JP2015211522A - Remote measurement apparatus - Google Patents
Remote measurement apparatus Download PDFInfo
- Publication number
- JP2015211522A JP2015211522A JP2014091058A JP2014091058A JP2015211522A JP 2015211522 A JP2015211522 A JP 2015211522A JP 2014091058 A JP2014091058 A JP 2014091058A JP 2014091058 A JP2014091058 A JP 2014091058A JP 2015211522 A JP2015211522 A JP 2015211522A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power supply
- devices
- power
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本発明は、天候や周囲環境に左右されず、メンテナンス不要で長時間の運転が可能であり、計測場所と監視場所が同じ位置には設置されていない環境計測装置に関するものである。 The present invention relates to an environmental measurement device that is not affected by the weather or the surrounding environment, can be operated for a long time without maintenance, and is not installed at the same position as the measurement location and the monitoring location.
わが国は国土の70%以上が山地であり降水量が多いこと、河川の勾配が急峻であることから、洪水などや崖崩れ等の災害が発生しやすい。国土交通省の統計によれば、全国に
525,307箇所の土砂災害危険箇所が存在する。これらの災害の発生を防ぐために災害が予測される箇所に護岸工事、落石防護工事、のり面安定工事等の防災工事が施行されている。災害の発生が予測される箇所は数多く、工事の完成までには数年を要することからすべての危険箇所に工事が施行されているわけではない。(非特許文献1)
In Japan, more than 70% of the country is mountainous, and there is a lot of precipitation, and the slope of the river is steep, so disasters such as floods and landslides are likely to occur. According to Ministry of Land, Infrastructure and Transport statistics
There are 525,307 landslide hazard points. In order to prevent the occurrence of these disasters, disaster prevention works such as revetment work, rock fall protection work, and slope stability work are being implemented at places where disasters are predicted. There are many places where disasters are expected to occur, and it takes several years to complete the construction, so not all dangerous places are being constructed. (Non-Patent Document 1)
一方で計測技術、検知技術の発達により、落石の検知や河川の水位、土地の歪みを計測することで災害の発生を事前に検知することができるようになってきた。 On the other hand, with the development of measurement technology and detection technology, it has become possible to detect the occurrence of disasters in advance by detecting falling rocks, measuring the water level of rivers, and distorting land.
これらを計測するには電源の確保が必要になる。災害の発生が予測される場所は、人家から離れていることが多く電力会社からの電気の供給がなされていないことがおおい。電源としては、二次電池や太陽光発電装置や風力発電装置、小型水力発電装置などの自然エネルギーを利用する発電装置のいずれか、または二者を組み合わせて使用される。しかし、二次電池や自然エネルギーを利用する発電装置を電源として使用した場合、例えば太陽光発電装置であれば雨天時や降雪、積雪時に十分な発電量が得られない。このため冬季には、数日ごとに二次電池の交換を余儀なくされている。また、晴天時に太陽光発電装置で発電された電力を二次電池に充電し、雨天時や夜間に先記二次電池に充電された電力を使用することも可能であるが、設備が大型化し、発電に必要な太陽光をえるために発電装置付近の木々の伐採が必要になるなどの課題があった。 To measure these, it is necessary to secure a power supply. The places where disasters are expected to occur are often away from people's homes and are not supplied with electricity from electric power companies. As the power source, a secondary battery, a solar power generation device, a wind power generation device, a power generation device using natural energy such as a small hydropower generation device, or a combination of the two is used. However, when a secondary battery or a power generation device that uses natural energy is used as a power source, for example, a solar power generation device cannot provide a sufficient amount of power during rainy weather, snowfall, or snowfall. For this reason, in the winter, secondary batteries must be replaced every few days. In addition, it is possible to charge the secondary battery with the power generated by the solar power generator in fine weather, and use the power charged in the secondary battery in the rain or at night. However, in order to obtain the sunlight necessary for power generation, there were problems such as the need to cut trees near the power generation device.
本発明は上記課題を解決するものであり、特に降雪、積雪がある冬季などのように自然エネルギーを利用する発電装置において発電量が低下するような条件下でも、安定した電力を供給し、感知、計測の継続的な実施を可能にする装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and provides stable power and sensing even under conditions where the amount of power generation decreases in a power generation device that uses natural energy, such as in winter when there is snowfall or snowfall. An object of the present invention is to provide an apparatus that enables continuous measurement.
本発明者らが鋭意検討の結果、以下の手段により、課題を解決しうる発明をなした。
(1)少なくとも(A)感知装置または計測装置、(B)該(A)からそれぞれ出力される結果を統合する装置、(C)該(B)で統合した装置の出力を遠隔地に伝送する装置を有すると共に、該(A)〜(C)の装置に電力を供給する、出力電圧が直流6V以上50V未満、出力が2W以上1000W未満である燃料電池および、端子電圧4.9V以上60V未満の二次電池から構成される電源装置(D)を有し、少なくとも該(A)〜(C)の装置の一つの動作電圧が電源装置(D)の供給電圧の変動範囲内である場合は、電源装置(D)から直接電力を供給し、または、動作電圧の該(A)〜(C)の装置の一つが動作電圧が電源装置(D)が供給する電圧の変動範囲より狭い場合に、電源装置と該(A)〜(C)の装置の間に、電圧安定化機能を具備する装置(E)を接続し、または、供給電圧の範囲外である場合には、電源装置(D)の供給電圧を該(A)〜(C)の装置の動作電圧に調整する機能を具備する装置(F)を接続し、該(A)〜(C)の装置の動作電圧が交流の場合は、電源装置(D)の供給電圧を交流に変換する装置(G)の何れか一つ以上を有し、該(A)〜(C)の装置に適切な電力を供給できる機能を有するとともに、少なくとも該(A)〜(C)の装置の何れかの装置が電源装置(D)と同一場所以外に設置されている場合、該(E)〜(G)の何れかの装置は、前記同一場所にない該(A)〜(C)の何れかの装置と同一場所に設置されていることを特徴とする遠隔計測装置。
(2)前記電源装置(D)は、太陽光発電装置、風力発電装置、小型水力発電装置からなる群より選択されてなる少なくとも一種以上の発電装置(H)をさらに有することを特徴とする(1)に記載の遠隔計測装置。
(3)前記(A)〜(G)の装置および、その配線は大地に対して絶縁されていることを特徴とする(1)又は(2)に記載の遠隔計測装置。
(4)前記(A)〜(C)、(E)〜(G)の装置および、その配線の少なくとも正極側、負極側のいずれかの側が大地に対して絶縁されているとともに配線内には少なくとも1以上の避雷装置を具備することを特徴とする(1)〜(3)のいずれかに記載の遠隔計測装置。
(5)前記(D)電源装置は、電源装置の動作状況、発電量、発電装置周辺の温度、発電装置の燃料残量、電源装置(D)の出力電圧、もしくは二次電池の電圧からなる群より選択されてなる少なくとも一項目及び/又は前記電源装置(D)または、電源装置(I)の出力電圧、もしくは二次電池の電圧の少なくとも一項目を監視する機能を有すると共に、監視によって得られた値が、あらかじめ設定された期間、継続してあらかじめ設定された範囲から外れた場合、得られた動作状況があらかじめ設定された条件に合致する場合、前記設定値および監視された値、もしくは、設定された条件を、あらかじめ設定された送信先に送付する機能を有することを特徴とする(1)〜(4)のいずれかに記載の遠隔計測装置。
(6)前記送信先に送付する手段としてショートメッセージサービス、簡易メール転送プロトコルの少なくとも何れか一つの手段を使用することを特徴とする(5)に記載の遠隔計測装置。
(7)前記(D)電源装置における運転条件の設定もしくは運転状況の監視を外部から行う機能を有することを特徴とする(5)又は(6)に記載の遠隔計測装置
(8)前記(D)電源装置における運転条件や運転状況を外部から設定する手段として、ショートメッセージサービス、ポストオフィスプロトコル、簡易メール転送プロトコル、及びハイパーテキスト転送プロトコルからなる群より選択される少なくとも一つ以上の手段を有することを特徴とする(7)に記載の遠隔計測装置
(9)前記(D)電源装置における運転条件や運転状況を外部から設定する伝送径路として、広帯域符号分割多元接続およびその後継規格、符号分割多重接続2000およびその後継規格、ワールドワイド インターオペラビリティ フォー マイクロウェーブ アクセス、ロングタームエボリューション、衛星電話ネットワークの何れか1以上の伝送径路を用いることを特徴とする(1)〜(8)のいずれかに記載の遠隔計測装置。
(10)前記(D)を構成する燃料電池が直接メタノール型燃料電池であることを特徴とする(1)〜(9)のいずれかに記載の遠隔計測装置。
(11)前記(D)を構成する燃料電池の燃料として、濃度90%以上99.8%未満のメタノール溶液燃料を使用することを特徴とする(10)に記載の遠隔計測装置。
(12)前記(D)を構成する燃料電池の燃料として、濃度60%以上90%未満のメタノール溶液燃料を使用することを特徴とする(10)に記載の遠隔計測装置。
(13)前記(D)を構成する燃料電池の燃料として、濃度60%未満のメタノール溶液燃料を使用することを特徴とする(10)に記載の遠隔計測装置。
(14)前記(D)を構成する二次電池として、鉛蓄電池、ニッケル水素電池、ニッケルカドミウム電池、リチウムイオン電池、リチウムポリマー電池、バナジウム電池からなる群より選ばれる1種以上の電池であることを特徴とする請求項(1)〜(13)のいずれかに記載の遠隔計測装置。
(15)前記(D)を構成する二次電池として総容量が16Ah以上3000Ah以下の鉛蓄電池を使用することを特徴とする(14)に記載の遠隔計測装置。
As a result of intensive studies by the present inventors, an invention that can solve the problems has been made by the following means.
(1) At least (A) a sensing device or measuring device, (B) a device that integrates the results output from (A), and (C) the output of the device integrated in (B) is transmitted to a remote location. A fuel cell having a device and supplying power to the devices of (A) to (C), having an output voltage of DC 6 V or more and less than 50 V, an output of 2 W or more and less than 1000 W, and a terminal voltage of 4.9 V or more and less than 60 V A power source device (D) composed of a secondary battery of the above, and at least one operating voltage of the devices (A) to (C) is within the fluctuation range of the supply voltage of the power source device (D) When power is supplied directly from the power supply device (D), or when one of the devices of the operating voltage (A) to (C) is narrower than the fluctuation range of the voltage supplied by the power supply device (D) The voltage between the power supply device and the devices (A) to (C) When the device (E) having the stabilizing function is connected or when it is outside the range of the supply voltage, the supply voltage of the power supply device (D) is set to the operating voltage of the devices (A) to (C). A device (G) that connects a device (F) having a function of adjusting and converts the supply voltage of the power supply device (D) to an alternating current when the operating voltage of the devices (A) to (C) is an alternating current. Any one of the devices (A) to (C) and a function of supplying appropriate power to the devices (A) to (C), and at least any one of the devices (A) to (C) is a power source. When installed in a place other than the same location as the device (D), the device in any one of the (E) to (G) is the same as any device in the (A) to (C) that is not in the same location. A telemetry device characterized by being installed at a place.
(2) The power supply device (D) further includes at least one or more power generation devices (H) selected from the group consisting of a solar power generation device, a wind power generation device, and a small hydropower generation device ( The telemetry device according to 1).
(3) The telemetry device according to (1) or (2), wherein the devices (A) to (G) and the wiring thereof are insulated from the ground.
(4) The devices (A) to (C) and (E) to (G) and at least one of the positive electrode side and the negative electrode side of the wiring are insulated from the ground, and in the wiring The telemetry device according to any one of (1) to (3), comprising at least one lightning arrester.
(5) The power supply device (D) includes the operation status of the power supply device, the amount of power generation, the temperature around the power generation device, the remaining amount of fuel in the power generation device, the output voltage of the power supply device (D), or the voltage of the secondary battery. It has a function of monitoring at least one item selected from the group and / or at least one item of the output voltage of the power supply device (D) or the power supply device (I) or the voltage of the secondary battery, and is obtained by monitoring. If the obtained value is continuously out of the preset range for a preset period, and the obtained operation status matches the preset condition, the set value and the monitored value, or The telemetry device according to any one of (1) to (4), which has a function of sending a set condition to a preset destination.
(6) The telemetry device according to (5), wherein at least one of a short message service and a simple mail transfer protocol is used as the means for sending to the destination.
(7) The telemetry device according to (5) or (6), wherein the (D) power conditioner has a function of externally setting operating conditions or monitoring operating conditions. ) As means for externally setting operating conditions and operating conditions in the power supply device, at least one means selected from the group consisting of a short message service, a post office protocol, a simple mail transfer protocol, and a hypertext transfer protocol is included. (9) The telemetry device according to (7) (9) Wideband code division multiple access and its successor standard, code division as a transmission path for setting operation conditions and operation status in the power supply device from the outside Multiple Access 2000 and its successor standards, Worldwide Interoperability for Microway Access, Long Term Evolution, telemetry device according to any one of is characterized by using any one or more of the transmission path of a satellite telephone network (1) to (8).
(10) The remote measuring device according to any one of (1) to (9), wherein the fuel cell constituting the (D) is a direct methanol fuel cell.
(11) The remote measuring device according to (10), wherein a methanol solution fuel having a concentration of 90% or more and less than 99.8% is used as a fuel of the fuel cell constituting the (D).
(12) The remote measuring device according to (10), wherein a methanol solution fuel having a concentration of 60% or more and less than 90% is used as a fuel of the fuel cell constituting the (D).
(13) The remote measuring device according to (10), wherein a methanol solution fuel having a concentration of less than 60% is used as a fuel of the fuel cell constituting the (D).
(14) The secondary battery constituting (D) is one or more batteries selected from the group consisting of lead acid batteries, nickel metal hydride batteries, nickel cadmium batteries, lithium ion batteries, lithium polymer batteries, and vanadium batteries. The telemetry device according to any one of claims (1) to (13).
(15) The remote measuring device according to (14), wherein a lead storage battery having a total capacity of 16 Ah or more and 3000 Ah or less is used as the secondary battery constituting the (D).
本発明の遠隔計測装置は、天候や周囲環境に左右されず、メンテナンス不要で長時間の運転が可能である。また、複数の電源装置を組み合わせ、適切な条件で運転することで、燃料の消費をおさえて安定的に長期の連続駆動が可能となる。 The telemetry device of the present invention is not affected by the weather or the surrounding environment, and can be operated for a long time without maintenance. In addition, by combining a plurality of power supply devices and operating under appropriate conditions, fuel consumption can be suppressed and stable long-term driving can be achieved.
本発明における遠隔計測装置は、遠隔計測機能と独立型電源として自然エネルギーを利用する発電装置と燃料電池によって二次電池に電力を充電する機能を有する電源装置をもつ遠隔計測装置である。図1に概念図を示す。計測する対象や内容、数は限定されることなく計測の対象や内容によって選択することが可能であり、得られた計測結果を監視場所にむけて伝送することが可能な装置構成にすることも可能である。 The telemetry device according to the present invention is a telemetry device having a telemetry function, a power generation device that uses natural energy as an independent power source, and a power supply device that has a function of charging power to a secondary battery by a fuel cell. FIG. 1 shows a conceptual diagram. The target, content, and number to be measured are not limited and can be selected according to the target and content of measurement, and it is also possible to make a device configuration that can transmit the obtained measurement results to the monitoring place Is possible.
本発明の遠隔計測装置においては、伝送装置を用いて計測装置の設置場所とは異なった監視場所に遠隔計測した結果の伝送ができることと共に、少なくとも燃料電池を用いて二次電池を充電する機能を有する電源装置を持つ点に特徴がある。遠隔計測装置用電源としては、商用電力を用いるのが一般的であるが、計測装置を設置する場所によっては、商用電源の確保が困難であるという問題がある。商用電力を代替する電力供給手段としては、太陽光発電、風力発電、水力発電等の自然エネルギーを利用した発電装置を用いることが提案されているが、たとえば太陽光の場合は、曇天、降雨、降雪、積雪などの気象条件や、森林、山等による発電量の低下がおこる。また、風量発電であれば、常時風が発生することはなくこの場合は、発電量が0となる。また、低気圧、台風、冬型の気圧配置等で等圧線の間隔が狭くなるような場合は、強風が発生し、風が強すぎる場合にも同様に発電が出来なくなる。水力発電の場合は、日照が続き降雨がなかったり、冬期など、水路の凍結が発生すると水量が低下して十分な発電量を確保できないなどの問題がある。 In the remote measurement device of the present invention, the transmission device can transmit the result of remote measurement to a monitoring location different from the installation location of the measurement device, and at least the function of charging the secondary battery using the fuel cell. It is characterized by having a power supply device. Commercial power is generally used as the power source for the remote measurement device, but there is a problem that it is difficult to secure the commercial power source depending on the location where the measurement device is installed. As a power supply means that replaces commercial power, it has been proposed to use a power generation device using natural energy such as solar power generation, wind power generation, hydropower generation, etc. There is a decrease in power generation due to weather conditions such as snowfall and snowfall, and forests and mountains. In addition, in the case of wind power generation, wind is not always generated, and in this case, the power generation is zero. Further, when the interval between the isobars becomes narrow due to low pressure, typhoon, winter type atmospheric pressure arrangement, etc., strong wind is generated, and power generation is similarly impossible when the wind is too strong. In the case of hydroelectric power generation, there are problems such as continuous sunshine and no rain, and if the waterway freezes, such as in winter, the amount of water decreases and a sufficient amount of power generation cannot be secured.
それに対し本発明の遠隔計測装置では、燃料電池により安定的に二次電池に電力を供給することができ、自然エネルギーを利用した発電装置と組み合わせることで、自然エネルギーによる発電において発生が不可避な電力供給の低下が発生した場合に、燃料電池が不足する電力量を補うことにより、さらに安定かつ長期間の駆動が可能になるという利点がある。 On the other hand, in the telemetry device of the present invention, power can be stably supplied to the secondary battery by the fuel cell, and power that is unavoidable in power generation by natural energy by combining with the power generation device using natural energy. In the event of a supply drop, supplementing the amount of power that the fuel cell is deficient has the advantage of enabling more stable and long-term driving.
本発明の環境計測装置の感知装置は、感知対象とする物理現象が一定の範囲を超えた場合に電気信号を出力するなどの機能を有するものであり、例えば、水位があらかじめ設定された値を超えた場合に、電気信号を発生させるような装置類があげられる。また、計測装置は、計測対象とする物理現象の変化を電気信号の変化として出力するなどの機能を有するものであり、たとえば、位置の変位を電気信号に変換して伝達するような機構をもった装置類があげられる。変位センサや歪み計などのセンサー類が代表的なものである。
また、監視カメラなどは、光学情報を電気信号に変換する計測装置として使用してもよいし、逐次画像を比較し何らかの変化が見られた場合にその差分やあらかじめ変化パターンを設定しておき、変化パターンが設定済みのパターンと一致したときに、電気信号を発生させる感知装置としての使い方をしてもよい。
The sensing device of the environmental measurement device of the present invention has a function of outputting an electrical signal when a physical phenomenon to be sensed exceeds a certain range, for example, a value in which the water level is set in advance. Devices that generate an electrical signal when the value is exceeded. In addition, the measuring device has a function of outputting a change in a physical phenomenon to be measured as a change in an electric signal. For example, the measuring device has a mechanism for converting a displacement of a position into an electric signal and transmitting it. Equipment. Sensors such as displacement sensors and strain gauges are typical.
In addition, the monitoring camera or the like may be used as a measuring device that converts optical information into an electrical signal, and when a change is seen by sequentially comparing images, the difference or a change pattern is set in advance, It may be used as a sensing device that generates an electrical signal when the change pattern matches a set pattern.
一般に、感知装置や計測装置が発した電気信号を個別に扱うと個々に伝送装置が必要になるが、本発明の環境計測装置は、感知装置はや計測装置が発した、複数の電気信号をまとめ、1台のデータ伝送装置で計測結果の伝送ができる統合装置を有する。統合装置からの出力は伝送装置に接続される。伝送装置は、統合装置からの出力を遠距離に伝送する機能を有する。伝送装置の伝送径路は、有線、無線のいずれの方式を取ってもよいが、設置場所の制約が少なく、保守も簡単な無線方式がより適している。また、空中線が小さくなる極超短波より波長の短い電波を用いることもできるし、空中線が大きくなるが回折効果等により、見通しのきかない範囲に伝送が可能な長い波長の電波を用いることもできる。さらに、伝送装置、もしくは空中線の上空に見通しが可能であれば、人工衛星等を利用する方法を用いることもできる。送信手段としては、ショートメッセージサービスを使用することが望ましい。より好ましくは簡易メール転送プロトコルの使用が望ましい。さらに、運転条件や運転状況を外部から設定する手段として、ショートメッセージサービス、ポストオフィスプロトコル、インターネットメッセージ アクセス プロトコル、簡易メール転送プロトコル、認証つき簡易メール転送プロトコル、ハイパーテキスト転送プロトコルの使用が望ましいが、データのセキュリティを考慮すると、認証つき簡易メール転送プロトコルの使用がより望ましい。また伝送径路には、広帯域符号分割多元接続、符号分割多重接続2000およびその後継規格、ワールドワイド インターオペラビリティ フォー マイクロウェーブ アクセス、ロングタームエボリューションのいずれの径路をとってもよいが、設置場所がサービスエリアに含まれていれば、より伝送する情報量が多い径路を使用するのがのぞましい。 In general, when an electrical signal generated by a sensing device or a measurement device is individually handled, a transmission device is required. However, the environmental measurement device of the present invention uses a plurality of electrical signals generated by the sensing device or the measurement device. In summary, it has an integrated device that can transmit measurement results with a single data transmission device. The output from the integrated device is connected to the transmission device. The transmission device has a function of transmitting the output from the integrated device over a long distance. The transmission path of the transmission device may be either wired or wireless. However, a wireless method with less restrictions on installation location and easy maintenance is more suitable. In addition, it is possible to use a radio wave having a shorter wavelength than an ultra-short wave in which the antenna becomes smaller, or a radio wave having a longer wavelength that can be transmitted in a range that cannot be seen due to a diffraction effect or the like although the antenna becomes larger. Furthermore, a method using an artificial satellite or the like can be used as long as a line of sight is possible over the transmission device or the antenna. It is desirable to use a short message service as a transmission means. More preferably, a simple mail transfer protocol is used. Furthermore, it is desirable to use the short message service, post office protocol, Internet message access protocol, simple mail transfer protocol, simple mail transfer protocol with authentication, and hypertext transfer protocol as a means to set the operating conditions and operating conditions from the outside. In consideration of data security, it is more desirable to use a simple mail transfer protocol with authentication. The transmission path may be any of wideband code division multiple access, code division multiple access 2000 and its successor standards, worldwide interoperability for microwave access, and long term evolution. If it is included, it is preferable to use a path with a larger amount of information to be transmitted.
前記、電源装置の運転状況は、装置がモニター機能を有していて、装置外部に情報を発信でき、前記伝送装置から情報を発信出来てもよいし、本機能を有していなくても、電源装置の電圧を計測し、計測装置に電圧変化のパターンにより装置の異常と判断する機能を有していれば、異常と判断したときに伝送装置を経由して遠隔地に異常情報を伝達する方法でも良い。さらに外部から電源装置の運転条件を設定出来れば、電源装置をを最適な条件で運転することもできる。 The operating status of the power supply device has a monitoring function, the device can send information to the outside of the device, may be able to send information from the transmission device, or may not have this function, If the voltage of the power supply device is measured and the measuring device has a function to determine that the device is abnormal based on the voltage change pattern, the abnormality information is transmitted to the remote location via the transmission device when it is determined to be abnormal. The method is fine. Furthermore, if the operating conditions of the power supply device can be set from the outside, the power supply device can be operated under optimum conditions.
前記、感知装置、計測装置、統合装置、伝送装置への電力は、電源装置から供給される供給される電力は、直交変換装置を付加して交流で供給しても、二次電池から供給される直流のいずれでもよいが、各装置の動作電圧が同じであれば、変換損失がない、直流方式が望ましい。電源装置として燃料電池を用いると二次電池に電力を供給することができる。
燃料電池は、アノード側に水素やメタノールなどの燃料を供給し、カソード側に空気を供給することで触媒を使用した化学反応により電気を産み出せる仕組みをもった発電装置である。燃焼ではなく化学反応による発電のため、排ガスには、NoxやSOxの発生がなく、クリーンな特徴がある。また、燃料電池の出力電圧が低いと安全に取り扱えるが、同じ出力電力であれば、電流値が大きくなり電気配線での損失が大きくなり配線の断面積を大きくする必要がある。また、電圧が高いと、電流値が低くなるので、電気配線での損失は小さくなるが、むやみに高電圧にすると、感電の危険を伴うことから出力電圧は直流6V以上50V未満が望ましい。燃料電池の出力電力は、小さいと発電の頻度が高くなり、スタックの寿命が短くなる。大きいと消費電力の大きい負荷にも対応出来るが、接続する二次電池や燃料消費量が大きくなるので可搬性が落ちる。選定にあたっては、電源装置に接続された負荷の消費電力と消費パターンに対し、適切な出力のものを使用するのが望ましい。設置時の可搬性を考慮すると出力電力は2W以上1000W未満であることがより望ましい。燃料電池の実施形態としては、固体高分子分子型燃料電池を用いることが一般的であるが、燃料となる水素が発火性なので取り扱いには、注意を要する。
The power supplied to the sensing device, measurement device, integration device, and transmission device is supplied from the power supply device, and the supplied power is supplied from the secondary battery even if the orthogonal transformation device is added and supplied in alternating current. However, as long as the operating voltage of each device is the same, a direct current system with no conversion loss is desirable. When a fuel cell is used as the power supply device, power can be supplied to the secondary battery.
A fuel cell is a power generator having a mechanism that can generate electricity by a chemical reaction using a catalyst by supplying fuel such as hydrogen or methanol to the anode side and supplying air to the cathode side. Because of the power generation by chemical reaction rather than combustion, the exhaust gas has clean characteristics without generation of Nox and SOx. In addition, if the output voltage of the fuel cell is low, it can be handled safely. However, if the output power is the same, the current value increases, loss in the electrical wiring increases, and the cross-sectional area of the wiring needs to be increased. In addition, when the voltage is high, the current value becomes low, so that the loss in the electrical wiring is small. However, if the voltage is unnecessarily high, there is a risk of electric shock, so the output voltage is preferably 6 to 50 V DC. If the output power of the fuel cell is small, the frequency of power generation increases and the life of the stack is shortened. If it is large, it can cope with a load that consumes a large amount of power, but the secondary battery to be connected and the amount of fuel consumption increase, so the portability is reduced. In selecting, it is desirable to use a power output that is appropriate for the power consumption and consumption pattern of the load connected to the power supply device. In consideration of portability during installation, the output power is more preferably 2 W or more and less than 1000 W. As a fuel cell embodiment, a solid polymer molecular fuel cell is generally used. However, since hydrogen as a fuel is ignitable, handling is required.
さらに燃料電池の中でも好ましい実施様態であるダイレクトメタノール型燃料電池は、電解質としてプロトン伝導性イオン交換膜を用い、膜の表面に触媒電極微粒子と、ガス拡散電極層が直接接合されており、イオン交換膜−電極接合体のアノード側にメタノール水溶液を、カソード側に空気をそれぞれ供給することで触媒を用いた化学反応により電力を発生させる発電システムである。燃焼・爆発等が発生する内燃機関と異なり原理的に運転音が静かな発電機である。また、排ガスはクリーンであり、SOxやNOxを発生しない特徴をもち、装置が設置された場所における環境に対して負荷をかけないという特徴を持つ。 Furthermore, a direct methanol fuel cell, which is a preferred embodiment among fuel cells, uses a proton conductive ion exchange membrane as an electrolyte, and catalyst electrode fine particles and a gas diffusion electrode layer are directly joined to the surface of the membrane. In this power generation system, an aqueous methanol solution is supplied to the anode side of the membrane-electrode assembly and air is supplied to the cathode side to generate electric power by a chemical reaction using a catalyst. Unlike an internal combustion engine that generates combustion, explosion, etc., it is a generator that is quiet in operation in principle. Further, the exhaust gas is clean, has a characteristic that does not generate SOx and NOx, and has a characteristic that it does not place a load on the environment where the apparatus is installed.
前記ダイレクトメタノール型燃料電池には燃料としてメタノールもしくは、メタノール希釈液が用いられる。希釈液濃度が低下するに従い、反応によって発生する水分が増加するが、発生した水分は冷却や濃度調整に用いることで、反応に必要な水分を確保でき、水分の補充が不要となる利点がある。また、濃度が60%未満であれば、保存条件が緩和される。一方、60%以上90%未満であれば、燃料比率がアップするので反応効率があがることで見かけの燃費が向上する。また、濃度が90%以上99.8%未満になると燃料比率が上がることで、反応効率がよくなり、見かけの燃費が向上し、さらに余剰となって排出される水分が少なくなるので、寒冷地使用における凍結防止に役立つ。これらの濃度は、感知計測する対象や連続計測時間等により適切に選択されるのが望ましい。 In the direct methanol fuel cell, methanol or methanol diluted solution is used as a fuel. As the diluent concentration decreases, the amount of water generated by the reaction increases. However, the generated water can be used for cooling and concentration adjustment, so that the water necessary for the reaction can be secured and there is no need to replenish water. . Further, if the concentration is less than 60%, the storage conditions are relaxed. On the other hand, if it is 60% or more and less than 90%, the fuel ratio is increased, so that the reaction efficiency is increased and the apparent fuel efficiency is improved. In addition, when the concentration is 90% or more and less than 99.8%, the fuel ratio is increased, the reaction efficiency is improved, the apparent fuel efficiency is improved, and the excess water is discharged to reduce the water content. Helps prevent freezing in use. These concentrations are preferably selected appropriately depending on the object to be sensed and measured, the continuous measurement time, and the like.
前記ダイレクトメタノール型燃料電池を二次電池と組み合わせ、二次電池の充放電状態を検知しつつ燃料電池の発電量を制御することで、発電が必要なときにのみ燃料電池を運転するので不必要に燃料を消費せず、燃料を有効に利用することができ、遠隔計測において長時間にわたり電力を供給することができる。また、この機能は他の発電装置と組み合わせた場合にも同様に動作するので、自然エネルギーを利用した発電装置と組み合わせる場合において、この装置において十分な発電量が得られる場合は、燃料電池の発電を停止させることができ、さらに燃料電池の燃料消費量を低下させ、安定した長時間の運転が可能となり、長時間の連続計測が可能となる。 The direct methanol fuel cell is combined with a secondary battery, and the amount of power generated by the fuel cell is controlled while detecting the charging / discharging state of the secondary battery. Therefore, the fuel can be used effectively without consuming fuel, and power can be supplied for a long time in remote measurement. In addition, this function operates in the same way when combined with other power generation devices. Therefore, when combined with a power generation device using natural energy, if this device can produce a sufficient amount of power, Can be stopped, fuel consumption of the fuel cell can be reduced, stable operation for a long time is possible, and continuous measurement for a long time is possible.
前記二次電池は、特に限定されるものではないが、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池、リチウムポリマー電池、バナジウム電池等が好適な例として挙げられる。特に好ましくは、鉛蓄電池、ニッケル水素電池、リチウムイオン電池である。鉛蓄電池やニッケル水素電池は使用に供された場合に安全性が高い電池であり、本発明の遠隔計測装置において信頼性の高い遠隔計測システムを提供するのに有効である。またリチウムイオン電池は小型化が可能であるため、可搬性に優れるという長所を提供できる。また二次電池として要求される特性には、繰り返し充放電への耐性が高いサイクルユース鉛蓄電池や、ニッケル水素電池、リチウムイオン電池が好ましい。 Although the said secondary battery is not specifically limited, A lead acid battery, a nickel cadmium battery, a nickel hydride battery, a lithium ion battery, a lithium polymer battery, a vanadium battery etc. are mentioned as a suitable example. Particularly preferred are lead storage batteries, nickel metal hydride batteries, and lithium ion batteries. Lead storage batteries and nickel metal hydride batteries are highly safe batteries when used, and are effective in providing a highly reliable remote measurement system in the remote measurement device of the present invention. Further, since the lithium ion battery can be reduced in size, it can provide an advantage of excellent portability. In addition, for the characteristics required as a secondary battery, a cycle use lead-acid battery, a nickel-metal hydride battery, or a lithium ion battery having high resistance to repeated charge and discharge is preferable.
前記二次電池の端子電圧としては、4.9V以上60V未満のものを使用するのが望ましい。特に好ましくは、6Vから30Vである。二次電池の端子電圧は、同時に使用する燃料電池の出力電圧に合わせることが望ましいが、電源装置に接続される感知装置、計測装置、結果を統合する装置、遠隔地に伝送する装置の電圧に合わせてもよい。また、容量としては、5時間率容量として、16Ahから3kAhのものを使用するのが望ましい、特に好ましくは35Ahから2kAhである。16Ah以下の容量だと電池容量が不足する傾向にあり、また過充電による劣化がおこる可能性が有る。また、3kAh以上だと大きくまた重過ぎる傾向にある。一例として、発電量が20Wのダイレクトメタノール型燃料電池を使う場合には、20Ahから100Ahの容量を、40Wの場合30Ahから160Ah、100Wの場合40Ahから400Ah、500Wの場合50Ahから1kAh、1kWの場合80Ahから2kAhがひとつの目安となる。 The terminal voltage of the secondary battery is preferably 4.9 V or more and less than 60 V. Particularly preferred is 6V to 30V. It is desirable to match the terminal voltage of the secondary battery with the output voltage of the fuel cell used at the same time. However, the voltage of the sensing device connected to the power supply device, the measuring device, the device that integrates the results, and the device that transmits to the remote location You may combine them. Further, it is desirable to use a capacity of 16 Ah to 3 kAh as a 5-hour rate capacity, particularly preferably 35 Ah to 2 kAh. If the capacity is 16 Ah or less, the battery capacity tends to be insufficient, and deterioration due to overcharging may occur. Moreover, when it is 3 kAh or more, it tends to be too large and heavy. As an example, when a direct methanol fuel cell with a power generation amount of 20 W is used, the capacity of 20 Ah to 100 Ah is 30 Ah to 160 Ah for 40 W, 40 Ah to 400 Ah for 100 W, 50 Ah to 1 kAh for 500 W, and 1 kW for 1 kW. 80 Ah to 2 kAh is one standard.
前記燃料電池の運転時間は、使用するメタノールもしくは、メタノール水溶液を供給するタンクの容量に依存する。したがってタンクの容量を調節することで長時間安定して動作させることが可能になる。タンクの大きさを適切に設定することで、好ましくは、10日以上燃料を補充する必要がない遠隔計測装置にすることが望まれる。より適切には、15日以上、さらに好ましくは30日以上燃料補充を行うことが望ましい。タンクの容量としては、3Lから80Lが好ましく、より好ましくは、5Lから30Lである。タンク容量が3L未満であると燃料の補充頻度が高くなり、長時間の連続運転に適さない。一方、容量が80Lをこえるとタンクの扱い、とくに持ち運ぶ場合、不便である。 The operation time of the fuel cell depends on the capacity of a tank for supplying methanol to be used or an aqueous methanol solution. Therefore, it is possible to operate stably for a long time by adjusting the capacity of the tank. By appropriately setting the size of the tank, it is preferable to provide a telemetering device that does not require refueling for 10 days or more. More suitably, it is desirable to refuel for 15 days or more, more preferably 30 days or more. The capacity of the tank is preferably 3L to 80L, and more preferably 5L to 30L. If the tank capacity is less than 3L, the frequency of fuel replenishment will increase, making it unsuitable for long-term continuous operation. On the other hand, when the capacity exceeds 80 L, it is inconvenient when handling the tank, especially when carrying it.
本発明では、燃料電池装置と太陽光発電装置、風力発電装置、小型水力発電装置などの自然エネルギーを利用する発電装置(D)と組み合わせることにより、さらに長時間にわたり安定した電力がえられるため、長時間にわたる連続計測が可能となる。また、自然エネルギーを利用する発電装置には、発電した電力を二次電池に充電できる機構を有することが好ましい。さらに前記の充電できる機構には、燃料電池を含む他の発電装置の発電電力や二次電池の電圧を監視し、発電機の電極力供給開始、電力供給停止、発電量、電力供給量の調節などの制御機能を有することがなお好ましい。これらの制御機能は、いずれかの発電装置が有していてもよいし、それぞれの発電装置が有していてもよい。 In the present invention, by combining with a power generation device (D) using natural energy such as a fuel cell device and a solar power generation device, a wind power generation device, a small hydroelectric power generation device, stable power can be obtained for a longer time, Continuous measurement over a long time is possible. Moreover, it is preferable that the power generator using natural energy has a mechanism capable of charging the generated battery to the secondary battery. In addition, the above-mentioned chargeable mechanism monitors the power generated by other power generators including fuel cells and the voltage of the secondary battery, and starts the electrode power supply start of the generator, stops the power supply, adjusts the power generation amount, and the power supply amount. It is still preferable to have a control function such as These power generation devices may have these control functions, or each power generation device may have these control functions.
さらに好ましい実施様態においては、二次電池の電圧を監視し、発電装置(D)及び/又は燃料電池の電力供給開始、電力供給停止を制御する遠隔計測装置において自然エネルギーを利用する発電装置(D)の電力供給停止電圧の値を、燃料電池の発電停止電圧より高く設定することで、発電装置からの電力供給により二次電池に電力が充電され当該電池の電圧が上昇するとまず、燃料電池の発電停止電圧に達する。燃料電池が発電を行っていた場合、この電圧で燃料電池は運転を停止し、以後、自然エネルギーを利用する発電装置から電力が供給される。以降、自然エネルギーの供給不足など、何らかの理由で該発電装置からの供給電力が低下し、監視する二次電池の電圧が燃料電池の発電開始電圧に低下するまで、自然エネルギーを利用する発電装置からの電力が優先的に供給される。この間、燃料電池は発電を停止するので、当該発電装置の運転する割合が低くなり、燃料電池の燃料消費量を少なくすることができ、長時間、安定的に電力を供給することが可能となる。電力供給停止電圧の設定は、いずれかの発電装置において可能であってもよい。より好ましくは、すべての発電装置が具備することが望ましい。図2に概念図を示す。 In a further preferred embodiment, a power generator (D) that uses natural energy in a remote measuring device that monitors the voltage of the secondary battery and controls the power supply start and stop of the power supply of the power generator (D) and / or fuel cell. When the value of the power supply stop voltage is set higher than the power generation stop voltage of the fuel cell, when the secondary battery is charged with the power supplied from the power generator and the voltage of the battery rises, Power generation stop voltage is reached. When the fuel cell is generating power, the fuel cell stops operating at this voltage, and thereafter, power is supplied from the power generation device that uses natural energy. Thereafter, the supply power from the power generation device decreases for some reason, such as a shortage of supply of natural energy, and the power generation device that uses natural energy until the voltage of the secondary battery to be monitored decreases to the power generation start voltage of the fuel cell. Is preferentially supplied. During this time, since the fuel cell stops generating power, the operating ratio of the power generation device is reduced, the fuel consumption of the fuel cell can be reduced, and power can be supplied stably for a long time. . The setting of the power supply stop voltage may be possible in any power generation device. More preferably, it is desirable that all the power generators are provided. FIG. 2 shows a conceptual diagram.
また、より好ましい実施様態においては、二次電池に鉛蓄電池を用いた場合、自然エネルギーを利用する発電装置の電力供給停止電圧を鉛蓄電池の充電終了電圧の85%以上98%未満に設定することで、充電終了時にみられる鉛蓄電池の電極における水素の発生を抑制することができ、計測装置の安全性が向上する。さらに、リチウムイオン電池を用いる場合は、充電終了電圧付近の電圧制御が難しく、たとえば、負荷の急激な変動により充電電圧が充電終了電圧をこえてしまうことがある。この場合、リチウムイオン電池の寿命を縮めるだけでなく、電池の故障や破損を招くことがある。自然エネルギーを利用する発電装置の電力供給停止電圧を低く設定することで、リチウムイオン電池へのダメージを押さえることができ、電池が安定して動作することが期待できる。 In a more preferred embodiment, when a lead storage battery is used as the secondary battery, the power supply stop voltage of the power generator using natural energy is set to 85% or more and less than 98% of the charge end voltage of the lead storage battery. Thus, generation of hydrogen at the electrode of the lead storage battery seen at the end of charging can be suppressed, and the safety of the measuring device is improved. Furthermore, when a lithium ion battery is used, it is difficult to control the voltage in the vicinity of the charge end voltage, and for example, the charge voltage may exceed the charge end voltage due to a sudden change in load. In this case, not only the life of the lithium ion battery is shortened, but the battery may be broken or damaged. By setting the power supply stop voltage of the power generator using natural energy low, damage to the lithium ion battery can be suppressed, and the battery can be expected to operate stably.
リチウムイオン電池の最大電圧は一例をあげると、セルあたり4.1Vに設定されることが多い。最大電圧が4.1Vに設定されている、該セルを4系統直列に接続して構成された電池の場合、16.4Vが許容される最大電圧であり、13.94Vが85%に、16.072Vが98%に相当する。同様に、該セルを7系統直列に接続して構成された電池の場合、28.7Vが許容される最大電圧で、24.395Vが85%に、28.126Vが98%に相当する。さらに、該セルを14系統直列に接続して構成された電池の場合、57.4Vが許容される最大電圧で、48.79Vが85%に、56.252Vが98%に相当する。それぞれの電池において適切な電力供給停止電圧を設定することで、過大な電圧を印加すること、および印加によって発生する障害を回避することができる。また、
最大電圧はそれぞれの電池によって適正値があるので、同様な手順で具体的な電圧を設定することが好ましい。
For example, the maximum voltage of a lithium ion battery is often set to 4.1 V per cell. In the case of a battery configured by connecting the four cells in series, the maximum voltage being set to 4.1V, 16.4V is the maximum allowable voltage, 13.94V is 85%, .072V corresponds to 98%. Similarly, in the case of a battery configured by connecting seven cells in series, 28.7V is the maximum allowable voltage, with 24.395V corresponding to 85% and 28.126V corresponding to 98%. Furthermore, in the case of a battery configured by connecting the cells in series in 14 systems, 48.79V corresponds to 85% and 56.252V corresponds to 98%, with 57.4V being the maximum allowable voltage. By setting an appropriate power supply stop voltage in each battery, it is possible to apply an excessive voltage and avoid a failure caused by the application. Also,
Since the maximum voltage has an appropriate value for each battery, it is preferable to set a specific voltage in the same procedure.
前記、感知装置、計測装置、統合装置、伝送装置、電源装置は、それぞれ電気的に接続されているが、屋外で使用することから天候の変化に対応出来ることがのぞましい。さらに望ましくは一時的に雷に対応出来ることがのぞましい。電灯線は配線の何れか片側が大地に対して接地されているので、接続される機器も通常、何れか片側が接地された状態になっている。このような場合に落雷の影響を受けると配線の片側に雷による誘導電圧が発生し、装置に悪影響を及ぼし、装置が故障することがある。本発明においては、それぞれの装置の配線を大地に対して絶縁することで、配線の正極、負極ともにほぼ等電位の誘導電圧が発生する。このような配線にすることで両極の電位が打ち消しあって、電位差は装置が故障するような電位差を発生しないので、装置が落雷から保護することができる。さらに望ましい使用形態としては、正極、負極の平衡を保つように配線し、装置間の配線は地中に埋設し、地中と配線は十分に絶縁することで地表に誘導される誘導電位の影響を受けにくくすることができる。さらに前記伝送装置に装置外部に設置可能な外部空中線を利用することで、電波強度が弱いエリアにおいても空中線で十分な利得を得ることが可能となり、安定した使用が可能となるが、空中線には一般に突起部分が存在し、誘導雷の影響を受け易くなる。装置配線の一部に避雷装置を具備することで、空中線部分を含む装置全体の電位を装置が耐えられる電位未満にすることができる。避雷装置は一ヶ所に設置されていればその効果を発揮するが、より望ましくは、二ヶ所以上に設置することで、電位が高い状態になっている時間を短くすることができ、装置の耐雷性を上げることができる。 The sensing device, measurement device, integration device, transmission device, and power supply device are electrically connected to each other. However, since they are used outdoors, it is preferable that they can cope with changes in weather. Furthermore, it is desirable to be able to cope with lightning temporarily. Since one side of the electric wire is grounded with respect to the ground, the connected device is usually in a state where one side is grounded. In such a case, when lightning strikes, an induced voltage is generated on one side of the wiring, which may adversely affect the device and cause the device to fail. In the present invention, the wiring of each device is insulated from the ground, so that an induction voltage having substantially the same potential is generated at both the positive and negative electrodes of the wiring. By using such a wiring, the potentials of both electrodes cancel each other, and the potential difference does not generate a potential difference that causes the device to fail, so that the device can be protected from lightning. As a more desirable usage pattern, wiring is performed so that the positive and negative electrodes are balanced, the wiring between the devices is buried in the ground, and the ground and the wiring are sufficiently insulated to influence the induced potential induced on the ground surface. It can be made difficult to receive. Furthermore, by using an external antenna that can be installed outside the transmission device, a sufficient gain can be obtained with the antenna even in an area where the radio field intensity is weak, and stable use is possible. In general, there is a protruding portion and it is easily affected by induced lightning. By providing the lightning protection device in a part of the device wiring, the potential of the entire device including the antenna portion can be made lower than the potential that the device can withstand. The lightning arrester is effective when installed at one location, but more desirably, it can be installed at two or more locations to reduce the time during which the potential is high, and the lightning protection of the device. Can raise the sex.
前記、感知装置、計測装置、統合装置、伝送装置と電源装置は、計測対象や設置場所に応じて適切に設置されることがのぞましい。同じ場所に設置されることもあるが、計測対象や設置場所によっては感知装置、計測装置、統合装置、伝送装置と電源装置は同じ場所に以外に設置されることがある。このような場合、感知装置、計測装置、統合装置、伝送装置と電源装置は、電気配線で結ばれるが、電気配線の断面積が小さかったり、配線距離が長かったりして配線の電気抵抗値が大きくなると、電源装置の出力電圧が規定の電圧値であっても、配線内での電圧低下が大きくなり、感知装置、計測装置、統合装置、伝送装置の入力電圧は規定の電圧値に達しないことがある。望ましい使用形態として、電圧安定化機能を具備する装置、該(A)〜(C)の装置の動作電圧に調整する機能を有する装置、該(A)〜(C)の装置の動作電圧が交流の場合は、電源装置の供給電圧を交流に変換する装置を該(A)〜(C)の装置と電源装置の間に接続する。より望ましくは、電圧安定化機能を具備する装置、該(A)〜(C)の装置の動作電圧に調整する機能を有する装置、該(A)〜(C)の装置の動作電圧が交流の場合は、電源装置の供給電圧を交流に変換する装置を該(A)〜(C)と同じ場所に設置するのが望ましい。この使用形態により、該(A)から(C)の装置の動作に必要な電源電圧を供給することができる。 It is preferable that the sensing device, the measurement device, the integration device, the transmission device, and the power supply device are appropriately installed according to the measurement target and the installation location. Although it may be installed in the same place, the sensing device, the measurement device, the integration device, the transmission device, and the power supply device may be installed in a place other than the same location depending on the measurement object and the installation location. In such a case, the sensing device, measurement device, integration device, transmission device and power supply device are connected by electrical wiring, but the electrical resistance value of the wiring is reduced due to the small cross-sectional area of the electrical wiring or the long wiring distance. When the power supply voltage increases, the voltage drop in the wiring increases even if the output voltage of the power supply device is the specified voltage value, and the input voltage of the sensing device, measuring device, integrated device, and transmission device does not reach the specified voltage value. Sometimes. Desirable modes of use include a device having a voltage stabilizing function, a device having a function of adjusting the operating voltage of the devices (A) to (C), and an operating voltage of the devices (A) to (C) being AC. In this case, a device for converting the supply voltage of the power supply device into an alternating current is connected between the devices (A) to (C) and the power supply device. More preferably, a device having a voltage stabilizing function, a device having a function of adjusting the operating voltage of the devices (A) to (C), and an operating voltage of the devices (A) to (C) are AC. In this case, it is desirable to install a device that converts the supply voltage of the power supply device into an alternating current at the same location as (A) to (C). According to this usage pattern, a power supply voltage necessary for the operation of the devices (A) to (C) can be supplied.
以下、本発明について実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されることはない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples.
(実施例1)
ダイレクトメタノール型燃料電池として、SFC社製のEFOY1600JP(発電量65W)を用い、古河電池社製鉛蓄電池EB65(12V、65Ah)と接続し、合計消費電力58Wの歪み計測センサ、カラービデオカメラ、水位計、雨量計、伸縮センサ、電源電圧計にデータ統合装置とデータ伝送装置を接続し、データ統合装置に二次電池電圧が11.5V以下になるとショートメッセージを携帯電話に発信する機能をもたせ、地面の変位、雨量、水位の変位を計測でき、電源電圧の監視が可能な遠隔計測装置を構築した。濃度90%、80Lのメタノール燃料を使用し、24時間/日の連続計測をおこなったところ、約58日間の連続計測を行うことができた。58日目に燃料不足による電圧低下が発生し、あらかじめ設定していた電圧低下のパターンの一つである基準電圧以下になったことで、ショートメッセージが送信され、燃料補給を行うことで計測を継続することができた。
Example 1
As direct methanol fuel cell, SFC EFOY1600JP (power generation 65W) is connected to Furukawa Battery lead storage battery EB65 (12V, 65Ah), total power consumption 58W distortion measurement sensor, color video camera, water level Connect the data integration device and data transmission device to the gauge, rain gauge, expansion / contraction sensor, power supply voltmeter, and have the function to send a short message to the mobile phone when the secondary battery voltage becomes 11.5V or less, A remote measuring device that can measure ground displacement, rainfall, and water level displacement and monitor power supply voltage has been constructed. When continuous measurement was performed for 24 hours / day using a methanol fuel having a concentration of 90% and 80 L, continuous measurement for about 58 days could be performed. A voltage drop due to fuel shortage occurred on the 58th day, and when the voltage fell below the reference voltage, which is one of the preset voltage drop patterns, a short message was sent, and fuel was refilled for measurement. I was able to continue.
(比較例1)
実施例1において、ダイレクトメタノール型燃料電池および、電源電圧監視機能を使用せず、実施例1に記載の鉛蓄電池のみで遠隔計測装置を構成し、計測を行ったところ、約0.5日しか動作させることができなかった。また、鉛蓄電池を古河電池製鉛蓄電池EB160(160Ah)3台に代えて同様の計測を行ったが、約4日しか動作させることができなかった。また、電圧低下による警告が送信されなかったので、計測も中断してしまった。このことからダイレクトメタノール型燃料電池を発電装置とショートメッセージ発信機能を使用すると長時間かつ安定的して、継続的に遠隔計測装置による計測を行えることがわかる。
(Comparative Example 1)
In Example 1, the direct methanol fuel cell and the power supply voltage monitoring function were not used, and the remote measurement device was configured with only the lead storage battery described in Example 1, and the measurement was performed. Could not work. Moreover, although the lead battery was replaced with three lead storage batteries EB160 (160Ah) manufactured by Furukawa Battery, the same measurement was performed, but it could only be operated for about 4 days. In addition, since the warning due to the voltage drop was not transmitted, the measurement was interrupted. From this, it can be seen that when a direct methanol fuel cell is used with a power generation device and a short message transmission function, measurement by a remote measurement device can be performed continuously for a long time and stably.
(実施例2)
実施例1の遠隔計測装置に発電量1kWの太陽光発電装置を接続し、二次電池としてGWLPOWER社のWBL―LYP60AHAを4個直列に接続した。太陽光発電装置の電力供給停止電圧を14.8Vに設定し、燃料電池の充電開始電圧を12V、発電停止電圧を13Vに設定し、データ統合装置に二次電池電圧が11.5V以下になるとショートメッセージを携帯電話に発信する機能を有効にして、冬期に北陸地方の山間部で動作試験を行ったところ、昼間で晴天であれば、日照が十分に得られ、太陽電池のみの発電が可能であったが、日照が少なくまた積雪により太陽発電装置が使用できないときの発電量は、急激に低下した。二次電池の電圧が燃料電池の発電開始電圧に低下したとき、燃料電池が発電を開始し当該装置の発電電力により補えたため、約91日間の連続計測を行うことが可能であった。また、燃料電池の発電により、電源電圧は低下しなかったので警告が送信されず、計測が継続されていることが遠隔地でも確認出来た。
(Example 2)
A solar power generation device with a power generation amount of 1 kW was connected to the remote measurement device of Example 1, and four WBL-LYP60AHA of GWLPOWER were connected in series as secondary batteries. When the power supply stop voltage of the solar power generation device is set to 14.8V, the charge start voltage of the fuel cell is set to 12V, the power generation stop voltage is set to 13V, and the secondary battery voltage is 11.5V or less in the data integration device When the function to send a short message to a mobile phone was enabled and an operation test was conducted in the mountainous area of the Hokuriku region in winter, sufficient sunlight was obtained in the daytime and it was possible to generate electricity using only solar cells. However, the amount of power generated when there was little sunshine and when the solar power generation system could not be used due to snow accumulation dropped sharply. When the voltage of the secondary battery dropped to the power generation start voltage of the fuel cell, the fuel cell started power generation and compensated with the generated power of the device, so that continuous measurement for about 91 days was possible. Moreover, since the power supply voltage did not decrease due to the power generation of the fuel cell, no warning was sent and it was confirmed that the measurement was continued even in a remote place.
(比較例2)
比較例1の蓄電池を増強した遠隔計測装置に発電量1kWの太陽光発電装置を接続した。また、ショートメッセージを携帯電話に送信する機能を有効にして、実施例2と同じ場所、同じ時期に試験を行ったところ、冬期に北陸地方の山間部で動作試験を行ったところ、冬期は日照が少なくまた積雪により太陽発電装置の発電量は、急激に低下したが、低下分を蓄電池で補ったため、蓄電池の残容量不足により、90日間に14回の蓄電池交換を実施することとなったが、電圧低下が発生し、ショートメッセージが携帯電話に送信されたため、燃料交換を行うことができ、計測の中断の中断は、交換時の10分のみであったため大勢には影響しなかった。
(Comparative Example 2)
A solar power generation device having a power generation amount of 1 kW was connected to the remote measurement device in which the storage battery of Comparative Example 1 was enhanced. In addition, when the function of transmitting a short message to a mobile phone was enabled and a test was performed at the same place and at the same time as in Example 2, an operation test was performed in the mountainous area of the Hokuriku region in winter. However, the amount of power generated by the solar power generation device decreased sharply due to snow accumulation. However, because the decrease was compensated for by the storage battery, the storage battery was replaced 14 times in 90 days due to the shortage of the remaining capacity of the storage battery. Since a voltage drop occurred and a short message was sent to the mobile phone, it was possible to change the fuel, and the interruption of the measurement was only 10 minutes at the time of the replacement, so it did not affect many people.
(実施例3)
実施例2の遠隔計測装置において太陽光発電装置の代わりに発電量200Wの風力発電装置5台を使用し、風力発電装置の電力供給停止電圧を14.8Vに設定し、燃料電池の充電開始電圧を12V、発電停止電圧を13Vに設定し、二次電池の電圧が11.5V以下になるとショートメッセ−ジが携帯電話に送信される機能を有効にして、山間部で動作試験を行ったところ、約34日間の連続計測が可能であり、34日目にショートメッセージが携帯電話に送信された。
(Example 3)
In the remote measurement device of the second embodiment, five wind power generators with a power generation amount of 200 W are used instead of the solar power generator, the power supply stop voltage of the wind power generator is set to 14.8 V, and the charging start voltage of the fuel cell is set. Is set to 12V, the power generation stop voltage is set to 13V, and when the voltage of the secondary battery becomes 11.5V or less, the function that the short message is transmitted to the mobile phone is validated, and the operation test is conducted in the mountain area. , Continuous measurement for about 34 days was possible, and on the 34th day a short message was sent to the mobile phone.
(比較例3)
比較例1の蓄電池を増強した遠隔計測装置に発電量200Wの風力発電装置を5台使用して接続した。山間部で試験を行ったところ、90日間で20回分の警告ショートメールが送信され、蓄電池交換が必要となった。
(Comparative Example 3)
The remote measuring device with the enhanced storage battery of Comparative Example 1 was connected using five wind power generators with a power generation amount of 200 W. When a test was conducted in a mountainous area, 20 short warning emails were sent in 90 days, and it was necessary to replace the storage battery.
(実施例4)
実施例2の遠隔計測装置において、太陽光発電装置のかわりに発電量1kWの超小型水力発電装置を使用し、超小型発電装置の電力供給停止電圧を14.8Vに設定し、燃料電池の充電開始電圧を12V、発電停止電圧を13Vに設定し、二次電池の電圧が11.5V以下になるとショートメッセ−ジが携帯電話に送信される機能を有効にして、冬期の山間部で動作試験を行ったところ、凍結による発電の停止が発生したが、燃料電池がその間発電を行い、この間に凍結が解凍され、水力発電が回復したため、95日間の連続計測が行えた。この間は、二次電池電圧が11.5V以下にならなかったために、警報ショートメールは送信されず、計測が継続出来ていることが遠隔地で確認出来ていた。
Example 4
In the remote measurement device of the second embodiment, instead of the solar power generation device, a micro hydroelectric power generation device with a power generation amount of 1 kW is used, the power supply stop voltage of the micro power generation device is set to 14.8 V, and the fuel cell is charged. The start voltage is set to 12V, the power generation stop voltage is set to 13V, and when the secondary battery voltage becomes 11.5V or less, the function to send a short message to the mobile phone is enabled, and the operation test is conducted in the mountainous area in winter. As a result, the power generation was stopped due to freezing, but the fuel cell generated power during that time, and during this time, the freezing was thawed and the hydroelectric power was restored, allowing continuous measurement for 95 days. During this time, since the secondary battery voltage did not become 11.5 V or less, the alarm short mail was not transmitted, and it was confirmed in a remote place that the measurement could be continued.
(比較例4)
比較例1の蓄電池を増強した遠隔計測装置に発電量1kWの超小型水量発電装置を使用し、冬期の山間部で動作試験を行ったところ、16日目に凍結が発生した。この際、蓄電池の電力により計測が続行できたが、蓄電池の持続期間3日以内に解凍しなかったため、電源装置の電圧低下が連続計測時間は19日間となった。19日目に警報ショートメッセージが送信され計測自体は継続することができた。
(Comparative Example 4)
When an ultra-small water amount power generation device with a power generation amount of 1 kW was used for the remote measurement device with the enhanced storage battery of Comparative Example 1 and an operation test was conducted in a mountainous area in winter, freezing occurred on the 16th day. At this time, the measurement could be continued by the power of the storage battery, but the battery was not thawed within 3 days of the duration of the storage battery. The alarm short message was sent on the 19th day and the measurement itself could be continued.
(実施例5)
実施例1の遠隔計測装置において機器間を平衡が保てるように配線し、高電圧実験室内で、雷インパルス耐電圧試験装置を使用し当該計測装置にインパルス電圧を印加したところ、当該装置および配線には、フラッシオーバー(絶縁破壊)は発生しておらず、インパルス電圧印加後も装置の運転を継続することができた。
(Example 5)
In the telemetry device of Example 1, wiring was performed so that the balance between the devices was maintained, and when an impulse voltage was applied to the measurement device using a lightning impulse withstand voltage test device in a high-voltage laboratory, the device and wiring were connected. No flashover (dielectric breakdown) occurred, and the operation of the device could be continued even after the impulse voltage was applied.
(比較例5)
実施例5の遠隔計測装置の代わりに、ほぼ同じ形状、ほぼ同じ素材を使用して模型を作製し、配線の負極側を接地した状態にし、高電圧実験室内で、雷インパルス耐電圧試験装置を使用し当該計測装置にインパルス電圧を印加したところ、当該装置および配線にフラッシオーバー(絶縁破壊)が発生し、装置が故障した状態になった。
(Comparative Example 5)
Instead of the telemetry device of Example 5, a model is made using substantially the same shape and material, and the negative electrode side of the wiring is grounded, and a lightning impulse withstand voltage test device is installed in a high voltage laboratory. When an impulse voltage was applied to the measurement device in use, a flashover (insulation breakdown) occurred in the device and wiring, resulting in a failure of the device.
(実施例6)
実施例1の遠隔計測装置において機器間の負極側を接地し、避雷装置として富士電機製CN5D1D-Fを接続し、高電圧実験室内で、雷インパルス耐電圧試験装置を使用し当該計測装置にインパルス電圧を印加したところ、当該装置および配線には、フラッシオーバー(絶縁破壊)は発生しておらず、インパルス電圧印加後も装置の運転を継続することができた。
(Example 6)
In the remote measurement device of Example 1, the negative electrode side between the devices is grounded, and Fuji Electric CN5D1D-F is connected as a lightning arrester. When a voltage was applied, no flashover (dielectric breakdown) occurred in the device and wiring, and the device could continue to operate even after the impulse voltage was applied.
(比較例6)
実施例6の遠隔計測装置に装置の代わりに、ほぼ同じ形状、ほぼ同じ素材を使用して模型を作製し、配線の負極側を接地し、避雷装置を外した状態にして高電圧実験室内で、雷インパルス耐電圧試験装置を使用し当該計測装置にインパルス電圧を印加したところ、当該装置および配線にフラッシオーバー(絶縁破壊)が発生し、装置が故障した状態になった。
(Comparative Example 6)
In the high-voltage laboratory, a model is produced using the same shape and the same material for the telemetry device of Example 6 with the same shape and material, grounded on the negative electrode side of the wiring, and with the lightning arrester removed. When an impulse voltage was applied to the measurement device using a lightning impulse withstand voltage test device, a flashover (insulation breakdown) occurred in the device and wiring, resulting in a failure of the device.
(実施例7)
実施例1の遠隔計測装置において電源装置に計測装置としてMOBOTIX社製M15カメラを接続し、電源装置と計測装置を20m離れた所に設置し、5mmφの電源ケーブルを接続し、計測装置内に出力12V用の電圧安定化装置を組込んで計測を行ったところ、計測装置には入力12Vが安定して供給され30日間連続計測を行うことができた。
(Example 7)
In the remote measurement device of Example 1, the M15 camera manufactured by MOBOTIX is connected as a measurement device to the power supply device, the power supply device and the measurement device are installed at a distance of 20 m, a 5 mmφ power cable is connected, and output into the measurement device When measurement was carried out by incorporating a voltage stabilizing device for 12V, the measurement device was stably supplied with 12V input, and continuous measurement was possible for 30 days.
(比較例7)
実施例7の遠隔計測装置において電源装置に計測装置としてMOBOTIX社製M15カメラを接続し、電源装置と計測装置を20m離れた所に設置し、5mmφの電源ケーブルを直接接続したところ、電源装置の出力電圧は12Vであったが配線内で1Vの電圧降下が発生し計測装置入力電圧は11Vとなり、計測開始直後からデータの欠落や装置の停止などが発生し、連続計測を行うことが出来なかった。
(Comparative Example 7)
In the remote measurement device of Example 7, an M15 camera manufactured by MOBOTIX was connected as a measurement device to the power supply device, the power supply device and the measurement device were installed at a distance of 20 m, and a power cable of 5 mmφ was directly connected. Although the output voltage was 12V, a voltage drop of 1V occurred in the wiring and the measuring device input voltage became 11V. Data was lost or the device stopped immediately after the start of measurement, and continuous measurement could not be performed. It was.
本発明の懸隔計測装置は、蓄電池の交換等の保守作業を大幅に低減して、長時間、安定的に連続計測を行うことが可能であり、信頼性の高い遠隔係争装置を提供することができる。 The suspension measuring device of the present invention can greatly reduce maintenance work such as replacement of a storage battery, can perform continuous measurement stably for a long time, and can provide a highly reliable remote dispute device. it can.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014091058A JP2015211522A (en) | 2014-04-25 | 2014-04-25 | Remote measurement apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014091058A JP2015211522A (en) | 2014-04-25 | 2014-04-25 | Remote measurement apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015211522A true JP2015211522A (en) | 2015-11-24 |
Family
ID=54613372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014091058A Pending JP2015211522A (en) | 2014-04-25 | 2014-04-25 | Remote measurement apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015211522A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018181731A1 (en) * | 2017-03-29 | 2020-05-28 | 京セラ株式会社 | Energy management method, energy management device, and energy management system |
-
2014
- 2014-04-25 JP JP2014091058A patent/JP2015211522A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018181731A1 (en) * | 2017-03-29 | 2020-05-28 | 京セラ株式会社 | Energy management method, energy management device, and energy management system |
JP7141386B2 (en) | 2017-03-29 | 2022-09-22 | 京セラ株式会社 | Energy management method, energy management device and energy management system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101361761B1 (en) | uninterruptible power supply hybrid wireless camera system using solar | |
KR101824400B1 (en) | Method for Internal Power Saving and Control in power plants and System thereof | |
JP2007237823A (en) | Marine buoy | |
RU143216U1 (en) | SYSTEM OF POWER SUPPLY OF FLOATING MEANS OF NAVIGATION SUPPORT OF SHIPPING | |
KR101216704B1 (en) | Apparatuses of grid connecting for standalone solar power streetlight system and operating methods thereof | |
EP2869383B1 (en) | Large-capacity power storage device | |
US9548626B1 (en) | Stand-off charging for batteries | |
CN201393059Y (en) | Solar controller | |
JP6080290B2 (en) | Solar power system | |
JP6120098B2 (en) | Telemetry device | |
JP2015211522A (en) | Remote measurement apparatus | |
CN204794271U (en) | Control location communication system of container | |
KR20220131082A (en) | Distributed energy storage system for solar power plant and photovoltaic system using thereof | |
JP2015211521A (en) | Remote measurement apparatus | |
JP2014109532A (en) | Environmental measurement device | |
JP2014110720A (en) | Remote measurement apparatus | |
Fukushima et al. | Application of electric double layer capacitor and water level sensor to rice field monitoring system | |
CN201540624U (en) | Forest fire prevention remote monitoring system with solar energy and wind energy power supply | |
CN214587220U (en) | Ground disaster monitoring system | |
CN101841164B (en) | Grid-connected system | |
CN208986865U (en) | Suspension solar power system | |
CN210958224U (en) | Wind, light, diesel and storage integrated AC/DC off-grid micro-grid system | |
KR20180131666A (en) | Status monitoring apparatus to Solar cell apparatus and System Power Source | |
RU2486289C2 (en) | Device for cathodic protection with self-contained power supply | |
JP2014110200A (en) | Power supply device |