JP2015110715A - Coating agent for concrete - Google Patents
Coating agent for concrete Download PDFInfo
- Publication number
- JP2015110715A JP2015110715A JP2013253702A JP2013253702A JP2015110715A JP 2015110715 A JP2015110715 A JP 2015110715A JP 2013253702 A JP2013253702 A JP 2013253702A JP 2013253702 A JP2013253702 A JP 2013253702A JP 2015110715 A JP2015110715 A JP 2015110715A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- coating agent
- film
- water repellency
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Paints Or Removers (AREA)
Abstract
Description
本発明は、コンクリート構造物の表面に撥水性、耐汚染性及び耐久性を与えるコンクリート用コーティング剤に関する。 The present invention relates to a concrete coating agent that imparts water repellency, stain resistance and durability to the surface of a concrete structure.
コンクリート構造物は標準耐用年数が50年程度と長期に亘り、近年になって戦後の復興期頃に建造された構造物の老朽化対策が検討されている。
公共施設、道路、橋梁、上下水道、空港等のコンクリート構造物からなるインフラは社会を成り立たせるために必要であるとともに、誰でも利用できるという意味で「社会資本」と呼ばれている。老朽化に伴う社会資本の更新投資額は総額330兆円にものぼり、今後50年間にわたり年間8.1兆円が必要になるとの試算がある。(参考資料「朽ちるインフラ」根本祐二著、日本経済新聞出版社2011年5月24日第1版発行)
コンクリート構造物の主材であるセメントはアルカリ性であり、空気中の二酸化炭素、酸性雨、酸性霧、酸性排気ガス等の酸性物質と反応して中性化する。これがコンクリート表面の粉末化やひび割れ等の原因になり、ひび割れ箇所から内部に酸性物質が侵入していくと、セメントの主要成分であるCa(OH)2がCaCO3に化学変化することで徐々に分解されていき、最終的にはコンクリート構造物自体の破壊に繋がる。また、Ca(OH)2を含む溶液が大気中に流れ出る際に生じる石灰質のつらら、いわゆる「コンクリートつらら」の問題も生じる。(参考資料「酸性雨と酸性霧」村野健太郎著、(株)裳華房1993年4月20日第1版発行)
更に、コンクリートの吸水性の高さと相俟って、コンクリート内部の鉄筋に付着した水の凍結膨張や鉄筋のサビ・腐食を招き、最終的にはコンクリート内部の破壊及び構造物自体の破壊に繋がる。
A concrete structure has a standard life span of about 50 years, and in recent years, measures for aging of structures built around the post-war reconstruction period have been studied.
Infrastructure consisting of concrete structures such as public facilities, roads, bridges, water and sewage systems, and airports is called “social capital” in the sense that it is necessary to establish society and anyone can use it. The total amount of investment for renewal of social capital due to aging has reached 330 trillion yen, and it is estimated that 8.1 trillion yen per year will be required over the next 50 years. (Reference material “Degraded Infrastructure” written by Yuji Nemoto, published by Nikkei Inc., May 24, 2011, first edition)
Cement, which is the main material of concrete structures, is alkaline and neutralizes by reacting with acidic substances such as carbon dioxide, acid rain, acid fog, and acid exhaust gas in the air. This causes pulverization and cracking of the concrete surface, and when an acidic substance penetrates into the interior from the cracked site, Ca (OH) 2 which is the main component of cement gradually changes into CaCO 3 and gradually changes. It will be decomposed and will eventually lead to the destruction of the concrete structure itself. In addition, the problem of so-called “concrete icicles” occurs when calcareous icicles are generated when a solution containing Ca (OH) 2 flows into the atmosphere. (Reference Material “Acid Rain and Acid Fog” written by Kentaro Murano, published on April 20, 1993, the first edition of Hankabo Co., Ltd.)
Furthermore, coupled with the high water absorption of concrete, it causes freezing and expansion of water attached to the reinforcing bars inside the concrete and rust and corrosion of the reinforcing bars, eventually leading to destruction of the concrete and the structure itself. .
また、近年、大気中の黄砂・風成塵由来の生菌類に起因するコンクリート表面の腐食や、黄砂・風成塵を含んだ雨垂れによる筋状の汚染、いわゆる雨垂れ汚染も報告されている。
以上のような問題を解消するべく、コンクリート表面に撥水性を付与することで酸性物質等による悪影響を低減し得るコンクリート用コーティング剤が種々開発されている(特許文献1参照)。
In recent years, corrosion of concrete surfaces caused by viable fungi derived from yellow sand and aeolian dust in the atmosphere and streak pollution caused by dripping containing yellow sand and aeolian dust, so-called rain pollution, has been reported.
In order to solve the above problems, various concrete coating agents have been developed that can reduce the adverse effects of acidic substances by imparting water repellency to the concrete surface (see Patent Document 1).
しかし、特許文献1に開示された技術はフッ素によって撥水性を付与するものであり、フッ素を含有するコーティング剤は皮膜が比較的柔らかい(耐摩耗性が低い)ため、大気中の砂、土砂、ちり等の硬質の粉塵によって傷が付きやすく、この傷に汚れが入り込むことで汚れが落ちにくくなるという問題や、傷が付いた箇所から上記酸性物質や生菌類による悪影響が広がってしまうという問題がある。 However, the technique disclosed in Patent Document 1 imparts water repellency by fluorine. Since the coating agent containing fluorine has a relatively soft film (low wear resistance), sand in the atmosphere, earth and sand, There is a problem that hard dust such as dust is easily scratched, and it is difficult to remove dirt due to dirt entering the wound, and that the adverse effects of the acidic substances and live bacteria spread from the scratched area. is there.
本発明は、このような問題を考慮して、コンクリート構造物の表面に撥水性、耐汚染性及び耐久性を与えるコンクリート用コーティング剤を提供することを目的とする。 In consideration of such problems, an object of the present invention is to provide a coating agent for concrete that imparts water repellency, stain resistance and durability to the surface of a concrete structure.
本発明のコンクリート用コーティング剤は、液状シリコーンゴム、水分散型コロイダルシリカ、二酸化チタン及び増粘剤を含有することを特徴とする。
また、前記液状シリコーンゴムが5〜25重量%、前記水分散型コロイダルシリカが10〜30重量%、前記チタンが5〜15重量%、前記増粘剤が5〜15重量%を含有し、残りが水分であることを特徴とする。
The concrete coating agent of the present invention contains liquid silicone rubber, water-dispersed colloidal silica, titanium dioxide, and a thickener.
The liquid silicone rubber contains 5 to 25% by weight, the water-dispersed colloidal silica is 10 to 30% by weight, the titanium is 5 to 15% by weight, the thickener is 5 to 15% by weight, and the rest Is characterized by moisture.
本発明のコンクリート用コーティング剤は、ベースとなる液状シリコーンゴムに、ビヒクルとしての水分散型コロイダルシリカと、光触媒機能を持つ二酸化チタンを添加して概略構成される。
このコーティング剤をコンクリート表面に塗布して形成される皮膜は、シリカの微粒子がコンクリート表面の細部間隙に浸透し、強い吸着力で重合するため、ひび割れが生じ難いという特性を有する。
また、重合したシリカをシリコーンゴムが包摂するため、皮膜に高い撥水性を持たせることができ、皮膜の撥水性による防汚性の向上や、二酸化チタンの光触媒機能に基づく自浄作用による防汚性の向上も図ることができる。
また、皮膜の撥水性により、酸性物質のコンクリート内部への侵入及びコンクリートの破壊を防止できる。つまり、コンクリート表面の耐久性を向上することができる。
このような撥水性、耐汚染性及び耐久性は、コンクリート製建築物以外にも例えばコンクリート舗装道路やコンクリート製橋梁の表面にも付与することができる。
また、液状シリコーンゴムが5〜25重量%、水分散型コロイダルシリカが10〜30重量%、二酸化チタンが5〜15重量%、増粘剤が5〜15重量%を含有し、残りを水分とする構成比が、本発明のコンクリート用コーティング剤の施工性等の観点から最も好ましい。
なお、本発明のコンクリート用コーティング剤によるコンクリート表面への皮膜の形成は、刷毛やローラを使った塗布や、スプレーガンによる吹き付け等の周知の手段を用いることができる。
The concrete coating agent of the present invention is generally constituted by adding water-dispersed colloidal silica as a vehicle and titanium dioxide having a photocatalytic function to a liquid silicone rubber as a base.
The film formed by applying this coating agent to the concrete surface has the characteristic that cracks are unlikely to occur because fine silica particles penetrate into the fine gaps on the concrete surface and polymerize with a strong adsorption force.
In addition, since the silicone rubber is included in the polymerized silica, the film can have high water repellency, the antifouling property is improved by the water repellency of the film, and the antifouling property by the self-cleaning action based on the photocatalytic function of titanium dioxide. Can be improved.
In addition, the water repellency of the film can prevent the penetration of acidic substances into the concrete and the destruction of the concrete. That is, the durability of the concrete surface can be improved.
Such water repellency, stain resistance and durability can be imparted to, for example, concrete paved roads and concrete bridge surfaces in addition to concrete buildings.
The liquid silicone rubber contains 5 to 25% by weight, the water-dispersed colloidal silica is 10 to 30% by weight, the titanium dioxide is 5 to 15% by weight, the thickener is 5 to 15% by weight, and the rest is moisture. The composition ratio is most preferable from the viewpoint of workability of the coating agent for concrete of the present invention.
In addition, the formation of the film on the concrete surface by the concrete coating agent of the present invention can be performed by using a well-known means such as application using a brush or a roller or spraying with a spray gun.
以下、本発明の実施の形態について説明する。
本発明のコンクリート用コーティング剤(以下、単に「コーティング剤」という)は液状シリコーンゴム、水分散型コロイダルシリカ、二酸化チタン及び増粘剤を少なくとも含有して構成されている。
Embodiments of the present invention will be described below.
The concrete coating agent of the present invention (hereinafter simply referred to as “coating agent”) comprises at least liquid silicone rubber, water-dispersed colloidal silica, titanium dioxide, and a thickener.
シリコーンゴムは皮膜に撥水性及び耐久性を持たせるために含有されるものであり、シリコーン樹脂(シリコーンを主成分とする合成樹脂)のうち、ゴム状のものを指す。シリコーンとはシロキサン結合による主骨格を持つ人工高分子化合物の総称であり、シロキサンはケイ素と酸素を骨格とする加工物でありSi−O−Si結合(シロキサン結合)を持つものの総称である。シリコーンゴムの皮膜を表面に形成した木材の耐候性試験(紫外線照射試験)において、東京での50年相当の実曝量にもかかわらず高い撥水性及び耐久性を保持し続けることが立証されている。
液状シリコーンゴムはシリコーン樹脂のうち、硬化反応前はペースト状や流動体すなわち液状であり、硬化後にゴム状になるものを指す。
液状シリコーンゴムには、室温加硫型(RTV)シリコーンゴム、低温加硫型(LTV)シリコーンゴム、液状射出成形(LIM)用シリコーンゴムが含まれる。一方、硬化前に半固型塑性体であり、硬化させるために特別な装置を必要とするミラブル型シリコーンゴムは液状シリコーンゴムに含まない。
Silicone rubber is contained for imparting water repellency and durability to a film, and refers to a rubber-like one of silicone resins (synthetic resins mainly composed of silicone). Silicone is a general term for an artificial polymer compound having a main skeleton formed by a siloxane bond, and siloxane is a processed product having a silicon and oxygen skeleton and a Si-O-Si bond (siloxane bond). In a weather resistance test (ultraviolet irradiation test) of wood with a silicone rubber film formed on the surface, it was proved that it maintains high water repellency and durability despite the actual exposure amount equivalent to 50 years in Tokyo. Yes.
The liquid silicone rubber refers to a silicone resin that is in the form of a paste or a fluid, ie, a liquid before the curing reaction, and becomes a rubber after curing.
Liquid silicone rubber includes room temperature vulcanization type (RTV) silicone rubber, low temperature vulcanization type (LTV) silicone rubber, and silicone rubber for liquid injection molding (LIM). On the other hand, millable silicone rubber, which is a semi-solid plastic before curing and requires a special device for curing, is not included in the liquid silicone rubber.
液状シリコーンゴムはその硬化反応機構により、紫外線硬化型、付加反応型及び縮合反応型に分類される。
紫外線硬化型は紫外線の照射によりラジカル反応させるものであり、付加反応型はビニル基、アリル基などの不飽和結合を有するポリシロキサンとSi−H結合をもつポリシロキサンとを白金触媒の下で反応させるものであり、縮合反応型はSi-OH結合を有するシラノールとアルコキシシラン、アセトキシシラン、オキシムシランなどの加水分解性基含有ケイ素化合物を水とスズ化合物などの触媒の下で反応させるものである。
本発明で用いる液状シリコーンゴムとしては、コーティング作業時の施工性を考慮して紫外線硬化型を用いるのが好ましいが、付加反応型又は縮合反応型を用いてもよい。
液状シリコーンゴムとして例えば信越化学工業(株)製WOOD−AID(商品名)、東レダウ社製シラスコンRTV−4086(商品名)等を用いることができる。
液状シリコーンゴムは5〜25重量%の範囲内で含有することが好ましいが、特にこの範囲に限定されるものではない。
Liquid silicone rubber is classified into an ultraviolet curable type, an addition reaction type, and a condensation reaction type according to its curing reaction mechanism.
The UV curable type reacts with radicals by UV irradiation, and the addition reaction type reacts polysiloxanes with unsaturated bonds such as vinyl groups and allyl groups with polysiloxanes with Si-H bonds under a platinum catalyst. In the condensation reaction type, silanol having a Si-OH bond is reacted with a hydrolyzable group-containing silicon compound such as alkoxysilane, acetoxysilane, or oximesilane under a catalyst such as water and a tin compound. .
As the liquid silicone rubber used in the present invention, an ultraviolet curable type is preferably used in consideration of workability at the time of coating work, but an addition reaction type or a condensation reaction type may be used.
As the liquid silicone rubber, for example, WOOD-AID (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Shirasukon RTV-4086 (trade name) manufactured by Toray Dow Co., Ltd. can be used.
The liquid silicone rubber is preferably contained within a range of 5 to 25% by weight, but is not particularly limited to this range.
水分散型コロイダルシリカは皮膜に耐久性を持たせるために含有されるものであり、シリカ微粒子が水中にコロイド状に分散したものを指す。
本発明で用いる水分散型コロイダルシリカとしては例えば日産化学工業(株)製スノーテックス(商品名)シリーズ、(株)ADEKA製アデライト(商品名)シリーズ、触媒化成工業(株)製カタロイド(商品名)シリーズ、日本化学工業(株)製シリカドール(商品名)シリーズ、クラリアントジャパン(株)製クレボゾール(商品名)シリーズ、デュポン社製ルドックス(商品名)シリーズ等が挙げられるがこれらに限定されるものではなく、また、これらのうち2種以上を併用してもよい。
シリカは含有量が適量の場合には皮膜の硬度を高くし、平滑性及び耐ひび割れ性を持たせることができるが、一方、含有量が多すぎる場合には皮膜が硬くなりすぎてひび割れ発生の原因となる可能性がある。したがって、本発明では水分散型コロイダルシリカ全体のうちシリカを20〜30重量%とし、この水分散型コロイダルシリカをコーティング剤全体のうち10〜30重量%の範囲内で含有することが好ましいが、特にこの範囲に限定されるものではない。
シリカの粒子径は10〜20μmの範囲内にするのが好ましく、これによりコンクリート表面の微細な間隙にシリカが浸透し、強い接着力で重合するため皮膜表面のひび割れを防止でき、コンクリート表面の耐久性を向上することができる。
Water-dispersed colloidal silica is contained for imparting durability to the coating, and refers to a silica fine particle dispersed in water in a colloidal form.
Examples of the water-dispersed colloidal silica used in the present invention include Snowtex (trade name) series manufactured by Nissan Chemical Industries, Ltd., Adelite (trade name) series manufactured by ADEKA Co., Ltd., and Cataloid (trade name) manufactured by Catalyst Chemical Industries, Ltd. ) Series, Nippon Chemical Industry Co., Ltd. Silica Doll (trade name) series, Clariant Japan Co., Ltd. clebosol (trade name) series, DuPont Ludox (trade name) series, etc. It is not a thing, and you may use 2 or more types together among these.
Silica can increase the hardness of the film when the content is appropriate, and can have smoothness and crack resistance, but if the content is too high, the film becomes too hard and cracks are generated. It can be a cause. Therefore, in the present invention, the silica is preferably 20 to 30% by weight of the entire water-dispersed colloidal silica, and the water-dispersed colloidal silica is preferably contained within the range of 10 to 30% by weight of the entire coating agent. It is not particularly limited to this range.
The silica particle size is preferably in the range of 10 to 20 μm. This allows silica to penetrate into the fine gaps on the concrete surface and polymerizes with strong adhesion, thus preventing cracking of the coating surface and durability of the concrete surface. Can be improved.
二酸化チタンはその光触媒機能を利用してコーティング剤に耐汚染性を持たせるために含有される。
二酸化チタンを含有する皮膜に紫外線が照射されると、二酸化チタンがその光触媒作用で空気中の水分または皮膜表面に付着した水分を水酸化ラジカル化し、この水酸化ラジカルが皮膜に付着した大気中の黄砂・風成塵由来の生菌類等の汚れを分解除去するという自浄作用(耐汚染性)を得られる。また、この皮膜には光触媒機能による帯電防止効果もあるため、この機能によっても耐汚染性を持たせることができる。
二酸化チタンは5〜15重量%の範囲内で含有させることが好ましいが、特にこの範囲に限定されるものではない。
Titanium dioxide is contained in order to make the coating agent resistant to contamination using its photocatalytic function.
When a film containing titanium dioxide is irradiated with ultraviolet rays, the titanium dioxide is converted into hydroxyl radicals by the photocatalytic action of moisture in the air or moisture attached to the film surface. A self-cleaning action (contamination resistance) of decomposing and removing dirt such as viable fungi derived from yellow sand and wind dust is obtained. Moreover, since this film also has an antistatic effect due to the photocatalytic function, it can be imparted with contamination resistance also by this function.
Titanium dioxide is preferably contained within a range of 5 to 15% by weight, but is not particularly limited to this range.
増粘剤は主に二酸化チタンがコーティング剤中で沈降や固化することを防止するために含有される。
増粘剤としては例えば、アラビアゴム、カラギーナン、デキストリン、ゼラチン、アルギン酸ナトリウム、メチルセルロース、ヒドロキシプロピルセルロース、PVA、ポリアクリル酸ナトリウム、グアーガム、タマリンドガム、キサンタンガム、ケイ酸アルミニウムマグネシウム、ベントナイト、ラポナイト等が挙げられるが、特にこれらに限定されるものではない。
増粘剤は5〜15重量%含有させるのが好ましいが、特にこの範囲に限定されるものではない。
また、上記各成分以外に水分を適宜加えてコーティング剤の粘度を調節すればよい。
本発明のコーティング剤はシリコーンゴムが持つ撥水性・耐久性、水分散型コロイダルシリカが持つ耐久性、二酸化チタンが持つ光触媒機能による耐汚染性を兼ね備えており、これによりコンクリート構造物のメンテナンスフリー化が実現され、ひいては社会資本であるインフラの更新投資額を大幅に削減することができる。
The thickener is mainly contained to prevent titanium dioxide from settling or solidifying in the coating agent.
Examples of thickeners include gum arabic, carrageenan, dextrin, gelatin, sodium alginate, methylcellulose, hydroxypropylcellulose, PVA, sodium polyacrylate, guar gum, tamarind gum, xanthan gum, aluminum magnesium silicate, bentonite, laponite and the like. However, the present invention is not limited to these.
The thickener is preferably contained in an amount of 5 to 15% by weight, but is not particularly limited to this range.
Moreover, what is necessary is just to add a water | moisture content suitably other than said each component and to adjust the viscosity of a coating agent.
The coating agent of the present invention combines the water repellency and durability of silicone rubber, the durability of water-dispersed colloidal silica, and the contamination resistance due to the photocatalytic function of titanium dioxide. As a result, infrastructure investment, which is social capital, can be significantly reduced.
本発明のコンクリート用コーティング剤の実施例について説明する。
図1は円柱状のコンクリート塊の表面にコンクリート用コーティング剤を塗布したもの(図中右側)と、比較例として一般的な酸性の耐候性塗料を塗布したもの(図中左側)を5カ月間戸外で風雨に曝した後の状態を示している。
本発明のコーティング剤を塗布した方の表面は、二酸化チタンの光触媒機能が発揮された結果、実験開始時の乳白色から変化していないが、一般的な耐候性塗料を塗布した方の表面は変色してしまっていることが分かる。
本実施例におけるコーティング剤の成分比は以下の通りである。
磁化水は水分子のクラスターを小さくすることで浸透性が高いと言われているため、磁化水を使用することで本発明のコーティング剤の浸透性も通常の水道水を使用する場合と比較して高く、これがコンクリート表面の劣化防止に寄与する可能性がある。当然のことながら、磁化水ではなく水道水等、容易に入手できる水をコーティング剤に使用してもよい。
Examples of the concrete coating agent of the present invention will be described.
Figure 1 shows a concrete concrete coating applied to the surface of a cylindrical concrete block (right side in the figure) and a typical acidic weather-resistant paint applied as a comparative example (left side in the figure) for 5 months. It shows the state after being exposed to wind and rain outdoors.
As a result of the photocatalytic function of titanium dioxide being applied, the surface to which the coating agent of the present invention is applied has not changed from milky white at the start of the experiment, but the surface to which the general weather-resistant paint is applied is discolored. You can see that
The component ratio of the coating agent in the present example is as follows.
Since magnetized water is said to have high permeability by reducing the size of water molecule clusters, the permeability of the coating agent of the present invention is higher than that of normal tap water by using magnetized water. This may contribute to prevention of deterioration of the concrete surface. As a matter of course, easily available water such as tap water instead of magnetized water may be used for the coating agent.
本発明のコンクリート用コーティング剤の他の実施例について説明する。
本実施例におけるコーティング剤の成分比は以下の通りである。
このようにアルカリ性を強めることで酸性雨等に起因するコンクリートの中性化を更に抑制し、耐酸性雨対策としてより好適なコンクリート用コーティング剤を得ることができる。
Another embodiment of the concrete coating agent of the present invention will be described.
The component ratio of the coating agent in the present example is as follows.
Thus, by strengthening alkalinity, the neutralization of the concrete resulting from acid rain etc. can further be suppressed, and the more suitable coating agent for concrete can be obtained as a measure against acid rain.
本発明は、コンクリート構造物の表面に撥水性、耐汚染性及び耐久性を与えることができるコンクリート用コーティング剤に関するものであり、産業上の利用可能性を有する。
The present invention relates to a concrete coating agent capable of imparting water repellency, stain resistance and durability to the surface of a concrete structure, and has industrial applicability.
Claims (2)
The liquid silicone rubber is 5 to 25 wt%, the water-dispersed colloidal silica is 10 to 30 wt%, the titanium dioxide is 5 to 15 wt%, the thickener is 5 to 15 wt%, and the rest The concrete coating agent according to claim 1, which is moisture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013253702A JP2015110715A (en) | 2013-11-11 | 2013-12-07 | Coating agent for concrete |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013232755 | 2013-11-11 | ||
JP2013232755 | 2013-11-11 | ||
JP2013253702A JP2015110715A (en) | 2013-11-11 | 2013-12-07 | Coating agent for concrete |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015110715A true JP2015110715A (en) | 2015-06-18 |
Family
ID=53525799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013253702A Pending JP2015110715A (en) | 2013-11-11 | 2013-12-07 | Coating agent for concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015110715A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016005895A1 (en) | 2015-05-29 | 2016-12-01 | Shimano Inc. | Bicycle derailleur |
WO2023154511A1 (en) * | 2022-02-14 | 2023-08-17 | Intelligent Concrete, LLC | Nanosilica topical treatment compositions for rejuventating deteriorated concrete |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10316937A (en) * | 1997-03-14 | 1998-12-02 | Matsushita Electric Works Ltd | Stainproofing silicone emulsion coating composition, its production and stainproof article coated therewith |
JP2000191786A (en) * | 1998-12-25 | 2000-07-11 | Ge Toshiba Silicones Co Ltd | Water-repelling protective composition for coating film containing colloidal silica core/silicone shell body, mold releasing agent composition, water-repelling protective composition for building and fiber-processing agent |
JP2003342526A (en) * | 2002-05-30 | 2003-12-03 | Japan Hydrotect Coatings Kk | Self-cleaning aqueous coating composition and self- cleaning member |
JP2005306994A (en) * | 2004-04-21 | 2005-11-04 | Shin Etsu Chem Co Ltd | Silicone emulsion composition for forming coating film |
JP2008284408A (en) * | 2007-05-15 | 2008-11-27 | Asahi Kasei Chemicals Corp | Method of forming antifouling layer |
JP2011062628A (en) * | 2009-09-16 | 2011-03-31 | Toto Ltd | Exterior material for building and coating fluid for building exterior |
WO2012002571A1 (en) * | 2010-07-02 | 2012-01-05 | 東レ・ダウコーニング株式会社 | Oil-in-water silicone emulsion composition |
-
2013
- 2013-12-07 JP JP2013253702A patent/JP2015110715A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10316937A (en) * | 1997-03-14 | 1998-12-02 | Matsushita Electric Works Ltd | Stainproofing silicone emulsion coating composition, its production and stainproof article coated therewith |
JP2000191786A (en) * | 1998-12-25 | 2000-07-11 | Ge Toshiba Silicones Co Ltd | Water-repelling protective composition for coating film containing colloidal silica core/silicone shell body, mold releasing agent composition, water-repelling protective composition for building and fiber-processing agent |
JP2003342526A (en) * | 2002-05-30 | 2003-12-03 | Japan Hydrotect Coatings Kk | Self-cleaning aqueous coating composition and self- cleaning member |
JP2005306994A (en) * | 2004-04-21 | 2005-11-04 | Shin Etsu Chem Co Ltd | Silicone emulsion composition for forming coating film |
JP2008284408A (en) * | 2007-05-15 | 2008-11-27 | Asahi Kasei Chemicals Corp | Method of forming antifouling layer |
JP2011062628A (en) * | 2009-09-16 | 2011-03-31 | Toto Ltd | Exterior material for building and coating fluid for building exterior |
WO2012002571A1 (en) * | 2010-07-02 | 2012-01-05 | 東レ・ダウコーニング株式会社 | Oil-in-water silicone emulsion composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016005895A1 (en) | 2015-05-29 | 2016-12-01 | Shimano Inc. | Bicycle derailleur |
WO2023154511A1 (en) * | 2022-02-14 | 2023-08-17 | Intelligent Concrete, LLC | Nanosilica topical treatment compositions for rejuventating deteriorated concrete |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2316895B1 (en) | Self-cleaning water-based coating compositions, and self-cleaning member | |
JP5614709B2 (en) | Photocatalyst paint | |
KR101353918B1 (en) | A flexible, eco-friendly waterborne acrylic coating system for concrete surface protection and waterproofing, stopping salt intrusion and carbonation protection of reinforced concrete structures | |
KR100890558B1 (en) | Environmentally-friendly surface protection layer formation method for enhanced durability, preventing salt damage and neutralization of concrete structure using acryl emulsion and chelate-containing metal silicate and polyatomic ion filler | |
KR101655108B1 (en) | Reinforcing method for resisting earthquake using nature friendly and earthquake-resistant mortar | |
KR20090039701A (en) | Ultra-weatherability antipollution process over ceramics of nonflammable materials and fluorine | |
JP2015110715A (en) | Coating agent for concrete | |
JP2006131917A (en) | Photocatalytic hydrophilic coating composition | |
KR101313443B1 (en) | Self-cleaning article with nano protrusions and preparation method of the same | |
Gu et al. | Robust water-borne multi-layered superhydrophobic coating on concrete with ultra-low permeability | |
JP2003342526A (en) | Self-cleaning aqueous coating composition and self- cleaning member | |
Janus et al. | Self-cleaning efficiency of nanoparticles applied on facade bricks | |
JP2018111642A (en) | Reflection light-emitting function of concrete material | |
JP2011016105A (en) | Photocatalyst coated object, and photocatalyst coating solution | |
JP4672589B2 (en) | Road having air purification function and construction method thereof | |
JP2009242458A (en) | Coating composition for air purification and road structure for air purification | |
JP2004051643A (en) | Self-cleaning water-borne coating composition and self-cleaning member | |
Sims et al. | Overview of the challenges and current solutions in organic and hybrid coatings for historical monuments and architecture | |
JP2011031134A (en) | Photocatalyst-coated body and photocatalyst coating liquid | |
Jaiswal et al. | CORROSIVE EFFECT OF AIRBORNE POLLUTANTS ON HERITAGE MONUMENTS AND SURFACE PROTECTION BY NANOCOMPOSITE COATING | |
JP2011031125A (en) | Photocatalyst-coated body and photocatalyst coating liquid | |
Chughtai | Novel superhydrophobic polysiloxane-based materials for the conservation of marble | |
JP5327714B2 (en) | Photocatalyst-coated body and photocatalyst coating liquid | |
JPH09271731A (en) | Removing method of objective material | |
JP5327713B2 (en) | Photocatalyst-coated body and photocatalyst coating liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150602 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20150602 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150727 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151126 |