JP2015117928A - Windless air-conditioning method in building for playing badminton or table tennis and apparatus used for the same - Google Patents
Windless air-conditioning method in building for playing badminton or table tennis and apparatus used for the same Download PDFInfo
- Publication number
- JP2015117928A JP2015117928A JP2014022334A JP2014022334A JP2015117928A JP 2015117928 A JP2015117928 A JP 2015117928A JP 2014022334 A JP2014022334 A JP 2014022334A JP 2014022334 A JP2014022334 A JP 2014022334A JP 2015117928 A JP2015117928 A JP 2015117928A
- Authority
- JP
- Japan
- Prior art keywords
- air
- cooling
- refrigerant
- flat plate
- heat absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Landscapes
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
- Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
- Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
Abstract
Description
本発明は、建物内における無風状態下での空調方法とそれに用いる装置に関する。 The present invention relates to an air conditioning method under windless conditions in a building and an apparatus used therefor.
バトミントンや卓球等の競技が国際的な規約によって室内で行われる理由は、屋外では競技中に風の影響を避けることができないからである。しかし、バトミントンや卓球を行う建物内の空調を無風状態で行うことには困難を極めている。また、洗濯物にバーコードのタグを取り付けてコンピューター管理するクリーニング工場においても、同様に室内が無風状態にならないといけない。その他、埃が舞い上がることを嫌う研究施設なども同様に空調を無風状態にする必要がある。 The reason that competitions such as badminton and table tennis are performed indoors according to international regulations is that the influence of wind cannot be avoided outdoors during competition. However, it is extremely difficult to perform air conditioning in buildings where badminton and table tennis are performed without wind. Similarly, in a cleaning factory where a bar code tag is attached to the laundry and managed by a computer, the room must be in a windless state as well. In addition, research facilities that dislike dust soaring need to be air-conditioned in the same way.
通常一般に使用されている体育館等の大型施設における室内の冷房を行なう冷房装置としては、冷媒としてガス又は水を通す金属配管にフィンを接触させ吸熱面積を増やしたフィンを持つ吸熱器に、ファン又はブローによる風量が制御された風をあて、熱変換で冷却された冷風によって運ばれた冷気で室内の温度を下げるようにしており、空冷型や水冷型ヒートポンプ空調機が一般的である。 As a cooling device that performs indoor cooling in a large facility such as a gymnasium that is generally used in general, a fan or a heat sink having a fin that contacts a metal pipe that passes gas or water as a refrigerant to increase the heat absorption area An air-cooled type or water-cooled type heat pump air conditioner is generally used to cool the room with cold air that has been controlled by the blown air and controlled by cold air cooled by heat conversion.
一般に、室内機に吸熱器とファンを持ち、室外には通常室外機と称する圧縮機と凝縮器や冷却用ファンを持ち、冷媒を介して室内の温度を調整する空調装置で室内側吸熱器の冷気を風で運ぶという手法は、大きな建物であればあるほど遠方に風を送るために強力な風を使う必要があり無風状態での冷房には不向きである、これを実現するため様々な発明が提案されているが有効な方法が無い状態で今日に至っている。また、特開平10−300137号ではアルミ板を利用する例も見られるが実用に至っていない。特開2000−28167号にベンチュリーを設けて大きな建物において空気移動を行なわせる構造も提案されているが、本発明のような無風状態下での冷房を可能にするものではない。 Generally, an indoor unit has a heat absorber and a fan, and an outdoor unit has a compressor, a condenser, and a cooling fan, usually called an outdoor unit, and an air conditioner that adjusts the indoor temperature via a refrigerant. The method of carrying cool air with wind is not suitable for cooling in a windless state because it is necessary to use a powerful wind to send the wind farther as the building is larger, various inventions to realize this Has been proposed, but there is no effective method. Japanese Patent Laid-Open No. 10-300137 also shows an example using an aluminum plate, but it has not been put into practical use. Japanese Patent Application Laid-Open No. 2000-28167 proposes a structure in which a venturi is provided to move air in a large building, but it does not enable cooling under no wind condition as in the present invention.
本発明は、建物内における無風状態での空調を可能にする方法とそのための装置を提供しようとするものである。ここにいう無風状態とは建物の内部に水平方向の風が生じないことである。(空気が水平方向に強く移動する)さらに本発明は、この空調装置の設置作業も容易にしようとするものである。 The present invention seeks to provide a method and apparatus for enabling air conditioning in a building without wind. The term “no wind” as used herein means that no horizontal wind is generated inside the building. (Air moves strongly in the horizontal direction) Further, the present invention is intended to facilitate the installation work of the air conditioner.
本発明は空調対象1の仕切られた空間1a上部に吸熱手段2を設け、吸熱手段2は冷媒配管3及びその下部に結露水受け手段5を備え、前記空間1a以外に排熱手段10を設けて、吸熱手段2が設けられた空間1a上部冷気の自然降下により冷房を行なうようにした建物内における無風状態下での空調方法である。
具体的な装置としては、空調対象1の仕切られた空間1a上部に吸熱手段2を設け、吸熱手段2は冷媒配管3及びその下部に結露水受け手段5を備え、前記空間1a以外に排熱手段10を設け、吸熱手段2はフィン4aを有した部材で冷媒配管3の外周が被覆されていることを特徴とする空調装置である。
In the present invention, the heat absorbing means 2 is provided in the upper part of the partitioned space 1a of the air-conditioning target 1, and the heat absorbing means 2 is provided with the refrigerant pipe 3 and the condensed water receiving means 5 in the lower part thereof, and the heat exhausting means 10 is provided in addition to the space 1a. Thus, the air conditioning method is performed in a windless state in a building in which cooling is performed by a natural descent of the cool air in the upper part of the space 1a in which the heat absorbing means 2 is provided.
As a specific device, heat absorption means 2 is provided in the upper part of the partitioned space 1a of the air-conditioning target 1, and the heat absorption means 2 includes a refrigerant pipe 3 and a condensed water receiving means 5 in the lower part thereof. Means 10 is provided, and the heat absorbing means 2 is an air conditioner characterized in that the outer periphery of the refrigerant pipe 3 is covered with a member having fins 4a.
本発明者は、冷気は暖気より比重が重く下に降りるという空気の沈下(降下)作用による冷房を行うことに着目した。そのためには、冷媒を通す冷媒配管3にらせん状に巻きつけたフィン4aを持つフィン付き冷媒配管4を必要に応じて天井近くに必要数設置し、冷気は自然と下に降りる作用を利用して冷房を行なうこととした。
すなわち、空調対象1の仕切られた空間1a上部に吸熱手段2を設け、吸熱手段2は冷媒配管3及びその下部に結露水受け手段5を備え、前記空間1a以外に排熱手段10を設けて、吸熱手段2が設けられた空間1a上部冷気の自然降下により冷房を行なうようにした建物内における無風状態下での無風空調方法とそれに用いる装置である。
The inventor of the present invention paid attention to cooling by air subsidence (descent) action in which cold air has lower specific gravity than warm air and falls down. For that purpose, the necessary number of finned refrigerant pipes 4 having fins 4a spirally wound around the refrigerant pipe 3 through which the refrigerant is passed is installed near the ceiling as necessary, and the cold air uses the action of descending naturally. It was decided to perform cooling.
That is, the heat absorption means 2 is provided in the upper part of the partitioned space 1a of the air-conditioning target 1, the heat absorption means 2 includes the refrigerant pipe 3 and the condensed water receiving means 5 in the lower part thereof, and the heat exhaust means 10 is provided in addition to the space 1a. A windless air-conditioning method in a windless state in a building in which cooling is performed by a natural descent of the cool air in the upper part of the space 1a in which the heat absorbing means 2 is provided, and a device used therefor.
冷気の自然沈下による冷房を行なうが、より大きな熱変換を行なうようにするためフィン付き冷媒配管4の周囲全方向のいずれかに、空気配管6を設け直線又は曲線に伸びるフィン付き冷媒配管4の下方又は横や上部など周囲いずれかの方向からフィン付き冷媒配管4と平行に設置した空気配管6の上部、又はフィン付き冷媒配管4に風が当たる方向に合わせてスリット6aや無数の穴6bを開けて、風がフィン4aにあたる方向に取り付けて開けた穴6bからフィン付き冷媒配管4から冷気が剥離する程度のわずかの風をフィン4aに向けて吹き付ける。このとき床上から無風状態が必要となる高さまで無風状態に影響しないようにフィン4aに当てる強さをコントロールして空気を吹きつける。 Although cooling by natural subsidence of cold air is performed, in order to perform greater heat conversion, the air pipe 6 is provided in any of all directions around the finned refrigerant pipe 4 and the finned refrigerant pipe 4 extending straight or curved A slit 6a and countless holes 6b are formed in accordance with the direction in which the wind hits the upper part of the air pipe 6 installed in parallel with the finned refrigerant pipe 4 or the finned refrigerant pipe 4 from either the lower side, the side or the upper side. A small amount of wind is blown toward the fins 4a so that the cold air is peeled off from the finned refrigerant pipe 4 through the holes 6b that are opened and attached in the direction in which the wind hits the fins 4a. At this time, air is blown by controlling the strength applied to the fins 4a so as not to affect the windless state from the floor to a height where the windless state is required.
上記の空気配管6の材質は加工のしやすい塩化ビニル樹脂でも金属でもよく、スリット6aの代わりにフィン付き冷媒配管4のフィン4aのピッチにあわせて小さな穴6bを風がフィン4aにあたるか、又はフィン4aとフィン4aの間を通過する様にすることで、熱変換がより大きな値となる。この場合の空気を通す空気配管6の形状は丸でも三角でも多角形でもよい。この場合、穴6bの製作には数ミリ幅のスリット6aを空気配管6と平行に開口してアルミ箔やアルミテープもしくは紙テープや布などの粘着性を持つテープでスリット6aを部分的に塞ぎ、必要な大きさの穴を設けることで簡単に穴6bを作ることもできる。 The material of the air pipe 6 may be easily processed vinyl chloride resin or metal, and instead of the slit 6a, the wind hits the fin 4a through a small hole 6b according to the pitch of the fin 4a of the finned refrigerant pipe 4, or By making it pass between the fin 4a and the fin 4a, thermal conversion becomes a larger value. In this case, the shape of the air pipe 6 through which air passes may be round, triangular or polygonal. In this case, in order to manufacture the hole 6b, a slit 6a having a width of several millimeters is opened in parallel with the air pipe 6, and the slit 6a is partially blocked with an adhesive tape such as aluminum foil, aluminum tape, paper tape, cloth, The hole 6b can be easily made by providing a hole having a required size.
また、天井付近に設置するフィン付き冷媒配管4を数本で一組としてフィン付き冷媒配管4の下部に空気配管6と結露水を受けるドレンパン5aをセットして枠7aに収め一つの集合吸熱ユニット7とし、何台も集合吸熱ユニット7を連結可能とする。そのためフィン付き冷媒配管連結口7bと空気配管連結口7c及びドレンパン連結口7dを集合吸熱ユニット7に設ける事で大きな建物の冷房の施工が簡単となる。更にフィン付き冷媒配管4の代わりに高熱伝導率の金属平板で挟んだ高熱伝導率の冷媒配管3を金属平板吸熱材8cとして冷媒の入り口と出口を連結できるように配置し、広さに応じた枚数を連結して吸熱手段2とすることもできる。高熱伝導率とは鉄より熱伝導率が高いことをいう。このとき水平に設置をすると結露水が床上に落下する可能性があるので結露水の落下防止のために金属平板吸熱材8cの取り付けは結露水が金属面を伝って流れてくるように傾斜8aが付くように取り付けて、金属平板吸熱材8cの結露水が集合する最下部にドレンパン5aを設ける。この場合の空気配管6は金属平板吸熱材8cの天井面に取り付けてもよく底面に取り付けてもよく金属平板吸熱材8cの金属平板は浪板状にする事で吸熱面積が増え冷却効率が上がる。このとき金属平板吸熱材8cを平板吸熱装置8とし空気配管6やドレンパン5aを組み込みユニット化する事で必要数を連結させることが簡単な施工で出来ることから施工時間の短縮や特別な技術を要しないで施工ができる。このユニット化することは一つの建物内に圧縮機10aの能力によって数組の空調装置を設置する事で大きな建物内を冷房することが可能となる、このとき金属平板吸熱材8cで挟んだ冷媒配管3以外の隙間には高熱伝導率充填材8bを注入する事でより高効率の熱変換が行なえる。 In addition, several sets of finned refrigerant pipes 4 installed near the ceiling are set as one set, and an air pipe 6 and a drain pan 5a for receiving condensed water are set below the finned refrigerant pipes 4 and stored in a frame 7a. 7 and a number of collective endothermic units 7 can be connected. For this reason, providing the finned refrigerant pipe connection port 7b, the air pipe connection port 7c, and the drain pan connection port 7d in the collective heat absorption unit 7 simplifies the cooling of a large building. Further, instead of the finned refrigerant pipe 4, a high heat conductivity refrigerant pipe 3 sandwiched between high heat conductivity metal flat plates is arranged as a metal flat plate heat absorbing material 8c so that the inlet and outlet of the refrigerant can be connected, and according to the size. The number of sheets can be connected to form the heat absorbing means 2. High thermal conductivity means that thermal conductivity is higher than iron. At this time, if it is installed horizontally, the condensed water may fall on the floor. Therefore, in order to prevent the condensed water from falling, the metal flat plate heat-absorbing material 8c is inclined so that the condensed water flows along the metal surface. The drain pan 5a is provided at the lowermost part where the condensed water of the metal flat plate heat absorbing material 8c gathers. In this case, the air pipe 6 may be attached to the ceiling surface or the bottom surface of the metal flat plate heat-absorbing material 8c, and the metal flat plate of the metal flat plate heat-absorbing material 8c is made into a corrugated plate, thereby increasing the heat absorption area and improving the cooling efficiency. At this time, the metal flat plate heat absorbing material 8c is used as the flat plate heat absorbing device 8, and the air pipe 6 and the drain pan 5a are incorporated into a unit so that the necessary number can be connected by a simple construction. Construction can be done without. This unitization makes it possible to cool a large building by installing several sets of air conditioners by the capacity of the compressor 10a in one building. At this time, the refrigerant sandwiched between the metal flat plate heat absorbing materials 8c By injecting the high thermal conductivity filler 8b into the gap other than the pipe 3, more efficient heat conversion can be performed.
この装置を冷媒で室内を冷房するときは、冷却された冷媒を室内の暖気と熱交換した後、圧縮機10aに戻して圧縮機10aで圧縮された冷媒は高温になっているので冷媒を冷却する方法として凝縮器10bや圧縮機10aと送風用ファンが通常室外機に一体化されていて高温となった冷媒を凝縮器10bにファンで風をあてて冷やす方法であるが、室外機と分離してファンは撤去して圧縮機10aと凝縮器10bを別々にして、凝縮器10bを地下又は地上に設置した水槽20に地下水又は地上水を貯水し、水槽20にためた水に浸かるように凝縮器10bを水没させる。このとき大型施設では複数台の凝縮器10bを冷却する必要があるためこれらの凝縮器10bを一度に地下又は地上に設置した水槽20内に水没させて冷やす事で高温になった冷媒を効率よく冷却することができる。また空冷式で発生する高温の風で周辺の空気を温暖化することを防ぐことが出来、暖められた温水は利用度があれば温水プールや、シャワーなどにも利用でき、クリーニング工場などではスチームを発生させるために重油などのボイラーを使用しているが水温が高い熱変換した後の水を利用する事でコストの削減も図れる。
水槽20内で凝縮器10bを冷却する方法は、特開平8−296266でも見られるがこの方法では複数台の凝縮器10bを水槽20内で冷却させることは不可能である。
When this apparatus is used to cool the room with a refrigerant, the cooled refrigerant exchanges heat with the warm air in the room, and then returns to the compressor 10a to cool the refrigerant because the refrigerant compressed by the compressor 10a is at a high temperature. The condenser 10b, the compressor 10a and the blower fan are usually integrated with the outdoor unit, and the refrigerant having a high temperature is cooled by applying air to the condenser 10b with a fan, but separated from the outdoor unit. Then, the fan is removed, the compressor 10a and the condenser 10b are separated, ground water or ground water is stored in the water tank 20 in which the condenser 10b is installed underground or above the ground, and the water is accumulated in the water stored in the water tank 20. The condenser 10b is submerged. At this time, since it is necessary to cool a plurality of condensers 10b in a large-scale facility, these condensers 10b are submerged in a water tank 20 installed on the ground or on the ground at once to efficiently cool the refrigerant that has become hot. Can be cooled. In addition, it can prevent the surrounding air from warming with the high-temperature wind generated by air-cooling, and warm water can be used for hot water pools, showers, etc. Boilers such as heavy oil are used to generate water, but cost can be reduced by using water after heat conversion with high water temperature.
Although the method of cooling the condenser 10b in the water tank 20 can also be seen in Japanese Patent Laid-Open No. 8-296266, it is impossible to cool a plurality of condensers 10b in the water tank 20 by this method.
この場合、通常銅の冷媒配管3にアルミニュームの吸熱補助材を取り付けているが、水中に長期にわたり浸かることになるので水没する部分は金又は銀等の劣化を防ぎ高熱伝導率の物質でメッキ又は、高熱伝導率の耐熱、耐酸化物質の塗布などを施し金属の酸化による劣化と熱伝導率の低下を防止する措置をしたほうが良い。 In this case, aluminum heat absorption auxiliary material is usually attached to the copper refrigerant pipe 3, but since it will be immersed in water for a long time, the submerged part is plated with a material with high thermal conductivity to prevent deterioration of gold or silver. Alternatively, it is better to take measures to prevent deterioration due to metal oxidation and decrease in thermal conductivity by applying heat-resistant and oxidation-resistant substances with high thermal conductivity.
次に、分離した圧縮機10aは必要台数まとめて圧縮機10aを圧縮機室30に収納し運転中は圧縮機10aも高温となるために圧縮機室30に圧縮機室用室内機10cを取り付ける。この場合の圧縮機室用室内機10cは一般的な吸熱器とファンがセットされた室内機で風による冷却を行ない圧縮機室用凝縮器10eは他の凝縮器10bと同じ水槽20で冷却を行なう。 Next, the necessary number of separated compressors 10a are collectively stored in the compressor chamber 30, and the compressor 10a also becomes hot during operation, so the compressor chamber indoor unit 10c is attached to the compressor chamber 30. . In this case, the compressor room indoor unit 10c is a general indoor unit in which a heat absorber and a fan are set, and is cooled by wind. The compressor room condenser 10e is cooled in the same water tank 20 as the other condensers 10b. Do.
地下水脈を利用するとき、概ね数メートル乃至数百メートルから地下水をくみ上げて地上又は地下の水槽20に貯水された水を利用し、流動はポンプ又は自然対流により、熱変換された温水が一定の温度になると別に設けた三方弁41と貯湯タンク40に必要量を貯湯し、シャワーや風呂に利用することが出来る。温水の利用度が無いか、もしくは貯湯タンク40が満水になった残りは再度地下に戻すが、このときに給水側の地下に埋設する地下水供給用配管26aと地下に戻す地下水戻り用配管27aの深さは汲み上げる地下水脈A24と異なる地下の地下水脈B25に戻す。水脈が違った水脈に戻すことで同じ水脈でループが出来ないようにすることが出来、水脈によっては地上に噴出する圧力が地下水脈にある場合があるため、確実に地下に戻すことが必要なので地下水戻り用加圧ポンプ27bを設ける事で強制的に地下に戻すことが出来る。この思考は、特開2006−234229にも見られるが地下水源を利用して冷却して冷却後の高温になった水の処理についてはただ単純に元の地下水源に戻すのみの記載である。これにより空気を全く利用せずに複数台の凝縮器10bを同時に冷却できるので地上の温度上昇を防ぐことができ、地下水を汲み上げる事による地盤沈下を防止することもできる。この地下に戻す方法はやむをえない場合は一定の距離を隔てた同じ水脈に戻すことも可能である。 When using groundwater veins, the groundwater is drawn up from several meters to several hundred meters, and the water stored in the above or below water tank 20 is used. The flow is constant by hot water converted by heat by a pump or natural convection. When the temperature is reached, a necessary amount of hot water can be stored in a separately provided three-way valve 41 and hot water storage tank 40 and used for a shower or a bath. The hot water is not used, or the remaining hot water storage tank 40 is returned to the basement again. At this time, the groundwater supply pipe 26a buried in the basement on the water supply side and the groundwater return pipe 27a returned to the basement are used. The depth is returned to the underground groundwater vein B25 different from the groundwater vein A24 to be pumped. By returning the water vein to a different water vein, it is possible to prevent the loop from being made with the same water vein, and depending on the water vein, there is a case where the pressure of the groundwater vein is in the groundwater vein, so it is necessary to surely return to the underground By providing the groundwater return pressure pump 27b, it can be forcibly returned to the underground. Although this thought can be seen in Japanese Patent Application Laid-Open No. 2006-234229, the treatment of water that has been cooled using a groundwater source and has reached a high temperature after cooling is simply a return to the original groundwater source. As a result, the plurality of condensers 10b can be simultaneously cooled without using any air, so that a rise in temperature on the ground can be prevented and ground subsidence caused by pumping up groundwater can also be prevented. If it is unavoidable to return to this underground, it is possible to return to the same water vein at a certain distance.
また凝縮器10bを複数台水槽20に完全に水没するように設置し地下水で冷却する構造と方法は大型ビルや風を使用して冷気や暖気をファンで飛ばして行なう室外機にも利用でき、都会のヒートアイランド現象を防ぐことが出来ると同時に、通常の圧縮機と凝縮器やファンを持ついわゆる室外機と称される熱変換機に三方弁を設け熱風が出る夏場は地下水で冷却し暖房時の冬場はファンを用いた空冷にする事で冷気を地上に戻すことができ温暖化の防止に役立つ、もちろん地下水のみで熱変換する方法が、地下水は温度が一定の水温であるため省エネにつながり炭酸ガス排出の節減にも貢献できる。また地下水を使用する事で凝縮器の冷却温度が一定となり平均気温が40度を超える国や地域でも効率よく冷房を行なうことができる。 In addition, the structure and method of installing the condenser 10b so as to be completely submerged in a plurality of water tanks 20 and cooling with groundwater can be used for outdoor units that use a large building or wind to blow cool air and warm air with a fan, In addition to preventing urban heat island phenomena, a three-way valve is installed in a so-called outdoor unit with a normal compressor, condenser, and fan to provide hot air and cool in groundwater during the summer. In winter, air cooling using a fan can return cold air to the ground, which helps to prevent global warming.Of course, the method of heat conversion only with groundwater is energy saving because the groundwater has a constant temperature. It can also contribute to saving gas emissions. Also, by using groundwater, the cooling temperature of the condenser becomes constant, and cooling can be performed efficiently even in countries and regions where the average temperature exceeds 40 degrees.
本発明は、低温冷媒で冷却されたフィン付き冷媒配管4や金属平板吸熱材8cをそれぞれの吸熱装置を室内で熱変換するとき室内は無風状態で冷房するために必要最小限の風をフィン4aのすぐ近くからスリット6a又は小口径の穴6bを介して噴出させ、空気を一旦上部又は周辺に吹きつけたフィン付き冷媒配管4や金属平板吸熱材8cで冷却した後、冷気が自然落下による無風状態の冷房装置が出来る。
さらに風量の均一化を図るために、穴6bの大きさは風を送る手前方向は小さく、先端になるほど大きくすることで解決出来る。
In the present invention, when the finned refrigerant pipe 4 or the metal flat plate heat-absorbing material 8c cooled by the low-temperature refrigerant is converted into heat in the respective heat-absorbing devices indoors, the minimum necessary wind is required to cool the indoors in a windless state. The air is blown through the slit 6a or the small-diameter hole 6b from the immediate vicinity, and after cooling with the finned refrigerant pipe 4 or the metal flat plate heat-absorbing material 8c once blown to the upper part or the periphery, A cooling device in the state is made.
Further, in order to make the air flow uniform, the size of the hole 6b can be solved by increasing the size of the hole 6b toward the tip, while the front direction is small.
この場合、冷気を熱変換する時に結露水が発生するが、ドレンパン5aをフィン付き冷媒配管4と空気配管6の真下や、金属平板吸熱材8cの最下部に配置しドレンパン5aが発生させる結露水を防止するためにドレンパン5aの内側又は外側にはゴムやウレタン類の化学物質や天然の結露防止材5bを取り付けることで解決できる。ドレンパン5aは市販の雨樋等でも代用が出来る。 In this case, condensed water is generated when the cold air is converted into heat. However, the condensed water generated by the drain pan 5a by disposing the drain pan 5a directly below the finned refrigerant pipe 4 and the air pipe 6 or the lowermost part of the metal flat plate heat absorbing material 8c. In order to prevent this, it can be solved by attaching a chemical substance such as rubber or urethane or a natural dew condensation prevention material 5b to the inside or outside of the drain pan 5a. The drain pan 5a can be replaced with a commercially available gutter.
本発明の空気を通す空気配管6はフィン付き冷媒配管4とドレンパン5aの間に設置し風の方向が変わらないように空気配管固定具6cを空気配管6に取り付けることで解決できた。この空気配管6の風が噴出す始点は空気配管6を数本に分割することでスリット6aの始点の位置が数箇所に分散させることで風量の均一化を図ることが容易になる。 The air pipe 6 for passing air of the present invention was installed between the finned refrigerant pipe 4 and the drain pan 5a and could be solved by attaching the air pipe fixing tool 6c to the air pipe 6 so that the direction of the wind does not change. The starting point from which the wind of the air pipe 6 blows is divided into several air pipes 6 so that the positions of the starting points of the slits 6a are dispersed in several places, so that it is easy to make the air volume uniform.
空調装置の圧縮機10aと凝縮器10bやファンは撤去し圧縮機10aを一つの部屋に収納する。圧縮機室30の圧縮機10aは高温となるため圧縮機10aを冷却するための圧縮機室用室内機10cを配置し、圧縮機室30を冷房する圧縮機室用凝縮器10eは建物内を冷房する凝縮器10bと同じ水槽20で冷却する事で、室外機や室内機の冷房装置全体のいずれからも高温度の空気が出ることがなく周辺の気象温暖化の防止と地下水で冷却する事で凝縮器10bの熱変換が高効率化されるので消費電力も少なくなる。 The compressor 10a, the condenser 10b, and the fan of the air conditioner are removed, and the compressor 10a is accommodated in one room. Since the compressor 10a of the compressor chamber 30 is at a high temperature, a compressor chamber indoor unit 10c for cooling the compressor 10a is disposed, and a compressor chamber condenser 10e for cooling the compressor chamber 30 is disposed inside the building. By cooling in the same water tank 20 as the condenser 10b to be cooled, high temperature air is not emitted from any of the outdoor unit and the entire cooling unit of the indoor unit, and it is cooled by ground water and prevention of surrounding weather warming. Thus, since the heat conversion of the condenser 10b is made highly efficient, the power consumption is reduced.
本発明によって、バトミントンや卓球を行う建物内の空調を無風状態で行うことが可能になった。また、洗濯物にバーコードのタグを取り付けてコンピューター管理するクリーニング工場においても、同様に室内を無風状態にできるのでコンピューター管理が可能になった。その他、埃が舞い上がることを嫌う研究施設なども同様に空調を無風状態で行うことができるようになった。 According to the present invention, it is possible to perform air conditioning in a building for playing badminton and table tennis in a windless state. In addition, even in a cleaning factory where a bar code tag is attached to the laundry and managed by a computer, the room can be made airless as well, so that the computer can be managed. In addition, research facilities that dislike dust soaring can now be air-conditioned without wind.
本発明でフィン付き冷媒配管4、ドレンパン5a、結露防止材5b、空気配管6等を集合吸熱ユニット7に、また金属平板吸熱材8c、ドレンパン5a、空気配管6、高熱伝導率充填材8b等を平板吸熱装置8にユニット化することによって、施工能率や空調効率等を高め、広さに応じた施工面積の大小に容易に適応可能となった。 In the present invention, the finned refrigerant pipe 4, the drain pan 5a, the dew condensation preventing material 5b, the air pipe 6 and the like are used as the collective heat absorption unit 7, and the metal flat plate heat absorbing material 8c, the drain pan 5a, the air pipe 6, the high thermal conductivity filler 8b and the like are used. By unitizing the flat plate heat absorption device 8, the construction efficiency, the air conditioning efficiency, etc. are improved, and the construction area corresponding to the size can be easily adapted.
通常室外機と称する冷媒を冷却するのに空気を利用して冷却をすることが殆どであるため、周辺の空気の温度が上昇していたが、特に大型施設では複数台の凝縮器10bを冷却する必要があるためこれらの凝縮器10bを一度に地下又は地上に設置した水槽20内に貯水した地下水に水没させて冷やす事で高温になった冷媒を効率よく冷却することができて、ヒートアイランド現象を防ぐなど環境に好適な効果がある。 Since the cooling of the refrigerant, usually called an outdoor unit, is usually performed by using air, the temperature of the surrounding air has risen. However, particularly in large facilities, a plurality of condensers 10b are cooled. Therefore, it is possible to efficiently cool the high-temperature refrigerant by immersing these condensers 10b in the underground water stored in the water tank 20 installed underground or on the ground at a time to cool the condenser 10b. It has an effect suitable for the environment, such as prevention.
通常室内機や室外機と称する冷媒を冷却して空調対象空間1aを冷却するとき室内温度センサー51や外気温温度センサー52などで温度管理をしている。本発明の吸熱手段2と圧縮機10a及び凝縮器10bを分離して設置する空調対象空間1aや室外の温度によって圧縮機10aの出力制御手段や空気配管6に送る空気の流量制御手段、また水槽20内の水の温度を管理する温度センサー53などの信号で空調装置全体の電気制御手段50を温度管理が出来ている圧縮機室30に収納する事で外気温や埃などによる影響をなくすことが出来る。 When the refrigerant called an indoor unit or outdoor unit is cooled to cool the air-conditioning target space 1a, the indoor temperature sensor 51 and the outside air temperature sensor 52 are used for temperature management. The heat absorption means 2 of the present invention is separated from the compressor 10a and the condenser 10b, the air conditioning target space 1a, the output control means of the compressor 10a according to the outdoor temperature, the flow control means of the air sent to the air pipe 6, and the water tank By storing the electric control means 50 of the entire air conditioner in the compressor chamber 30 where the temperature can be managed by a signal from the temperature sensor 53 for managing the temperature of the water in the water 20, the influence of the outside air temperature, dust, etc. is eliminated. I can do it.
以下図面に基づき本発明の実施の形態を詳細に説明する。
図1は本発明の無風空調方法に用いる装置の全体図である。
この例にみられるように、本発明は無風状態の空調対象1の仕切られた空間1aの上部に吸熱手段2を設け、吸熱手段2は冷媒配管3及びその下部に結露水受け手段5を備え、前記空間1a以外の場所に排熱手段10を設けて、吸熱手段2が設けられた空間1a上部の冷気の自然降下によりバトミントンのような風を好まない空間1bの冷房を行なうようにしている。これにより建物内における無風状態下での空調を可能にした方法としたのである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall view of an apparatus used in the windless air conditioning method of the present invention.
As seen in this example, the present invention is provided with heat absorbing means 2 in the upper part of the partitioned space 1a of the air-conditioning target 1 in the windless state, and the heat absorbing means 2 includes the refrigerant pipe 3 and the condensed water receiving means 5 in the lower part thereof. The exhaust heat means 10 is provided in a place other than the space 1a, and the space 1b that does not like badminton is cooled by the natural descent of the cool air above the space 1a in which the heat absorption means 2 is provided. . As a result, the air conditioner can be air-conditioned under no wind conditions.
空調装置はしたがって空調対象1の仕切られた空間1aの吸熱手段2が図2にみられるように冷媒配管3及びその下部に結露水受け手段5としてドレンパン5aを備えている。この空間1a以外に排熱手段10が凝縮器10b、圧縮機10aとして設けられている。吸熱手段2は図3にみられるようにフィン4aを有した部材で冷媒が通過する冷媒配管3の外周が被覆されていることを特徴とする。 Therefore, the air conditioner includes a refrigerant pipe 3 and a drain pan 5a as a condensed water receiving means 5 below the refrigerant pipe 3 so that the heat absorbing means 2 of the partitioned space 1a of the air conditioning target 1 can be seen in FIG. In addition to this space 1a, exhaust heat means 10 is provided as a condenser 10b and a compressor 10a. As shown in FIG. 3, the heat absorbing means 2 is characterized in that the outer periphery of the refrigerant pipe 3 through which the refrigerant passes is covered with a member having fins 4a.
吸熱手段2には、冷媒配管3に向かって開口部を有する空気配管6が、冷媒配管3と結露水受け手段5としてのドレンパン5aとの間に設けられている。
吸熱手段2は、ドレンパン5aの上方にフィン付き冷媒配管4と空気配管6からなる集合吸熱ユニット7を複数設け、他の集合吸熱ユニット7とのフィン付き冷媒配管連結口7b、空気配管連結口7c及びドレンパン連結口7dを有した枠7aで覆う構造がよい。
吸熱手段2は、高熱伝導率の金属平板内(金属枠でもよい)に冷媒配管3を敷設した金属平板吸熱材8cの下部にドレンパン5aを設けて空調装置の施工領域をカバーするだけ必要単位数用いるようにする。また、金属平板吸熱材8cは、金属平板(金属枠でもよい)同士を平面上に併設または角度を有して取付け可能に、冷媒配管連結口7e、及びドレンパン連結口7dを設けた空調装置とすることもできる。天井付近に設置するフィン付き冷媒配管4を数本で一組としてフィン付き冷媒配管4の下部に空気配管6と結露水を受けるドレンパン5aをセットして枠7aに収め一つの集合吸熱ユニット7とし、何台も集合吸熱ユニット7を連結可能とするためフィン付き冷媒配管連結口7b、空気配管連結口7c及びドレンパン連結口7dを集合吸熱ユニット7に設ける事で大きな建物の冷房の施工が簡単となり、またフィン付き冷媒配管4の代わりに高熱伝導率の金属平板で挟んだ高熱伝導率の冷媒配管3を金属平板吸熱材8cとして冷媒の入り口と出口を連結できるように配置し広さに応じた枚数を連結して吸熱手段2とする。このとき水平に設置をすると結露水が床上に落下する可能性があるので結露水の落下防止のために金属平板吸熱材8cの取り付けは結露水が金属面をつたって流れてくるように傾斜8aが付くように取り付けて、金属平板吸熱材8cの結露水が集合する最下部にドレンパン5aを設ける。金属平板吸熱材8cには、金属平板吸熱材8cに向かい開口部を有する空気配管6が、金属平板吸熱材8cの天井面または底面に設けられている。集合吸熱ユニット7、金属平板吸熱材8c及び平板吸熱装置8は、開口部から吹出す空気の流量制御手段を設けるとよい。
In the heat absorbing means 2, an air pipe 6 having an opening toward the refrigerant pipe 3 is provided between the refrigerant pipe 3 and a drain pan 5 a as the condensed water receiving means 5.
The heat absorption means 2 is provided with a plurality of collective heat absorption units 7 including finned refrigerant pipes 4 and air pipes 6 above the drain pan 5a, and finned refrigerant pipe connection ports 7b and air pipe connection ports 7c with other collective heat absorption units 7. And the structure covered with the frame 7a which has the drain pan connection port 7d is good.
The heat-absorbing means 2 has a necessary number of units only to cover the construction area of the air conditioner by providing a drain pan 5a below the flat metal heat-absorbing material 8c in which the refrigerant pipe 3 is laid in a flat metal plate (or a metal frame) having high thermal conductivity. Use it. Further, the metal flat plate heat absorbing material 8c includes an air conditioner provided with a refrigerant pipe connection port 7e and a drain pan connection port 7d so that metal flat plates (which may be metal frames) can be mounted side by side or attached at an angle. You can also A set of several finned refrigerant pipes 4 installed in the vicinity of the ceiling, and a set of heat sink units 7 are set in a frame 7a by placing an air pipe 6 and a drain pan 5a for receiving condensed water at the lower part of the finned refrigerant pipe 4. In order to make it possible to connect a number of collective endothermic units 7, it is possible to easily carry out cooling of a large building by providing the finned refrigerant pipe connection port 7 b, the air pipe connection port 7 c and the drain pan connection port 7 d in the collective heat absorption unit 7. Also, instead of the finned refrigerant pipe 4, a high thermal conductivity refrigerant pipe 3 sandwiched between high thermal conductivity metal flat plates is arranged as a metal flat plate heat absorbing material 8 c so that the inlet and outlet of the refrigerant can be connected to meet the size. The heat absorption means 2 is formed by connecting the numbers. At this time, if it is installed horizontally, the condensed water may fall on the floor. Therefore, in order to prevent the condensed water from falling, the attachment of the metal flat plate heat absorbing material 8c is inclined 8a so that the condensed water flows along the metal surface. The drain pan 5a is provided at the lowermost part where the condensed water of the metal flat plate heat absorbing material 8c gathers. In the flat metal heat absorbing material 8c, an air pipe 6 having an opening facing the flat metal heat absorbing material 8c is provided on the ceiling surface or the bottom surface of the flat metal heat absorbing material 8c. The collective endothermic unit 7, the metal plate endothermic material 8 c, and the plate endothermic device 8 may be provided with a flow rate control means for air blown from the opening.
注水された水槽20に凝縮器10bが収納されていることも特徴とすることができる。地下水脈A24から水槽20への地下水供給ライン26の地下水供給用配管26a中に地下水供給用ポンプ26bと、水槽20から地下水脈B25への地下水戻りライン27の、地下水戻り用配管27a中に地下水戻り用加圧ポンプ27bが設けられている。
地下水戻りライン27の地下水脈B25は、地下水供給ライン26の地下水脈A24と異なりかつ浅い位置であると冷却効率がよい。
図1にみられるように冷却機能を有した圧縮機室30に複数組の空調装置の圧縮機10a及び電気制御手段50を収納させると場所をとらないし施工効率もよく外気温の影響や埃による故障の発生確率を下げることも出来る。
It can also be characterized that the condenser 10b is housed in the poured water tank 20. Groundwater return into the groundwater return pipe 27a of the groundwater return line 27 from the water tank 20 to the groundwater vein B25 in the groundwater supply pipe 26a of the groundwater supply line 26 to the water tank 20 from the groundwater vein A24. A pressurizing pump 27b is provided.
The groundwater vein B25 of the groundwater return line 27 is different from the groundwater vein A24 of the groundwater supply line 26 and has a shallow cooling efficiency when it is at a shallow position.
As shown in FIG. 1, when the compressor 10a and the electric control means 50 of a plurality of sets of air conditioners are housed in the compressor chamber 30 having a cooling function, the space is saved, the construction efficiency is good, and the influence of outside air temperature and dust It is also possible to reduce the probability of failure occurrence.
圧縮機10a及び凝縮器10bは、他機器との接続行うための接続部材を設けている。
冷媒を通す冷媒配管3にらせん状に巻きつけたフィン4aを持つフィン付き冷媒配管4を必要に応じた本数を天井近くに必要数設置しフィン付き冷媒配管4を冷媒を介して冷却し、フィン付き冷媒配管4に密着した冷気を剥離するために必要最小限の風を、フィン4aのすぐ近くからスリット6a又は小口径の穴6bを介して噴出させ、空気を一旦上部又は周辺に吹きつけたフィン付き冷媒配管4や金属平板吸熱材8cで冷却した後、冷気が自然落下による無風状態の冷房装置でフィン付き冷媒配管4を必要数まとめて施工がし易くするように一つの集合吸熱ユニット7としてフィン付き冷媒配管連結口7bや空気配管連結口7cや結露水を連結させるドレンパン連結口7dとを持ち、建物の大きさによって生ずる必要枚数の集合吸熱ユニット7を連結させて施工する。室内で熱交換された冷媒は一般には室外機に戻す。室外機の形態はファンを撤去して圧縮機10aと凝縮器10bを別々にして、凝縮器10bを地下又は地上に設置した水槽20に地下水又は地上水を貯水し、水槽20にためた水に浸かるように凝縮器10bを水没させる。このとき大型施設では複数台の凝縮器10bを冷却する必要があるためこれらの凝縮器10bを一度に地下又は地上に設置した水槽20内に貯水した地下水に水没させて冷やす事で高温になった冷媒を効率よく冷却することができる。
冷却する地下水は給水側の地下に埋設する地下水供給用配管26aと地下に戻す地下水戻り用配管27aの深さは汲み上げる地下水脈A24と異なる地下水脈B25に戻す事で地下水のループが出来ることが防止できると共に、地盤沈下を防止することが出来る。
The compressor 10a and the condenser 10b are provided with connection members for connection with other devices.
A necessary number of finned refrigerant pipes 4 having fins 4a spirally wound around the refrigerant pipe 3 through which the refrigerant is passed is installed near the ceiling, and the finned refrigerant pipes 4 are cooled via the refrigerant. The minimum air necessary to peel off the cold air tightly attached to the attached refrigerant pipe 4 was ejected from the vicinity of the fin 4a through the slit 6a or the small-diameter hole 6b, and the air was once blown to the upper part or the periphery. After cooling with the finned refrigerant pipe 4 or the metal flat plate heat absorbing material 8c, one collective heat absorbing unit 7 is provided so that the necessary number of the finned refrigerant pipes 4 can be easily put together by a cooling system in which the cold air is not naturally winded. And a finned refrigerant pipe connection port 7b, an air pipe connection port 7c, and a drain pan connection port 7d for connecting condensed water, and a necessary number of collective endothermic units generated depending on the size of the building. 7 are linked to by the construction. The refrigerant that has been heat exchanged indoors is generally returned to the outdoor unit. As for the form of the outdoor unit, the fan 10 is removed, the compressor 10a and the condenser 10b are separated, the ground water or the ground water is stored in the water tank 20 where the condenser 10b is installed underground or on the ground, and the water stored in the water tank 20 is stored. The condenser 10b is submerged so as to be immersed. At this time, since it is necessary to cool a plurality of condensers 10b in a large-scale facility, these condensers 10b became high temperature by being submerged in the groundwater stored in the water tank 20 installed on the ground or on the ground at a time and cooled. The refrigerant can be efficiently cooled.
Groundwater to be cooled is prevented from forming a groundwater loop by returning the depth of the groundwater supply pipe 26a buried in the underground on the water supply side and the depth of the groundwater return pipe 27a returned to the ground to the groundwater vein B25 different from the groundwater vein A24 to be pumped. While being able to prevent land subsidence.
本発明の実施例を初夏に行った。22mmの銅管にフィン長15mmのフィン4aをらせん状に1.5mにわたり巻きつけたフィン付き銅管を4本天井に取り付け下から弱い風をフィンに当て地下水を銅管に通水させて、室内の温度の変化と、風が発生するかを試した。結果を表1に示す。
30分後 室温 29.5度で4.5度の温度降下が見られた「図13」参照。
Examples of the present invention were conducted in early summer. A copper pipe with a fin length of 15 mm and a copper pipe with a length of 15 mm is wound around the ceiling with four finned copper pipes attached to the ceiling, and a weak wind is applied to the fins from below to let groundwater flow through the copper pipe. We tested whether the temperature in the room changed and wind was generated. The results are shown in Table 1.
After 30 minutes, a temperature drop of 4.5 degrees was seen at room temperature 29.5 degrees, see “FIG. 13”.
煙による気流のテストでは地表近くでは垂直に煙が上がり天井近くでは撹拌されて散っていった事で無風状態での冷房が可能なことが確認できた。「図14」参照。 In the airflow test with smoke, it was confirmed that the smoke was vertically raised near the surface and stirred and scattered near the ceiling, so that it was possible to cool in the windless state. See FIG.
熱伝導度が小さい20mmのステンレス金属管にステンレスフィンをらせん状に1.5mにわたり巻きつけたフィン付きステンレス金属管(エロフィンチューブ)を4本天井に取り付け下から弱い風をフィンに当て地下水をステンレス金属管に通水させて、室内の温度の変化を試した。結果を表2に示す。
室温と外気温の差が最も良い場合でも1.2度の温度降下が見られるにすぎず、冷媒を送る金属管の熱伝導度が重要な因子を持っていることが判明した。「図15」参照。
Four stainless steel pipes with fins (stainless steel fins spirally wound for 1.5m around a 20mm stainless steel pipe with low thermal conductivity) are attached to the ceiling. Water was passed through a stainless metal tube, and the temperature change in the room was tested. The results are shown in Table 2.
Even when the difference between the room temperature and the outside air temperature is the best, only a 1.2 degree temperature drop is observed, and it has been found that the thermal conductivity of the metal pipe sending the refrigerant has an important factor. See FIG.
1 空調対象
1a 仕切られた空間
1b 風を好まない空間
2 吸熱手段
3 冷媒配管
3a 冷媒配管固定具
4 フィン付き冷媒配管
4a フィン
5 結露水受け手段
5a ドレンパン
5b 結露防止材
5c ドレンパン固定具
6 空気配管
6a スリット
6b 穴
6c 空気配管固定具
7 集合吸熱ユニット
7a 枠
7b フィン付き冷媒配管連結口
7c 空気配管連結口
7d ドレンパン連結口
7e 冷媒配管連結口
8 平板吸熱装置
8a 傾斜
8b 高熱伝導率充填材
8c 金属平板吸熱材
8d 平板吸熱器固定具
10 排熱手段
10a 圧縮機
10b 凝縮器
10c 圧縮機室用室内機
10d 圧縮機室用圧縮機
10e 圧縮機室用凝縮器
20 水槽
21 地表面
24 地下水脈A
25 地下水脈B
26 地下水供給ライン
26a 地下水供給用配管
26b 地下水供給用ポンプ
27 地下水戻りライン
27a 地下水戻り用配管
27b 地下水戻り用加圧ポンプ
30 圧縮機室
40 貯湯タンク
41 三方弁
50 電気制御手段
51 室温検知センサー
52 外気温検知センサー
53 水温検知センサー
54 信号線
DESCRIPTION OF SYMBOLS 1 Air-conditioning object 1a The partitioned space 1b The space which does not like wind 2 Heat absorption means 3 Refrigerant piping 3a Refrigerant piping fixture 4 Refrigerant piping with fin 4a Fin 5 Condensation water receiving means 5a Drain pan 5b Condensation prevention material 5c Drain pan fixing 6 Air piping 6a Slit 6b Hole 6c Air piping fixture 7 Collective heat absorption unit 7a Frame 7b Refrigerant piping connection port with fin 7c Air piping connection port 7d Drain pan connection port 7e Refrigerant piping connection port 8 Flat plate heat absorption device 8a Inclination 8b High thermal conductivity filler 8c Metal Flat plate endothermic material 8d Flat plate heat sink fixture 10 Waste heat means 10a Compressor 10b Condenser 10c Compressor room indoor unit 10d Compressor room compressor 10e Compressor room condenser 20 Water tank 21 Ground surface 24 Groundwater vein A
25 Groundwater veins B
26 Groundwater supply line 26a Groundwater supply pipe 26b Groundwater supply pump 27 Groundwater return line 27a Groundwater return pipe 27b Groundwater return pressure pump 30 Compressor room 40 Hot water tank 41 Three-way valve 50 Electric control means 51 Room temperature detection sensor 52 Outside Air temperature detection sensor 53 Water temperature detection sensor 54 Signal line
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014022334A JP2015117928A (en) | 2014-02-07 | 2014-02-07 | Windless air-conditioning method in building for playing badminton or table tennis and apparatus used for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014022334A JP2015117928A (en) | 2014-02-07 | 2014-02-07 | Windless air-conditioning method in building for playing badminton or table tennis and apparatus used for the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013261920A Division JP5810451B2 (en) | 2013-12-19 | 2013-12-19 | No wind cooling method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015117928A true JP2015117928A (en) | 2015-06-25 |
Family
ID=53530796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014022334A Pending JP2015117928A (en) | 2014-02-07 | 2014-02-07 | Windless air-conditioning method in building for playing badminton or table tennis and apparatus used for the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015117928A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106766082A (en) * | 2017-01-11 | 2017-05-31 | 江苏友奥电器有限公司 | A kind of moving dehumidifier with multiplex integration-in-one discharge structure |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0213919U (en) * | 1988-07-06 | 1990-01-29 | ||
JPH02106514U (en) * | 1989-02-10 | 1990-08-24 | ||
JPH0327519U (en) * | 1989-07-27 | 1991-03-19 | ||
JPH0361227U (en) * | 1989-10-20 | 1991-06-17 | ||
JPH0642779A (en) * | 1992-07-27 | 1994-02-18 | Mitsubishi Electric Corp | Radiation cooling and heating device |
JPH09152147A (en) * | 1995-12-01 | 1997-06-10 | Nippon Yuuki Kk | Air conditioning system |
WO1998051971A1 (en) * | 1997-05-14 | 1998-11-19 | Yuki Japan Co., Ltd. | Air conditioning system |
JP2000028167A (en) * | 1998-05-06 | 2000-01-25 | Masuda Harmo:Kk | Air circulating device |
JP2002071168A (en) * | 2000-08-29 | 2002-03-08 | Yuuki:Kk | Radiation type air conditioning device |
JP2003227632A (en) * | 2002-02-05 | 2003-08-15 | Hirofumi Hayama | Cooling apparatus |
JP2007127292A (en) * | 2005-11-01 | 2007-05-24 | Showa Denko Kk | Radiation cooling/heating unit |
JP2011027359A (en) * | 2009-07-28 | 2011-02-10 | Aoki Jutaku Kizai Hanbai Kk | Ceiling radiation system |
JP2011145026A (en) * | 2010-01-15 | 2011-07-28 | Kimura Kohki Co Ltd | Pneumatic inductive radiation unit |
-
2014
- 2014-02-07 JP JP2014022334A patent/JP2015117928A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0213919U (en) * | 1988-07-06 | 1990-01-29 | ||
JPH02106514U (en) * | 1989-02-10 | 1990-08-24 | ||
JPH0327519U (en) * | 1989-07-27 | 1991-03-19 | ||
JPH0361227U (en) * | 1989-10-20 | 1991-06-17 | ||
JPH0642779A (en) * | 1992-07-27 | 1994-02-18 | Mitsubishi Electric Corp | Radiation cooling and heating device |
JPH09152147A (en) * | 1995-12-01 | 1997-06-10 | Nippon Yuuki Kk | Air conditioning system |
WO1998051971A1 (en) * | 1997-05-14 | 1998-11-19 | Yuki Japan Co., Ltd. | Air conditioning system |
JP2000028167A (en) * | 1998-05-06 | 2000-01-25 | Masuda Harmo:Kk | Air circulating device |
JP2002071168A (en) * | 2000-08-29 | 2002-03-08 | Yuuki:Kk | Radiation type air conditioning device |
JP2003227632A (en) * | 2002-02-05 | 2003-08-15 | Hirofumi Hayama | Cooling apparatus |
JP2007127292A (en) * | 2005-11-01 | 2007-05-24 | Showa Denko Kk | Radiation cooling/heating unit |
JP2011027359A (en) * | 2009-07-28 | 2011-02-10 | Aoki Jutaku Kizai Hanbai Kk | Ceiling radiation system |
JP2011145026A (en) * | 2010-01-15 | 2011-07-28 | Kimura Kohki Co Ltd | Pneumatic inductive radiation unit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106766082A (en) * | 2017-01-11 | 2017-05-31 | 江苏友奥电器有限公司 | A kind of moving dehumidifier with multiplex integration-in-one discharge structure |
CN106766082B (en) * | 2017-01-11 | 2022-06-03 | 江苏友奥电器有限公司 | Remove dehumidifier with multi-purpose integrated integral type drainage structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019100733A4 (en) | A cooling system | |
CN101523119A (en) | Warm cooling for electronics | |
US11703235B2 (en) | External-air conditioning apparatus and ventilation system | |
CN104582441A (en) | Intelligent cabinet | |
JP5810451B2 (en) | No wind cooling method | |
JP2015190754A (en) | Heat exchange efficiency improvement device of air-cooled air conditioning outdoor heat exchanger | |
NL2018716B1 (en) | Cabinet for housing part of a heat pump | |
JP2015187331A (en) | building ventilation structure | |
CN102734873A (en) | Distributed heat management device of communication machine room | |
JP2015117928A (en) | Windless air-conditioning method in building for playing badminton or table tennis and apparatus used for the same | |
WO2014174961A1 (en) | Building provided with air conditioning equipment using geothermal heat | |
JP6263682B1 (en) | Structure of a device that enables cooling in a windless state using gas as a refrigerant | |
CN104837320A (en) | Power distribution room heat radiation system for heat radiation of electrical cabinets | |
US20200088425A1 (en) | Coaxial Ventilator | |
JP2015148439A (en) | Method for performing windless air conditioning at cleaning factory and device for the same | |
CN202902469U (en) | Distributed heat management device of communication machine room | |
JP2016090218A (en) | Ventilation precooling device of air conditioner | |
JP6453197B2 (en) | Auxiliary cooling device for condenser | |
TWM552974U (en) | Ventilating and cooling device improvement | |
TWM505518U (en) | Building structure featuring heat dissipation and convection | |
KR20120046401A (en) | A natural ventilation coduit waterworks and drainage system manhole use of sunlight and change of temperature | |
CN207783418U (en) | A kind of cooling system of data center machine room | |
JP4758017B2 (en) | Cooling system | |
CN206583010U (en) | Cold and hot window | |
KR20130001210U (en) | Water splash proof louver frame |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140407 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20140407 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20140513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150407 |