[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015206703A - Evaluation method of crosslinking degree of high molecule polymer - Google Patents

Evaluation method of crosslinking degree of high molecule polymer Download PDF

Info

Publication number
JP2015206703A
JP2015206703A JP2014087958A JP2014087958A JP2015206703A JP 2015206703 A JP2015206703 A JP 2015206703A JP 2014087958 A JP2014087958 A JP 2014087958A JP 2014087958 A JP2014087958 A JP 2014087958A JP 2015206703 A JP2015206703 A JP 2015206703A
Authority
JP
Japan
Prior art keywords
polymer
sample
heat
degree
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014087958A
Other languages
Japanese (ja)
Inventor
直明 北川
Naoaki Kitagawa
直明 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014087958A priority Critical patent/JP2015206703A/en
Publication of JP2015206703A publication Critical patent/JP2015206703A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method of crosslinking degree of high molecule polymer capable of safely and easily testing while eliminating a problem that long time is required.SOLUTION: The evaluation method of crosslinking degree of high molecule polymer uses a differential thermal scan calorimeter (DSC) to test a high molecule polymer sample the crosslinking degree of which is changed by subjecting to an irradiation treatment under plural conditions of radiation absorption dosage. After heating a sample of high molecule polymer from a room temperature up to 160°C, the sample is cooled down to the room temperature, and subsequently, heated again from the room temperature up to 160°C. At the second melting, the melting heat of endothermic peak is measured, and gel fraction of the high molecule polymer sample is measured. An analytical curve is obtained by plotting the relationship between the acquired melting heat and the gel fraction of the high molecule polymer sample.

Description

本発明は、電気製品に汎用的に使用される高分子ポリマーであるポリエチレンや、ポリプロピレンなどのポリオレフィン樹脂の架橋度を評価するため方法で、安全、且つ簡便に評価することができる新規な高分子ポリマーの架橋度の評価方法に関する。 The present invention is a method for evaluating the degree of cross-linking of polyolefin resins such as polyethylene and polypropylene, which are polymer polymers generally used in electrical products, and is a novel polymer that can be safely and simply evaluated. The present invention relates to a method for evaluating the degree of crosslinking of a polymer.

電気特性に優れ、且つ耐熱性、耐溶剤性にも優れるので、従来からポリエチレン、ポリプロピレンなどのポリオレフィン樹脂が電気製品等には、さまざまな用途で使用されている。これらの高分子ポリマーは一般的に電子線・ガンマ線照射による放射線架橋や架橋剤、カップリング剤、過酸化物などによる化学反応(架橋反応)で架橋させることができる。
ここで、高分子ポリマーを架橋させることで耐熱性や高温での機械的特性が大きく向上することが知られている。すなわち、この架橋反応の進行状況により高分子ポリマーの性能が大きく変化するため、高分子ポリマーの架橋度を精度よく評価することは重要である。
一般的に、高分子ポリマーの架橋度は「ゲル分率」という試験方法で評価する(非特許文献1参照)。この方法を、簡単に示す。まず、毒性を有する有機溶剤であるキシレンを110℃に加熱し、評価対象の高分子ポリマーの試料を24時間浸漬保持する。その後試料をキシレンから取り出し、温度100℃、真空度1.3kPa以下で24時間以上乾燥させる。
ここで、乾燥して得られた高分子ポリマー試料の質量M2を測定する。そしてキシレンに浸漬する前の高分子ポリマー試料の質量M1として、架橋度をM1とM2との比であるM2/M1×100を「ゲル分率(単位%)」として表す。すなわち、高分子ポリマーを有機溶剤(キシレン)に浸漬した時に、溶かされずに残存する部分をゲル(架橋部分はゲルとして残る)として、このゲル部分の質量と溶剤で溶かす前の質量との比(百分率)を「ゲル分率」として算出することで、架橋の進行の程度を評価することができる。
上記の「ゲル分率」の評価方法は、有害な劇物及び有機溶剤であるキシレンを使用しなければならないうえに、測定に2日以上の時間がかかるという問題があった。
Because of its excellent electrical characteristics and excellent heat resistance and solvent resistance, polyolefin resins such as polyethylene and polypropylene have been used in various applications for electrical products. These high molecular polymers can generally be crosslinked by radiation crosslinking by electron beam / gamma ray irradiation or chemical reaction (crosslinking reaction) with a crosslinking agent, a coupling agent, a peroxide or the like.
Here, it is known that heat resistance and mechanical properties at high temperatures are greatly improved by crosslinking a polymer. That is, since the performance of the polymer polymer changes greatly depending on the progress of the crosslinking reaction, it is important to accurately evaluate the degree of crosslinking of the polymer polymer.
In general, the degree of crosslinking of a polymer is evaluated by a test method called “gel fraction” (see Non-Patent Document 1). This method is briefly described. First, xylene, which is a toxic organic solvent, is heated to 110 ° C., and a polymer polymer sample to be evaluated is immersed for 24 hours. Thereafter, the sample is taken out from xylene and dried at a temperature of 100 ° C. and a vacuum degree of 1.3 kPa or less for 24 hours or more.
Here, the mass M2 of the polymer sample obtained by drying is measured. Then, as the mass M1 of the polymer sample before being immersed in xylene, M2 / M1 × 100, which is the ratio of M1 and M2, is expressed as “gel fraction (unit%)”. That is, when the polymer is immersed in an organic solvent (xylene), the portion that remains without being dissolved is a gel (the cross-linked portion remains as a gel), and the ratio of the mass of this gel portion to the mass before dissolving with the solvent ( By calculating “percentage” as “gel fraction”, the degree of progress of crosslinking can be evaluated.
The above-mentioned method for evaluating the “gel fraction” has a problem that a harmful deleterious substance and xylene which is an organic solvent must be used, and the measurement takes two days or more.

ゴム・プラスチック絶縁電線試験方法 JIS C 3005:2000 4.25 架橋度Rubber / plastic insulated wire test method JIS C 3005: 2000 4.25 Crosslinking degree

電気製品に汎用的に使用される高分子ポリマーの架橋度を測定する方法として、従来法であるJISに規定されているゲル分率の試験方法の抱える問題点を解消し、安全且つ簡便に試験することができる高分子ポリマーの架橋度の評価方法が望まれていた。 As a method for measuring the degree of cross-linking of high-molecular polymers that are generally used in electrical products, it eliminates the problems associated with the gel fraction test method defined in JIS, which is a conventional method, and is a safe and simple test. There has been a demand for a method for evaluating the degree of cross-linking of a high molecular polymer.

本発明が提供する高分子ポリマーの評価方法は、放射線で架橋させた高分子ポリマーの架橋度の評価方法であって、第1ステップ:放射線吸収線量を複数の条件に設定した放射線照射処理することにより架橋度を変えた高分子ポリマー試料を複数作製する、
第2ステップ:得られた高分子ポリマー試料を示差熱走査熱量計(DSC)を用いて、室温から160℃まで加熱させてから一旦室温まで冷却した後に、再度室温から160℃まで加熱し、この2回目の融解時の吸熱ピークの融解熱を測定する、
第3ステップ:第1ステップで得られた高分子ポリマー試料をJIS C 3005:2000 4.25 に規定されたゲル分率を測定する、
第4ステップ:第2ステップと第3ステップで得られた高分子ポリマー試料の融解熱とゲル分率の関係をプロットして検量線を作成する、
上記4ステップにより得られたゲル分率と融解熱の検量線を使用し、放射線架橋高分子ポリマーの架橋度を評価することを特徴とする高分子ポリマーの架橋度の評価方法が提供される。
The polymer polymer evaluation method provided by the present invention is a method for evaluating the degree of cross-linking of a polymer polymer cross-linked by radiation, and the first step is to perform a radiation irradiation treatment in which radiation absorbed doses are set in a plurality of conditions. Create multiple polymer samples with different degrees of cross-linking,
Second step: The obtained polymer sample was heated from room temperature to 160 ° C. using a differential thermal scanning calorimeter (DSC), then cooled to room temperature and then heated again from room temperature to 160 ° C. Measure the heat of fusion of the endothermic peak during the second melting,
Third step: The gel fraction defined in JIS C 3005: 2000 4.25 is measured on the polymer sample obtained in the first step.
Fourth step: Create a calibration curve by plotting the relationship between the heat of fusion of the polymer sample obtained in the second step and the third step and the gel fraction,
There is provided a method for evaluating the degree of crosslinking of a polymer, characterized in that the degree of crosslinking of the radiation-crosslinked polymer is evaluated using the calibration curve of gel fraction and heat of fusion obtained in the above four steps.

本発明によれば、電気製品で汎用的に使用される高分子ポリマーの架橋度を、安全かつ簡便に測定できる高分子ポリマーの架橋度の評価方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the evaluation method of the crosslinking degree of the high molecular polymer which can measure the crosslinking degree of the high molecular polymer generally used with an electrical product safely and simply is provided.

放射線吸収線量と融解熱量との関係Relationship between radiation absorbed dose and heat of fusion 融解熱量とゲル分率(架橋度)との関係Relationship between heat of fusion and gel fraction (degree of crosslinking)

本発明は、電子部品用途で、汎用的に使用されるポリエチレンやポリプロピレンなどの、従来から一般的に使用される高分子ポリマーの架橋度の測定方法であるゲル分率の前述した測定方法における問題点を解消するために、安全で且つ簡便に測定できる新規な高分子ポリマーの架橋度の評価方法を鋭意研究した。
その結果、汎用的に使用される示差熱走査熱量計(DSC)を用いて、測定対象の高分子ポリマーの結晶サイズと結晶の融解熱との相関関係と、従来法のJIS C 3005に規定された「ゲル分率」との相関関係が認められることから、従来法の「ゲル分率」に代わって示差熱捜査熱量計(DSC)の融解熱量測定により高分子ポリマーの架橋度を評価することができることを見出し、本発明を完成するに至った。
本発明のこのDSCを用いた高分子ポリマーの架橋度の評価方法についてその手順を具体的に説明する。
本発明の高分子ポリマーの架橋度の評価方法は第1から第4のステップで構成される。
すなわち、
(1)第1ステップは、放射線吸収線量を複数の条件に設定した放射線照射処理することにより架橋度を変えた高分子ポリマー試料を複数作製する。
(2)第2ステップは、第1ステップで得られた高分子ポリマー試料を示差熱走査熱量計(DSC)を用いて、室温から160℃まで加熱させてから一旦室温まで冷却した後に、再度室温から160℃まで加熱し、この2回目の融解時の吸熱ピークの融解熱を測定する。
(3)第3ステップは、第2ステップにて測定に使用した第1ステップで作製した高分子ポリマー試料について、JIS C 3005:2000 4.25 に規定されたゲル分率を測定する。
(4)第4ステップ:第2ステップと第3ステップで得られた高分子ポリマー試料の融解熱とゲル分率の関係をプロットして検量線を作成する。
以上の4ステップにより、高分子ポリマーの架橋度の検量線を作成し、以降は高分子ポリマーの架橋度を評価する場合には、示差熱走査熱量計(DSC)を用いる第2ステップの測定を行うのみで、この検量線を用いて架橋度を評価することができる。
次に、示差熱走査熱量計(DSC)について説明する。一般に、DSCは試料及び基準物質で構成される試料部の温度を、一定に変化させ、その試料と基準物質の温度差を測定する。そのとき試料の融解、ガラス転移、結晶化、硬化などの転移他、熱履歴を解析することで、比熱、純度など種々の測定が可能である。
DSC測定では、室温(たとえば20℃)から徐々に温度を上昇させていくと、ガラス転移温度になり放熱が起きる。さらに温度を上がると高分子ポリマーの融解が始まり、吸熱が起きる。さらに融点以上の温度160℃まで温度を上げて完全に溶融させたあとで、今度は室温まで温度を下げて、冷却していく。この降温過程で溶融していた高分子ポリマーが結晶化を始め、放熱し、再結晶化する。このときに高分子ポリマーの本来の配列の結晶が得られる。
再度、再結晶して得られた高分子ポリマーの試料を室温から融点以上の温度160℃まで上昇させる。その昇温過程で樹脂が再度、融解する。この時の吸熱量は、当該高分子ポリマー固有の融解熱を示すので、正確な架橋度を評価することができるわけである。ここで、結晶化する量が多いほど融解熱は大きく、また結晶サイズが大きいほど大きな融解熱を示す。逆に結晶サイズが小さいと融解熱は小さい。
この関係に注目して、高分子ポリマーの結晶サイズとその結晶の融解熱との相関関係が認められることが実験結果からわかり、高分子ポリマーの結晶サイズ、すなわち当該高分子ポリマーの架橋反応の進行度(架橋度)を知ることができるわけである。
一般に、架橋反応は高分子ポリマーの非結晶部で起こるため、融解後、非結晶部の架橋構造は保存される。このまま冷却すると結晶化時に架橋部による分子運動の制約により結晶は自由な成長ができず、その結果として、結晶サイズは融解前より小さくなり、融解熱も小さくなる。
よって、高分子ポリマーのDSC測定により得られた結晶サイズを架橋度と見なすことができ、この融解熱を測定することで結晶サイズが分り、放射線架橋する前の高分子ポリマー試料、複数の照射条件で放射線照射して架橋度の異なる試料において、融解熱を把握し、従来法のJIS C 3005に規定された「ゲル分率」との相関関係をプロットして検量線を作成することで、これ以降にはDSC測定により融解熱を測定するだけで高分子ポリマーの架橋度を評価することができる。
なお、放射線照射の方式としては、電子線、ガンマ線などの放射線照射方式でも本発明を適用することができることは判明している。
The present invention is a problem in the above-described measurement method of gel fraction, which is a method for measuring the degree of crosslinking of high-molecular polymers generally used in the past, such as polyethylene and polypropylene, which are generally used for electronic parts. In order to solve this problem, we have intensively studied a method for evaluating the degree of crosslinking of a novel polymer that can be measured safely and simply.
As a result, using a differential thermal scanning calorimeter (DSC) that is widely used, the correlation between the crystal size of the macromolecular polymer to be measured and the heat of fusion of the crystal is defined in JIS C 3005 of the conventional method. Since the correlation with the “gel fraction” is recognized, the degree of cross-linking of the high molecular weight polymer should be evaluated by the differential calorimetry calorimeter (DSC) instead of the conventional “gel fraction”. As a result, the present invention has been completed.
The procedure of the method for evaluating the degree of crosslinking of a polymer using the DSC of the present invention will be specifically described.
The method for evaluating the degree of crosslinking of the polymer of the present invention comprises the first to fourth steps.
That is,
(1) In the first step, a plurality of polymer samples having different degrees of crosslinking are produced by performing radiation irradiation treatment with radiation absorbed doses set to a plurality of conditions.
(2) In the second step, the polymer sample obtained in the first step is heated from room temperature to 160 ° C. using a differential thermal scanning calorimeter (DSC), then cooled to room temperature, and then room temperature is again measured. To 160 ° C., and the heat of fusion of the endothermic peak during the second melting is measured.
(3) In the third step, the gel fraction defined in JIS C 3005: 2000 4.25 is measured for the polymer sample prepared in the first step used in the measurement in the second step.
(4) Fourth step: A calibration curve is created by plotting the relationship between the heat of fusion of the polymer sample obtained in the second step and the third step and the gel fraction.
A calibration curve for the degree of cross-linking of the polymer is prepared by the above four steps, and thereafter, when the degree of cross-linking of the polymer is evaluated, the second step measurement using a differential thermal scanning calorimeter (DSC) is performed. It is possible to evaluate the degree of cross-linking only by carrying out this calibration curve.
Next, a differential thermal scanning calorimeter (DSC) will be described. In general, DSC changes the temperature of a sample portion composed of a sample and a reference material to a constant value, and measures the temperature difference between the sample and the reference material. At that time, various measurements such as specific heat and purity can be performed by analyzing the thermal history in addition to the melting, glass transition, crystallization, and hardening transition of the sample.
In DSC measurement, when the temperature is gradually increased from room temperature (for example, 20 ° C.), the glass transition temperature is reached and heat dissipation occurs. When the temperature is further increased, melting of the polymer polymer starts and endotherm occurs. Further, after the temperature is raised to 160 ° C. above the melting point and completely melted, the temperature is lowered to room temperature and then cooled. The polymer melted in the temperature lowering process begins to crystallize, dissipates heat, and recrystallizes. At this time, crystals of the original arrangement of the polymer are obtained.
Again, the polymer sample obtained by recrystallization is raised from room temperature to 160 ° C. above the melting point. The resin melts again during the temperature raising process. Since the endothermic amount at this time indicates the heat of fusion inherent in the polymer, the degree of cross-linking can be accurately evaluated. Here, the greater the amount of crystallization, the greater the heat of fusion, and the larger the crystal size, the greater the heat of fusion. Conversely, if the crystal size is small, the heat of fusion is small.
Paying attention to this relationship, the experimental results show that there is a correlation between the crystal size of the polymer and the heat of fusion of the crystal, and the crystal size of the polymer, that is, the progress of the crosslinking reaction of the polymer The degree (crosslinking degree) can be known.
In general, since the crosslinking reaction occurs in the non-crystalline part of the polymer, the cross-linked structure of the non-crystalline part is preserved after melting. If it is cooled as it is, the crystal cannot grow freely due to the restriction of molecular motion due to the cross-linking part at the time of crystallization. As a result, the crystal size becomes smaller than that before melting and the heat of fusion also becomes smaller.
Therefore, the crystal size obtained by DSC measurement of the polymer can be regarded as the degree of crosslinking. By measuring the heat of fusion, the crystal size can be determined and the polymer polymer sample before radiation crosslinking, and a plurality of irradiation conditions. In this method, the heat of fusion is obtained for samples with different degrees of cross-linking after irradiation, and a calibration curve is created by plotting the correlation with the “gel fraction” defined in JIS C 3005 of the conventional method. Thereafter, the degree of crosslinking of the polymer can be evaluated only by measuring the heat of fusion by DSC measurement.
It has been found that the present invention can be applied to radiation irradiation methods such as electron beams and gamma rays.

以下に実施例を用いて、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

測定試料として、融点135℃の高密度ポリエチレン(密度 960kg/m3)を使用した。この試料を、160℃の熱プレス機にて厚さ0.6mmのシート状に成形した。
(実験例1)
架橋は電子線を用いる放射線架橋を選択した。
電子線加速器は、株式会社NHXコーポレーション社製、EPS-3000を用いた。
放射線架橋条件として、加速電圧3000kV、電流20mAで1パスあたりの放射線吸収線量を30kGy程度として試料に複数回照射して、400kGy,1000kGy,2000kGy照射した。
得られた試料を、示差熱走査熱量計(DSC)マックサイエンス(株)社のDSC3100Sを用い、窒素雰囲気中で融解熱を3水準の照射試料と未照射の試料について測定した。試料は3×3mm程度の大きさに切断し、試料重量は約41mgであった。
測定温度条件は、1回目の加熱は20℃から160℃まで1℃/分の昇温速度で加熱した後に室温まで冷却して、2回目の加熱も室温から160℃までを1回目の同じ条件で加熱して、2回目の加熱時の融解熱を測定して、その試料の融解熱量とした。
上記のようにして得られた電子線照射試料の融解温度、融解熱は、400kGy照射試料(試料1)では、融解温度125.5℃、融解熱3.69cal/gであった。1000kGy照射試料(試料2)では、融解温度125.7℃、融解熱3.27cal/gであった。2000kGy照射試料(試料3)では、融解温度124.4℃、融解熱3.07cal/gであった。
(実験例2)
次に、放射線架橋として、Co60を線源として、ガンマ線を照射した。試料は、実験例1で使用した試料を同じ試料を使用して、同じ条件となるように400kGy,1000kGy,2000kGy照射した試料を得た。
DSC測定は、実験例1と同様にしてそれぞれの試料の溶融熱を測定した。
上記のようにして得られたγ線照射試料の融解温度、融解熱は、400kGy照射試料(試料4)では、融解温度125.3℃、融解熱3.48cal/gであった。1000kGy照射試料(試料5)では、溶融温度125.6℃、融解熱3.26cal/gであった。2000kGy照射試料(試料6)では、融解温度123.6℃、融解熱2.90cal/gであった。
また、未照射試料(試料7)では、融解温度132.7℃、融解熱5.20cal/gであった。
以上の結果を図1にまとめて示すと、電子線およびγ線による放射線吸収線量とDSC測定で得られた溶解熱量は、いずれの放射線でもほぼ同じ溶解熱量であり、また相関関係が認められた。



この結果から、高密度ポリエチレンに対して放射線照射の吸収線量の増加に伴って、高密度ポリエチレンの架橋反応が進行し、ポリエチレンの構造が絡み合い架橋度は増加し、架橋度の増加に比例して融解熱量が減少することが確認できる。
次に、実施例の試料1〜7で用いた高密度ポリエチレン試料をJIS C 3005準拠のゲル分率で架橋度を測定した。
試料を110℃の有機溶剤のキシレン中に24時間浸漬保持し、キシレンが揮発しないように容器に密閉して試料を保持した。24時間後に換気ができるドラフト設備がある場所で試料を取り出し、さらに真空乾燥器を用い、100℃、1.3kPa以下で24時間乾燥させた。乾燥後試料の質量M2を測定し、キシレンに浸漬する前の質量M1との比を算出して、ゲル分率(%)とした。
その結果、試料1はゲル・分率70%、試料2は92%、試料3は94%、試料4は86%、試料5は92%、試料6は98%、試料7は20%であった。
上記の「ゲル分率」の測定方法では、1試料測定するのに実質3日間を要した。以上の結果を、DSC測定による溶融熱量とゲル分率の関係を示すと、図2に示すように、相関関係が認められた。この高密度ポリエチレンを十分架橋を進めるためには、ゲル分率が90%以上となるためには、融解熱量が3.3cal/g以下である電子線照射量またはガンマ線照射量で1000kGy以上が必要であるということがわかる。
As a measurement sample, high-density polyethylene (density 960 kg / m 3 ) having a melting point of 135 ° C. was used. This sample was formed into a sheet having a thickness of 0.6 mm using a hot press at 160 ° C.
(Experimental example 1)
As the crosslinking, radiation crosslinking using an electron beam was selected.
As the electron beam accelerator, EPS-3000 manufactured by NHX Corporation was used.
As the radiation crosslinking conditions, the sample was irradiated several times with an acceleration voltage of 3000 kV, a current of 20 mA, and a radiation absorbed dose per pass of about 30 kGy, and irradiated with 400 kGy, 1000 kGy, and 2000 kGy.
Using the DSC3100S of the differential thermal scanning calorimeter (DSC) Mac Science Co., Ltd., the obtained sample was measured for the three levels of irradiated samples and unirradiated samples in a nitrogen atmosphere. The sample was cut into a size of about 3 × 3 mm, and the sample weight was about 41 mg.
The measurement temperature condition is that the first heating is from 20 ° C. to 160 ° C. at a heating rate of 1 ° C./min and then cooled to room temperature, and the second heating is the same as the first heating from room temperature to 160 ° C. And the heat of fusion at the second heating was measured and used as the heat of fusion of the sample.
The melting temperature and heat of fusion of the electron beam irradiated sample obtained as described above were 125.5 ° C. and heat of melting 3.69 cal / g for the 400 kGy irradiated sample (Sample 1). The 1000 kGy irradiated sample (Sample 2) had a melting temperature of 125.7 ° C. and a heat of fusion of 3.27 cal / g. The 2000 kGy irradiated sample (Sample 3) had a melting temperature of 124.4 ° C. and a heat of fusion of 3.07 cal / g.
(Experimental example 2)
Next, as radiation crosslinking, gamma rays were irradiated using Co60 as a radiation source. Samples obtained by irradiating 400 kGy, 1000 kGy, and 2000 kGy so as to satisfy the same conditions were obtained using the same sample as used in Experimental Example 1.
In DSC measurement, the heat of fusion of each sample was measured in the same manner as in Experimental Example 1.
The melting temperature and heat of fusion of the γ-irradiated sample obtained as described above were 125.3 ° C. and 3.48 cal / g of melting temperature for the 400 kGy irradiated sample (Sample 4). The 1000 kGy irradiated sample (Sample 5) had a melting temperature of 125.6 ° C. and a heat of fusion of 3.26 cal / g. The 2000 kGy irradiated sample (Sample 6) had a melting temperature of 123.6 ° C. and a heat of fusion of 2.90 cal / g.
The unirradiated sample (Sample 7) had a melting temperature of 132.7 ° C. and a heat of fusion of 5.20 cal / g.
When the above results are summarized in FIG. 1, the radiation absorbed dose by electron beam and γ-ray and the heat of dissolution obtained by DSC measurement are almost the same heat of dissolution for any radiation, and a correlation was recognized. .



From this result, the cross-linking reaction of high-density polyethylene proceeds with the increase in the absorbed dose of radiation irradiation to high-density polyethylene, the polyethylene structure is entangled and the degree of cross-linking increases, in proportion to the increase in the degree of cross-linking. It can be confirmed that the heat of fusion decreases.
Next, the degree of cross-linking of the high-density polyethylene samples used in Samples 1 to 7 of the Examples was measured with a gel fraction based on JIS C 3005.
The sample was immersed and held in xylene, an organic solvent at 110 ° C. for 24 hours, and the sample was held in a sealed container so that xylene did not volatilize. A sample was taken out in a place with a draft facility that can be ventilated after 24 hours, and further dried at 100 ° C. and 1.3 kPa or less using a vacuum dryer for 24 hours. After drying, the mass M2 of the sample was measured, and the ratio with the mass M1 before being immersed in xylene was calculated to obtain the gel fraction (%).
As a result, sample 1 had a gel fraction of 70%, sample 2 had 92%, sample 3 had 94%, sample 4 had 86%, sample 5 had 92%, sample 6 had 98%, and sample 7 had 20%. It was.
In the method of measuring the “gel fraction” described above, it took substantially 3 days to measure one sample. When the above results show the relationship between the heat of fusion measured by DSC measurement and the gel fraction, a correlation was recognized as shown in FIG. In order to sufficiently crosslink this high-density polyethylene, in order to achieve a gel fraction of 90% or more, an electron beam irradiation amount or a gamma ray irradiation amount of not more than 3.3 cal / g is required. It turns out that it is.

Claims (1)

放射線で架橋させた高分子ポリマーの架橋度の評価方法であって、
第1ステップ:放射線吸収線量を複数の条件に設定した放射線照射処理することにより架橋度を変えた高分子ポリマー試料を複数作製する、
第2ステップ:得られた高分子ポリマー試料を示差熱走査熱量計(DSC)を用いて、室温から160℃まで加熱させてから一旦室温まで冷却した後に、再度室温から160℃まで加熱し、この2回目の融解時の吸熱ピークの融解熱を測定する、
第3ステップ:第1ステップで得られた高分子ポリマー試料をJIS C 3005:2000 4.25 に規定されたゲル分率を測定する、
第4ステップ:第2ステップと第3ステップで得られた高分子ポリマー試料の融解熱とゲル分率の関係をプロットして検量線を作成する、
上記4ステップにより得られるゲル分率と融解熱の検量線を使用し、放射線架橋高分子ポリマーの架橋度を評価することを特徴とする高分子ポリマーの架橋度の評価方法。
A method for evaluating the degree of crosslinking of a polymer polymer crosslinked with radiation,
First step: Create multiple polymer samples with different degrees of cross-linking by performing radiation treatment with radiation absorbed dose set to multiple conditions.
Second step: The obtained polymer sample was heated from room temperature to 160 ° C. using a differential thermal scanning calorimeter (DSC), then cooled to room temperature and then heated again from room temperature to 160 ° C. Measure the heat of fusion of the endothermic peak during the second melting,
Third step: The gel fraction defined in JIS C 3005: 2000 4.25 is measured on the polymer sample obtained in the first step.
Fourth step: Create a calibration curve by plotting the relationship between the heat of fusion of the polymer sample obtained in the second step and the third step and the gel fraction,
A method for evaluating the degree of cross-linking of a polymer, characterized in that the degree of cross-linking of a radiation cross-linked polymer is evaluated using a calibration curve of gel fraction and heat of fusion obtained by the above four steps.
JP2014087958A 2014-04-22 2014-04-22 Evaluation method of crosslinking degree of high molecule polymer Pending JP2015206703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087958A JP2015206703A (en) 2014-04-22 2014-04-22 Evaluation method of crosslinking degree of high molecule polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087958A JP2015206703A (en) 2014-04-22 2014-04-22 Evaluation method of crosslinking degree of high molecule polymer

Publications (1)

Publication Number Publication Date
JP2015206703A true JP2015206703A (en) 2015-11-19

Family

ID=54603590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087958A Pending JP2015206703A (en) 2014-04-22 2014-04-22 Evaluation method of crosslinking degree of high molecule polymer

Country Status (1)

Country Link
JP (1) JP2015206703A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075253A (en) * 2021-03-08 2021-07-06 江苏斯尔邦石化有限公司 Method for detecting residual peroxide in polyolefin
CN113466288A (en) * 2021-07-09 2021-10-01 贵州茅台酒股份有限公司 Method for evaluating sorghum by using peak gelatinization temperature
CN114397324A (en) * 2021-12-27 2022-04-26 合聚高分子材料科技(广东)有限公司 Method for representing degradation degree of degradable polymer
JP7458272B2 (en) 2020-08-27 2024-03-29 旭化成株式会社 Analysis method for polyolefin stretched film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458272B2 (en) 2020-08-27 2024-03-29 旭化成株式会社 Analysis method for polyolefin stretched film
CN113075253A (en) * 2021-03-08 2021-07-06 江苏斯尔邦石化有限公司 Method for detecting residual peroxide in polyolefin
CN113466288A (en) * 2021-07-09 2021-10-01 贵州茅台酒股份有限公司 Method for evaluating sorghum by using peak gelatinization temperature
CN114397324A (en) * 2021-12-27 2022-04-26 合聚高分子材料科技(广东)有限公司 Method for representing degradation degree of degradable polymer

Similar Documents

Publication Publication Date Title
Hedir et al. Ultraviolet radiation aging impact on physicochemical properties of crosslinked polyethylene cable insulation
JP2015206703A (en) Evaluation method of crosslinking degree of high molecule polymer
JP2015224996A (en) Method for evaluating degree of crosslinking of polyethylene resin
Sharma et al. Effect of vinyl acetate content on the photovoltaic‐encapsulation performance of ethylene vinyl acetate under accelerated ultra‐violet aging
Raidt et al. Chemical cross‐linking of polypropylenes towards new shape memory polymers
Andersson et al. Dielectric strength of γ-radiation cross-linked, high vinyl-content polyethylene
JPH07118423A (en) Production of modified polytetrafluoroethylene
CN111886664B (en) Biaxially oriented polypropylene film, power capacitor, and related methods and systems of manufacture
TW584648B (en) Polyethylene heat shrinkable tube
Celette et al. Irradiation effects on the relaxation behaviour of EPDM elastomers
Kumar et al. Electron beam induced microstructural changes and electrical conductivity in Bakelite RPC detector material
Kotera et al. Rheological characterization on thermal degradation of ethylene-tetrafluoroethylene copolymer
JPH1149867A (en) Modified fluororesin and its production
Milicevic et al. Radiation-induced modification of dielectric relaxation spectra of polyolefins: polyethylenes vs. polypropylene
JP2015190847A (en) Evaluation method of crosslinking degree of macromolecular polymer
Stamboliev et al. A dielectric study of molecular relaxations in irradiated high density polyethylene
Sharma et al. Electron beam (EB) crosslinking of PVC insulation in presence of sensitiser additives
Zaharescu et al. Improvement of thermal stability of EPDM by radiation cross-linking for space applications
Stamboliev et al. Polyethylene crosslinked in different media: structural changes versus dielectric behaviour
Kim et al. Mechanisms and characterization of the pulsed electron-induced grafting of styrene onto poly (tetrafluoroethylene-co-hexafluoropropylene) to prepare a polymer electrolyte membrane
Nicolás et al. Thermal Properties and SSA Fractionation of Metallocene Ethylene‐Oct‐1‐ene Copolymers with High Comonomer Content Cross‐linked by Dicumyl Peroxide or β‐Radiation
Dintilhac et al. Tuning dielectric response of polyethylene by low gamma dose: Molecular mobility study improvement by dipolar probes implementation
Ferreto et al. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres
Vilaplana et al. Performance of crystallization analysis fractionation and preparative fractionation on the characterization of γ‐irradiated low‐density polyethylene
Ziaie et al. Dose rate effect on LDPE cross-linking induced by electron beam irradiation