sensor signal. In the state where the blade deceleration angle control plate (16) is pushed down to push down the wind receiving blade in the vertical state, the rotational force is controlled by reducing the wind effect. On the other hand, the present invention has been made for the purpose of improving and simplifying the speed reduction mechanism and reducing the number of parts and improving the strength of the speed reduction mechanism. As shown in FIG. 3, the drive motor (36) in the lower prime mover power generation body (27) is decelerated by the rotation of the pinion gear (37) at the center of the cavity in the vertical outer cylinder main shaft (9). While acting on the gear cut at the lower part of the action control rod (59), the control rod descends and the thrust bearing assembled at the upper part descends, while rotating in contact with the connecting thrust bearing 押し下げることになる。図4の一番外側のスラストベアリング(54)が、減速機構可動部(58)を下降させて受風翼減速角度制御板(16)を下降させることにより角度変換ベアリング(5)が受風翼を直立するのを妨げて角度を付け傾斜させることにより受風翼が受ける風の力を制御して結果的に高速回転を抑制することになる。台風や前線通過時の強風が発生しても風力発電機を停止することなく、回転を制御して発電を継続することは極めて風力発電機では重要な要素であり、停電することなく電力供給を続けることは発電機として必要不可欠な使命である。Will push down. The outermost thrust bearing (54) in FIG. 4 lowers the speed reduction mechanism movable portion (58) and lowers the wind receiving blade deceleration angle control plate (16), whereby the angle conversion bearing (5) becomes the wind receiving blade. By controlling the wind force received by the wind receiving blades by preventing the upright from standing upright and inclining, the high speed rotation is consequently suppressed. Even if a strong wind occurs when a typhoon or front passes, it is extremely important to control the rotation without stopping the wind power generator and to continue power generation. Continuing is an essential mission as a generator.

1a 垂直状態受風翼
1b 水平状態受風翼
1c 角度変換状態受風翼
2 受風翼垂直復元補助板
3 受風翼水平角度変換板
4 風方向
5 角度変換ベアリング
6 受風翼復元スプリング
7 水平主軸
8 鉛直風向軸
9 垂直外筒主軸
10 受風翼水平変換補助板
11 角度変換ベアリング接触通過位置
12 受風翼垂直角度変換板補助固定金具
13 受風翼水平角度変換補助板固定金具
14 角度変換カムリング
15 垂直外筒主軸支持ベアリング
16 受風翼減速角度制御板
17 フレーム上部枠
18 風向板
19 風速風向器
20 風速測定発電プロペラ
21 風速センサー
22 PLC(Programmable Logic Controller)
23 フレーム外枠
24 垂直回転主軸
25 垂直外筒主軸下部ベアリング
26 受風翼減速板摺動ベアリング
27 原動機動力発生部本体
28 原動機(発電機、ポンプ)
29 増速歯車
30 垂直主軸
31 垂直軸メーンギャ
32 太陽歯車
33 第一遊星歯車
34 内歯車
35 第二遊星歯車
36 位置決め制御モーター(ステッピングモーター、サーボモーター)
37 位置決め制御モーターピニオンギャー
38 減速機構連結縦軸ラック
39 減速機構ラック縦軸減速板制御棒(プランジャー)
40 減速機構ラック横軸
41 減速機構ラック外軸
42a 湾曲式受風翼垂直状態
42b 湾曲式受風翼水平状態
42c 湾曲式受風翼垂直復帰状態
43 水平式受風翼
44 集風器
45 受風翼回転方向
46 ピニオンギャー
47 アイドルギャー
48 メーンギャー
49 受風翼本体上部回転保持ベアリング
50 受風翼本体下部回転保持ベアリング
51 風向板
52 減速作用棒スラストベアリングスナップリング
53 減速作用棒スラストベアリング
54 鉛直風向軸アウタースラストベアリング
55 鉛直風向軸アウターインナーベアリング接続軸
56 鉛直風向軸インナースラストベアリング
57 鉛直風向軸インナースラストベアリングスナップベアリング
58 減速機構可動器
59 減速作用制御棒
1a Vertical state receiving blade 1b Horizontal state receiving blade 1c Angle conversion state receiving blade 2 Winding blade vertical restoration auxiliary plate 3 Wind receiving blade horizontal angle conversion plate 4 Wind direction 5 Angle conversion bearing 6 Wind receiving blade restoration spring 7 Horizontal Main shaft 8 Vertical wind direction shaft 9 Vertical outer cylinder main shaft 10 Wind receiving blade horizontal conversion auxiliary plate 11 Angle conversion bearing contact passage position 12 Wind receiving blade vertical angle conversion plate auxiliary fixing bracket 13 Wind receiving blade horizontal angle conversion auxiliary plate fixing bracket 14 Angle conversion Cam ring 15 Vertical outer cylinder main shaft support bearing 16 Winding blade deceleration angle control plate 17 Frame upper frame 18 Wind direction plate 19 Wind speed wind direction device 20 Wind speed measuring power generation propeller 21 Wind speed sensor 22 PLC (Programmable Logic Controller)
23 Frame outer frame 24 Vertical rotation main shaft 25 Vertical outer cylinder main shaft lower bearing 26 Wind receiving blade speed reducing plate sliding bearing 27 Motor power generation unit body 28 Motor (generator, pump)
29 Speed increasing gear 30 Vertical main shaft 31 Vertical shaft main gear 32 Sun gear 33 First planetary gear 34 Internal gear 35 Second planetary gear 36 Positioning control motor (stepping motor, servo motor)
37 Positioning control motor pinion gear 38 Reduction mechanism coupling vertical axis rack 39 Reduction mechanism rack vertical axis reduction plate control rod (plunger)
40 Deceleration mechanism rack horizontal shaft 41 Deceleration mechanism rack outer shaft 42a Curved wind receiving blade vertical state 42b Curved wind receiving blade horizontal state 42c Curved wind receiving blade vertical return state 43 Horizontal wind receiving blade 44 Air collector 45 Wind receiving Blade rotation direction 46 Pinion gear 47 Idle gear 48 Main gear 49 Wind receiving blade body upper rotation holding bearing 50 Wind receiving blade body lower rotation holding bearing 51 Wind direction plate 52 Deceleration rod thrust bearing snap ring 53 Deceleration rod thrust bearing 54 Vertical wind direction axis Outer thrust bearing 55 Vertical wind direction shaft Outer inner bearing connection shaft 56 Vertical wind direction shaft inner thrust bearing 57 Vertical wind direction shaft inner thrust bearing snap bearing 58 Deceleration mechanism Movable unit 59 Deceleration action control rod

Claims (1)

垂直軸受風回転装置の風速の上昇に伴い異常高速回転により発電機の損傷を防止する減速装置に於いて鉛直風向軸内の空洞部中心部に基台内から最上部の回転層まで貫通する状態で減速作用制御棒を配置して基台内の駆動モーターのピニオンギアにより下降方向に可動することにより各受風翼階層部にスラストベアリングの連動作用で垂直主軸外側の減速機構可動金具を下降させることにより受風翼の角度を傾斜させ回転速度を減速する機構を有す減速装置の構造。  In the speed reducer that prevents damage to the generator due to abnormally high speed rotation as the wind speed of the vertical bearing wind rotating device rises, it penetrates from the base to the uppermost rotating layer in the center of the cavity in the vertical wind direction axis In order to lower the speed reduction mechanism movable bracket on the outside of the vertical main shaft by the interlocking action of the thrust bearing in each wind receiving blade layer by moving the speed reduction action control rod in the base and moving in the downward direction by the pinion gear of the drive motor in the base The structure of the speed reducer which has the mechanism which inclines the angle of a wind-receiving blade by this and decelerates a rotational speed.
JP2014107530A 2014-05-08 2014-05-08 Vertical wind power generator rotation suppression mechanism Expired - Fee Related JP5662611B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014107530A JP5662611B1 (en) 2014-05-08 2014-05-08 Vertical wind power generator rotation suppression mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107530A JP5662611B1 (en) 2014-05-08 2014-05-08 Vertical wind power generator rotation suppression mechanism

Publications (2)

Publication Number Publication Date
JP5662611B1 JP5662611B1 (en) 2015-02-04
JP2015214960A true JP2015214960A (en) 2015-12-03

Family

ID=52569370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014107530A Expired - Fee Related JP5662611B1 (en) 2014-05-08 2014-05-08 Vertical wind power generator rotation suppression mechanism

Country Status (1)

Country Link
JP (1) JP5662611B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425080A (en) * 2019-08-13 2019-11-08 杭州德飙新能源科技有限公司 A kind of combined type wind driven generator blade

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112128051B (en) * 2020-10-21 2021-07-06 温州砼程维禹科技有限公司 Vertical multilayer wind power generation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455092B1 (en) * 2012-10-10 2014-03-26 泰昌 安 Wind power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425080A (en) * 2019-08-13 2019-11-08 杭州德飙新能源科技有限公司 A kind of combined type wind driven generator blade

Also Published As

Publication number Publication date
JP5662611B1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
Chong et al. Early development of an innovative building integrated wind, solar and rain water harvester for urban high rise application
JP5455092B1 (en) Wind power generator
Saad et al. Comparison of horizontal axis wind turbines and vertical axis wind turbines
US9587631B2 (en) Vertial axis wind/solar turbine
US7696635B2 (en) Gravity-flap, savonius-type wind turbine device
JP5883090B1 (en) Vertical wind power generator rotation suppression mechanism
US9024463B2 (en) Vertical axis wind turbine with multiple flap vanes
US8851839B2 (en) Wide blade multiple generator wind turbine
KR101030483B1 (en) Wind power generator having windmill wings based variable
US20100135768A1 (en) Column structure with protected turbine
AU2014271960A1 (en) Vertical axis water/wind turbine motor using flight feather opening/closing wing system
CN202117850U (en) Fluid energy boosting and conversion device
KR20120065515A (en) Hot water heater using wind and solar force
Zafar Literature review of wind turbines
CN102192101A (en) Device for raising and converting fluid energy
KR20100039917A (en) Wind mill for power generation adapted in building
US8604635B2 (en) Vertical axis wind turbine for energy storage
JP5662611B1 (en) Vertical wind power generator rotation suppression mechanism
CN102454533A (en) Power generation device for generating power by utilizing water surface surging
Khrisanov et al. Marine electrical power industry with renewable energy carriers. Part 1. Wind and wave turbines of offshore power plants
CN102168655A (en) Resistance difference type synchronous linkage integrated wind wave and light heat electromechanical energy conversion system
Kumar et al. Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines
Chong et al. Design and wind tunnel testing of a Savonius wind turbine integrated with the omni-direction-guide-vane
WO2020127206A1 (en) Windturbine dehumidifier system comprising secondary wind power source
CN219549022U (en) Wind turbine and wind power plant

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5662611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 5662611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees