JP2015139784A - Two-electrode horizontal fillet gas shielded arc welding method - Google Patents
Two-electrode horizontal fillet gas shielded arc welding method Download PDFInfo
- Publication number
- JP2015139784A JP2015139784A JP2014012349A JP2014012349A JP2015139784A JP 2015139784 A JP2015139784 A JP 2015139784A JP 2014012349 A JP2014012349 A JP 2014012349A JP 2014012349 A JP2014012349 A JP 2014012349A JP 2015139784 A JP2015139784 A JP 2015139784A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- welding
- wire
- oxide
- terms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
- Nonmetallic Welding Materials (AREA)
Abstract
Description
本発明は、軟鋼及び490N/mm2級高張力鋼板をはじめとする各種鋼板を水平すみ肉溶接する2電極水平すみ肉ガスシールドアーク溶接方法に関するものであり、特に、無機ジンクなどのプライマ塗装鋼板の長尺水平すみ肉溶接で問題となるビード形状、耐気孔性を向上させる上で好適な2電極水平すみ肉ガスシールドアーク溶接方法に関する。 The present invention relates to a two-electrode horizontal fillet gas shielded arc welding method for horizontal fillet welding of various steel plates including mild steel and 490 N / mm 2 grade high-strength steel plates, and in particular, primer coated steel plates such as inorganic zinc. The present invention relates to a two-electrode horizontal fillet gas shielded arc welding method suitable for improving the bead shape and the pore resistance, which are problems in long horizontal fillet welding.
近年、船舶や橋梁の分野ではガスシールドアーク溶接が広く使用されているが、溶接の更なる高能率化の目的から、例えば特許文献1、2に示すような2電極1プール方式での水平すみ肉ガスシールドアーク溶接が提案され、長尺ロンジ溶接などに使用されている。この溶接法を用いれば、溶接速度を下げることなく溶着量を確保できるため、高能率な溶接が可能となる。 In recent years, gas shielded arc welding has been widely used in the field of ships and bridges. For the purpose of further improving the efficiency of welding, for example, horizontal corners in a two-electrode one-pool system as shown in Patent Documents 1 and 2 are used. Meat gas shielded arc welding has been proposed and used for long long welding. If this welding method is used, the amount of welding can be secured without lowering the welding speed, so that highly efficient welding is possible.
図1に2電極1プール方式の水平すみ肉ガスシールドアーク溶接の状況を示す模式図を示す。図1に示すように、2電極水平すみ肉ガスシールドアーク溶接で良好なビード形状を得るためには、先行電極ワイヤ1について鉛直方向に対し後方斜め方向に角度θ1(以下、後退角という。)を持たせ、後行電極ワイヤ2について鉛直方向に対し前方斜め方向に角度θ2(以下、前進角という。)を持たせ、その2電極間に安定した湯溜り3を形成することが重要である。なお、図1中において、後行電極ワイヤ2の後方には溶融プール4が形成され、その溶融プール4の表面に溶融スラグ5及び凝固スラグ6が形成される。また図1には、形成される溶接ビード7や、鋼板表面に塗布した無機ジンクのプライマ8も示している。しかし、2電極1プール方式での水平すみ肉ガスシールドアーク溶接では、溶接電流が高電流域(例えば、両極とも溶接電流450A以上)になると、2電極間に形成される湯溜り3の状態及びアーク状態が2電極の強いアーク力の干渉によって不安定となり、溶接ビードのビード形状が乱れ、脚長も不均等な溶接ビードとなる。
FIG. 1 is a schematic view showing a situation of horizontal fillet gas shielded arc welding of the two-electrode one-pool method. As shown in FIG. 1, in order to obtain a good bead shape by two-electrode horizontal fillet gas shielded arc welding, the leading electrode wire 1 is referred to as an angle θ 1 (hereinafter referred to as a receding angle) in a rearward oblique direction with respect to the vertical direction. It is important that the trailing electrode wire 2 has an angle θ 2 (hereinafter referred to as a forward angle) obliquely forward with respect to the vertical direction and that a
例えば、溶接速度1.0m/min以上での溶接で健全な溶接ビードを得ようとする場合、溶接電流を高くして溶着量を多く確保するため、高電流域での溶接となり、先行電極ワイヤ1と後行電極ワイヤ2のアーク力が共に強くなるため、それらアーク力によって湯溜り3も不安定となる。さらに、アーク状態も不安定になるため、最終的には湯溜り3自体の変動が非常に大きくなり、良好な溶接ビード7が形成できなくなるという問題点も生じる。また、後行電極の後方にある溶融プール4の表面に形成される溶融スラグ5も安定しないので、凝固してできる凝固スラグ6の被包状態も不均一となる。その結果、図2に示すように、溶接部内にアンダーカット11やオーバーラッブ12といった欠陥が発生し、スラグ剥離性も不良となり、溶接ビードの脚長も不均等となる。
For example, when a sound welding bead is to be obtained by welding at a welding speed of 1.0 m / min or higher, the welding current is increased to secure a large amount of welding, so welding is performed in a high current region, and the leading electrode wire Since both the arc force of 1 and the trailing electrode wire 2 become strong, the
また近年、耐錆性の目的から、鋼板表面に無機ジンクのプライマ8が塗装されている鋼板(以下、プライマ塗装鋼板という。)が多く使用されている。このようなプライマ塗装鋼板を溶接した場合、図2に示すように、立板9及び下板10に塗装したプライマ8や鋼板表面の赤錆及び付着する水分が溶接時に蒸気化して蒸気ガスが発生する。このため、ピット13が発生し、この手直し溶接に時間を要するため、生産コストが高くなるという問題がある。
In recent years, for the purpose of rust resistance, a steel plate (hereinafter referred to as a primer-coated steel plate) in which an inorganic zinc primer 8 is coated on the steel plate surface is often used. When such a primer-coated steel plate is welded, as shown in FIG. 2, the primer 8 coated on the
これら問題を解決する方法として、特許文献3には、2電極1プール方式での水平すみ肉ガスシールドアーク溶接において、先行電極及び後行電極に用いるフラックス入りワイヤの含有成分を限定することにより、プライマ塗装鋼板を用いた場合の耐気孔性を改善する方法が開示されている。しかし、特許文献3に開示されたフラックス入りワイヤでは、溶接速度が1.0m/min以上になると、溶融プール4の表面を被包する溶融スラグ5が不足するため、凝固スラグ6が溶接ビード7を均一に被包することができず、ピット13の発生を十分に抑えることができないという問題があった。
As a method for solving these problems, in
そこで本発明は、上述した問題点に鑑みて案出されたものであり、無機ジンクなどのプライマ塗装鋼板の2電極水平すみ肉ガスシールドアーク溶接において、アーク状態が良好で、スパッタが少なく、湯溜りが安定し、アンダーカットやオーバーラップがない健全な溶接ビードが得られ、スラグ被包性及びスラグ剥離性も良好で、ピットの発生が少なく、均等な脚長の溶接ビードを得ることができる2電極水平すみ肉ガスシールドアーク溶接方法を提供することを目的とする。 Therefore, the present invention has been devised in view of the above-described problems. In two-electrode horizontal fillet gas shielded arc welding of a primer coated steel plate such as inorganic zinc, the arc state is good, the spatter is small, A stable weld bead with stable accumulation and no undercut or overlap is obtained, slag encapsulation and slag peelability are good, pits are few, and a weld bead with uniform leg length can be obtained. An object is to provide an electrode horizontal fillet gas shielded arc welding method.
上述した課題を解決するために、本発明は、2電極水平すみ肉ガスシールドアーク溶接方法において、先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用い、前記溶接用フラックス入りワイヤは、ワイヤ全質量に対する質量%で、フラックス中に、Ti酸化物:TiO2換算値で3.2〜4.2%、Si酸化物:SiO2換算値で0.5〜1.5%、Zr酸化物:ZrO2換算値で0.2〜1.2%、Al酸化物:Al2O3換算値で0.05〜0.3%、Fe酸化物:FeO換算値で0.05〜0.3%、Na及びK化合物:Na2O換算値ならびにK2O換算値の合計で0.05〜0.2%、弗素化合物:F換算値で0.02〜0.15%、金属Bi及びBi酸化物:Bi換算値の合計で0.005〜0.03%を含有し、残部は合金粉、鉄粉、鉄合金等からのFe及び不可避不純物からなり、先行電極と後行電極との電極間距離を10〜40mm、先行電極及び後行電極のワイヤ径を1.2〜2.0mmとし、且つ、先行電極のワイヤ径は、後行電極のワイヤ径以下で溶接することを特徴とする。 In order to solve the above-described problems, the present invention is a two-electrode horizontal fillet gas shielded arc welding method in which a welding solid wire is used as a leading electrode and a welding flux-cored wire is used as a trailing electrode. A wire is mass% with respect to the total mass of the wire, and in the flux, Ti oxide: 3.2 to 4.2% in terms of TiO 2 , Si oxide: 0.5 to 1.5% in terms of SiO 2 Zr oxide: 0.2 to 1.2% in terms of ZrO 2 , Al oxide: 0.05 to 0.3% in terms of Al 2 O 3 , Fe oxide: 0.05 in terms of FeO -0.3%, Na and K compound: 0.05 to 0.2% in total of Na 2 O converted value and K 2 O converted value, fluorine compound: 0.02 to 0.15% in F converted value, Metal Bi and Bi oxide: 0.005 to 0.03 in total in terms of Bi The balance is composed of Fe and inevitable impurities from alloy powder, iron powder, iron alloy, etc., the distance between the electrode between the leading electrode and the trailing electrode is 10 to 40 mm, and the wire diameter of the leading electrode and the trailing electrode is It is set to 1.2 to 2.0 mm, and the wire diameter of the preceding electrode is welded to be equal to or less than the wire diameter of the succeeding electrode.
本発明の2電極水平すみ肉ガスシールドアーク溶接方法によれば、無機ジンクなどのプライマ塗装鋼板を2電極水平すみ肉ガスシールドアーク溶接で溶接施工した場合において、アーク状態が良好で、スパッタが少なく、湯溜りが安定し、アンダーカットやオーバーラップがない健全な溶接ビードが得られ、スラグ被包性及びスラグ剥離性も良好で、ピットの発生が少なく、均等な脚長の溶接ビードを得ることができるので、溶接の高能率化及び溶接部の品質向上を図ることができる。 According to the two-electrode horizontal fillet gas shielded arc welding method of the present invention, when a primer-coated steel plate such as inorganic zinc is welded by two-electrode horizontal fillet gas shielded arc welding, the arc state is good and spatter is small. It is possible to obtain a weld bead with a stable puddle, a sound weld bead with no undercut or overlap, good slag encapsulation and slag peelability, few pits, and uniform leg length. Therefore, it is possible to improve the efficiency of welding and improve the quality of the welded portion.
本発明者らは、軟鋼及び490N/mm2級高張力鋼板をはじめとする各種鋼板を溶接する上で、前記課題を解決するため、無機ジンクなどのプライマ塗装鋼板を用いて2電極1プール方式での水平すみ肉ガスシールドアーク溶接の施工条件について種々検討した。その結果、先行電極用のワイヤとして溶接用ソリッドワイヤ、後行電極用のワイヤとして溶接用フラックス入りワイヤを用いることで、後行電極ワイヤの溶接用フラックス入りワイヤから発生する溶融スラグを溶接ビードの表面に均一被包させ、スラグ被包性、スラグ剥離性及びビード形状を良好にすることができることを見出した。 In order to solve the above-mentioned problems in welding various steel plates including mild steel and 490 N / mm 2 grade high-strength steel plate, the present inventors have used a two-electrode, one-pool system using a primer-coated steel plate such as inorganic zinc. Various construction conditions of horizontal fillet gas shielded arc welding were investigated. As a result, by using a welding solid wire as the leading electrode wire and a welding flux-cored wire as the trailing electrode wire, the molten slag generated from the welding flux-cored wire of the trailing electrode wire is removed from the welding bead. It has been found that the surface can be uniformly encapsulated to improve the slag encapsulation, slag peelability and bead shape.
また、先行電極ワイヤの溶接用ソリッドワイヤから発生するアーク力が強いので、先行電極ワイヤと後行電極ワイヤ間に形成される湯溜り内で激しい撹拌作用が発生し、プライマから発生する蒸気ガスを湯溜り外に多量に放出することを促すことができることを見出した。 In addition, since the arc force generated from the solid wire for welding the leading electrode wire is strong, a vigorous stirring action occurs in the hot water pool formed between the leading electrode wire and the trailing electrode wire, and the vapor gas generated from the primer is reduced. It has been found that a large amount can be urged to be released out of the puddle.
さらに、溶接用ソリッドワイヤは、溶接用フラックス入りワイヤに比べて溶融金属の酸素量が少ないので、先行電極ワイヤに溶接用ソリッドワイヤを用いた場合、2電極ともに溶接用フラックス入りワイヤを用いた場合に比べて湯溜り内の酸素量が下がり、後行電極ワイヤの後方に形成される溶融プールの表面張力が上がるので、溶接ビードの垂れが少なくなり、立板側の溶接ビード端部及び下板側の溶接ビード端部が均等な溶接ビードが得られることを見出した。 In addition, the solid wire for welding has less oxygen in the molten metal than the flux-cored wire for welding. Therefore, when the solid wire for welding is used for the lead electrode wire, the flux-cored wire for welding is used for both electrodes. Compared to the above, the amount of oxygen in the puddle is reduced, and the surface tension of the molten pool formed behind the trailing electrode wire is increased, so that the weld bead sag is reduced, and the weld bead end and lower plate on the vertical plate side are reduced. It has been found that a weld bead having a uniform weld bead end can be obtained.
また、後行電極ワイヤの溶接用フラックス入りワイヤの成分は、先行電極ワイヤから発生したアーク力により湯溜りが後退せず、先行電極ワイヤと後行電極ワイヤの電極間に安定した湯溜りを形成し、高電流・高速度の溶接においても湯溜り状態を維持するため、主要なスラグ形成剤であるTi酸化物、Si酸化物、Zr酸化物及びAl酸化物の比率を検討し、2電極間の湯溜りを安定して保持できることを見出した。また、アーク状態の安定化に対しては、アーク安定剤であるNa及びKの酸化物や化合物ならびに弗素化合物の比率を増加させることにより、アーク状態を安定化できることを見出した。また、スラグ被包性は、先行電極ワイヤに用いる溶接用ソリッドワイヤはスラグがないので、後行電極ワイヤの溶接用フラックス入りワイヤの化学成分の影響が大きくなる。そのため、Ti酸化物、Si酸化物、Zr酸化物及びAl酸化物の他にFe酸化物を適量含有させることで、溶接部に均一にスラグ被包することができ、アンダーカットやオーバーラップがなくビード止端部と鋼板とのなじみ性が良好で平滑なビード形状が得られることを見出した。また、スラグ剥離性については、金属Bi及びBi酸化物を適量添加することで極めて除去しやすくなることを見出した。 In addition, the flux-cored wire component for welding the trailing electrode wire does not retreat due to the arc force generated from the leading electrode wire, and forms a stable pool between the electrodes of the leading electrode wire and the trailing electrode wire. In order to maintain the puddle state even in high current / high speed welding, the ratio of Ti oxide, Si oxide, Zr oxide and Al oxide, which are the main slag forming agents, was investigated It was found that the water reservoir can be held stably. In addition, it has been found that the arc state can be stabilized by increasing the ratio of oxides and compounds of Na and K, which are arc stabilizers, and fluorine compounds, for the stabilization of the arc state. Moreover, since the solid wire for welding used for a preceding electrode wire does not have slag, the influence of the chemical composition of the flux-cored wire for welding of a subsequent electrode wire becomes large for slag encapsulation. Therefore, by including an appropriate amount of Fe oxide in addition to Ti oxide, Si oxide, Zr oxide and Al oxide, the slag can be uniformly encapsulated in the welded portion, and there is no undercut or overlap. It has been found that a smooth bead shape with good conformability between the bead toe and the steel plate can be obtained. Moreover, about slag peelability, it discovered that it became very easy to remove by adding metal Bi and Bi oxide in an appropriate amount.
また、先行電極ワイヤと後行電極ワイヤとの電極間距離(アーク発生点の間隔)、先行電極ワイヤのワイヤ径を後行電極ワイヤのワイヤ径以下とすることによって、溶接時のアーク及び湯溜りを安定させてスパッタを低減し、アンダーカットやオーバーラップがない健全な溶接ビードが得られ、スラグ剥離性も良好にできることを見出した。 Further, by setting the distance between the electrodes of the preceding electrode wire and the succeeding electrode wire (interval of arc generation point) and the wire diameter of the preceding electrode wire to be equal to or less than the wire diameter of the succeeding electrode wire, the arc and the hot water pool during welding It was found that a stable weld bead with no undercut or overlap was obtained and slag removability could be improved.
以下に、本発明における2電極水平すみ肉ガスシールドアーク溶接方法の施工条件及び溶接用フラックス入りワイヤの成分の限定理由を述べる。また、以下組成における含有量は、溶接用フラックス入りワイヤ全質量に対する質量%で表わすこととし、その質量%を表わすときには単に%と記載する。 Below, the construction conditions of the two-electrode horizontal fillet gas shield arc welding method in the present invention and the reasons for limiting the components of the flux-cored wire for welding will be described. In the following composition, the content is expressed as mass% with respect to the total mass of the flux-cored wire for welding, and when expressing the mass%, it is simply expressed as%.
[先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用いる]
溶接用ソリッドワイヤは、溶接用フラックス入りワイヤに比べて溶融金属の酸素量が少ない。無機ジンクなどのプライマ塗装鋼板を用いた2電極1プール方式での水平すみ肉ガスシールドアーク溶接で先行電極に溶接用ソリッドワイヤを用いると、先行電極及び後行電極ともに溶接用フラックス入りワイヤを用いた場合に比べて湯溜り内の酸素量が下がり、後行電極ワイヤの後方に形成される溶融プールの表面張力が上がるので、溶接ビードの垂れが少なくなり、脚長が均等な溶接ビードを得ることができる。また、先行電極の溶接用ソリッドワイヤからのアーク力が強いので、2電極間に形成される湯溜りが激しく攪拌され、無機ジンクなどのプライマ塗装鋼板から発生した蒸気ガスが湯溜り外に放出されるので、ピットを低減することができる。
[Use welding solid wire for leading electrode and welding flux-cored wire for trailing electrode]
The solid wire for welding has less oxygen in the molten metal than the flux-cored wire for welding. If a solid wire for welding is used for the leading electrode in horizontal fillet gas shielded arc welding with a two-electrode, one-pool system using a primer-coated steel plate such as inorganic zinc, a flux-cored wire for welding is used for both the leading and trailing electrodes. The amount of oxygen in the puddle is lower than that of the hot water pool and the surface tension of the molten pool formed behind the trailing electrode wire is increased, so that the weld bead sag is reduced and a weld bead with a uniform leg length is obtained. Can do. Moreover, since the arc force from the welding solid wire of the leading electrode is strong, the hot water pool formed between the two electrodes is vigorously stirred, and the vapor gas generated from the primer coated steel plate such as inorganic zinc is released outside the hot water pool. Therefore, pits can be reduced.
先行電極及び後行電極ともに溶接用フラックス入りワイヤを用いた場合、湯溜り中の酸素量が多くなるので、溶接ビードが垂れやすくなり、溶接ビードの脚長が不均等となる。また、先行電極のアークが溶接用ソリッドワイヤを用いた場合より弱いので、2電極間の湯溜りが十分に攪拌されず、ピットの発生を十分に抑えることができない。 When a flux-cored wire for welding is used for both the leading electrode and the trailing electrode, the amount of oxygen in the puddle increases, so that the weld bead tends to sag and the leg length of the weld bead becomes uneven. In addition, since the arc of the leading electrode is weaker than when the solid wire for welding is used, the hot water pool between the two electrodes is not sufficiently stirred, and the generation of pits cannot be sufficiently suppressed.
先行電極及び後行電極ともに溶接用ソリッドワイヤを用いた場合、先行電極のアークと後行電極のアークとの相互干渉によってアーク状態が不安定となり、スパッタが多発する。また、後行電極のアークが強いので、溶接ビードが凸状になり、ビード形状が不良になる。さらに、両電極から供給されるスラグ形成剤が極めて少ないので、溶融スラグが溶融プールを全面被包できず、溶接ビードの垂れを支えきれなくなり、溶接ビードの脚長が不均等となるとともに、スラグ被包性及びスラグ剥離性も不良となる。 When a solid wire for welding is used for both the preceding electrode and the succeeding electrode, the arc state becomes unstable due to the mutual interference between the arc of the preceding electrode and the arc of the succeeding electrode, resulting in frequent spattering. Further, since the arc of the trailing electrode is strong, the weld bead becomes convex and the bead shape becomes poor. Further, since the slag forming agent supplied from both electrodes is extremely small, the molten slag cannot encapsulate the entire molten pool, cannot support the drooping of the weld bead, the weld bead leg length becomes uneven, and the slag cover Packaging and slag peelability are also poor.
先行電極に溶接用フラックス入りワイヤ、後行電極に溶接用ソリッドワイヤを用いた場合、ビード形状を整える働きをする後行電極に溶接用ソリッドワイヤを用いているので、後行電極からのアークが強く、溶接ビードが凸状となり、ビード形状が不良となる。また、溶融スラグが溶融プール全面に均一に被包できないので、溶接ビードの脚長も不均等となり、スラグ被包性及びスラグ剥離性が不良となる。 When a flux-cored wire for welding is used as the leading electrode and a solid wire for welding is used as the trailing electrode, the welding electrode is used to adjust the bead shape. Strong, the weld bead becomes convex, and the bead shape becomes poor. Moreover, since molten slag cannot be uniformly encapsulated on the entire surface of the molten pool, the leg length of the weld bead becomes uneven, and the slag encapsulation and slag peelability are poor.
したがって、先行電極には溶接用ソリッドワイヤ、後行電極には溶接用フラックス入りワイヤを用いるものとする。 Therefore, a welding solid wire is used for the leading electrode, and a welding flux-cored wire is used for the trailing electrode.
[Ti酸化物:TiO2換算値で3.2〜4.2%]
ルチールやチタンスラグなどのTi酸化物は、溶融スラグの粘性を高めてスラグ被包性の向上やビード形状を良好にする作用を有する。しかし、フラックス中のTi酸化物のTiO2換算値が3.2%未満では、スラグ量が不足するとともに、溶融スラグの粘性が不足してスラグ被包性が悪くなり、脚長も十分に確保できず、ビード形状及びスラグ剥離性も不良となる。一方、Ti酸化物のTiO2換算値が4.2%を超えると、スラグ量が過多となって耐気孔性が不良となる。したがって、Ti酸化物は、TiO2換算値で3.2〜4.2%とする。
[Ti oxide: 3.2 to 4.2% in terms of TiO 2 ]
Ti oxides such as rutile and titanium slag have the effect of increasing the viscosity of molten slag to improve the slag encapsulation and to improve the bead shape. However, if the TiO 2 equivalent value of the Ti oxide in the flux is less than 3.2%, the amount of slag will be insufficient, the viscosity of the molten slag will be insufficient, the slag encapsulation will be poor, and the leg length will be sufficient. In addition, the bead shape and slag peelability are also poor. On the other hand, if the TiO 2 equivalent value of the Ti oxide exceeds 4.2%, the amount of slag becomes excessive and the pore resistance becomes poor. Therefore, the Ti oxide is 3.2 to 4.2% in terms of TiO 2 .
[Si酸化物:SiO2換算値で0.5〜1.5%]
珪砂やジルコンサンドなどのSi酸化物は、溶融スラグの粘性を高めるものであり、先行電極ワイヤと後行電極ワイヤとの電極間に安定した湯溜りを形成し、スラグ被包性を向上させる作用を有する。しかし、フラックス中のSi酸化物のSiO2換算値が0.5%未満では、溶融スラグの粘性が不足し、湯溜りが不安定になるとともにスラグ被包性も悪くなり、脚長も十分に確保できず、ビード形状及びスラグ剥離性も不良となる。一方、Si酸化物のSiO2換算値が1.5%を超えると、スラグが硬くなり、スラグ除去が困難となってスラグ剥離性が不良となる。したがって、Si酸化物のSiO2換算値は0.5〜1.5%とする。
[Si oxide: 0.5 to 1.5% in terms of SiO 2 ]
Si oxides such as silica sand and zircon sand increase the viscosity of the molten slag, and form a stable puddle between the electrodes of the leading electrode wire and the trailing electrode wire, and improve the slag encapsulation. Have However, if the SiO 2 equivalent value of the Si oxide in the flux is less than 0.5%, the viscosity of the molten slag will be insufficient, the hot water pool will become unstable and the slag encapsulation will be poor, and the leg length will be sufficient. The bead shape and slag peelability are also poor. On the other hand, when the SiO 2 conversion value of the Si oxide exceeds 1.5%, the slag becomes hard, slag removal becomes difficult, and the slag peelability becomes poor. Therefore, the SiO 2 equivalent value of the Si oxide is 0.5 to 1.5%.
[Zr酸化物:ZrO2換算値で0.2〜1.2%]
ジルコンサンド、酸化ジルコンなどのZr酸化物は、溶融プールの極端な後退を抑え、スラグをビード全体に被包させて平滑なビードを形成する作用を有する。しかし、フラックス中のZr酸化物のZrO2換算値が0.2%未満では、ビード止端部のなじみ性が悪くなって凸状ビードとなるのでビード形状が不良となり、脚長も十分に確保できず、スラグ被包むらも発生し、スラグ被包性及びスラグ剥離性も不良となる。一方、Zr酸化物のZrO2換算値が1.2%を超えると、スラグ自体が硬くなってスラグ除去が極めて困難となってスラグ剥離性が不良となる。したがって、Zr酸化物のZrO2換算値は0.2〜1.2%とする。
[Zr oxide: 0.2 to 1.2% in terms of ZrO 2 ]
Zr oxides such as zircon sand and zircon oxide have the effect of suppressing the extreme retreat of the molten pool and encapsulating the slag throughout the bead to form a smooth bead. However, if the ZrO 2 conversion value of the Zr oxide in the flux is less than 0.2%, the conformability of the bead toe portion becomes poor and a convex bead is formed, so the bead shape is poor and the leg length can be sufficiently secured. In addition, slag encapsulation unevenness occurs, and the slag encapsulation and slag peelability also become poor. On the other hand, if the ZrO 2 conversion value of the Zr oxide exceeds 1.2%, the slag itself becomes hard and the slag removal becomes extremely difficult and the slag peelability becomes poor. Therefore, the ZrO 2 conversion value of the Zr oxide is 0.2 to 1.2%.
[Al酸化物:Al2O3換算値で0.05〜0.3%]
アルミナなどのAl酸化物は、スラグ形成剤としてスラグ被包性を高め、ビード形状及びスラグ剥離性を良好にする作用を有する。しかし、フラックス中のAl酸化物のAl2O3換算値が0.05%未満であると、前記効果が得られず、スラグ被包性が悪くなり、ビード形状及びスラグ剥離性も不良となる。一方、Al酸化物のAl2O3換算値が0.3%を超えると、スラグ被包むらが生じ、スラグ被包性が悪くなり、ビード形状及びスラグ剥離性が不良となる。したがって、Al酸化物のAl2O3換算値は0.05〜0.3%とする。
[Al oxide: 0.05 to 0.3% in terms of Al 2 O 3 ]
Al oxides such as alumina have an effect of improving slag encapsulation as a slag forming agent and improving the bead shape and slag peelability. However, when the Al 2 O 3 equivalent value of the Al oxide in the flux is less than 0.05%, the above-mentioned effects cannot be obtained, the slag encapsulation is deteriorated, and the bead shape and the slag peelability are also deteriorated. . On the other hand, when the Al 2 O 3 conversion value of the Al oxide exceeds 0.3%, slag encapsulation unevenness occurs, slag encapsulation becomes poor, and the bead shape and slag peelability become poor. Therefore, the Al 2 O 3 equivalent value of the Al oxide is set to 0.05 to 0.3%.
[Fe酸化物:FeO換算値で0.05〜0.3%]
酸化鉄、ミルスケールなどのFe酸化物は、溶融スラグの粘性及び凝固温度を調整し、ビード下脚側の止端部のなじみ性を良好にする作用を有する。しかし、フラックス中のFe酸化物のFeO換算値が0.05%未満であると、前記効果が得られず、ビード形状が不良となる。一方、Fe酸化物のFeO換算値が0.3%を超えると、先行電極ワイヤと後行電極ワイヤとの電極間の湯溜りが不安定になり、スラグ被包性が不良となり、ビード形状及びスラグ剥離性も不良となる。したがって、Fe酸化物のFeO換算値は0.05〜0.3%とする。
[Fe oxide: 0.05 to 0.3% in terms of FeO]
Fe oxides such as iron oxide and mill scale have the effect of adjusting the viscosity and solidification temperature of the molten slag and improving the conformability of the toe portion on the bead lower leg side. However, if the FeO equivalent value of the Fe oxide in the flux is less than 0.05%, the above effect cannot be obtained and the bead shape becomes poor. On the other hand, when the FeO equivalent value of Fe oxide exceeds 0.3%, the hot water pool between the electrodes of the leading electrode wire and the trailing electrode wire becomes unstable, the slag encapsulation becomes poor, the bead shape and Slag peelability is also poor. Accordingly, the FeO equivalent value of the Fe oxide is set to 0.05 to 0.3%.
[Na及びK化合物:Na2O換算値ならびにK2O換算値の合計で0.05〜0.2%]
珪酸ソーダ、珪酸カリ、氷晶石及びカリ長石などからのNa及びKは、アーク安定剤として溶滴移行を良好にする作用を有する。しかし、フラックス中のNa及びK化合物のNa2O換算値ならびにK2O換算値の合計が0.05%未満では、先行電極ワイヤと後行電極ワイヤとの電極間に安定した湯溜りが形成されず、アーク状態も不安定となり、スラグ被包性も悪くなり、ビード形状及びスラグ剥離性も不良となる。一方、Na及びK化合物のNa2O換算値ならびにK2O換算値の合計が0.2%を超えると、溶融スラグの粘性が過剰に低下してスラグ被包性が悪くなり、ビード形状及びスラグ剥離性も不良となる。したがって、Na及びK化合物のNa2O換算値ならびにK2O換算値の合計は0.05〜0.2%とする。
[Na and K compounds: 0.05 to 0.2% in total of Na 2 O converted value and K 2 O converted value]
Na and K from sodium silicate, potassium silicate, cryolite, potassium feldspar and the like have an action of improving droplet transfer as an arc stabilizer. However, if the total of Na 2 O conversion value and K 2 O conversion value of Na and K compound in the flux is less than 0.05%, a stable puddle is formed between the electrodes of the leading electrode wire and the trailing electrode wire. As a result, the arc state becomes unstable, the slag encapsulation becomes worse, and the bead shape and the slag peelability become poor. On the other hand, when the total of Na 2 O converted values and K 2 O converted values of Na and K compounds exceeds 0.2%, the viscosity of the molten slag is excessively lowered to deteriorate the slag encapsulation, and the bead shape and Slag peelability is also poor. Therefore, the total of Na 2 O converted values and K 2 O converted values of Na and K compounds is 0.05 to 0.2%.
[弗素化合物:F換算値で0.02〜0.15%]
Fは、弗化ソーダや珪弗化カリ等より添加され、アークの指向性を高めて安定した溶融プールにするとともにスラグの粘性を調整して耐ピット性を良好にする作用を有する。弗素化合物のF換算値が0.02%未満であると、アークの集中性が弱いためアークが不安定になる。一方、弗素化合物のF換算値が0.15%を超えると、スラグの粘性が低下してビード上脚部に除去しにくい薄いスラグが残りスラグ剥離性が不良となり、ビード形状は凸状になる。したがって、弗素化合物のF換算値は0.02〜0.15%とする。
[Fluorine compound: 0.02 to 0.15% in terms of F]
F is added from sodium fluoride, potassium silicofluoride, or the like, and has the effect of improving the directivity of the arc to form a stable molten pool and adjusting the viscosity of the slag to improve the pit resistance. If the F-converted value of the fluorine compound is less than 0.02%, the arc becomes unstable because the arc concentration is weak. On the other hand, if the F-converted value of the fluorine compound exceeds 0.15%, the slag viscosity decreases and thin slag that is difficult to remove remains on the upper leg of the bead, resulting in poor slag peelability and a bead shape that is convex. . Therefore, the F equivalent value of the fluorine compound is 0.02 to 0.15%.
[金属Bi及びBi酸化物:Bi換算値の合計で0.005〜0.03%]
Biは、金属Biや酸化Bi等により添加され、スラグ剥離性を向上させ、ビード表面に光沢を出しビード外観を良好にする作用を有する。金属Bi及びBi酸化物のBi換算値が0.005%未満では、その効果が得られず、0.03%を超えると、ビード上部のスラグが流れて、ビード全面をスラグで被包することができなくなり、ビード外観が不良となる。したがって、金属Bi及びBi酸化物のBi換算値は0.005〜0.03%とする。
[Metal Bi and Bi oxide: 0.005 to 0.03% in total in terms of Bi]
Bi is added by metal Bi, oxidized Bi, or the like, and has an effect of improving the slag removability, giving gloss to the bead surface and improving the bead appearance. If the Bi conversion value of metal Bi and Bi oxide is less than 0.005%, the effect cannot be obtained. If it exceeds 0.03%, the slag on the upper part of the bead flows and the entire surface of the bead is encapsulated with slag. The bead appearance is poor. Therefore, the Bi equivalent value of the metal Bi and Bi oxide is set to 0.005 to 0.03%.
以上、本発明の後行電極に用いる溶接用フラックス入りワイヤの成分の限定理由を述べたが、残部は、鋼製外皮成分のC、Si、Mn、Fe、フラックス中の鉄粉、合金粉及び不可避不純物である。鉄粉は、溶着速度を高める目的から適量添加することができる。また、合金粉は、Si、Mn、Ti、Al、Mgなどの金属粉や、Fe−Si、Fe−Mn、Fe−Si−Mn、Fe−Al、Fe−Tiなどの鉄合金粉などをいい、溶接金属の機械的性性質を向上などの目的から適量添加することができる。 As mentioned above, although the reason for limitation of the component of the flux cored wire for welding used for the trailing electrode of the present invention was described, the balance is steel outer skin component C, Si, Mn, Fe, iron powder in the flux, alloy powder and Inevitable impurities. An appropriate amount of iron powder can be added for the purpose of increasing the welding speed. Further, the alloy powder refers to metal powder such as Si, Mn, Ti, Al, Mg, and iron alloy powder such as Fe-Si, Fe-Mn, Fe-Si-Mn, Fe-Al, Fe-Ti, and the like. An appropriate amount can be added for the purpose of improving the mechanical properties of the weld metal.
なお、前記の鋼製外皮は、フラックス充填した後の伸線加工性に優れる熱間圧延鋼帯で、鋼製外皮全質量に対して、質量%で、C:0.10%以下、Si:0.05%以下、Mn:0.20〜0.80%、P:0.050%以下、S:0.050%以下のものが適しており、特に、Cが0.005〜0.03%のものは、スパッタ低減及び低ヒューム化にも有効である。また、フラックス入りワイヤの好ましい化学成分範囲はワイヤ全質量、鋼製外皮とフラックスの両方の合計で、C:0.03〜0.07%、Si:0.2〜0.7%、Mn:2.6〜3.6%、Al:0.05〜0.3%、Mg:0.1〜0.5%である。 The steel outer shell is a hot-rolled steel strip excellent in the wire drawing workability after flux filling, and is C: 0.10% or less in terms of mass% with respect to the total mass of the steel outer shell, Si: 0.05% or less, Mn: 0.20 to 0.80%, P: 0.050% or less, S: 0.050% or less are suitable, and in particular, C is 0.005 to 0.03. % Is also effective for reducing spatter and reducing fume. Moreover, the preferable chemical component range of the flux-cored wire is the total of the total mass of the wire, both the steel outer shell and the flux, C: 0.03 to 0.07%, Si: 0.2 to 0.7%, Mn: 2.6-3.6%, Al: 0.05-0.3%, Mg: 0.1-0.5%.
また、溶接用フラックス入りワイヤのワイヤ断面形状は、かしめタイプまたはシームレスタイプのどちらでもよいが、ワイヤ表面に銅めっきを施すことができるシームレスタイプは、チップの摩耗が少なく、安定したアークが長時間維持することができ、溶接の高能率化を図ることができる。また、ワイヤに継ぎ目が無いので、吸湿性に優れており、長期間保管することができる。 The cross-sectional shape of the flux-cored wire for welding may be either a caulking type or a seamless type, but the seamless type that can be plated with copper on the wire surface has less wear on the tip and a stable arc for a long time. It is possible to maintain the efficiency of welding. Moreover, since there is no seam in a wire, it is excellent in hygroscopicity and can be stored for a long time.
さらに、溶接用フラックス入りワイヤ中の水素量及び窒素量は、耐気孔性及び溶接金属の衝撃靭性の低下を防止するため、ワイヤ全質量に対して40ppm以下にするのが望ましい。 Furthermore, it is desirable that the hydrogen content and the nitrogen content in the flux-cored wire for welding be 40 ppm or less with respect to the total mass of the wire in order to prevent deterioration of porosity resistance and impact toughness of the weld metal.
また、スラグ剥離剤として、SをFeSなどの形態で故意に添加するのは有効であるが、Sがワイヤ全質量に対して質量%で0.030%を超えると、スラグ被包性が悪くなり、ビード形状が不良となる。 In addition, it is effective to intentionally add S as a slag remover in the form of FeS or the like, but if S exceeds 0.030% by mass with respect to the total mass of the wire, the slag encapsulation is poor. Thus, the bead shape becomes defective.
なお、先行電極の溶接用ソリッドワイヤは、JIS Z3312で規定するYGW11、YGW12、YGW16等を使用することができる。 In addition, YGW11, YGW12, YGW16 etc. which are prescribed | regulated by JISZ3312 can be used for the solid wire for welding of a preceding electrode.
[先行電極と後行電極との電極間距離:10〜40mm]
2電極1プール方式での水平すみ肉ガスシールドアーク溶接で安定した湯溜りを形成するためには、先行電極と後行電極の電極間距離(アーク発生点の間隔)を適正にする必要がある。先行電極と後行電極の電極間距離が10mm未満であると、2電極間に安定した湯溜りが形成されず、ビード形状が不良になる。さらに、先行電極のアークと後行電極のアークとの相互干渉によってアークが不安定になるので、スパッタ発生量及び鋼板へのスパッタ付着量も多くなる。一方、先行電極と後行電極の電極間距離が40mmを超えると、1プールの湯溜りが形成されず、先行電極で溶融したあとに凝固した金属の上に後行電極のアークが発生することになるので、アークが不安定となり、スパッタ発生量及び鋼板へのスパッタ付着量が多くなるとともに、ビード形状も不良となる。したがって、先行電極と後行電極の電極間距離は10〜40mmとする。
[Distance between electrode between leading electrode and trailing electrode: 10 to 40 mm]
In order to form a stable puddle by horizontal fillet gas shielded arc welding in the 2-electrode 1-pool method, it is necessary to make the distance between the leading electrode and the trailing electrode (interval of arc generation point) appropriate. . If the distance between the leading electrode and the trailing electrode is less than 10 mm, a stable puddle is not formed between the two electrodes, and the bead shape becomes poor. Further, since the arc becomes unstable due to the mutual interference between the arc of the preceding electrode and the arc of the succeeding electrode, the amount of spatter generated and the amount of spatter attached to the steel sheet also increase. On the other hand, if the distance between the leading electrode and the trailing electrode exceeds 40 mm, a pool of 1 pool is not formed, and an arc of the trailing electrode is generated on the solidified metal after melting at the leading electrode. As a result, the arc becomes unstable, the amount of spatter generated and the amount of spatter attached to the steel sheet increase, and the bead shape becomes poor. Therefore, the distance between the leading electrode and the trailing electrode is 10 to 40 mm.
[先行電極及び後行電極のワイヤ径:1.2〜2.0mm、且つ、先行電極のワイヤ径は後行電極のワイヤ径以下]
一般の船舶及び橋梁などの溶接構造物では、水平すみ肉溶接ビードの脚長は4mm超が必要とされ、先行電極及び後行電極のワイヤ径についても、脚長及び溶接速度に適応したワイヤ径を選定する必要がある。先行電極及び後行電極のワイヤ径が1.2mm未満であると、目標とする脚長(4mm以上)を確保するためにはワイヤ送給速度を上限近くまで上げなければならず、アークが不安定になり、スパッタの発生量が多くなり、ビード形状も不良となる。一方、先行電極及び後行電極のワイヤ径が2.0mmを超えると、通常のワイヤ送給装置ではワイヤが送給できず、専用のワイヤ送給装置を設置しなければならないので、設備コストが高くなる。さらに、先行電極のワイヤ径が後行電極のワイヤ径を超えると、アークの広がりが小さくなり、湯溜りが安定しないので、ビード形状が不良となる。したがって、先行電極及び後行電極のワイヤ径は1.2〜2.0mmとし、且つ、先行電極のワイヤ径は後行電極のワイヤ径以下とする。
[Wire diameters of the leading electrode and the trailing electrode: 1.2 to 2.0 mm, and the wire diameter of the leading electrode is equal to or smaller than the wire diameter of the trailing electrode]
For welded structures such as general ships and bridges, the leg length of the horizontal fillet weld bead is required to exceed 4 mm. For the wire diameter of the leading electrode and the trailing electrode, select a wire diameter suitable for the leg length and welding speed. There is a need to. If the wire diameter of the leading electrode and trailing electrode is less than 1.2 mm, the wire feed speed must be increased to near the upper limit to ensure the target leg length (4 mm or more), and the arc is unstable. As a result, the amount of spatter generated increases and the bead shape becomes poor. On the other hand, if the wire diameter of the leading electrode and the trailing electrode exceeds 2.0 mm, the wire cannot be fed with a normal wire feeding device, and a dedicated wire feeding device must be installed, so the equipment cost is low. Get higher. Furthermore, when the wire diameter of the leading electrode exceeds the wire diameter of the trailing electrode, the arc spread becomes small and the hot water pool is not stable, so that the bead shape becomes poor. Therefore, the wire diameter of the preceding electrode and the succeeding electrode is 1.2 to 2.0 mm, and the wire diameter of the preceding electrode is not more than the wire diameter of the succeeding electrode.
また、健全なビード外観を得るために先行電極及び後行電極の下板に対するトーチ角度を40〜60°、溶接進行方向に対する先行電極の後退角を1〜25°、溶接進行方向に対する後行電極の前進角を1〜25°にすることが好ましい。さらに、先行電極のアーク電圧は、スパッタ発生量を低減するためにフラックス入りワイヤ同士の組合せよりもアーク電圧を低くして、アークをいわゆる埋もれアークにすることが望ましい。 Further, in order to obtain a sound bead appearance, the torch angle with respect to the lower plate of the leading electrode and the trailing electrode is 40 to 60 °, the receding angle of the leading electrode with respect to the welding progress direction is 1 to 25 °, and the trailing electrode with respect to the welding progress direction The advancing angle is preferably 1 to 25 °. Further, it is desirable that the arc voltage of the leading electrode is made lower than the combination of flux-cored wires so as to reduce the amount of spatter, and the arc is a so-called buried arc.
本発明の2電極水平すみ肉ガスシールドアーク溶接方法で使用するシールドガスはCO2ガスとする。 The shielding gas used in the two-electrode horizontal fillet gas shielded arc welding method of the present invention is CO 2 gas.
以下、実施例により本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
熱間圧延鋼帯の軟鋼外皮(C:0.02%、Si:0.01%、Mn:0.35%、Al:0.02%、N:0.0015%)に、表1に示す各種フラックスをフラックス充填率17質量%で充填し、鋼製外皮の端面同士を溶接してシームレス状にした後、各種ワイヤ径に縮径した溶接用フラックス入りワイヤを各種試作した。 Table 1 shows the hot-rolled steel strip mild steel skin (C: 0.02%, Si: 0.01%, Mn: 0.35%, Al: 0.02%, N: 0.0015%) Various fluxes were filled at a flux filling rate of 17% by mass, and the end surfaces of the steel outer shell were welded to make them seamless, and then various types of flux-cored wires for welding reduced in diameter to various wires were prototyped.
また、表2に示す各種した溶接用ソリッドワイヤの成分を示す。 Moreover, the component of the various solid wire for welding shown in Table 2 is shown.
表2に示す溶接用ソリッドワイヤを先行電極に用い、表1に示す溶接用フラックス入りワイヤと組み合わせて表3に示す溶接施工条件で、2電極1プール方式での水平すみ肉ガスシールドアーク溶接(1パス両側同時溶接)を行い、溶接作業性を調査した。なお、シールドガスはCO2ガスを使用し、ガス流量25リットル/minで、溶接長750mmで溶接を行った。 Horizontal fillet gas shielded arc welding with a 2-electrode 1-pool system using the welding solid wire shown in Table 2 as the leading electrode and the welding conditions shown in Table 3 in combination with the flux-cored wire for welding shown in Table 1 ( 1-pass simultaneous welding on both sides) was conducted to investigate the welding workability. The shield gas was CO 2 gas, and welding was performed at a gas flow rate of 25 liters / min and a weld length of 750 mm.
試験体は、490N/mm2級高張力鋼表面に無機ジンクプライマを塗装した鋼板(プライマ膜厚は側面約15μm、端面はフライス加工、鋼板寸法:板幅100mm×長さ1000mm×板厚12mm)を用い、下板と立板との隙間がない状態でT字に組んだものを使用した。
Specimen is a steel plate with 490 N / mm grade 2 high-strength steel coated with inorganic zinc primer (primer film thickness is about 15 μm on the side, milled on the end face, steel plate dimensions: plate width 100 mm × length 1000 mm ×
溶接試験の評価は、各試験のアーク安定性、スパッタ発生量、2電極間の湯溜りの安定性、スラグ被包性、スラグ剥離性、ピット発生数、ビード形状、脚長(実測値)について調査した。それら結果を表4にまとめて示す。 Welding tests were evaluated for arc stability, spatter generation amount, stability of the puddle between electrodes, slag encapsulation, slag peelability, number of pits generated, bead shape, leg length (actual value). did. The results are summarized in Table 4.
表3及び表4中No.1〜10が本発明例、No.11〜28は比較例である。 In Table 3 and Table 4, No. 1-10 are examples of the present invention, No. 11 to 28 are comparative examples.
本発明例であるNo.1〜10は、先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用い、後行電極の溶接用フラックス入りワイヤの各成分の含有量が適正で、先行電極と後行電極の電極間距離を10〜40mm、先行電極及び後行電極のワイヤ径を1.2〜2.0mmとし、且つ、先行電極のワイヤ径は後行電極のワイヤ径以下であるので、アークが安定し、電極間の湯溜り、スラグ被包性及びスラグ剥離性が良好で、スパッタ発生量及び鋼板へのスパッタ付着量が少なく、アンダーカット、オーバーラップやピットがない健全な溶接ビードを得ることができ、極めて良好な結果であった。 No. which is an example of the present invention. 1-10 use a solid wire for welding as the leading electrode and a flux-cored wire for welding as the trailing electrode, and the content of each component of the welding flux-cored wire of the trailing electrode is appropriate. The distance between the electrodes is 10 to 40 mm, the wire diameter of the leading electrode and the trailing electrode is 1.2 to 2.0 mm, and the wire diameter of the leading electrode is equal to or less than the wire diameter of the trailing electrode. It is possible to obtain a sound weld bead with good hot water accumulation between electrodes, slag encapsulation and slag peelability, less spatter generation and less spatter adherence to the steel sheet, and no undercut, overlap or pit. The result was extremely good.
比較中No.11は、先行電極に溶接用フラックス入りワイヤ、後行電極に溶接用ソリッドワイヤを用いたので、スラグ被包性、スラグ剥離性及びビード形状が不良で、脚長も不均等であった。 No. in comparison No. 11 used a flux-cored wire for welding as the leading electrode and a solid wire for welding as the trailing electrode, so the slag encapsulation, slag peelability and bead shape were poor, and the leg length was also uneven.
No.12は、後行電極の溶接用フラックス入りワイヤ(FC8)のTiO2換算値が少ないので、スラグ被包性、スラグ剥離性及びビード形状が不良であり、均等な脚長も得られなかった。 No. No. 12, since the TiO 2 conversion value of the flux-cored wire for welding of the trailing electrode (FC8) was small, the slag encapsulation, slag peelability and bead shape were poor, and an equal leg length was not obtained.
No.13は、後行電極の溶接用フラックス入りワイヤ(FC9)のTiO2換算値が多いので、先行電極に溶接用ソリッドワイヤを用いてもピットが発生した。また、先行電極と後行電極の電極間距離が長いので、アーク状態及び湯溜り状態が不安定となり、スパッタが多発し、ビード形状も不良であった。 No. No. 13 had many TiO 2 converted values of the flux-cored wire for welding (FC9) of the subsequent electrode, so that pits were generated even when a solid wire for welding was used for the preceding electrode. In addition, since the distance between the leading electrode and the trailing electrode is long, the arc state and the hot water pool state become unstable, spatter frequently occurs, and the bead shape is also poor.
No.14は、後行電極の溶接用フラックス入りワイヤ(FC10)のSiO2換算値が少ないので、2電極間の湯溜り状態が不安定で、スラグ被包性、スラグ剥離性及びビード形状も不良であった。また、均等な脚長も得られなかった。 No. No. 14 has a low SiO 2 conversion value of the flux-cored wire for welding of the trailing electrode (FC10), so the state of the hot water pool between the two electrodes is unstable, and the slag encapsulation, slag peelability and bead shape are also poor. there were. In addition, uniform leg length was not obtained.
No.15は、後行電極の溶接用フラックス入りワイヤ(FC11)のSiO2換算値が多いので、スラグ剥離性が不良であった。また、後行電極のワイヤ径が2.4mmであるので、専用の溶接電源及びワイヤ送給装置が必要となった。 No. No. 15 had poor slag removability because there were many SiO 2 converted values of the flux-cored wire for welding (FC11) of the trailing electrode. Further, since the wire diameter of the trailing electrode is 2.4 mm, a dedicated welding power source and a wire feeding device are required.
No.16は、後行電極の溶接用フラックス入りワイヤ(FC12)のZrO2換算値が少ないので、ビード止端部のなじみ性が悪くビード形状が不良で、スラグ被包性及びスラグ剥離性も不良であった。また、均等な脚長も得られなかった。 No. No. 16, since the ZrO 2 converted value of the flux-cored wire for welding of the trailing electrode (FC12) is small, the conformability of the bead toe is poor and the bead shape is poor, and the slag encapsulation and slag peelability are also poor. there were. In addition, uniform leg length was not obtained.
No.17は、後行電極の溶接用フラックス入りワイヤ(FC13)のZrO2換算値が多いので、スラグ剥離性が不良であった。また、F換算値が少ないので、アーク集中性が弱く、アーク状態が不安定であった。 No. 17, since the terms of ZrO 2 value of welding flux cored wire of the trailing electrode (FC13) is large, the slag removability was poor. Moreover, since there were few F conversion values, arc concentration property was weak and the arc state was unstable.
No.18は、後行電極の溶接用フラックス入りワイヤ(FC14)のAl2O3換算値が少ないので、スラグ被包性、スラグ剥離性及びビード形状が不良であった。 No. No. 18 had poor Al 2 O 3 conversion value of the flux-cored wire for welding of the trailing electrode (FC14), so the slag encapsulation property, slag peelability and bead shape were poor.
No.19は、後行電極の溶接用フラックス入りワイヤ(FC15)のAl2O3換算値が多いので、スラグ被包性、スラグ剥離性及びビード形状が不良であった。 No. 19, since in terms of Al 2 O 3 value is large in the welding flux cored wire of the trailing electrode (FC15), slag Hitsutsumisei, the slag removability and bead shape was poor.
No.20は、後行電極の溶接用フラックス入りワイヤ(FC16)のFeO換算値が少ないので、ビード止端部のなじみ性が悪くビード形状が不良であった。また、Bi換算値が少ないので、スラグ剥離性が不良であった。 No. In No. 20, since the FeO equivalent value of the flux-cored wire for welding of the trailing electrode (FC16) was small, the conformability of the bead toe portion was poor and the bead shape was poor. Moreover, since there were few Bi conversion values, slag peelability was unsatisfactory.
No.21は、後行電極の溶接用フラックス入りワイヤ(FC17)のFeO換算値が多いので、2電極間の湯溜り状態が不安定であり、スラグ被包性、スラグ剥離性及びビード形状が不良であった。 No. No. 21 has a large FeO equivalent value for the flux-cored wire for welding of the trailing electrode (FC17), so the state of the hot water pool between the two electrodes is unstable, and the slag encapsulation, slag peelability and bead shape are poor. there were.
No.22は、後行電極の溶接用フラックス入りワイヤ(FC18)のNa及びK化合物のNa2O換算値ならびにK2O換算値の合計が少ないので、後行電極ワイヤのアーク状態が不良で、2電極間の湯溜り状態も不安定であった。また、スラグ被包性、スラグ剥離性及びビード形状も不良であった。 No. No. 22 is because the total of Na 2 O conversion value and K 2 O conversion value of Na and K compound of the flux-cored wire for welding of the trailing electrode (FC18) and the K 2 O conversion value are small. The hot water pool between the electrodes was also unstable. Moreover, slag encapsulation, slag peelability and bead shape were also poor.
No.23は、後行電極の溶接用フラックス入りワイヤ(FC19)のNa及びK化合物のNa2O換算値ならびにK2O換算値の合計が多いので、スラグ被包性、スラグ剥離性及びビード形状が不良であった。 No. 23 has a large total of Na 2 O converted values and K 2 O converted values of Na and K compounds in the flux-cored wire for welding of the trailing electrode (FC19), so that the slag encapsulating property, slag peelability and bead shape are It was bad.
No.24は、後行電極の溶接用フラックス入りワイヤ(FC20)のF換算値が多いので、スラグ剥離性及びビード形状が不良であった。 No. Since No. 24 had many F conversion values of the flux-cored wire for welding (FC20) of the subsequent electrode, the slag peelability and the bead shape were poor.
No.25は、後行電極の溶接用フラックス入りワイヤ(FC21)のBi換算値が多いので、ビード表面をスラグで全面被包できず、ビード形状が不良であった。 No. No. 25 had many Bi-converted values of the flux-cored wire for welding of the trailing electrode (FC21), so that the entire bead surface could not be encapsulated with slag, and the bead shape was poor.
No.26は、先行電極と後行電極の電極間距離が短いので、アーク状態及び湯溜り状態が不安定となり、スパッタが多発し、ビード形状も不良であった。 No. In No. 26, since the distance between the leading electrode and the trailing electrode was short, the arc state and the hot water pool state became unstable, spatter occurred frequently, and the bead shape was also poor.
No.27は、先行電極及び後行電極のワイヤ径が小さいので、アーク状態が不安定となり、スパッタが多発し、ビード形状も不良であった。 No. In No. 27, since the wire diameters of the leading electrode and the trailing electrode were small, the arc state became unstable, spatter was frequently generated, and the bead shape was also poor.
No.28は、先行電極のワイヤ径が後行電極のワイヤ径を超えているので、湯溜り状態が不安定となり、ビード形状も不良であった。 No. In No. 28, since the wire diameter of the preceding electrode exceeded the wire diameter of the succeeding electrode, the hot water pool state became unstable and the bead shape was also poor.
1 先行電極ワイヤ
2 後行電極ワイヤ
3 湯溜り
4 溶融プール
5 溶融スラグ
6 凝固スラグ
7 溶接ビード
8 プライマ
9 立板
10 下板
11 アンダーカット
12 オーバーラップ
13 ピット
DESCRIPTION OF SYMBOLS 1 Lead electrode wire 2
Claims (1)
先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用い、
前記溶接用フラックス入りワイヤは、ワイヤ全質量に対する質量%で、
フラックス中に、
Ti酸化物:TiO2換算値で3.2〜4.2%、
Si酸化物:SiO2換算値で0.5〜1.5%、
Zr酸化物:ZrO2換算値で0.2〜1.2%、
Al酸化物:Al2O3換算値で0.05〜0.3%、
Fe酸化物:FeO換算値で0.05〜0.3%、
Na及びK化合物:Na2O換算値ならびにK2O換算値の合計で0.05〜0.2%、
弗素化合物:F換算値で0.02〜0.15%、
金属Bi及びBi酸化物:Bi換算値の合計で0.005〜0.03%を含有し、残部は合金粉、鉄粉、鉄合金等からのFe及び不可避不純物からなり、
先行電極と後行電極との電極間距離を10〜40mm、
先行電極及び後行電極のワイヤ径を1.2〜2.0mmとし、
且つ、先行電極のワイヤ径は、後行電極のワイヤ径以下で溶接することを特徴とする2電極水平すみ肉ガスシールドアーク溶接方法。 In the two-electrode horizontal fillet gas shielded arc welding method,
Using a solid wire for welding as the leading electrode and a flux-cored wire for welding as the trailing electrode,
The flux-cored wire for welding is a mass% based on the total mass of the wire,
During the flux,
Ti oxide: 3.2 to 4.2% in terms of TiO 2 ,
Si oxide: 0.5 to 1.5% in terms of SiO 2
Zr oxide: 0.2 to 1.2% in terms of ZrO 2 ,
Al oxide: 0.05 to 0.3% in terms of Al 2 O 3 ,
Fe oxide: 0.05 to 0.3% in terms of FeO,
Na and K compound: 0.05 to 0.2% in total of Na 2 O converted value and K 2 O converted value,
Fluorine compound: 0.02 to 0.15% in terms of F,
Metal Bi and Bi oxide: 0.005 to 0.03% in total in terms of Bi, with the balance consisting of Fe and unavoidable impurities from alloy powder, iron powder, iron alloy, etc.
The distance between the electrode between the leading electrode and the trailing electrode is 10 to 40 mm,
The wire diameter of the leading electrode and the trailing electrode is 1.2 to 2.0 mm,
In addition, the two-electrode horizontal fillet gas shielded arc welding method is characterized in that the wire diameter of the leading electrode is equal to or less than the wire diameter of the trailing electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014012349A JP2015139784A (en) | 2014-01-27 | 2014-01-27 | Two-electrode horizontal fillet gas shielded arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014012349A JP2015139784A (en) | 2014-01-27 | 2014-01-27 | Two-electrode horizontal fillet gas shielded arc welding method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015139784A true JP2015139784A (en) | 2015-08-03 |
Family
ID=53770521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014012349A Pending JP2015139784A (en) | 2014-01-27 | 2014-01-27 | Two-electrode horizontal fillet gas shielded arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015139784A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017042787A (en) * | 2015-08-26 | 2017-03-02 | 日鐵住金溶接工業株式会社 | Flux-cored wire for two-electrode horizontal fillet gas shield arc welding of crude oil tank steel |
JP2018047486A (en) * | 2016-09-21 | 2018-03-29 | 新日鐵住金株式会社 | Flux-cored wire for horizontal fillet gas shielded arc welding of corrosion-resistant steel |
JP2018061962A (en) * | 2016-10-11 | 2018-04-19 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas shield arc welding of steel for crude oil tank |
JP2021159958A (en) * | 2020-03-31 | 2021-10-11 | 株式会社神戸製鋼所 | Tandem gas-shielded arc welding method and welding device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02280968A (en) * | 1989-04-21 | 1990-11-16 | Nippon Steel Corp | Horizontal filter gas shielded arc welding method at high speed |
JP2006224178A (en) * | 2005-02-21 | 2006-08-31 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas-shielded arc fillet welding |
JP2012218065A (en) * | 2011-04-13 | 2012-11-12 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for two-electrode horizontal fillet co2 gas-shielded arc welding |
-
2014
- 2014-01-27 JP JP2014012349A patent/JP2015139784A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02280968A (en) * | 1989-04-21 | 1990-11-16 | Nippon Steel Corp | Horizontal filter gas shielded arc welding method at high speed |
JP2006224178A (en) * | 2005-02-21 | 2006-08-31 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas-shielded arc fillet welding |
JP2012218065A (en) * | 2011-04-13 | 2012-11-12 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for two-electrode horizontal fillet co2 gas-shielded arc welding |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017042787A (en) * | 2015-08-26 | 2017-03-02 | 日鐵住金溶接工業株式会社 | Flux-cored wire for two-electrode horizontal fillet gas shield arc welding of crude oil tank steel |
JP2018047486A (en) * | 2016-09-21 | 2018-03-29 | 新日鐵住金株式会社 | Flux-cored wire for horizontal fillet gas shielded arc welding of corrosion-resistant steel |
JP2018061962A (en) * | 2016-10-11 | 2018-04-19 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas shield arc welding of steel for crude oil tank |
JP2021159958A (en) * | 2020-03-31 | 2021-10-11 | 株式会社神戸製鋼所 | Tandem gas-shielded arc welding method and welding device |
JP7388969B2 (en) | 2020-03-31 | 2023-11-29 | 株式会社神戸製鋼所 | Tandem gas shielded arc welding method and welding equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5283993B2 (en) | Flux-cored wire for titania-based gas shielded arc welding | |
JP2009255125A (en) | PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD | |
JP5557790B2 (en) | Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding | |
CN112317927A (en) | System and method for welding workpieces with mill scale | |
JP5014189B2 (en) | Two-electrode fillet gas shielded arc welding method | |
JP2015139784A (en) | Two-electrode horizontal fillet gas shielded arc welding method | |
JP6188626B2 (en) | Two-electrode horizontal fillet gas shielded arc welding method | |
JP2006289404A (en) | Flux cored wire for gas shielded arc welding | |
JP4838100B2 (en) | Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel | |
JP4425756B2 (en) | Flux-cored wire for horizontal fillet welding | |
JP5938375B2 (en) | Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding | |
JP2009148774A (en) | Rutile type flux cored wire for gas shielded arc welding | |
JP2016055311A (en) | Flux-cored wire for gas shielded arc welding | |
JP6085205B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP5361797B2 (en) | Flux-cored wire for horizontal fillet gas shielded arc welding | |
JP5448497B2 (en) | Flux-cored wire for 2-electrode horizontal fillet gas shielded arc welding | |
JP5824403B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP2015136720A (en) | Two electrode horizontal fillet gas shield arc welding method | |
JP4531586B2 (en) | Flux-cored wire for gas shielded arc fillet welding | |
JP2014065066A (en) | Flux cored wire for horizontal gas shielded arc welding | |
JP2003025088A (en) | Flux cored wire for gas-shielded arc welding | |
JP3124439B2 (en) | High speed horizontal fillet gas shielded arc welding method | |
JP2015136719A (en) | Two electrode horizontal fillet gas shield arc welding method | |
JP5669684B2 (en) | Flux-cored wire for horizontal fillet gas shielded arc welding | |
JPH03294092A (en) | Flux cored wire electrode for gas shielded arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170606 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171205 |