[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015115203A - Battery pack using laminate type battery - Google Patents

Battery pack using laminate type battery Download PDF

Info

Publication number
JP2015115203A
JP2015115203A JP2013256640A JP2013256640A JP2015115203A JP 2015115203 A JP2015115203 A JP 2015115203A JP 2013256640 A JP2013256640 A JP 2013256640A JP 2013256640 A JP2013256640 A JP 2013256640A JP 2015115203 A JP2015115203 A JP 2015115203A
Authority
JP
Japan
Prior art keywords
battery
assembled battery
outer case
battery pack
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013256640A
Other languages
Japanese (ja)
Inventor
柏倉 章
Akira Kashiwakura
章 柏倉
雄三 松尾
Yuzo Matsuo
雄三 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2013256640A priority Critical patent/JP2015115203A/en
Publication of JP2015115203A publication Critical patent/JP2015115203A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery pack using a fully packed structure covered with a strong outer case prevented from thermal runaway even in an overcharged state.SOLUTION: Disclosed is a laminate type battery pack which is formed by assembling a plurality of laminate sheets. Since a clearance in a battery pack or between the strong outer case is provided in advance, even if heat is generated by the malfunction such as overcharge and external heating, ignition due to thermal runaway can be prevented by providing expansion buffer of a cell and promoting heat release by increasing a surface area even if the cell is expanded.

Description

本発明は、複数のラミネート型電池を用いた組電池に関し、さらに詳細には、特別な冷却機構を設けずとも、過充電状態においても熱暴走しない組電池の構造に関するものである。 The present invention relates to an assembled battery using a plurality of laminated batteries, and more particularly, to an assembled battery structure that does not run out of heat even in an overcharged state without providing a special cooling mechanism.

近年、携帯電話、ノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、高エネルギー密度の非水二次電池などの電気化学素子の需要が急激に伸びている。現在、こうした要求に応え得る非水二次電池は、例えば、リチウムイオンをドープ・脱ドープ可能なリチウム複合酸化物を使用した正極と、リチウムイオンをドープ・脱ドープ可能な材料やリチウム金属などを使用した負極と、電解質塩を有機溶媒に溶解させた非水電解液とを、ラミネート材や金属製の外装材に封入して構成されたリチウム二次電池が広く用いられており、特に電池自動車や蓄電用の大型の電池では、複数のリチウム二次電池を用いて組電池として使用されている。   In recent years, with the development of portable electronic devices such as mobile phones and notebook computers, and the practical application of electric vehicles, the demand for electrochemical elements such as high-energy density non-aqueous secondary batteries has increased rapidly. Currently, non-aqueous secondary batteries that can meet these requirements include, for example, a positive electrode using a lithium composite oxide that can be doped and dedoped with lithium ions, a material that can be doped and dedoped with lithium ions, and lithium metal. Lithium secondary batteries constructed by enclosing the negative electrode used and a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in an organic solvent in a laminate or a metal exterior material are widely used, especially battery cars In a large battery for power storage, a plurality of lithium secondary batteries are used as an assembled battery.

複数のリチウム二次電池を用いた組電池では、複数のラミネート型電池を外装ケースで覆って使用する場合が多い。例えば特許文献1に記載されているように、まずは積み重ねた電池群を簡便な外装ケースで覆い(コアパック)、必要に応じてこれに保護回路等の電気基板を接続し、特許文献2のように、強固な外装ケースで覆う(フルパック)事によって最終的な組電池とする場合がある。   In an assembled battery using a plurality of lithium secondary batteries, a plurality of laminated batteries are often used by covering them with an outer case. For example, as described in Patent Document 1, first, the stacked battery group is covered with a simple exterior case (core pack), and an electric substrate such as a protection circuit is connected to the battery group as necessary. In some cases, a final assembled battery may be obtained by covering with a strong outer case (full pack).

特開2009−259581号公報JP 2009-259581 A 特開2013−168387号公報JP2013-168387A

リチウム二次電池は非水電解液として可燃性の有機溶媒を使用している為、安全性対策が重要であり、その為、過度の使用状態の試験条件用いて安全性を確認している。例えば過充電試験では、保護回路が故障した場合を想定して電池の満充電状態以上の充電を行っても発火などの危険な状態に至らないかを確認するが、組電池の場合、電池パックの過充電試験を行うと、外装ケースへの組み込み状態によって、電池パック安全性が大きく異なり、コアパックのような簡便な外装ケースでは発火しないが、フルパックのような強固な外装ケースでは発火してしまうという事象がある。コアパックの場合、過充電により温度が上昇すると、セルの膨張によって外装ケースが破壊され、パック内で束ねられている各セルがアコーディオン状にばらけてしまう。フルパックの場合は外装ケースが強固なので破壊されずに形状が維持される。コアパックではばらける事によって、空気との接触面積が増え放熱されるので、それによって熱暴走には至らずに発火しないが、フルパックでは放熱されないので熱暴走に至ってしまうものと考えられる。 Lithium secondary batteries use flammable organic solvents as non-aqueous electrolytes, so safety measures are important. For this reason, safety is confirmed using test conditions under excessive use conditions. For example, in an overcharge test, it is checked whether a dangerous state such as ignition will occur even if the battery is fully charged, assuming that the protection circuit has failed. When the overcharge test is performed, the safety of the battery pack varies greatly depending on the state of incorporation in the outer case, and it does not ignite in a simple outer case such as a core pack, but in a strong outer case such as a full pack. There is an event that ends up. In the case of the core pack, when the temperature rises due to overcharging, the outer case is destroyed due to cell expansion, and the cells bundled in the pack are scattered in an accordion shape. In the case of a full pack, the outer case is strong so that the shape is maintained without being destroyed. By releasing the core pack, the contact area with the air is increased and the heat is dissipated, so that the thermal runaway does not lead to ignition, but the full pack does not dissipate heat, so it is considered that the thermal runaway occurs.

本発明は、この現象を利用し、逆に膨張出来るような空間をバッファとして予め設ける事により、発火を防ぐものである。   The present invention uses this phenomenon to prevent ignition by providing a space that can be expanded conversely as a buffer.

前記目的を達成するために、本発明は、複数のラミネート型電池を用いた組電池において、組電池内、或いはその外装ケースとの間に予め隙間を設けることを特徴とするものである。たとえ過充電や外部加熱のような誤動作によって電池が異常発熱したとしても、膨張バッファとなる隙間を設けるとことで、異常発熱により膨張したラミネート型電池の間隔が広がることで放熱を促し、熱暴走による発火を防止することが可能となる。複数のラミネート型電池を用いた組電池のうち、組電池を構成する一部の単電池の周囲のみ間隔を拡げる事により、放熱を促して熱暴走による発火を防止する事が出来る。   In order to achieve the above object, the present invention is characterized in that, in an assembled battery using a plurality of laminated batteries, a gap is provided in advance in the assembled battery or between the outer case and the assembled battery. Even if the battery abnormally heats up due to a malfunction such as overcharge or external heating, by providing a gap that becomes an expansion buffer, the gap between the laminated batteries expanded due to abnormal heat generation increases the heat dissipation and thermal runaway It is possible to prevent ignition due to. Among the assembled batteries using a plurality of laminated batteries, by expanding the interval only around some of the single cells constituting the assembled battery, it is possible to promote heat dissipation and prevent ignition due to thermal runaway.

また、複数のラミネート型電池を用いた組電池のうち、組電池を構成する最も外端に位置する片面或いは両面の単電池の周囲のみの間隔を拡げる事により、放熱を促して熱暴走を防止する事が出来る。膨張バッファとなる隙間を設ける部分を、最外端となる単電池の位置とする事により、その他の単位電池が一体となって構成される為、組電池単位としての剛性を出来るだけ損なわないようにすることが可能になる。   In addition, among battery packs using multiple laminated batteries, the distance between only the single-sided or double-sided battery cells located at the outermost end of the battery pack is widened to promote heat dissipation and prevent thermal runaway. I can do it. By setting the part that provides the expansion buffer gap to the position of the unit cell that is the outermost end, other unit batteries are configured integrally, so that the rigidity of the assembled battery unit is not lost as much as possible It becomes possible to.

また、複数のラミネート型電池を用いた組電池のうち、組電池を構成する最も中央に位置する単数或いは複数枚の単電池の周囲のみの間隔を拡げる事により、放熱を促して熱暴走を防止する事が出来る。組電池中で最も蓄熱されて最も放熱がしにくいのは中央部なので、膨張バッファとなる隙間を設ける部分を組電池のうちの中央部近傍とすることにより、組電池の高温部を集中的に放熱することができ、熱暴走を防止することが可能になる。   In addition, among battery packs using a plurality of laminated batteries, widening the gap only around the single or multiple battery cells located at the center of the battery pack promotes heat dissipation and prevents thermal runaway. I can do it. The central part of the battery pack that stores the most heat and is most difficult to dissipate is the central part of the battery pack, so that the high-temperature part of the battery pack is concentrated. It is possible to dissipate heat and prevent thermal runaway.

更には、複数のラミネート型電池を用いた組電池の一部に、単数あるいは複数の低容量のラミネート型電池が存在している場合、低容量の単数或いは複数枚の単電池の周囲のみ間隔を拡げる事により、放熱を促して熱暴走を防止する事が出来る。通常、組電池中で過充電となり易いのは最も容量の少ない単電池なので、組電池の中に過充電となりやすい低容量の電池を組み込み、その部分に膨張バッファとなる隙間を設けることで、低容量以外の他の電池が過充電となることを避け、低容量の電池周辺は放熱効率が高い為、過充電による熱暴走を防止することができる。   Furthermore, when one or a plurality of low-capacity laminated batteries exist in a part of a battery pack using a plurality of laminated batteries, the interval is limited only to the periphery of the single battery or a plurality of single-cell batteries having a low capacity. By expanding, heat dissipation can be promoted and thermal runaway can be prevented. Normally, it is the single battery with the least capacity that is likely to be overcharged in the assembled battery, so a low-capacity battery that is likely to be overcharged is incorporated in the assembled battery, and a gap serving as an expansion buffer is provided in that part to reduce the battery capacity. Avoiding overcharging of other batteries than the capacity, and the heat dissipation efficiency around the low-capacity battery is high, so that thermal runaway due to overcharging can be prevented.

本発明によれば、組電池のパックの一部に膨張出来るような空間をバッファとして予め設ける事により、過充電などで電池が膨張した際に放熱が効率よくおこなわれ、電池の熱暴走を防ぐことが可能になる。   According to the present invention, by providing a space that can be expanded in a part of a battery pack pack as a buffer in advance, heat can be efficiently dissipated when the battery expands due to overcharge or the like, thereby preventing thermal runaway of the battery. It becomes possible.

ラミネート型電池の模式図である。It is a schematic diagram of a laminate type battery. 本発明による複数のラミネート型電池をパック化して組電池とした模式図である。It is the schematic diagram which made the some laminated type battery by this invention into the pack, and was set as the assembled battery. 電池が膨張した際の模式図である。It is a schematic diagram when a battery expand | swells. 中央部に隙間を設けた実施形態を示す模式図である。It is a schematic diagram which shows embodiment which provided the clearance gap in the center part. 低容量電池を組み込んだ実施形態を示す模式図である。It is a mimetic diagram showing an embodiment incorporating a low capacity battery.

以下、図面を参照し、本発明の実施の形態を詳しく説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明で使用するリチウム二次電池は、正極、負極、セパレータおよび非水電解質および外装にアルミラミネートを備えたラミネート型電池である。図1にラミネート型電池の模式図を示す。正極2は正極活物質と導電助剤および結着剤を有機溶媒中で混合し、その組成物をアルミニウム箔上に塗布、乾燥、圧延して正極層としたものである。負極3も正極2と同様にして、主に炭素物質からなる負極活物質と結着剤、必要に応じて導電助剤を混合し、その組成物を銅箔上に塗布、乾燥、圧延したものを負極層としたものである。正極層と負極層の間にはポリマーから成るセパレータが配置される。   The lithium secondary battery used in the present invention is a laminate type battery having an aluminum laminate on a positive electrode, a negative electrode, a separator, a nonaqueous electrolyte, and an exterior. FIG. 1 shows a schematic diagram of a laminated battery. The positive electrode 2 is obtained by mixing a positive electrode active material, a conductive additive and a binder in an organic solvent, and coating, drying and rolling the composition on an aluminum foil to form a positive electrode layer. The negative electrode 3 was prepared by mixing a negative electrode active material mainly composed of a carbon material, a binder and, if necessary, a conductive additive, applying the composition onto a copper foil, drying and rolling in the same manner as the positive electrode 2. Is a negative electrode layer. A separator made of a polymer is disposed between the positive electrode layer and the negative electrode layer.

正極、負極、セパレータから構成される電極体は例えば所定の大きさに切り出された正極と負極とを、帯状のセパレータを折り返しながら積層していく積層電極体構造をとる。その電極体の正極2から正極リード4が、負極3から負極リード5が外装アルミラミネート1の外に引き出される。注液用にセルの一辺だけシールせずに開口部を作り、それ以外の部分は熱溶着し、注液前電池を準備する。次に非水電解液を注液し、注液部の開口している一辺を熱融着にて封口し、それから初回充電を実施する。初回充電により、初期のガス発生が起こり、20〜80℃の環境下で数時間セルを静置するエージング工程、発生したガスを抜き、さらに真空に引きながら熱融着を行った後、予定している電池電圧まで満充電を実施し、リチウム二次電池を作成する。   An electrode body composed of a positive electrode, a negative electrode, and a separator has a laminated electrode body structure in which, for example, a positive electrode and a negative electrode cut out to a predetermined size are stacked while folding a strip-shaped separator. The positive electrode lead 4 from the positive electrode 2 and the negative electrode lead 5 from the negative electrode 3 are drawn out of the outer aluminum laminate 1. An opening is made without sealing only one side of the cell for liquid injection, and the other parts are thermally welded to prepare a battery before liquid injection. Next, a nonaqueous electrolytic solution is injected, one side where the injection portion is open is sealed by thermal fusion, and then the initial charge is performed. An initial gas generation occurs due to the initial charging, and an aging process in which the cell is allowed to stand for several hours in an environment of 20 to 80 ° C., after the generated gas is removed, and heat fusion is performed while drawing a vacuum, and then scheduled. The battery is fully charged to the current battery voltage, and a lithium secondary battery is created.

リチウム二次電池のその他の構成および構造については特に制限はなく、従来から知られている構成および構造を適用することができる。   There is no restriction | limiting in particular about the other structure and structure of a lithium secondary battery, The structure and structure conventionally known can be applied.

図2は、複数のラミネート型電池をパック化して組電池とした模式図である。外装ケース6内には、ラミネート型電池の単位セル8が複数個収納されており、単位セルの集合体の上側、下側の双方には外装ケースとの隙間が設けられており、電池が異常発熱等により膨張した際、膨張バッファ8として機能する。   FIG. 2 is a schematic view showing a battery pack in which a plurality of laminated batteries are packed. A plurality of unit cells 8 of a laminate type battery are accommodated in the outer case 6, and a gap with the outer case is provided on both the upper side and the lower side of the unit cell assembly, and the battery is abnormal. When it expands due to heat generation or the like, it functions as an expansion buffer 8.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

(実施例1)
<正極の作製>
LiCoOで表される正極活物質94質量部と、結着剤であるPVDF(10%NMP溶液)を4質量部(固形分として)と、導電助剤である人造黒鉛1質量部およびケッチェンブラック1質量部とを、プラネタリーミキサーを用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有組成物を調製した。
(Example 1)
<Preparation of positive electrode>
94 parts by mass of a positive electrode active material represented by LiCoO 2 , 4 parts by mass (as solid content) of PVDF (10% NMP solution) as a binder, 1 part by mass of artificial graphite as a conductive assistant, and Ketjen 1 part by mass of black was kneaded using a planetary mixer, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing composition.

前記の正極合剤含有組成物を、厚みが15μmのアルミニウム箔(正極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚みおよび密度を調節した。できた正極を所定の寸法にトムソン刃を用いて切り出し、正極とした。   After applying the positive electrode mixture-containing composition to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 15 μm, vacuum drying is performed at 120 ° C. for 12 hours to form a positive electrode mixture layer on both surfaces of the aluminum foil. Formed. Then, the press process was performed and the thickness and density of the positive mix layer were adjusted. The resulting positive electrode was cut out to a predetermined size using a Thomson blade to obtain a positive electrode.

<負極の作製>
負極活物質である平均粒子径が10μmの天然黒鉛97.5質量部と、結着剤であるスチレンブタジエンゴム1.5質量部と、増粘剤であるカルボキシメチルセルロース1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。この負極合剤含有ペーストを厚みが8μmの銅箔の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面に負極合剤層を形成した。その後、プレス処理を行って、負極合剤層の厚みおよび密度を調節した。できた負極を所定の寸法にトムソン刃を用いて切り出し、負極とした。
<Production of negative electrode>
Water was added to 97.5 parts by mass of natural graphite having an average particle diameter of 10 μm as a negative electrode active material, 1.5 parts by mass of styrene butadiene rubber as a binder, and 1 part by mass of carboxymethyl cellulose as a thickener. In addition, the mixture was mixed to prepare a negative electrode mixture-containing paste. This negative electrode mixture-containing paste was applied to both sides of a copper foil having a thickness of 8 μm, and then vacuum-dried at 120 ° C. for 12 hours to form negative electrode mixture layers on both sides of the copper foil. Then, the press process was performed and the thickness and density of the negative mix layer were adjusted. The produced negative electrode was cut out to a predetermined size using a Thomson blade to obtain a negative electrode.

<電解液の調製>
エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネートとの容積比2:3:1の混合溶媒に、LiPFを1mol/Lの濃度で溶解させ、ビニレンカーボネート2.5質量%を添加して、電解液を調製した。
<Preparation of electrolyte>
LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate, methyl ethyl carbonate, and diethyl carbonate in a volume ratio of 2: 3: 1, 2.5% by mass of vinylene carbonate was added, and the electrolytic solution was Prepared.

<電池の組み立て>
前記切り出した正極、および負極を厚みが16μmの片面に無機粒子を塗布した耐熱セパレータ(空孔率:43%)をつづら折りしながら正極と負極を交互に積層していき、電極積層体を作製した。前記セパレータは12μmのポリエチレン層と4μmのベーマイト層からなり、ベーマイト層が正極側を向くように積層し、正極7枚、負極8枚の積層体を作製した。この時、セパレータ幅方向の負極からのはみ出し長さを0.75mmとした。このセパレータの長手方向の末端をポリプロピレン製の絶縁テープで固定した。正極のアルミニウム箔の露出部にアルミニウム製のリードを溶接した。リードには熱溶着性を向上させるためのプロピレン性の樹脂フィルムをとりつけた。負極も正極と同様にして銅箔の露出部にニッケル製のリードを溶接した。リードには熱溶着性を向上させるためのプロピレン性の樹脂フィルムをとりつけた。その後、積層体のセパレータの幅方向両端部をヒートシーラーを用いて熱溶着し、114μmのアルミラミネートの外装シートにあらかじめ積層体が収まるサイズの窪みを作製しておき、その中に前記電極積層体を収納した。電極積層体を収納後、開口部分をヒートシーラーで熱溶着した。できた注液前電池を12時間60℃で真空乾燥した。その後、一辺開口している3部分から非水電解液を注液し、すぐに3部分を熱溶着により封止した。作成したラミネート型リチウム二次電池の寸法は、縦161mm、横78mm、厚み6.5mmである。
<Battery assembly>
The positive electrode and the negative electrode were alternately stacked while the heat-resistant separator (porosity: 43%) in which inorganic particles were applied on one side of the cut positive electrode and the negative electrode with a thickness of 16 μm were folded to produce an electrode laminate. . The separator was composed of a 12 μm polyethylene layer and a 4 μm boehmite layer, and was laminated so that the boehmite layer faced the positive electrode side to prepare a laminate of 7 positive electrodes and 8 negative electrodes. At this time, the protruding length from the negative electrode in the separator width direction was set to 0.75 mm. The end of the separator in the longitudinal direction was fixed with an insulating tape made of polypropylene. An aluminum lead was welded to the exposed portion of the aluminum foil of the positive electrode. A propylene-based resin film for improving the heat-welding property was attached to the lead. For the negative electrode, a lead made of nickel was welded to the exposed portion of the copper foil in the same manner as the positive electrode. A propylene-based resin film for improving the heat-welding property was attached to the lead. Thereafter, both end portions in the width direction of the separator of the laminate are thermally welded using a heat sealer, and a depression having a size that can accommodate the laminate in advance is prepared on an outer laminate sheet of 114 μm, and the electrode laminate is provided therein. Stowed. After housing the electrode laminate, the opening was thermally welded with a heat sealer. The resulting pre-injection battery was vacuum dried at 60 ° C. for 12 hours. Thereafter, a non-aqueous electrolyte was injected from the three portions opened on one side, and the three portions were immediately sealed by heat welding. The dimensions of the produced laminated lithium secondary battery are 161 mm in length, 78 mm in width, and 6.5 mm in thickness.

次にこのラミネート型二次電池8個を直列に接続し、外装ケースに収納した。外装ケースへは、電池1〜8を結束し、結束した電池の上下と外装ケースとの空間を設け、組電池を作成した。   Next, eight of these laminate type secondary batteries were connected in series and stored in an outer case. Batteries 1 to 8 were bound to the outer case, and a space was formed between the upper and lower sides of the bound battery and the outer case to prepare an assembled battery.

(実施例2)
外装ケースに収納する8個のラミネート型二次電池のうち、図4に示すように中央部に配置する2個のラミネート型電池の周辺に空間を設けた以外は実施例1と同様に組電池を作成した。
(Example 2)
Among the eight laminated secondary batteries housed in the outer case, the assembled battery is the same as in Example 1 except that a space is provided around the two laminated batteries arranged in the center as shown in FIG. It was created.

(実施例3)
外装ケースに収納する8個のラミネート型二次電池のうち、本発明の効果を確認する為に図5に示すように、中央部に配置する2個のラミネート型電池を敢えて低容量のものに変更し、さらに周辺に空間を設けた以外は実施例1と同様に組電池を作成した。
(Example 3)
Of the eight laminated secondary batteries stored in the outer case, in order to confirm the effect of the present invention, as shown in FIG. An assembled battery was produced in the same manner as in Example 1 except that the space was further changed and a space was provided around the periphery.

(比較例1)
結束した電池の上下と外装ケースとの空間を設けなかったこと以外は実施例1と同様に組電池を作成した。
(Comparative Example 1)
An assembled battery was prepared in the same manner as in Example 1 except that the space between the upper and lower sides of the bound battery and the outer case was not provided.

<過充電試験>
過充電の条件として、最大充電電流で上限充電電圧の120%まで定電流充電としたところ、一部のセルが発熱により膨張し、実施例1の組電池は図3に示すような状態となったが、発火には至ることはなかった。また、実施例2、3の組電池も同様に、熱暴走は起きず、発火に至ることはなかった。一方で比較例1の電池は外装ケース内に膨張バッファを設けていない為、一部または全てのセルの膨張により外層ケ−スを破損した。
<Overcharge test>
As a condition for overcharging, when constant current charging was performed up to 120% of the upper limit charging voltage at the maximum charging current, some cells expanded due to heat generation, and the assembled battery of Example 1 was in the state shown in FIG. However, there was no ignition. Similarly, in the assembled batteries of Examples 2 and 3, thermal runaway did not occur and ignition did not occur. On the other hand, since the battery of Comparative Example 1 was not provided with an expansion buffer in the outer case, the outer case was damaged by expansion of some or all of the cells.

1 ラミネート外装材
2 正極
3 負極
4 正極リード
5 負極リード
6 外装ケース
7 膨張バッファ
8 単位セル
9 膨張したセル
10 低容量セル
DESCRIPTION OF SYMBOLS 1 Laminate exterior material 2 Positive electrode 3 Negative electrode 4 Positive electrode lead 5 Negative electrode lead 6 Exterior case 7 Expansion buffer 8 Unit cell 9 Expanded cell 10 Low capacity cell

Claims (5)

複数のラミネート型電池を用いた組電池において、前記組電池は外装ケースに収納されており、前記外装ケース内に前記ラミネート電池が膨張した際、膨張部を納める隙間を設けたことを特徴とする組電池。 In an assembled battery using a plurality of laminate-type batteries, the assembled battery is housed in an outer case, and when the laminated battery expands in the outer case, a gap is provided for accommodating an expansion portion. Assembled battery. 前記組電池を構成する一部の単電池の周囲のみ間隔を拡げたことを特徴とする請求項1記載の組電池。 2. The assembled battery according to claim 1, wherein the interval is widened only around a part of the single cells constituting the assembled battery. 前記組電池を構成する最も外端に位置する片面或いは両面の単電池の周囲のみの間隔を拡げたことを特徴とする請求項2記載の組電池。 The assembled battery according to claim 2, wherein a space only around the single-sided or double-sided cell located at the outermost end constituting the assembled battery is widened. 前記組電池を構成する最も中央に位置する単数或いは複数枚の単電池の周囲のみの間隔を拡げたことを特徴とする請求項2記載の組電池。 The assembled battery according to claim 2, wherein only the periphery of the single or a plurality of single cells located at the center of the assembled battery is widened. 前記組電池を構成する単電池のうち、他の単電池と比較して低容量の単電池の周囲のみの間隔を拡げたことを特徴とする請求項4記載の組電池。 5. The assembled battery according to claim 4, wherein among the single cells constituting the assembled battery, the interval only around the low-capacity single cells is expanded compared to other single cells.
JP2013256640A 2013-12-12 2013-12-12 Battery pack using laminate type battery Pending JP2015115203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256640A JP2015115203A (en) 2013-12-12 2013-12-12 Battery pack using laminate type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256640A JP2015115203A (en) 2013-12-12 2013-12-12 Battery pack using laminate type battery

Publications (1)

Publication Number Publication Date
JP2015115203A true JP2015115203A (en) 2015-06-22

Family

ID=53528826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256640A Pending JP2015115203A (en) 2013-12-12 2013-12-12 Battery pack using laminate type battery

Country Status (1)

Country Link
JP (1) JP2015115203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230796A (en) * 2016-03-25 2017-10-03 安徽巨大电池技术有限公司 Battery pack and method of assembling the same
DE102022115911A1 (en) 2022-06-27 2023-12-28 Man Truck & Bus Se Energy storage device for storing electrical energy for an at least partially electrically driven vehicle and method for producing the energy storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230796A (en) * 2016-03-25 2017-10-03 安徽巨大电池技术有限公司 Battery pack and method of assembling the same
CN107230796B (en) * 2016-03-25 2023-10-27 安徽巨大电池技术有限公司 Battery pack and method of assembling the same
DE102022115911A1 (en) 2022-06-27 2023-12-28 Man Truck & Bus Se Energy storage device for storing electrical energy for an at least partially electrically driven vehicle and method for producing the energy storage device

Similar Documents

Publication Publication Date Title
JP6152483B2 (en) Battery module
JP5172496B2 (en) Power storage unit and manufacturing method thereof
JP2017084630A (en) Nonaqueous electrolyte secondary battery
KR20080103847A (en) Electorde assembly and secondary battery using the same
JP5614574B2 (en) Secondary battery
WO2010125755A1 (en) Assembled sealing body and battery using same
KR20180058370A (en) Electrode Assembly Comprising Separator Having Insulation-enhancing Part Formed on Edge Portion of Electrode
JP2012190734A (en) Nonaqueous electrolyte battery module
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
KR20140137603A (en) Pouch type battery case
KR20120075399A (en) Lithium ion secondary battery
JP2013054909A (en) Lithium ion secondary battery
US10541418B2 (en) Nonaqueous electrolyte secondary battery
JP2009059571A (en) Current collector for battery, and battery using this
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP2008059966A (en) Nonaqueous secondary battery
JP2013201094A (en) Nonaqueous electrolyte secondary battery
JPWO2015156168A1 (en) Flat secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2015115203A (en) Battery pack using laminate type battery
JP2017174662A (en) Secondary battery
US20180097234A1 (en) Lithium ion secondary battery
JP2015141814A (en) Nonaqueous electrolyte secondary battery
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack
JP2017098207A (en) Secondary battery having electrode body