[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015202998A - Garnet type oxide and production method thereof, and solid electrolyte for secondary battery and secondary battery using the same - Google Patents

Garnet type oxide and production method thereof, and solid electrolyte for secondary battery and secondary battery using the same Download PDF

Info

Publication number
JP2015202998A
JP2015202998A JP2014084773A JP2014084773A JP2015202998A JP 2015202998 A JP2015202998 A JP 2015202998A JP 2014084773 A JP2014084773 A JP 2014084773A JP 2014084773 A JP2014084773 A JP 2014084773A JP 2015202998 A JP2015202998 A JP 2015202998A
Authority
JP
Japan
Prior art keywords
garnet
type oxide
temperature
carbonate
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014084773A
Other languages
Japanese (ja)
Other versions
JP6341480B2 (en
Inventor
晶 小島
Akira Kojima
晶 小島
渡邊 渚
Nagisa Watanabe
渚 渡邊
下 俊久
Toshihisa Shimo
俊久 下
孝一 濱本
Koichi Hamamoto
孝一 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toyota Industries Corp
Priority to JP2014084773A priority Critical patent/JP6341480B2/en
Publication of JP2015202998A publication Critical patent/JP2015202998A/en
Application granted granted Critical
Publication of JP6341480B2 publication Critical patent/JP6341480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a garnet type oxide and a production method thereof which make it possible to produce a compact garnet type oxide, and a solid electrolyte for a secondary battery and a secondary battery which use the garnet type oxide.SOLUTION: A method of producing a garnet type oxide according to the present invention includes a burning step of heating a plurality of kinds of inorganic materials including carbonate, in a carbon dioxide gas atmosphere including carbon dioxide, up to a burning temperature and burning them.

Description

本発明は、ガーネット型酸化物及びその製造方法、並びにこれらを用いた二次電池用固体電解質及び二次電池に関する。   The present invention relates to a garnet-type oxide, a method for producing the same, a solid electrolyte for a secondary battery using the same, and a secondary battery.

ガーネット型結晶構造を有する酸化物(例えば、LiLaZr12)は、イオン伝導性を有し、耐水性及び耐候性等の化学的安定性に優れ、高電位及び低電位下で比較的分解しにくい等の電気的安定性に優れている。このため、ガーネット型酸化物は、二次電池用固体電解質として用いることが考えられている。 An oxide having a garnet-type crystal structure (for example, Li 7 La 3 Zr 2 O 12 ) has ionic conductivity, excellent chemical stability such as water resistance and weather resistance, and the like under high potential and low potential. Excellent electrical stability, such as being relatively difficult to decompose. For this reason, it is considered that the garnet type oxide is used as a solid electrolyte for a secondary battery.

ガーネット型酸化物の結晶構造は、大きく分けて、正方晶と立方晶とが存在する。このうち、立方晶の酸化物は、優れたイオン伝導性を有する。このような酸化物は、例えば、固相法(特許文献1及び2)並びにゾルゲル法(非特許文献1)等により製造される。   The crystal structure of the garnet-type oxide is roughly divided into tetragonal crystals and cubic crystals. Among these, cubic oxides have excellent ionic conductivity. Such an oxide is produced by, for example, a solid phase method (Patent Documents 1 and 2), a sol-gel method (Non-Patent Document 1), and the like.

特開2010−102929号公報JP 2010-102929 A 特開2011−51800号公報JP 2011-51800 A

Masaki Matsui, Tue-Al-09,19th,International Conference on Solid State ionics予稿集Masaki Matsui, Tue-Al-09, 19th, International Conference on Solid State ionics Proceedings

しかしながら、製造過程の熱処理を大気中で行っているため、原料に用いる炭酸塩から二酸化炭素が気化しやすい。気化したガスは、焼結体から抜けて、酸化物の緻密化を妨げている。   However, since the heat treatment in the production process is performed in the air, carbon dioxide is easily vaporized from the carbonate used as the raw material. The vaporized gas escapes from the sintered body and prevents the oxide from being densified.

本発明はかかる事情に鑑みてなされたものであり、緻密なガーネット型酸化物を製造することができるガーネット型酸化物の製造方法、ガーネット型酸化物、並びにこれを用いた二次電池用固体電解質及び二次電池を提供することを課題とする。   The present invention has been made in view of such circumstances, and a method for producing a garnet-type oxide capable of producing a dense garnet-type oxide, a garnet-type oxide, and a solid electrolyte for a secondary battery using the same. It is another object of the present invention to provide a secondary battery.

本発明のガーネット型酸化物の製造方法は、炭酸塩を含む複数種の無機材料を、二酸化炭素を含む二酸化炭素ガス雰囲気で本焼成温度に加熱して焼成する本焼成工程を有することを特徴とする。   The method for producing a garnet-type oxide according to the present invention includes a main baking step of baking a plurality of types of inorganic materials including carbonate by heating to a main baking temperature in a carbon dioxide gas atmosphere including carbon dioxide. To do.

本発明のガーネット型酸化物は、上記記載の製造方法により得られたものであることを特徴とする。   The garnet-type oxide of the present invention is obtained by the production method described above.

本発明の二次電池用固体電解質は、ガーネット型酸化物を有することを特徴とする。   The solid electrolyte for a secondary battery of the present invention is characterized by having a garnet oxide.

本発明の二次電池は、上記の二次電池用固体電解質と、正極と、負極とを備えることを特徴とする。   A secondary battery according to the present invention includes the above-described solid electrolyte for a secondary battery, a positive electrode, and a negative electrode.

本発明によれば、炭酸塩を有する無機材料を、二酸化炭素ガス雰囲気で焼成している。このため、緻密なガーネット型酸化物を製造することができる。   According to the present invention, an inorganic material having a carbonate is fired in a carbon dioxide gas atmosphere. For this reason, a dense garnet-type oxide can be produced.

試料1を作製するための焼成条件を示す説明図である。FIG. 5 is an explanatory diagram showing firing conditions for producing Sample 1. 試料1の焼結体のSEM(走査型電子顕微鏡)断面写真である。3 is a SEM (scanning electron microscope) cross-sectional photograph of a sintered body of Sample 1. 試料2を作製するための焼成条件を示す説明図である。FIG. 5 is an explanatory diagram showing firing conditions for producing Sample 2. 試料2の焼結体のSEM断面写真である。3 is a SEM cross-sectional photograph of a sintered body of Sample 2. 図5の上段は試料3の焼結体の平面図であり、図5の下段は試料3の焼結体のSEM写真である。The upper part of FIG. 5 is a plan view of the sintered body of sample 3, and the lower part of FIG. 試料4の焼結体のSEM写真である。4 is a SEM photograph of a sintered body of Sample 4. 試料5の焼結体のSEM写真である。4 is a SEM photograph of a sintered body of Sample 5. 試料6の焼結体のSEM写真である。4 is a SEM photograph of a sintered body of Sample 6.

本発明の実施形態に係るガーネット型酸化物の製造方法は、炭酸塩(LiCOなど)を含む無機材料を本焼成温度で加熱して焼成する本焼成工程を有する。炭酸塩を含む無機材料は、ガーネット型酸化物の原料である。本焼成工程では、無機材料を二酸化炭素ガス雰囲気で焼成している。炭酸塩の一例として、炭酸リチウムは、以下の式(1)、(2)により分解する。式(1)は、炭酸塩が分解される炭酸塩分解反応を例示しており、式(2)は金属酸化物が分解される酸化物分解反応を例示している。 Method of manufacturing a garnet-type oxide in accordance with an embodiment of the present invention has a main firing step of firing the inorganic material containing a carbonate (such as Li 2 CO 3) was heated at the sintering temperature. An inorganic material containing a carbonate is a raw material for a garnet-type oxide. In the main firing step, the inorganic material is fired in a carbon dioxide gas atmosphere. As an example of the carbonate, lithium carbonate is decomposed by the following formulas (1) and (2). Formula (1) illustrates the carbonate decomposition reaction in which the carbonate is decomposed, and Formula (2) illustrates the oxide decomposition reaction in which the metal oxide is decomposed.

LiCO → LiO +CO・・・(1)
LiO → 2Li +1/2O ・・・(2)
雰囲気に二酸化炭素ガス(CO)が存在すると、式(1)の右方向の反応の進行が抑制され、炭酸リチウムの分解が抑制される。炭酸リチウムから二酸化炭素ガスの生成が抑えられ、無機材料に二酸化炭素ガスの抜け出る気孔の生成が少なくなり、無機材料から緻密なガーネット型酸化物の焼結体を形成させることができる。
Li 2 CO 3 → Li 2 O + CO 2 (1)
Li 2 O → 2Li + 1 / 2O 2 (2)
When carbon dioxide gas (CO 2 ) is present in the atmosphere, the progress of the reaction in the right direction of formula (1) is suppressed, and the decomposition of lithium carbonate is suppressed. Generation of carbon dioxide gas from lithium carbonate is suppressed, generation of pores through which carbon dioxide gas escapes into the inorganic material is reduced, and a dense garnet-type oxide sintered body can be formed from the inorganic material.

本発明の本焼成工程では、二酸化炭素ガス雰囲気下で、炭酸塩を含む無機材料を本焼成温度で加熱して焼成する。本焼成工程の二酸化炭素ガス雰囲気は、二酸化炭素ガスを有する雰囲気である。前記二酸化炭素ガス雰囲気のガス全体を100体積%としたときに、前記二酸化炭素ガス雰囲気中での二酸化炭素ガスの濃度は10体積%以上100%体積以下であることがよく、30体積%以上80体積%以下であることが好ましく、50体積%以上70体積%以下であることが特に好ましい。二酸化炭素ガス濃度が薄すぎる場合には、式(1)で例示される炭酸塩分解反応の進行を抑えにくくなるおそれがある。   In the main firing step of the present invention, an inorganic material containing carbonate is heated and fired at the main firing temperature in a carbon dioxide gas atmosphere. The carbon dioxide gas atmosphere in the main firing step is an atmosphere containing carbon dioxide gas. When the total gas in the carbon dioxide gas atmosphere is 100% by volume, the concentration of carbon dioxide gas in the carbon dioxide gas atmosphere is preferably 10% by volume or more and 100% or less by volume, and 30% by volume or more and 80% by volume or less. The volume is preferably not more than volume%, particularly preferably not less than 50 volume% and not more than 70 volume%. When the carbon dioxide gas concentration is too thin, it may be difficult to suppress the progress of the carbonate decomposition reaction exemplified by the formula (1).

本焼成工程の二酸化炭素ガス雰囲気は、酸素の少ない雰囲気であることがよい。酸素が雰囲気に存すると、式(2)で例示される酸化物分解反応が進行しにくくなり、Liなどの金属が揮発しにくくなるからである。二酸化炭素ガス雰囲気中の酸素ガスの濃度は0体積%以上10体積%以下であることがよく、更に、8体積%以下であることが好ましく、5体積%以下であることが望ましい。   The carbon dioxide gas atmosphere in the main baking step is preferably an atmosphere with little oxygen. This is because, when oxygen is present in the atmosphere, the oxide decomposition reaction exemplified by the formula (2) does not proceed easily, and metals such as Li are difficult to volatilize. The concentration of oxygen gas in the carbon dioxide gas atmosphere is preferably 0% by volume or more and 10% by volume or less, more preferably 8% by volume or less, and preferably 5% by volume or less.

本焼成工程での二酸化炭素ガス雰囲気は、二酸化炭素ガスだけを含んでいてもよく、または、二酸化炭素ガス以外に、窒素ガス、アルゴンガスなどの不活性ガスを含んでいてもよい。   The carbon dioxide gas atmosphere in the main baking step may contain only carbon dioxide gas, or may contain an inert gas such as nitrogen gas or argon gas in addition to the carbon dioxide gas.

本焼成工程での本焼成温度は、固相反応によりガーネット型結晶構造を形成させ得る程度の温度であるとよい。炭酸塩の融点よりも高い本焼成温度で無機材料を焼成するとよい。炭酸塩の融点よりも高い本焼成温度で無機材料を焼成すると、炭酸塩が溶融して無機材料の表面で液相になり、無機材料の粒子同士が良好に接合して緻密な焼結体を得やすくなるからである。   The main baking temperature in the main baking step may be a temperature at which a garnet-type crystal structure can be formed by a solid phase reaction. The inorganic material may be fired at a main firing temperature higher than the melting point of the carbonate. When the inorganic material is fired at a main firing temperature higher than the melting point of the carbonate, the carbonate melts to become a liquid phase on the surface of the inorganic material, and the particles of the inorganic material are well bonded to form a dense sintered body. It is because it becomes easy to obtain.

一方で、本焼成温度を炭酸塩の融点よりも高い温度とすることにより、炭酸塩のエネルギー状態が高くなり、式(1)、(2)で例示される炭酸塩分解反応及び酸化物分解反応が進行し、CO、Oが生成し気孔が形成されやすくなる。しかし、この高温であっても、本焼成温度下での本焼成工程を二酸化炭素ガス雰囲気で行うことにより、炭酸塩分解反応の進行を効果的に抑制でき、CO生成の抑制及び気孔生成を抑制できる。また、炭酸塩の粒子表面が液相により被覆されて粒子内部でのCO分圧が増え、式(1)で例示される炭酸塩分解反応を抑え、CO発生を抑制する効果もある。また、炭酸塩分解反応に続く酸化物分解反応を抑えられ、O発生を抑制する効果もある。 On the other hand, by setting the main firing temperature to a temperature higher than the melting point of the carbonate, the energy state of the carbonate is increased, and the carbonate decomposition reaction and the oxide decomposition reaction exemplified by the formulas (1) and (2). Advances, and CO 2 and O 2 are generated and pores are easily formed. However, even at this high temperature, by performing the main baking step at the main baking temperature in a carbon dioxide gas atmosphere, the progress of the carbonate decomposition reaction can be effectively suppressed, and the suppression of CO 2 generation and pore generation can be suppressed. Can be suppressed. In addition, the carbonate particle surface is coated with a liquid phase to increase the CO 2 partial pressure inside the particle, thereby suppressing the carbonate decomposition reaction exemplified by the formula (1) and suppressing the generation of CO 2 . In addition, the oxide decomposition reaction subsequent to the carbonate decomposition reaction can be suppressed, and there is an effect of suppressing O 2 generation.

炭酸塩として炭酸リチウムを用いることがよい。炭酸リチウムの融点は、723℃である。炭酸塩として炭酸リチウムを用いる場合には、本焼成温度は、723℃よりも高い温度であるとよく、1100〜1300℃であることが更に望ましい。本焼成温度は、例えば724℃以上1400℃以下であることがよく、730℃以上1380℃以下であることが好ましく、750℃以上1350℃以下であることが望ましい。本焼成温度が炭酸リチウムの融点よりも低いと、炭酸リチウムが溶融せず、ガーネット型酸化物が生成しにくくなるおそれがある。本焼成温度が過剰に高いと、Liが揮発されやすくなり化合物の組成がずれるおそれがある。   Lithium carbonate is preferably used as the carbonate. The melting point of lithium carbonate is 723 ° C. When lithium carbonate is used as the carbonate, the main firing temperature is preferably higher than 723 ° C, and more preferably 1100 to 1300 ° C. The main firing temperature is, for example, preferably 724 ° C. or higher and 1400 ° C. or lower, preferably 730 ° C. or higher and 1380 ° C. or lower, and more preferably 750 ° C. or higher and 1350 ° C. or lower. When the main firing temperature is lower than the melting point of lithium carbonate, the lithium carbonate does not melt and it may be difficult to produce a garnet-type oxide. If the main calcination temperature is excessively high, Li is likely to be volatilized and the composition of the compound may be shifted.

本発明のガーネット型酸化物の製造方法により製造されたガーネット型酸化物を二次電池の固体電解質に用いる場合には、ガーネット型酸化物の原料としての炭酸塩は、電極に吸蔵及び放出される金属イオンの金属元素を含むことがよい。例えば、ガーネット型酸化物をリチウムイオン二次電池又はリチウム二次電池の固体電解質に用いる場合には、炭酸塩は、炭酸リチウムを含むことがよい。ガーネット型酸化物をナトリウムイオン二次電池又はナトリウム二次電池の固体電解質に用いる場合には、炭酸塩は炭酸ナトリウムを含むことがよく、ガーネット型酸化物をカルシウムイオン二次電池の固体電解質に用いる場合には、炭酸塩は炭酸カルシウムを含むことがよく、ガーネット型酸化物をマグネシウムイオン二次電池の固体電解質に用いる場合には、炭酸塩は炭酸マグネシウムを含むことがよく、い。   When the garnet-type oxide produced by the method for producing a garnet-type oxide of the present invention is used for a solid electrolyte of a secondary battery, the carbonate as the raw material of the garnet-type oxide is occluded and released by the electrode. It is preferable to include a metal element of a metal ion. For example, when a garnet-type oxide is used for a lithium ion secondary battery or a solid electrolyte of a lithium secondary battery, the carbonate may contain lithium carbonate. When a garnet type oxide is used for a solid electrolyte of a sodium ion secondary battery or a sodium secondary battery, the carbonate may contain sodium carbonate, and the garnet type oxide is used for a solid electrolyte of a calcium ion secondary battery. In some cases, the carbonate may contain calcium carbonate, and when the garnet-type oxide is used for the solid electrolyte of the magnesium ion secondary battery, the carbonate may contain magnesium carbonate.

本発明の本焼成工程では、二酸化炭素ガスの生成を抑制するために、比較的短い時間で無機材料を焼成するとよい。比較的短い時間で無機材料を焼成するには、高温で焼成するとよい。本焼成温度を高くするほど、本焼成温度での焼成時間を短くするとよい。   In the main firing step of the present invention, the inorganic material is preferably fired in a relatively short time in order to suppress the generation of carbon dioxide gas. In order to fire the inorganic material in a relatively short time, it may be fired at a high temperature. The higher the main baking temperature, the shorter the baking time at the main baking temperature.

本発明の本焼成工程において、無機材料を本焼成温度で焼成する焼成時間は、60分間以下がよく、更には、30分間以下が好ましく、5分間以下が望ましい。また、ガーネット型酸化物を確実に形成させるために、無機材料を本焼成温度で焼成する焼成時間は、1分間以上であることがよく、更に、3分間以上であることが好ましく、4分間以上であることが望ましい。   In the main baking step of the present invention, the baking time for baking the inorganic material at the main baking temperature is preferably 60 minutes or less, more preferably 30 minutes or less, and preferably 5 minutes or less. Further, in order to reliably form the garnet-type oxide, the firing time for firing the inorganic material at the main firing temperature is preferably 1 minute or longer, more preferably 3 minutes or longer, and preferably 4 minutes or longer. It is desirable that

前記本焼成温度と、前記本焼成温度での焼成時間との関係は、以下の化1に示すハッチングの範囲で示されることが好ましい。この場合には、緻密で、Liなどの金属の欠損が少ないガーネット型酸化物を良好に得ることができる。   The relationship between the main baking temperature and the baking time at the main baking temperature is preferably shown in the hatched range shown in Chemical Formula 1 below. In this case, a dense garnet oxide with few defects such as Li can be obtained.

また、本焼成温度まで上昇させる昇温速度は、5℃/分以上であることがよく、更には、5〜1350℃/分であることが好ましく、50℃/分以上であることが更に好ましく、100℃/分以上であることが最も望ましい。昇温速度が遅すぎる場合には、本焼成温度まで温度上昇させている間に、炭酸リチウムから二酸化炭素ガスが揮発し、焼結体に気孔が生成するおそれがある。   Further, the rate of temperature increase to the main firing temperature is preferably 5 ° C./min or more, more preferably 5 to 1350 ° C./min, and further preferably 50 ° C./min or more. Most preferably, it is 100 ° C./min or more. If the rate of temperature rise is too slow, carbon dioxide gas may volatilize from lithium carbonate while the temperature is raised to the main firing temperature, and pores may be generated in the sintered body.

無機材料を、本焼成温度よりも低い温度の雰囲気から、本焼成温度の雰囲気に移してもよいし、また、無機材料を本焼成温度よりも低い温度の雰囲気に入れた後に、徐々に雰囲気の温度を上昇させて本焼成温度に至らしめてもよい。   The inorganic material may be transferred from the atmosphere at a temperature lower than the main baking temperature to the atmosphere at the main baking temperature, or after the inorganic material is put into an atmosphere at a temperature lower than the main baking temperature, The temperature may be increased to reach the main firing temperature.

雰囲気の温度が炭酸塩の融点よりも高くなる前に二酸化炭素ガス雰囲気にするとよい。炭酸塩の融点よりも雰囲気の温度が高くなると、炭酸塩の表面が液相となる。液相の炭酸塩は、二酸化炭素ガスを含んでいない雰囲気では、式(1)の右反応に例示される炭酸塩分解反応が進行しやすくなる。そこで、炭酸塩が液相になる前の比較的低い温度のときから、無機材料の焼成を二酸化炭素ガス雰囲気で行って、炭酸塩が液相になる前から液相になったときまで、右反応を進行しにくくする。これにより、炭酸塩からの二酸化炭素ガス生成を抑制し、炭酸塩は異相として緻密な結晶構造を形成することができる。そのため、本焼成工程において、異相が析出することが好ましい。前記異相は、炭酸塩を有することが好ましい。本発明の固体電解質はガーネット型酸化物を主成分とし、粒子間に異相を含むことがよい。この異相が接着の役割となって焼結密度が高い固体電解質が形成される。本発明の固体電解質内の異相が主に炭酸塩からなることが好ましい。異相は、粒子とは異なる状態の相である。本焼成工程では、粒子中心部は固体状態を維持しているが、粒子表面が、液体状態となって、粒子間に異相が析出する。これにより、本焼成工程では炭酸ガス中で加熱することにより、粒子表面が液相となり液相焼結を促す。これにより粒子間が異相で繋がれるように殆ど空隙のない緻密なガーネット型酸化物の焼結体が生成される。   A carbon dioxide gas atmosphere is preferable before the temperature of the atmosphere becomes higher than the melting point of the carbonate. When the temperature of the atmosphere becomes higher than the melting point of the carbonate, the surface of the carbonate becomes a liquid phase. The carbonate in the liquid phase is likely to undergo a carbonate decomposition reaction exemplified by the right reaction of Formula (1) in an atmosphere that does not contain carbon dioxide gas. Therefore, from the time when the carbonate is in a relatively low temperature before becoming a liquid phase, the inorganic material is baked in a carbon dioxide gas atmosphere until the carbonate becomes a liquid phase until it becomes a liquid phase. Make the reaction difficult to proceed. Thereby, carbon dioxide gas production from the carbonate is suppressed, and the carbonate can form a dense crystal structure as a heterogeneous phase. Therefore, it is preferable that a heterogeneous phase precipitates in the main firing step. The heterogeneous phase preferably has a carbonate. The solid electrolyte of the present invention preferably contains a garnet-type oxide as a main component and includes a heterogeneous phase between particles. This heterogeneous phase acts as an adhesive to form a solid electrolyte having a high sintered density. It is preferable that the heterogeneous phase in the solid electrolyte of the present invention mainly comprises carbonate. A heterogeneous phase is a phase in a different state from the particles. In the main firing step, the particle central portion maintains a solid state, but the particle surface becomes a liquid state, and a different phase is precipitated between the particles. Thereby, in the main baking step, the particle surface becomes a liquid phase by heating in carbon dioxide gas to promote liquid phase sintering. This produces a dense garnet-type oxide sintered body with almost no voids so that the particles are connected in a different phase.

本焼成工程の前に、仮焼成工程を行っても良い。仮焼成工程は、本焼成温度よりも低い仮焼成温度で無機材料を仮焼成する工程である。無機材料に含まれているバインダーなどの有機物を、仮焼成の際に焼失させるためである。仮焼成温度は、有機物が焼失する程度の温度であるとよく、例えば、300℃以上723℃未満であることがよく、更には400℃以上720℃以下であることが好ましく、500℃以上700℃以下であることが望ましい。仮焼成温度が低すぎる場合には、有機物が残り、その後の本焼成温度での焼成の際に有機物由来のガスが発生するため、緻密な結晶構造が得られにくい場合がある。   You may perform a temporary baking process before a main baking process. The pre-baking step is a step of pre-baking the inorganic material at a pre-baking temperature lower than the main baking temperature. This is because organic substances such as a binder contained in the inorganic material are burned off during temporary firing. The pre-baking temperature is preferably a temperature at which the organic matter is burned off, for example, preferably from 300 ° C. to less than 723 ° C., more preferably from 400 ° C. to 720 ° C., and more preferably from 500 ° C. to 700 ° C. The following is desirable. When the calcination temperature is too low, the organic matter remains, and a gas derived from the organic matter is generated at the time of subsequent firing at the main firing temperature, which may make it difficult to obtain a dense crystal structure.

仮焼成工程の雰囲気は、二酸化炭素ガスを含む二酸化炭素ガス雰囲気としてもよいし、二酸化炭素ガスを含まないか又は殆どない一般雰囲気としてもよい。仮焼成工程で二酸化炭素ガス雰囲気とする場合には、本焼成工程での二酸化炭素ガス雰囲気に対して、雰囲気に含まれる二酸化炭素ガスの濃度を変えても良い。一般雰囲気とは、二酸化炭素ガスを含まないか又は殆どない雰囲気をいい、例えば、酸素ガス、空気、水蒸気を含む雰囲気が挙げられる。   The atmosphere of the pre-baking step may be a carbon dioxide gas atmosphere containing carbon dioxide gas, or a general atmosphere containing no or almost no carbon dioxide gas. When the carbon dioxide gas atmosphere is set in the preliminary baking step, the concentration of carbon dioxide gas contained in the atmosphere may be changed with respect to the carbon dioxide gas atmosphere in the main baking step. The general atmosphere refers to an atmosphere containing no or almost no carbon dioxide gas, and examples thereof include an atmosphere containing oxygen gas, air, and water vapor.

仮焼成工程の雰囲気は、酸素含有雰囲気、例えば、空気とすることが好ましい。これにより、バインダーなどの有機物が空気中の酸素と反応し、焼失しやすくなるからである。   The atmosphere of the pre-baking step is preferably an oxygen-containing atmosphere, for example, air. This is because organic substances such as a binder react with oxygen in the air and easily burn out.

本焼成工程で焼成される無機材料は、ガーネット型酸化物の原料である。   The inorganic material fired in the main firing step is a raw material for the garnet oxide.

この無機材料は炭酸塩を有する。炭酸塩は、ガーネット型酸化物を構成する元素と炭酸とから形成される塩である。炭酸塩は、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カルシウム、及び炭酸マグネシウムの群から選ばれる1種以上を含むとよい。   This inorganic material has a carbonate. Carbonate is a salt formed from an element constituting garnet-type oxide and carbonic acid. The carbonate may contain at least one selected from the group of lithium carbonate, sodium carbonate, calcium carbonate, and magnesium carbonate, for example.

無機材料における炭酸塩の配合比は、目的物のガーネット型酸化物の組成により変わる。焼成される無機材料には、目的物のガーネット型酸化物に含まれる構成元素の酸化物を含めるとよい。例えば、ガーネット型酸化物がリチウムを含むリチウム含有ガーネット型酸化物である場合に、無機材料に含まれ得る酸化物は、LiO、第2族元素、(例えばMgやCa,Sr,Ba,Ra)、ランタノイド元素、Y,Sc、Ti,Zr,Hf、V,Nb,Ta、Mo、V、Alの少なくとも一種を有する酸化物が挙げられる。このうち、CaO、SrO、BaO、Nd、ZrO、NbO、TaO、Al群から選ばれる1種以上がよく、更には、La、ZrO、LiO、Al、NbO、CaO、SrO、TaOなどの酸化物が好ましい。 The compounding ratio of the carbonate in the inorganic material varies depending on the composition of the target garnet oxide. The inorganic material to be fired may include an oxide of a constituent element contained in the target garnet-type oxide. For example, when the garnet-type oxide is a lithium-containing garnet-type oxide containing lithium, the oxide that can be contained in the inorganic material is Li 2 O, a Group 2 element (for example, Mg, Ca, Sr, Ba, Ra), lanthanoid elements, Y, Sc, Ti, Zr, Hf, oxides having at least one of V, Nb, Ta, Mo, V, and Al. Among these, at least one selected from the group consisting of CaO, SrO, BaO, Nd 2 O 3 , ZrO 2 , NbO 2 , TaO 2 , and Al 2 O 3 is preferable, and further La 2 O 3 , ZrO 2 , Li 2 Oxides such as O, Al 2 O 3 , NbO 2 , CaO, SrO, TaO 2 are preferable.

炭酸塩は、それ単独で粒子を形成していてもよいし、ガーネット型酸化物の構成元素であって炭酸塩由来の元素以外の酸化物と混合して粒子を形成していてもよい。また、炭酸塩由来の元素以外の構成元素の酸化物も、各構成元素毎に別々の粒子を形成していてもよいし、複数種が互いに混合されて粒子を形成していてもよい。   The carbonate may form particles alone, or may be mixed with an oxide other than the carbonate-derived element, which is a constituent element of a garnet-type oxide, to form particles. In addition, oxides of constituent elements other than carbonate-derived elements may form separate particles for each constituent element, or plural kinds may be mixed with each other to form particles.

無機材料全体を100質量%としたときに、炭酸塩が25質量%以上である場合には、本焼成工程の雰囲気を二酸化炭素ガス雰囲気とすることで炭酸塩の式(1)の右向き反応で例示される炭酸塩分解反応を抑制して二酸化炭素ガス揮発を抑制する意義が大きい。   When the total amount of the inorganic material is 100% by mass, and the carbonate is 25% by mass or more, the carbon dioxide gas atmosphere is used as the atmosphere in the main firing step, whereby the right side reaction of the formula (1) of the carbonate is performed. The significance of suppressing carbon dioxide gas volatilization by suppressing the exemplified carbonate decomposition reaction is great.

本焼成工程を行う前に、前記無機材料にバインダーを添加してスラリーとなして成形体を成形する成形工程と、本焼成温度よりも低い仮焼成温度で成形体を仮焼成する仮焼成工程とを行うことがよい。   Before performing the main firing step, a molding step for forming a molded body by adding a binder to the inorganic material to form a slurry, and a temporary firing step for prefiring the molded body at a preliminary firing temperature lower than the main firing temperature, It is good to do.

無機材料には、バインダーと必要に応じて溶剤を加えて、スラリーとし、このスラリーをシート状に成形して、シート状の成形体とすることがよい。スラリーをシート状に成形する場合には、ドクターブレイドなどの方法を採用することができる。バインダーは、PVB(ポリビニルブチラール)、アクリル系樹脂などの少量で効果があり、材料と反応せず、分解時に有毒ガスが出なくて残留灰分がない有機物を用いるとよい。溶剤は、トルエン、ブタノールなどを用いるとよい。この場合、ガーネット型酸化物を二次電池の固体電解質として用いるためには、シート状の成形体の厚みは50〜500μmであることがよい。   It is preferable to add a binder and, if necessary, a solvent to the inorganic material to form a slurry, and the slurry is formed into a sheet to form a sheet-like molded body. When the slurry is formed into a sheet shape, a method such as doctor blade can be employed. As the binder, it is preferable to use an organic substance which is effective with a small amount of PVB (polyvinyl butyral), acrylic resin, etc., does not react with the material, does not emit a toxic gas during decomposition, and has no residual ash. As the solvent, toluene, butanol or the like is preferably used. In this case, in order to use the garnet-type oxide as a solid electrolyte of the secondary battery, the thickness of the sheet-like molded body is preferably 50 to 500 μm.

または、無機材料は、バインダー無添加で、加圧することで成形体としてもよい。加圧により成形体を得る場合は、冷間等方成形(CIP)、熱間等方成形(HIP)、金型成形、ホットプレスなどにより成形体にすることができる。この場合、ガーネット型酸化物を二次電池の固体電解質として用いるためには、成形体の厚みは、10μm以上10000μm以下であるとよい。   Alternatively, the inorganic material may be formed into a molded body by adding pressure without adding a binder. When obtaining a molded body by pressurization, it can be formed into a molded body by cold isotropic molding (CIP), hot isotropic molding (HIP), mold molding, hot pressing or the like. In this case, in order to use the garnet type oxide as the solid electrolyte of the secondary battery, the thickness of the molded body is preferably 10 μm or more and 10000 μm or less.

本発明のガーネット型酸化物の製造方法により得られるガーネット型酸化物がリチウム含有ガーネット型酸化物であるとよい。この場合、リチウム含有ガーネット型酸化物は、基本組成がLixy3-y212であり、理論密度に対する相対密度が70(%)以上であり、伝導度が1.0×10-5(Scm-1)以上であるとよい。但し、Aは第2族元素(例えばMgやCa,Sr,Ba,Cs)のうちいずれか1以上、Bはランタノイド元素及びY,Scのうちいずれか1以上、yは0以上3以下)の整数、x=7+yであるときにMはTi,Zr,Hfのうちいずれか1以上であり、x=5+yであるときにはMはV,Nb,Taのうちいずれか1以上である。このうち、AとしてはCaやSr、Baなどが好ましく、BとしてはLaやNdなどが好ましく、MとしてはZrやNb、Taなどが好ましい。このリチウム含有ガーネット型酸化物は、基本組成がLixyLa3-yZr212やLixyLa3-yNb212であることがより好ましい。リチウム含有ガーネット型酸化物としては、このほか、(Na1-xLixy2Fe312(ただし、Mは酸化数+6の状態をとることができる元素(S,Se,Te,Poのうち1以上)、0.3≦x≦1.0、2.5≦y≦3.0を満たす)や、Ca3LiMV312(但しMは、Co,Ni,Fe,Mnのうち1以上)、Ca3LixNb(1.5+x)Ga(3.5-2x)12(但し、xは0.24≦x≦0.60)なども挙げられる。なお、「基本組成」とは、この組成の各元素の含有量に対して2割、1割など異なっているものも含まれる趣旨である。例えば、「基本組成がLi7La3Zr212であるもの」には、概して組成が合っているもの、例えば、組成がLi7.2La3Zr212.2であるものや組成がLi6.8La3Zr211.8であるものをも含む趣旨である。 The garnet-type oxide obtained by the method for producing a garnet-type oxide of the present invention is preferably a lithium-containing garnet-type oxide. In this case, a lithium-containing garnet-type oxide, basic composition is Li x A y B 3-y M 2 O 12, and a relative density to the theoretical density of 70% or higher, conductivity is 1.0 × It is good that it is 10 −5 (Scm −1 ) or more. However, A is any one or more of group 2 elements (for example, Mg, Ca, Sr, Ba, Cs), B is any one or more of lanthanoid elements and Y, Sc, and y is 0 or more and 3 or less. When an integer, x = 7 + y, M is one or more of Ti, Zr, and Hf, and when x = 5 + y, M is any one or more of V, Nb, and Ta. Of these, A is preferably Ca, Sr, Ba or the like, B is preferably La or Nd, and M is preferably Zr, Nb, Ta or the like. The lithium-containing garnet-type oxide, it is more preferable basic composition is Li x A y La 3-y Zr 2 O 12 and Li x A y La 3-y Nb 2 O 12. As the lithium-containing garnet-type oxide, in addition to this, (Na 1-x Li x ) y M 2 Fe 3 O 12 (where M is an element that can take an oxidation number +6 state (S, Se, Te, 1 or more of Po), 0.3 ≦ x ≦ 1.0, 2.5 ≦ y ≦ 3.0), and Ca 3 LiMV 3 O 12 (where M is Co, Ni, Fe, Mn) 1 or more of them), Ca 3 Li x Nb (1.5 + x) Ga (3.5-2x) O 12 (where x is 0.24 ≦ x ≦ 0.60), and the like. The “basic composition” is intended to include those that differ by 20%, 10%, etc. with respect to the content of each element of this composition. For example, “what the basic composition is Li 7 La 3 Zr 2 O 12 ” is generally the same as the composition, for example, the composition is Li 7.2 La 3 Zr 2 O 12.2 or the composition is Li 6.8 La. It is intended to include those that are 3 Zr 2 O 11.8 .

リチウム含有ガーネット型酸化物の基本組成がLixyLa3-yZr212であるものについては、xが7以上9以下であることが好ましく、8以下であることがより好ましい。また、yが0以上2以下であることが好ましく、1以下であることがより好ましい。このうちx=7,y=0である基本組成がLi7La3Zr212であるものが好ましい。このとき、理論密度に対する相対密度が70(%)以上であるが、90(%)以上であることがより好ましく、92(%)以上であることが一層好ましい。また、伝導度が1.0×10-5S/cm以上であるが、1.0×10-4S/cm以上であることがより好ましい。伝導度が1.0×10-4S/cm以上であれば電池性能を一層向上することができる。 In the case where the basic composition of the lithium-containing garnet-type oxide is Li x A y La 3 -y Zr 2 O 12 , x is preferably 7 or more and 9 or less, and more preferably 8 or less. Moreover, y is preferably 0 or more and 2 or less, and more preferably 1 or less. Of these, the basic composition of x = 7 and y = 0 is preferably Li 7 La 3 Zr 2 O 12 . At this time, the relative density with respect to the theoretical density is 70 (%) or more, more preferably 90 (%) or more, and still more preferably 92 (%) or more. Further, the conductivity is 1.0 × 10 −5 S / cm or more, and more preferably 1.0 × 10 −4 S / cm or more. If the conductivity is 1.0 × 10 −4 S / cm or more, the battery performance can be further improved.

リチウム含有ガーネット型酸化物の基本組成がLixyLa3-yNb212であるものについては、xが5以上7以下であることが好ましく、6以下であることがより好ましい。また、yが0以上2以下であることが好ましく、1以下であることがより好ましい。このうちx=5,y=0である基本組成がLi5La3Nb212であるものが好ましい。このとき、理論密度に対する相対密度が70(%)以上であるが、90(%)以上であることがより好ましく、92(%)以上であることが一層好ましい。また、伝導度は、1.0×10-5以上である。 In the case where the basic composition of the lithium-containing garnet-type oxide is Li x A y La 3 -y Nb 2 O 12 , x is preferably 5 or more and 7 or less, and more preferably 6 or less. Moreover, y is preferably 0 or more and 2 or less, and more preferably 1 or less. Of these, the basic composition of x = 5 and y = 0 is preferably Li 5 La 3 Nb 2 O 12 . At this time, the relative density with respect to the theoretical density is 70 (%) or more, more preferably 90 (%) or more, and still more preferably 92 (%) or more. The conductivity is 1.0 × 10 −5 or more.

本発明のガーネット型酸化物の製造方法によれば、基本組成よりもLi含有量が少ないLiなどの金属欠損型のガーネット型酸化物が得られる場合もある。例えば、基本組成がLiLaZr12、であるリチウム含有ガーネット型酸化物を製造する場合、Li含有量xが、La3モルに対して、7>xであるリチウム含有ガーネット型酸化物が得られる場合がある。例えば、1<x<7であってもよく、2<x<7、3<x<7であってもよい。

本発明のガーネット型酸化物の製造方法により得られるガーネット型酸化物は、二次電池の固体電解質として用いることができる。本発明のガーネット型酸化物の製造方法により得られるガーネット型酸化物がリチウム含有ガーネット型酸化物である場合、このリチウム含有ガーネット型酸化物は、リチウムイオン二次電池の固体電解質として用いることができる。リチウムイオン二次電池の固体電解質は、正極と負極との間に介在されて、リチウムイオンを伝導する。
According to the method for producing a garnet-type oxide of the present invention, a metal-deficient garnet-type oxide such as Li having a lower Li content than the basic composition may be obtained. For example, when producing a lithium-containing garnet-type oxide having a basic composition of Li 7 La 3 Zr 2 O 12 , the lithium-containing garnet-type oxide in which the Li content x is 7> x with respect to La3 mol May be obtained. For example, 1 <x <7 may be sufficient, and 2 <x <7, 3 <x <7 may be sufficient.

The garnet oxide obtained by the method for producing a garnet oxide of the present invention can be used as a solid electrolyte of a secondary battery. When the garnet type oxide obtained by the manufacturing method of the garnet type oxide of this invention is a lithium containing garnet type oxide, this lithium containing garnet type oxide can be used as a solid electrolyte of a lithium ion secondary battery. . The solid electrolyte of the lithium ion secondary battery is interposed between the positive electrode and the negative electrode and conducts lithium ions.

本発明のガーネット型酸化物は、二次電池用固体電解質として用いられるほか、リチウム金属を負極に用いた電池の固体電解質またはこの固体電解質を隔膜として用いた電池、集電体の両側に正極活物質と負極活物質とを配置したバイポーラ電極の間に挟んだ電解質層を複数枚直列に積層した構造の前記電解質層に用いた電池(バイポーラ電池)などの用途がある。   The garnet-type oxide of the present invention is used as a solid electrolyte for secondary batteries, a battery solid electrolyte using lithium metal as a negative electrode, a battery using this solid electrolyte as a diaphragm, or a positive electrode active on both sides of a current collector. There are applications such as a battery (bipolar battery) used for the electrolyte layer having a structure in which a plurality of electrolyte layers sandwiched between bipolar electrodes in which a substance and a negative electrode active material are arranged are stacked in series.

本発明のガーネット型酸化物の製造方法により得られるガーネット型酸化物を電解質もしくは隔膜として用いる場合には、ガーネット型酸化物の密度は、高いことが好ましい。密度が高いと、ガーネット型酸化物の間には隙間が少なく、短絡や液漏れのおそれを防止できる。   When using the garnet type oxide obtained by the manufacturing method of the garnet type oxide of this invention as an electrolyte or a diaphragm, it is preferable that the density of a garnet type oxide is high. When the density is high, there are few gaps between the garnet-type oxides, and it is possible to prevent the possibility of short circuit or liquid leakage.

具体的には、ガーネット型酸化物を二次電池用固体電解質に用いる場合、ガーネット型酸化物の相対密度は70%以上98%以下であることがよく、更には90%以上95%以下であることが好ましい。密度が低いと、ガーネット型酸化物の隙間にリチウムのデンドライトが成長して、短絡の原因や隔膜としての機能を果たさないおそれがある。   Specifically, when the garnet type oxide is used for the solid electrolyte for the secondary battery, the relative density of the garnet type oxide is preferably 70% or more and 98% or less, and more preferably 90% or more and 95% or less. It is preferable. When the density is low, lithium dendrite grows in the gaps of the garnet-type oxide, which may cause a short circuit or not function as a diaphragm.

本発明のガーネット型酸化物の製造方法により得られるガーネット型酸化物は、立方晶、正方晶のいずれでもよいが、立方晶の方がイオン伝導性が高く、二次電池の固体電解質として好適に用いられる。   The garnet-type oxide obtained by the method for producing a garnet-type oxide of the present invention may be either a cubic crystal or a tetragonal crystal, but the cubic crystal has higher ion conductivity and is suitable as a solid electrolyte for a secondary battery. Used.

本発明の二次電池は、金属イオンを吸蔵・放出しうる正極活物質を有する正極と、金属イオンを吸蔵・放出しうる負極活物質を有する負極と、固体電解質としてのガーネット型酸化物と、を備える。金属イオンは、例えば、リチウムイオン、ナトリウムイオンなどである。   The secondary battery of the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing metal ions, a negative electrode having a negative electrode active material capable of occluding and releasing metal ions, a garnet-type oxide as a solid electrolyte, Is provided. Examples of the metal ions include lithium ions and sodium ions.

二次電池に用いられる正極は、金属イオンを吸蔵及び放出し得る正極活物質を有する。正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。   A positive electrode used for a secondary battery has a positive electrode active material that can occlude and release metal ions. The positive electrode has a current collector and a positive electrode active material layer bound to the surface of the current collector.

正極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はない。集電体は、二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、ステンレス鋼、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。   The positive electrode current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used. A current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, stainless steel, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel A metal material such as steel can be exemplified. The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 1 μm to 100 μm.

正極活物質層は正極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。正極活物質としては、金属イオンを吸蔵及び放出し得る材料が使用可能である。金属イオンがリチウムイオンである場合、正極活物質としては、層状化合物のLiNiCoMn(0.2≦a≦1.2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の、1.7≦f≦2.1)、もしくはLiMnO等を挙げることができる。前記一般式の中のb:c:dの比率は、0.5:0.2:0.3、1/3:1/3:1/3、0.75:0.10:0.15、0:0:1、1:0:0、及び0:1:0から選ばれる少なくとも1種類であることが良い。 The positive electrode active material layer includes a positive electrode active material and, if necessary, a binder and / or a conductive aid. As the positive electrode active material, a material that can occlude and release metal ions can be used. When the metal ion is a lithium ion, the layered compound Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1.2, b + c + d + e = 1, 0 ≦ e <1) is used as the positive electrode active material. , D is at least selected from Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La 1, 1.7 ≦ f ≦ 2.1), Li 2 MnO 3 or the like. The ratio of b: c: d in the general formula is 0.5: 0.2: 0.3, 1/3: 1/3: 1/3, 0.75: 0.10: 0.15. 0: 0: 1, 1: 0: 0, and 0: 1: 0.

即ち、層状岩塩構造をもつリチウム金属複合酸化物の具体例としては、LiNi0.5Co0.2Mn0.3、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn0.5、LiNi0.75Co0.1Mn0.15、LiMnO、LiNiO、及びLiCoOから選ばれる少なくとも一種であることがよい。また、正極活物質は、層状岩塩構造をもつリチウム金属複合酸化物と、LiMn、LiMn、LiMn1.5Ni0.5等のスピネルとの混合物で構成される固溶体を含んでいてもよく、例えば、LiMnO−LiCoOがある。また、正極活物質として、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属を他の金属で置換したものも使用可能である。また、正極活物質として、充放電に寄与するリチウムイオンを含まない正極活物質材料、たとえば、硫黄単体(S)、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、FeFなどリチウムを吸蔵放出する際、移動イオンの量によって構造が変化するコンバージョン反応を伴って電気容量を示す材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウムを含まない正極活物質材料を用いる場合には、正極および/または負極に、公知の方法により、予めイオンを添加させておく必要がある。ここで、当該イオンを添加するためには、金属または当該イオンを含む化合物を用いればよい。 That is, specific examples of the lithium metal composite oxide having a layered rock salt structure include LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0. .5 Mn 0.5 O 2 , LiNi 0.75 Co 0.1 Mn 0.15 O 2 , LiMnO 2 , LiNiO 2 , and LiCoO 2 may be at least one kind. The positive electrode active material is composed of a mixture of a lithium metal composite oxide having a layered rock salt structure and a spinel such as LiMn 2 O 4 , Li 2 Mn 2 O 4 , LiMn 1.5 Ni 0.5 O 4. For example, there is Li 2 MnO 3 —LiCoO 2 . Examples of the positive electrode active material include polyanionic compounds represented by LiMPO 4 , LiMVO 4, or Li 2 MSiO 4 (wherein M is selected from at least one of Co, Ni, Mn, and Fe). be able to. Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any metal oxide used as the positive electrode active material may have the above composition formula as a basic composition, and a metal in which the metal contained in the basic composition is replaced with another metal can also be used. Further, as the positive electrode active material, a positive electrode active material that does not contain lithium ions contributing to charge / discharge, for example, sulfur alone (S), a compound in which sulfur and carbon are combined, a metal sulfide such as TiS 2 , V 2 O, etc. 5 , oxides such as MnO 2 , polyaniline and anthraquinone, compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetate-based organic substances, and lithium such as FeF 3 are structured according to the amount of mobile ions It is also possible to use a material that exhibits an electric capacity with a conversion reaction that changes and other known materials. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material. When using a positive electrode active material that does not contain lithium, it is necessary to add ions to the positive electrode and / or the negative electrode in advance by a known method. Here, in order to add the ion, a metal or a compound containing the ion may be used.

正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能であるし、Mgなどの他の金属元素を基本組成のものに加えて金属酸化物としてもよい。またこれら正極活物質を使用する際、その表面と固体電解質の間にバッファー層として酸化物など無機材料をコートしてもよい。   Any metal oxide used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element included in the basic composition may be replaced with another metal element, and Mg, etc. Other metal elements may be added to the basic composition to form a metal oxide. Moreover, when using these positive electrode active materials, you may coat inorganic materials, such as an oxide, as a buffer layer between the surface and solid electrolyte.

結着剤は活物質及び導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を例示することができる。   The binder serves to bind the active material and the conductive additive to the surface of the current collector. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. be able to.

また、結着剤として、親水基を有するポリマーを採用してもよい。親水基を有するポリマーの親水基としては、カルボキシル基、スルホ基、シラノール基、アミノ基、水酸基、リン酸基などリン酸系の基などが例示される。中でも、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)、ポリメタクリル酸など、分子中にカルボキシル基を含むポリマー、又は、ポリ(p−スチレンスルホン酸)などのスルホ基を含むポリマーが好ましい。   Moreover, you may employ | adopt the polymer which has a hydrophilic group as a binder. Examples of the hydrophilic group of the polymer having a hydrophilic group include a phosphate group such as a carboxyl group, a sulfo group, a silanol group, an amino group, a hydroxyl group, and a phosphate group. Among them, a polymer containing a carboxyl group in the molecule such as polyacrylic acid (PAA), carboxymethyl cellulose (CMC) and polymethacrylic acid, or a polymer containing a sulfo group such as poly (p-styrenesulfonic acid) is preferable.

ポリアクリル酸、あるいはアクリル酸とビニルスルホン酸との共重合体など、カルボキシル基及び/又はスルホ基を多く含むポリマーは水溶性となる。したがって親水基を有するポリマーは、水溶性ポリマーであることが好ましく、一分子中に複数のカルボキシル基及び/又はスルホ基を含むポリマーが好ましい。   A polymer containing many carboxyl groups and / or sulfo groups such as polyacrylic acid or a copolymer of acrylic acid and vinyl sulfonic acid becomes water-soluble. Therefore, the polymer having a hydrophilic group is preferably a water-soluble polymer, and a polymer containing a plurality of carboxyl groups and / or sulfo groups in one molecule is preferable.

分子中にカルボキシル基を含むポリマーは、例えば、酸モノマーを重合する、あるいはポリマーにカルボキシル基を付与する、などの方法で製造することができる。酸モノマーとしては、アクリル酸、メタクリル酸、ビニル安息香酸、クロトン酸、ペンテン酸、アンジェリカ酸、チグリン酸など分子中に一つのカルボキシル基をもつ酸モノマー、イタコン酸、メサコン酸、シトラコン酸、フマル酸、マレイン酸、2−ペンテン二酸、メチレンコハク酸、アリルマロン酸、イソプロピリデンコハク酸、2,4−ヘキサジエン二酸、アセチレンジカルボン酸など分子内に二つ以上のカルボキシル基をもつ酸モノマーなどが例示される。これらから選ばれる二種以上のモノマーを重合してなる共重合ポリマーを用いてもよい。   A polymer containing a carboxyl group in the molecule can be produced by, for example, a method of polymerizing an acid monomer or adding a carboxyl group to the polymer. Acid monomers include acrylic acid, methacrylic acid, vinyl benzoic acid, crotonic acid, pentenoic acid, angelic acid, tiglic acid, etc., acid monomers having one carboxyl group in the molecule, itaconic acid, mesaconic acid, citraconic acid, fumaric acid , Maleic acid, 2-pentenedioic acid, methylene succinic acid, allyl malonic acid, isopropylidene succinic acid, 2,4-hexadiene diacid, acetylenedicarboxylic acid, etc., acid monomers having two or more carboxyl groups in the molecule Is done. A copolymer obtained by polymerizing two or more kinds of monomers selected from these may be used.

例えば特開2013-065493号公報に記載されたような、アクリル酸とイタコン酸との共重合体からなり、カルボキシル基どうしが縮合して形成された酸無水物基を分子中に含んでいるポリマーを結着剤として用いることも好ましい。一分子中にカルボキシル基を二つ以上有する酸性度の高いモノマー由来の構造があることにより、充電時に電解液分解反応が起こる前にリチウムイオンなどの金属イオンをトラップし易くなると考えられている。さらに、ポリアクリル酸やポリメタクリル酸に比べてカルボキシル基が多く酸性度が高まると共に、所定量のカルボキシル基が酸無水物基に変化しているため、酸性度が高まりすぎることもない。そのため、この結着剤を用いて形成された負極をもつ二次電池は、初期効率が向上し、入出力特性が向上する。   For example, a polymer composed of a copolymer of acrylic acid and itaconic acid as described in JP-A-2013-065493, and containing an acid anhydride group formed by condensation of carboxyl groups in the molecule It is also preferable to use as a binder. The structure derived from a highly acidic monomer having two or more carboxyl groups in one molecule is believed to facilitate trapping of metal ions such as lithium ions before the electrolytic solution decomposition reaction occurs during charging. Furthermore, the acidity is not excessively increased because there are more carboxyl groups and the acidity is higher than polyacrylic acid and polymethacrylic acid, and a predetermined amount of the carboxyl groups are changed to acid anhydride groups. Therefore, a secondary battery having a negative electrode formed using this binder has improved initial efficiency and improved input / output characteristics.

正極活物質層中の結着剤の配合割合は、質量比で、正極活物質:結着剤=1:0.005〜1:0.3であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The mixing ratio of the binder in the positive electrode active material layer is preferably a mass ratio of positive electrode active material: binder = 1: 0.005 to 1: 0.3. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、および各種金属粒子などが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。   The conductive assistant is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent. The conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, acetylene black, ketjen black (registered trademark), vapor grown carbon fiber (Vapor Grown Carbon). Fiber: VGCF) and various metal particles are exemplified. These conductive assistants can be added to the active material layer alone or in combination of two or more.

正極活物質層中の結着剤の配合割合は、質量比で、正極活物質:結着剤=1:0.05〜1:0.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The blending ratio of the binder in the positive electrode active material layer is preferably a mass ratio of positive electrode active material: binder = 1: 0.05 to 1: 0.5. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

本発明の二次電池に用いられる負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。負極活物質層は負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。   The negative electrode used for the secondary battery of the present invention has a current collector and a negative electrode active material layer bound to the surface of the current collector. The negative electrode active material layer includes a negative electrode active material and, if necessary, a binder and / or a conductive aid.

負極活物質としては、金属イオンを吸蔵及び放出し得る材料が使用可能である。したがって、金属イオンを吸蔵及び放出可能である単体、合金または化合物であれば特に限定はない。たとえば、金属イオンがリチウムイオンである場合、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。合金又は化合物の具体例としては、Ag−Sn合金、Cu−Sn合金、Co−Sn合金等の錫系材料、炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。炭素系材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3−xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。なお、本明細書において、負極活物質としてリチウムを用いる場合にはリチウム二次電池と称し、負極活物質としてリチウム以外の物質を用いる場合にはリチウムイオン二次電池と称する。 As the negative electrode active material, a material capable of occluding and releasing metal ions can be used. Accordingly, there is no particular limitation as long as it is a simple substance, alloy, or compound that can occlude and release metal ions. For example, when the metal ion is lithium ion, the negative electrode active material is Li, group 14 elements such as carbon, silicon, germanium, and tin, group 13 elements such as aluminum and indium, group 12 elements such as zinc and cadmium, antimony A group 15 element such as bismuth, an alkaline earth metal such as magnesium or calcium, and a group 11 element such as silver or gold may be used alone. Specific examples of alloys or compounds include tin-based materials such as Ag-Sn alloy, Cu-Sn alloy, Co-Sn alloy, carbon-based material, SiO x disproportionate to silicon simple substance and silicon dioxide (0.3≤ Examples thereof include silicon-based materials such as x ≦ 1.6), silicon alone, or a composite of a silicon-based material and a carbon-based material. The carbon-based material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. In addition, as the negative electrode active material, oxides such as Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , WO 2 , MoO 2 , Fe 2 O 3 , or Li 3-x M x N (M = A nitride represented by (Co, Ni, Cu) may be employed. One or more of these materials can be used as the negative electrode active material. In this specification, when lithium is used as the negative electrode active material, it is referred to as a lithium secondary battery, and when a material other than lithium is used as the negative electrode active material, it is referred to as a lithium ion secondary battery.

負極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、正極の集電体で説明したものを採用できる。負極の結着剤および導電助剤は正極で説明したものを採用できる。   The negative electrode current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used, and for example, the one described for the positive electrode current collector can be adopted. As the negative electrode binder and the conductive additive, those described for the positive electrode can be adopted.

集電体の表面に活物質層を形成させる方法には、ロールコート法、ダイコート法、ディップコート法、ドクターブレイド法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。溶剤としては、N−メチル−2−ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。   As a method for forming the active material layer on the surface of the current collector, a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used. An active material may be applied to the surface of the electric body. Specifically, an active material layer-forming composition containing an active material and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to make a paste, and then the collection is performed. After applying to the surface of the electric body, it is dried. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. In order to increase the electrode density, the dried product may be compressed.

二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。   The shape of the secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.

本発明の二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。リチウムイオン二次電池は、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、リチウムイオン二次電池は、風量発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。   The secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle. Examples of the lithium ion secondary battery include various home electric appliances, office equipment, industrial equipment, and the like driven by batteries, such as personal computers and portable communication devices, in addition to vehicles. Furthermore, lithium ion secondary batteries can be used for wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power supplies for ships, etc. and / or power supplies for auxiliary equipment, aircraft, spacecraft, etc. Power source for power and / or auxiliary equipment, auxiliary power source for vehicles not using electricity as a power source, power source for mobile home robots, power source for system backup, power source for uninterruptible power supply, for electric vehicles You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in a charging station.

以上、電解液の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of electrolyte solution was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

(試料1)
成形工程として、原料としてLiCOとLaとZrOとを、LiLaZr12の化学量論比となる配合比でボールミル(フリッチュジャパン社製、商品名遊星型ボールミルP−7)で混合し、無機材料を得た。無機材料100質量部に対して、バインダーとしてのPVB(ポリビニルブチラール)を8質量部、及び溶剤としてのトルエンとブタノール混合液(トルエン:ブタノール=1:1体積比)を300質量部添加し、これらを混練して、スラリーを得た。スラリーをドクターブレイド法により厚み100μmのシート状に成形して、シート成形体を得た。
(Sample 1)
As a molding process, Li 2 CO 3 , La 2 O 3 and ZrO 2 are used as raw materials, and a ball mill (product name planetary type, manufactured by Fritsch Japan Co., Ltd.) with a blending ratio that is a stoichiometric ratio of Li 7 La 3 Zr 2 O 12 is used. By mixing with a ball mill P-7), an inorganic material was obtained. 8 parts by mass of PVB (polyvinyl butyral) as a binder and 300 parts by mass of a toluene and butanol mixed solution (toluene: butanol = 1: 1 volume ratio) as a solvent are added to 100 parts by mass of an inorganic material. Were kneaded to obtain a slurry. The slurry was formed into a sheet having a thickness of 100 μm by a doctor blade method to obtain a sheet molded body.

シート成形体に対して、以下の仮焼成工程及び本焼成工程を行った。仮焼成工程及び本焼成工程では、シート成形体を図1に示す焼成条件で焼成した。   The following temporary firing step and main firing step were performed on the sheet molded body. In the preliminary firing step and the main firing step, the sheet molded body was fired under the firing conditions shown in FIG.

まず、シート成形体を空気雰囲気の電気炉(光洋サーモシステム株式会社製)に入れた。電気炉の中の雰囲気を、常温から昇温速度10℃/分で温度上昇させた(第1昇温工程)。電気炉内の雰囲気が600℃に到達したときに、600℃で30分間維持させて仮焼成を行った(仮焼成工程)。   First, the sheet compact was placed in an electric furnace (manufactured by Koyo Thermo System Co., Ltd.) in an air atmosphere. The atmosphere in the electric furnace was raised from normal temperature at a heating rate of 10 ° C./min (first heating step). When the atmosphere in the electric furnace reached 600 ° C., it was maintained at 600 ° C. for 30 minutes to perform preliminary firing (temporary firing step).

次に、電気炉内の雰囲気を温度上昇させた(第2昇温工程)。このときの昇温速度は10℃/分であった。1100℃に到達したときに、1100℃で1時間維持させた(本焼成工程)。その後、炉内を放冷させた(降温工程)。放冷時の温度降下速度は20℃/分であった。   Next, the temperature inside the electric furnace was raised (second temperature raising step). The temperature rising rate at this time was 10 ° C./min. When the temperature reached 1100 ° C., the temperature was maintained at 1100 ° C. for 1 hour (main firing step). Thereafter, the inside of the furnace was allowed to cool (temperature lowering step). The rate of temperature drop during cooling was 20 ° C./min.

焼成の間の雰囲気は、第1昇温工程及び仮焼成工程の間は、空気雰囲気とした。空気雰囲気は、空気全体を100体積%としたときに、主成分として78体積%:窒素、21体積%:酸素を含む。仮焼成工程終了後に二酸化炭素ガス雰囲気に切り替えて、第2昇温工程及び本焼成工程の間は二酸化炭素ガス雰囲気とした(600℃までの空気雰囲気比おいては100ml/分の空気量、600℃から700℃までの間の温度域では炭酸ガス流量1L/分、700℃以上の温度では炭酸ガス流量50mL/分)。二酸化炭素ガス雰囲気の成分比は、雰囲気全体を100体積%としたときに、二酸化炭素ガス100体積%であった。1100℃での本焼成工程の終了と同時に、二酸化炭素ガス雰囲気から空気雰囲気に切り替えて、降温工程は空気雰囲気で行った。   The atmosphere during firing was an air atmosphere during the first temperature raising step and the temporary firing step. The air atmosphere contains 78% by volume: nitrogen and 21% by volume: oxygen as main components when the entire air is 100% by volume. The carbon dioxide gas atmosphere was switched to after the pre-baking step, and the carbon dioxide gas atmosphere was used between the second temperature raising step and the main baking step (in the air atmosphere ratio up to 600 ° C., the amount of air was 100 ml / min, 600 The carbon dioxide flow rate is 1 L / min in the temperature range between 0 ° C. and 700 ° C., and the carbon dioxide flow rate is 50 mL / min at temperatures above 700 ° C.). The component ratio of the carbon dioxide gas atmosphere was 100% by volume of carbon dioxide gas when the entire atmosphere was 100% by volume. Simultaneously with the completion of the main firing step at 1100 ° C., the carbon dioxide gas atmosphere was switched to the air atmosphere, and the temperature lowering step was performed in the air atmosphere.

以上により得られた焼結体は、基本組成がLiLaZr12である立方晶のリチウム含有ガーネット型酸化物であった。得られたリチウム含有ガーネット型酸化物について、誘導結合プラズマ法(ICP)により元素質量分析を行った。その結果を表1に示した。また、リチウム含有ガーネット型酸化物の相対密度は93%であった。
また、リチウム含有ガーネット型酸化物のSEM(走査型電子顕微鏡)写真を図2に示した。図2に示すように、ガーネット型酸化物には、ほとんど気孔が見られなかった。
The sintered body obtained as described above was a cubic lithium-containing garnet-type oxide having a basic composition of Li 7 La 3 Zr 2 O 12 . The obtained lithium-containing garnet-type oxide was subjected to elemental mass spectrometry by an inductively coupled plasma method (ICP). The results are shown in Table 1. The relative density of the lithium-containing garnet-type oxide was 93%.
Further, an SEM (scanning electron microscope) photograph of the lithium-containing garnet-type oxide is shown in FIG. As shown in FIG. 2, the garnet-type oxide hardly had any pores.

(試料2)
試料1のシート成形体と同様のシート成形体を準備した。シート成形体を、図3に示す焼成条件で焼成した。図3に示す焼成条件の中で、温度条件は試料1の焼成条件と同様である。一方、焼成時の雰囲気は、次のように変更した。
(Sample 2)
A sheet molded body similar to the sheet molded body of Sample 1 was prepared. The sheet compact was fired under the firing conditions shown in FIG. Among the firing conditions shown in FIG. 3, the temperature condition is the same as the firing condition of Sample 1. On the other hand, the atmosphere during firing was changed as follows.

焼成の間の電気炉内の雰囲気は、第1昇温工程、仮焼成工程、第2昇温工程及び降温工程は、空気雰囲気とした。1100℃の本焼成温度に維持している本焼成工程のみ、二酸化炭素ガス雰囲気とした。この空気雰囲気及び二酸化炭素ガス雰囲気の成分比は、試料1と同様である。   The atmosphere in the electric furnace during firing was an air atmosphere in the first temperature raising step, the temporary firing step, the second temperature raising step, and the temperature lowering step. Only the main baking step maintained at the main baking temperature of 1100 ° C. was made a carbon dioxide gas atmosphere. The component ratio of the air atmosphere and the carbon dioxide gas atmosphere is the same as that of the sample 1.

得られた焼結体は、基本組成がLiLaZr12である立方晶のリチウム含有ガーネット型酸化物であり、これについて誘導結合プラズマ法(ICP)により元素質量分析を行った。その結果を表1に示した。また、リチウム含有ガーネット型酸化物の相対密度を測定したところ、50%であった。また、リチウム含有ガーネット型酸化物のSEM(走査型電子顕微鏡)写真を図4に示した。 The obtained sintered body was a cubic lithium-containing garnet-type oxide having a basic composition of Li 7 La 3 Zr 2 O 12 , and element mass spectrometry was performed on this with an inductively coupled plasma method (ICP). The results are shown in Table 1. The relative density of the lithium-containing garnet oxide was measured and found to be 50%. Moreover, the SEM (scanning electron microscope) photograph of the lithium containing garnet-type oxide was shown in FIG.

(試料3)
試料1のシート成形体と同様のシート成形体を準備した。シート成形体を、所定の焼成条件で焼成した。この焼成条件の中で、温度条件は試料1の焼成条件と同様である。しかし、焼成時の雰囲気は、空気雰囲気とした。
(Sample 3)
A sheet molded body similar to the sheet molded body of Sample 1 was prepared. The sheet compact was fired under predetermined firing conditions. Among these firing conditions, the temperature condition is the same as the firing condition of Sample 1. However, the atmosphere during firing was an air atmosphere.

得られた焼結体は、基本組成がLiLaZr12である立方晶のリチウム含有ガーネット型酸化物であった。これについて、誘導結合プラズマ法(ICP)により元素質量分析を行った。その結果を表1に示した。また、リチウム含有ガーネット型酸化物の相対密度を測定したところ、35%であった。また、図5の上段に焼成体の正面図を示し、図5の下図はリチウム含有ガーネット型酸化物のSEM(走査型電子顕微鏡)写真を示した。 The obtained sintered body was a cubic lithium-containing garnet-type oxide having a basic composition of Li 7 La 3 Zr 2 O 12 . About this, element mass spectrometry was performed by the inductively coupled plasma method (ICP). The results are shown in Table 1. Moreover, it was 35% when the relative density of the lithium containing garnet-type oxide was measured. Moreover, the front view of the fired body is shown in the upper part of FIG. 5, and the lower part of FIG. 5 shows an SEM (scanning electron microscope) photograph of the lithium-containing garnet-type oxide.

試料1〜3を比較すると、表1に示すように、試料1は、密度が最も高かった。また、図5の上段に示すように、試料3は、非常に脆く、外力を加えるとすぐにバラバラに崩れてしまった。図5の下段に示すように、粒子間にかなり大きな空洞が見られ、緻密な構造をもっていなかった。一方、試料2では、相対密度が低く、また、図4に示すように、複数の気孔が観察された。   When comparing samples 1 to 3, as shown in Table 1, sample 1 had the highest density. Further, as shown in the upper part of FIG. 5, the sample 3 was very fragile and collapsed as soon as an external force was applied. As shown in the lower part of FIG. 5, fairly large cavities were observed between the particles, and the particles did not have a dense structure. On the other hand, in Sample 2, the relative density was low, and a plurality of pores were observed as shown in FIG.

Li量は、試料1〜3のいずれも基本組成よりも少なかった。   The amount of Li in each of samples 1 to 3 was smaller than the basic composition.

以上より、試料1では、1100℃での本焼成温度のときだけでなく、本焼成温度に至る第2昇温工程の間も二酸化炭素ガス雰囲気で焼成したため、緻密なガーネット型結晶構造が得られた。   From the above, Sample 1 was fired in the carbon dioxide gas atmosphere not only at the main firing temperature at 1100 ° C. but also during the second temperature raising step up to the main firing temperature, so that a dense garnet crystal structure was obtained. It was.

(試料4)
試料1のシート成形体と同じシート成形体を準備し、これに本焼成工程を行った。本焼成工程は、本焼成温度を1250℃とし、600℃の仮焼成温度から1250℃の本焼成温度までの温度上昇速度を1250℃/分とし、1250℃での本焼成温度の焼成時間を4分とした以外は、試料1と同様の条件で、シート成形体を焼成した。
(Sample 4)
The same sheet molded body as the sheet molded body of Sample 1 was prepared, and this was subjected to a main firing step. In the main baking step, the main baking temperature is 1250 ° C., the rate of temperature increase from the temporary baking temperature of 600 ° C. to the main baking temperature of 1250 ° C. is 1250 ° C./min, and the baking time of the main baking temperature at 1250 ° C. is 4 The sheet molded body was baked under the same conditions as in Sample 1 except that the sample was used.

(試料5)
試料1のシート成形体と同じシート成形体を準備し、これに本焼成工程を行った。本焼成工程は、本焼成温度を1300℃とし、600℃の仮焼成温度から1300℃の本焼成温度までの温度上昇速度を1300℃/分とし、1300℃での本焼成温度の焼成時間を3分とした以外は、試料1と同様の条件で、シート成形体を焼成した。
(Sample 5)
The same sheet molded body as the sheet molded body of Sample 1 was prepared, and this was subjected to a main firing step. In the main baking step, the main baking temperature is 1300 ° C., the rate of temperature increase from the temporary baking temperature of 600 ° C. to the main baking temperature of 1300 ° C. is 1300 ° C./min, and the baking time of the main baking temperature at 1300 ° C. is 3 The sheet molded body was baked under the same conditions as in Sample 1 except that the sample was used.

(試料6)
試料1のシート成形体と同じシート成形体を準備し、これに本焼成工程を行った。本焼成工程は、本焼成温度を1350℃とし、600℃の仮焼成温度から1350℃の本焼成温度までの温度上昇速度を1350℃/分とし、1350℃での本焼成温度の焼成時間を1分とした以外は、試料1と同様の条件で、シート成形体を焼成した。
(Sample 6)
The same sheet molded body as the sheet molded body of Sample 1 was prepared, and this was subjected to a main firing step. In the main baking step, the main baking temperature is 1350 ° C., the rate of temperature increase from the temporary baking temperature of 600 ° C. to the main baking temperature of 1350 ° C. is 1350 ° C./min, and the baking time of the main baking temperature at 1350 ° C. is 1 The sheet molded body was baked under the same conditions as in Sample 1 except that the sample was used.

上記で得られた試料4〜6は、いずれも、基本組成がLiLaZr12である立方晶のリチウム含有ガーネット型酸化物であった。これらについて、ICPによる元素分析、密度測定、及びSEM観察を行った。元素分析及び相対密度の測定結果を表2に示した。SEM写真は、試料4〜6について順に図6〜図8に示した。 Samples 4 to 6 obtained above were all cubic lithium-containing garnet-type oxides having a basic composition of Li 7 La 3 Zr 2 O 12 . These were subjected to elemental analysis by ICP, density measurement, and SEM observation. The results of elemental analysis and relative density are shown in Table 2. The SEM photographs are shown in FIGS. 6 to 8 in order for Samples 4 to 6.

これらの結果から、本焼成温度が1250℃〜1350℃の場合(試料4〜6)には、本焼成温度が1100℃である場合(試料1、表1)よりも、本焼成温度が高い方がLiの残存量が多かった。これは、本焼成温度での焼成時間を1〜4分と短くしたため、炭酸リチウムからのCO生成が抑制されたためであると考えられる。本焼成温度が1250℃、1300℃の場合には、Li残存量が多く、1350℃の場合には焼結体のLi残存量が減少した。特に1300℃の場合には、基本組成がLiLaZr12のLi理論比とほぼ同量のLiが残り、ほとんどLiが揮発しなかった。 From these results, when the main baking temperature is 1250 ° C. to 1350 ° C. (samples 4 to 6), the main baking temperature is higher than when the main baking temperature is 1100 ° C. (sample 1, Table 1). However, the residual amount of Li was large. This is presumably because the firing time at the main firing temperature was shortened to 1 to 4 minutes, so that the production of CO 2 from lithium carbonate was suppressed. When the main firing temperature was 1250 ° C. and 1300 ° C., the amount of remaining Li was large, and when it was 1350 ° C., the amount of remaining Li in the sintered body decreased. In particular, when the temperature was 1300 ° C., almost the same amount of Li remained as the Li theoretical ratio of the basic composition Li 7 La 3 Zr 2 O 12 , and almost no Li volatilized.

図6、図8は、焼結体の側面のみが観察される。図7は、焼結体の側面と、その上の平面とが観察される。図6〜図8に示すように、本焼成温度が1250℃では、焼結体に5μm程度の気孔が多くみられた。本焼成温度が1300℃では、ほとんど気孔が消えた。本焼成温度が1350℃では、ほとんど気孔がなかった。   In FIGS. 6 and 8, only the side surface of the sintered body is observed. In FIG. 7, the side surface of the sintered body and the flat surface thereon are observed. As shown in FIGS. 6 to 8, when the main firing temperature was 1250 ° C., many pores of about 5 μm were observed in the sintered body. At the main firing temperature of 1300 ° C., the pores almost disappeared. When the main firing temperature was 1350 ° C., there were almost no pores.

以上より、1300℃、3分の焼成条件では、焼結体はほぼ緻密化し、Li揮発量が少なかった。この条件の二酸化炭素ガス雰囲気での急速焼成を行うことで、焼結体が緻密化し、かつ、Li欠損を抑えるのに有効であることがわかった。   As described above, the sintered body was almost densified and the amount of Li volatilization was small under the firing conditions of 1300 ° C. for 3 minutes. It has been found that by performing rapid firing in a carbon dioxide gas atmosphere under these conditions, the sintered body is densified and effective in suppressing Li deficiency.

Claims (18)

炭酸塩を含む複数種の無機材料を、二酸化炭素を含む二酸化炭素ガス雰囲気で本焼成温度に加熱して焼成する本焼成工程を有することを特徴とするガーネット型酸化物の製造方法。   A method for producing a garnet-type oxide, comprising a main baking step of baking a plurality of types of inorganic materials including a carbonate by heating to a main baking temperature in a carbon dioxide gas atmosphere including carbon dioxide. 本焼成工程において、粒子間を接着する役目を持った異相が析出する請求項1記載のガーネット型酸化物の製造方法。   The method for producing a garnet-type oxide according to claim 1, wherein a heterogeneous phase having a role of adhering particles is precipitated in the main firing step. 前記異相は、炭酸塩を有する請求項2記載のガーネット型酸化物の製造方法。   The method for producing a garnet-type oxide according to claim 2, wherein the hetero phase includes a carbonate. 前記本焼成温度は、炭酸塩の融点よりも高い請求項1〜3のいずれか1項に記載のガーネット型酸化物の製造方法。   The said calcination temperature is a manufacturing method of the garnet-type oxide of any one of Claims 1-3 higher than melting | fusing point of carbonate. 前記本焼成工程の前に、二酸化炭素ガス雰囲気で炭酸塩の融点よりも低い温度から前記本焼成温度まで昇温させる昇温工程を有し、
前記昇温工程では、前記無機材料を前記二酸化炭素ガス雰囲気で焼成する請求項1〜4のいずれか1項に記載のガーネット型酸化物の製造方法。
Prior to the main firing step, there is a temperature raising step for raising the temperature from a temperature lower than the melting point of the carbonate in a carbon dioxide gas atmosphere to the main firing temperature,
The method for producing a garnet-type oxide according to any one of claims 1 to 4, wherein in the temperature raising step, the inorganic material is fired in the carbon dioxide gas atmosphere.
前記炭酸塩は、炭酸リチウムからなる請求項1〜5のいずれか1項に記載のガーネット型酸化物の製造方法。   The said carbonate is a manufacturing method of the garnet-type oxide of any one of Claims 1-5 which consists of lithium carbonate. 前記本焼成温度は1100〜1300℃である請求項6に記載のガーネット型酸化物の製造方法。   The said baking temperature is 1100-1300 degreeC, The manufacturing method of the garnet-type oxide of Claim 6. 前記本焼成温度と、前記本焼成温度での焼成時間との関係は、以下の化1に示すハッチングの範囲で示される請求項6又は7に記載のガーネット型酸化物の製造方法。
The method for producing a garnet-type oxide according to claim 6 or 7, wherein a relationship between the main baking temperature and a baking time at the main baking temperature is indicated by a hatching range shown in Chemical Formula 1 below.
本焼成温度までの温度上昇速度は5〜1350℃/分である請求項1〜8のいずれか1項に記載のガーネット型酸化物の製造方法。   The method for producing a garnet-type oxide according to any one of claims 1 to 8, wherein a rate of temperature rise to the main firing temperature is 5 to 1350 ° C / min. 前記二酸化炭素ガス雰囲気のガス全体を100体積%としたときに、前記二酸化炭素ガス雰囲気中での二酸化炭素ガスの濃度は10体積%以上100%体積以下である請求項1〜9のいずれか1項に記載のガーネット型酸化物の製造方法。   The concentration of carbon dioxide gas in the carbon dioxide gas atmosphere is 10% by volume or more and 100% volume or less when the total gas in the carbon dioxide gas atmosphere is 100% by volume. The manufacturing method of the garnet-type oxide as described in a term. 前記本焼成工程を行う前に、前記無機材料にバインダーを添加してスラリーとなして成形体を成形する成形工程と、前記バインダーの焼失する温度で前記成形体を仮焼成する仮焼成工程とを行う請求項1〜10のいずれか1項に記載のガーネット型酸化物の製造方法。   Before performing the main firing step, a molding step in which a binder is added to the inorganic material to form a slurry to form a molded body, and a temporary firing step in which the molded body is temporarily fired at a temperature at which the binder is burned off. The manufacturing method of the garnet-type oxide of any one of Claims 1-10 performed. 仮焼成工程での仮焼成の温度は300℃以上723℃以下である請求項1〜11のいずれか1項に記載のガーネット型酸化物の製造方法。   The method for producing a garnet-type oxide according to any one of claims 1 to 11, wherein a temperature of the pre-baking in the pre-baking step is 300 ° C or higher and 723 ° C or lower. 基本組成がLixy3-y212(但し、Aは第2族元素のうちいずれか1以上、Bはランタノイド元素及びY,Scのうちいずれか1以上、yは0以上3以下の整数、x=7+yであるときにMはTi,Zr,Hfのうちいずれか1以上であり、x=5+yであるときにはMはV,Nb,Taのうちいずれか1以上である。)である請求項1〜9のいずれか1項に記載のガーネット型酸化物の製造方法。 Basic composition Li x A y B 3-y M 2 O 12 ( where, A is any one or more of the second group elements, B is a lanthanoid element and Y, any one or more of Sc, y is 0 or more When the integer is 3 or less and x = 7 + y, M is any one or more of Ti, Zr, and Hf, and when x = 5 + y, M is any one or more of V, Nb, and Ta. The method for producing a garnet oxide according to any one of claims 1 to 9. 請求項1〜13に記載の製造方法により得られたガーネット型酸化物。   A garnet-type oxide obtained by the production method according to claim 1. 相対密度が70以上98以下である請求項14記載のガーネット型酸化物。   The garnet-type oxide according to claim 14, which has a relative density of 70 or more and 98 or less. 立方晶である請求項14又は15に記載のガーネット型酸化物。   The garnet-type oxide according to claim 14 or 15, which is a cubic crystal. 請求項14〜16のいずれか1項に記載のガーネット型酸化物を有することを特徴とする二次電池用固体電解質。   A solid electrolyte for a secondary battery comprising the garnet-type oxide according to any one of claims 14 to 16. 請求項17記載の二次電池用固体電解質と、正極と、負極とを備える二次電池。   A secondary battery comprising the solid electrolyte for a secondary battery according to claim 17, a positive electrode, and a negative electrode.
JP2014084773A 2014-04-16 2014-04-16 Garnet-type oxide, method for producing the same, and solid electrolyte for secondary battery and secondary battery using the same Active JP6341480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084773A JP6341480B2 (en) 2014-04-16 2014-04-16 Garnet-type oxide, method for producing the same, and solid electrolyte for secondary battery and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014084773A JP6341480B2 (en) 2014-04-16 2014-04-16 Garnet-type oxide, method for producing the same, and solid electrolyte for secondary battery and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2015202998A true JP2015202998A (en) 2015-11-16
JP6341480B2 JP6341480B2 (en) 2018-06-13

Family

ID=54596667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084773A Active JP6341480B2 (en) 2014-04-16 2014-04-16 Garnet-type oxide, method for producing the same, and solid electrolyte for secondary battery and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6341480B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116615A (en) * 2018-04-05 2019-10-15 주식회사 세븐킹에너지 Synthesis Process of Ceramic Solid Electrolyte for Lithium Secondary Batteries
CN114373983A (en) * 2021-12-28 2022-04-19 广东马车动力科技有限公司 Sintering container and sintering method of lithium lanthanum zirconium oxygen-based solid electrolyte material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946198A (en) * 1972-09-13 1974-05-02
JPH05229865A (en) * 1992-02-18 1993-09-07 Shinagawa Refract Co Ltd Solid electrolyte
JP2002303600A (en) * 2001-04-03 2002-10-18 Akebono Brake Res & Dev Center Ltd Solid electrolyte gas sensor
JP2003064358A (en) * 2001-08-28 2003-03-05 Mitsubishi Chemicals Corp Fluorescent substance and light-emitting element using the same and image display device and illuminating device
JP2006321974A (en) * 2005-04-18 2006-11-30 Mitsubishi Chemicals Corp Phosphor, light emitting device using the same, image display and lighting apparatus
JP2010102929A (en) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc Lithium content garnet type oxide, lithium secondary cell, and method for manufacturing solid electrolyte
JP2010202499A (en) * 2009-02-04 2010-09-16 Toyota Central R&D Labs Inc Garnet-type lithium ion-conducting oxide
WO2012164724A1 (en) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 Solid electrolyte material, solid cell, and method for manufacturing solid electrolyte material
JP2013107779A (en) * 2011-11-17 2013-06-06 Honda Motor Co Ltd Sintered body and method for manufacturing the same
JP2013256435A (en) * 2012-05-14 2013-12-26 Toyota Central R&D Labs Inc Method for producing garnet type lithium ion-conductive oxide
JP2014043358A (en) * 2012-08-24 2014-03-13 Taiyo Yuden Co Ltd Piezoelectric ceramic and piezoelectric element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946198A (en) * 1972-09-13 1974-05-02
JPH05229865A (en) * 1992-02-18 1993-09-07 Shinagawa Refract Co Ltd Solid electrolyte
JP2002303600A (en) * 2001-04-03 2002-10-18 Akebono Brake Res & Dev Center Ltd Solid electrolyte gas sensor
JP2003064358A (en) * 2001-08-28 2003-03-05 Mitsubishi Chemicals Corp Fluorescent substance and light-emitting element using the same and image display device and illuminating device
JP2006321974A (en) * 2005-04-18 2006-11-30 Mitsubishi Chemicals Corp Phosphor, light emitting device using the same, image display and lighting apparatus
JP2010102929A (en) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc Lithium content garnet type oxide, lithium secondary cell, and method for manufacturing solid electrolyte
JP2010202499A (en) * 2009-02-04 2010-09-16 Toyota Central R&D Labs Inc Garnet-type lithium ion-conducting oxide
WO2012164724A1 (en) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 Solid electrolyte material, solid cell, and method for manufacturing solid electrolyte material
JP2013107779A (en) * 2011-11-17 2013-06-06 Honda Motor Co Ltd Sintered body and method for manufacturing the same
JP2013256435A (en) * 2012-05-14 2013-12-26 Toyota Central R&D Labs Inc Method for producing garnet type lithium ion-conductive oxide
JP2014043358A (en) * 2012-08-24 2014-03-13 Taiyo Yuden Co Ltd Piezoelectric ceramic and piezoelectric element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116615A (en) * 2018-04-05 2019-10-15 주식회사 세븐킹에너지 Synthesis Process of Ceramic Solid Electrolyte for Lithium Secondary Batteries
WO2019194454A3 (en) * 2018-04-05 2019-12-12 주식회사 세븐킹에너지 Method for preparing ceramic solid electrolyte for lithium secondary battery
CN111937213A (en) * 2018-04-05 2020-11-13 (株)七王能源 Method for manufacturing ceramic solid electrolyte for lithium secondary battery
KR102224126B1 (en) * 2018-04-05 2021-03-08 주식회사 세븐킹에너지 Synthesis Process of Ceramic Solid Electrolyte for Lithium Secondary Batteries
CN114373983A (en) * 2021-12-28 2022-04-19 广东马车动力科技有限公司 Sintering container and sintering method of lithium lanthanum zirconium oxygen-based solid electrolyte material
CN114373983B (en) * 2021-12-28 2022-10-21 广东马车动力科技有限公司 Sintering container and sintering method of lithium lanthanum zirconium oxygen-based solid electrolyte material

Also Published As

Publication number Publication date
JP6341480B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
US11043696B2 (en) Metal alloy layers on substrates, methods of making same, and uses thereof
JP6165546B2 (en) Solid electrolyte and all-solid lithium ion secondary battery
JP6299251B2 (en) Electrode composite manufacturing method, electrode composite, and battery
JP5731278B2 (en) All-solid-state lithium ion battery
JP6164812B2 (en) All solid lithium ion secondary battery
JP6464556B2 (en) Electrode composite manufacturing method, electrode composite, and battery
US20130273437A1 (en) All solid state battery
KR102160330B1 (en) Lithium ion conductor, solid electrolyte layer, electrode, battery and electronic device
WO2015045350A1 (en) Lithium ion secondary battery
KR20190061064A (en) Secondary battery
JP2016066584A (en) Electrode, method of producing the same, battery, and electronic device
CN111868994A (en) Solid-state battery electrolyte with improved stability to cathode materials
CN111048825B (en) Solid state electrode with non-carbon electron conductive additive
WO2015037270A1 (en) Solid electrolyte, and all-solid ion secondary battery using same
JP2020514948A (en) ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF
CN114270569A (en) Method of manufacturing lithium metal unit cell of all-solid-state battery and unit cell manufactured by the method
JP2012243472A (en) Method for manufacturing all-solid battery
CN111180634B (en) Composite structure, lithium battery, and method for manufacturing composite structure
JP7115626B2 (en) Precursor composition for solid electrolyte, method for producing secondary battery
JP5602541B2 (en) All-solid-state lithium ion battery
JP6341480B2 (en) Garnet-type oxide, method for producing the same, and solid electrolyte for secondary battery and secondary battery using the same
KR102485801B1 (en) All solid battery unit cell using high loading, monopolar all solid battery comprising the same, and method for preparing the same
JP2014002855A (en) Method of producing electrode mixture
JP2018116776A (en) All-solid battery and manufacturing method of all-solid battery
JP6340955B2 (en) Method for producing composite laminate, composite laminate and lithium battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6341480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250