JP2015107546A - Coated cutting tool - Google Patents
Coated cutting tool Download PDFInfo
- Publication number
- JP2015107546A JP2015107546A JP2014215128A JP2014215128A JP2015107546A JP 2015107546 A JP2015107546 A JP 2015107546A JP 2014215128 A JP2014215128 A JP 2014215128A JP 2014215128 A JP2014215128 A JP 2014215128A JP 2015107546 A JP2015107546 A JP 2015107546A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- tool
- content ratio
- nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 77
- 150000004767 nitrides Chemical class 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 17
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 11
- 229910008484 TiSi Inorganic materials 0.000 claims abstract description 6
- 229910052752 metalloid Inorganic materials 0.000 claims abstract 4
- 150000002738 metalloids Chemical class 0.000 claims abstract 4
- 239000013078 crystal Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 abstract description 27
- 230000001747 exhibiting effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 86
- 239000010936 titanium Substances 0.000 description 39
- 238000000576 coating method Methods 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 229910008482 TiSiN Inorganic materials 0.000 description 6
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910001315 Tool steel Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 239000010730 cutting oil Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
本発明は、鋼や鋳鉄等の切削加工に適用される硬質皮膜が被覆された被覆切削工具に関する。 The present invention relates to a coated cutting tool coated with a hard coating applied to a cutting process such as steel or cast iron.
従来、切削工具の耐久性を向上させることを目的に、硬質皮膜を被覆した被覆切削工具が適用されている。硬質皮膜の中でもTiとSiの複合窒化物皮膜や炭窒化物皮膜(以下、TiSiN、TiSiCNと記載する。)は優れた耐摩耗性を有することから高硬度鋼の切削加工に適用されている。通常、TiSiNやTiSiCNは、基材との密着性が乏しいことから基材とTiSiNやTiSiCNの間に密着性を改善するための中間皮膜を介して被覆され被覆切削工具に適用されている。 Conventionally, a coated cutting tool coated with a hard film has been applied for the purpose of improving the durability of the cutting tool. Among hard coatings, composite nitride coatings and carbonitride coatings (hereinafter referred to as TiSiN and TiSiCN) of Ti and Si have been applied to cutting of high-hardness steel because they have excellent wear resistance. Usually, TiSiN and TiSiCN are applied to a coated cutting tool that is coated with an intermediate film for improving the adhesion between the base material and TiSiN or TiSiCN because of its poor adhesion to the base material.
例えば、特許文献1では、基材の直上に金属成分のみの原子%が、Al:40%越え75%以下、B、Si、V、Cr、Y、Zr、Nb、Mo、Hf、Ta、Wの1種または2種以上で10%未満、残りTiで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかを介し、その直上にTiSiNやTiSiCNを被覆した被覆切削工具が開示されている。また、特許文献2には、基材の直上にTiを主体とする窒化物を0.1μm〜1μmで形成して、その直上に金属成分のみの原子%が、Al:40%越え75%以下、B、Si、V、Cr、Y、Zr、Nb、Mo、Hf、Ta、Wの1種または2種以上で10%未満、残りTiで構成される窒化物、炭窒化物、酸窒化物、酸炭窒化物のいずれかを介し、その直上にTiSiNやTiSiCNを被覆した被覆切削工具が開示されている。 For example, in Patent Document 1, the atomic percentage of only the metal component is directly above the substrate, Al: more than 40% and 75% or less, B, Si, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W One or more of the above, less than 10% of the remaining Ti, nitride, carbonitride, oxynitride, oxycarbonitride coated with TiSiN or TiSiCN directly on it A tool is disclosed. Further, in Patent Document 2, a nitride mainly composed of Ti is formed at a thickness of 0.1 μm to 1 μm immediately above a base material, and the atomic percentage of only the metal component is Al: more than 40% and 75% or less. N, B, Si, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W or less, and less than 10%, remaining nitride, carbonitride, oxynitride A coated cutting tool in which TiSiN or TiSiCN is coated directly on any of the oxycarbonitrides is disclosed.
近年、被加工材の高硬度化および加工速度の高速化により、切削工具の使用環境はより過酷なものとなっている。特に、熱処理により60HRC以上の高硬度に調整された冷間工具鋼を切削加工する場合、硬質皮膜の剥離や摩耗が早期に生じ易い。そのため、特許文献1、2のような中間皮膜を介してTiSiNやTiSiCNが被覆された被覆切削工具であっても早期に工具寿命に達する場合があった。
本発明は上記のような事情に鑑み行われたものであり、耐久性に優れる被覆切削工具を提供することを目的とする。
In recent years, the working environment of cutting tools has become more severe due to the higher hardness of workpieces and higher processing speeds. In particular, when cutting cold tool steel adjusted to a high hardness of 60 HRC or higher by heat treatment, peeling or wear of the hard coating tends to occur early. For this reason, even a coated cutting tool coated with TiSiN or TiSiCN through an intermediate film as described in Patent Documents 1 and 2 sometimes reaches the tool life early.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a coated cutting tool having excellent durability.
本発明者は、高硬度材の切削加工において優れた耐久性を示す具体的な皮膜構造を見出して本発明に到達した。
すなわち本発明は、基材と、前記基材の上に配置され、ナノビーム回折パターンがWCの結晶構造に指数付けされ、WとTiを含有する炭化物からなるa層と、
前記a層の上に配置され、金属(半金属を含む。以下同様。)元素の総量に対し、Alの含有比率(原子%)が60%以上75%以下、Tiの含有比率(原子%)が20%以上である窒化物または炭窒化物からなるb層と、前記b層の上に配置され、金属元素の総量に対し、Tiの含有比率(原子%)が最も多いTiSi系の窒化物または炭窒化物からなるc層と、を含み、
前記a層の膜厚は1nm〜10nmであり、前記b層の結晶構造が面心立方格子構造である被覆切削工具である。
前記c層の膜厚は1μm以上であることが好ましい。
The present inventor has found a specific film structure exhibiting excellent durability in cutting of a hard material, and has reached the present invention.
That is, the present invention comprises a base material, an a layer made of a carbide containing W and Ti, disposed on the base material, the nanobeam diffraction pattern is indexed to the crystal structure of WC,
Al content ratio (atomic%) is 60% or more and 75% or less and Ti content ratio (atomic%) with respect to the total amount of metal (including semi-metals; the same shall apply hereinafter) disposed on the a layer. A layer b made of nitride or carbonitride having a Ti content of 20% or more, and a TiSi-based nitride disposed on the layer b and having the largest Ti content ratio (atomic%) with respect to the total amount of metal elements Or c layer made of carbonitride,
In the coated cutting tool, the layer a has a thickness of 1 nm to 10 nm, and the crystal structure of the layer b has a face-centered cubic lattice structure.
The thickness of the c layer is preferably 1 μm or more.
本発明によれば、高硬度の冷間工具鋼の切削加工であっても硬質皮膜の剥離や摩耗が抑制されて、被覆切削工具の耐久性を大幅に改善することが可能となる。また、例えば、SUS等の溶着の多い被削材を加工する場合でも被覆切削工具の耐久性を大幅に改善することが可能となる。よって、加工能率の向上及び加工コストの低減を実現することができる。 According to the present invention, it is possible to significantly improve the durability of the coated cutting tool by suppressing the peeling and wear of the hard coating even in the cutting of cold hardened tool steel. In addition, for example, the durability of the coated cutting tool can be greatly improved even when a work material having a large amount of welding such as SUS is processed. Therefore, improvement in processing efficiency and reduction in processing cost can be realized.
本発明者の検討によれば、高硬度鋼の切削加工において工具の耐久性を高めるためには、切削加工中の切削抵抗を低減することが重要であることを見出した。そして、特定組成からなる硬質皮膜の上にTiSi系の窒化物または炭窒化物を形成することで、優れた耐摩耗性を確保しつつ、切削加工中の切削抵抗が低減することを確認した。具体的には、Al含有量を高めたAlとTiを含有する窒化物または炭窒化物の上にTiSi系の窒化物または炭窒化物を形成することで、工具寿命が改善されることを確認した。そして、基材とAlとTiを含有する窒化物または炭窒化物との密着性を高めることが重要であり、工具の耐久性をより高めることができる具体的な皮膜構造を見出したことで本発明に到達した。以下、本発明の構成要件について説明をする。 According to the study by the present inventors, it has been found that it is important to reduce the cutting resistance during the cutting process in order to increase the durability of the tool in the cutting process of the high hardness steel. Then, it was confirmed that the cutting resistance during cutting was reduced while securing excellent wear resistance by forming a TiSi-based nitride or carbonitride on a hard film having a specific composition. Specifically, it is confirmed that the tool life is improved by forming TiSi-based nitride or carbonitride on nitride or carbonitride containing Al and Ti with increased Al content. did. And it is important to improve the adhesion between the base material and the nitride or carbonitride containing Al and Ti, and this is the result of finding a specific film structure that can further enhance the durability of the tool. The invention has been reached. Hereinafter, the configuration requirements of the present invention will be described.
本発明において、基材の上に配置されるa層は、ナノビーム回折パターンがWCの結晶構造に指数付けされ、WおよびTiを含む炭化物からなる。基材の直上のa層は、ナノビーム回折パターンがWCの結晶構造に指数付けされ、タングステン(W)を含有する炭化物であることにより、基材である超硬合金との親和性が強くなり密着性が優れると考えられる。また、a層がチタン(Ti)を含有することで、基材とa層の上に配置されるb層の密着性がより高まるとともに、a層の直上にあるb層の硬質皮膜の結晶構造が面心立方格子(fcc;以下、単に「fcc」と省略することがある)構造となり易く被覆切削工具の耐久性が向上する傾向にある。a層は、金属元素の総量に対してTiの含有比率(原子%)が10%以上25%以下であることが好ましい。
また、a層は、薄くなり過ぎても厚くなり過ぎても、基材との密着性を向上させるのに好ましくない。よって、a層の膜厚は、1nm以上10nm以下の範囲とする。a層の膜厚の下限については、好ましくは2nm以上であり、更には3nm以上が好ましい。また、a層の膜厚の上限については、好ましくは7nm以下である。更には6nm以下であることが好ましい。
In the present invention, the a layer disposed on the substrate is made of a carbide containing W and Ti in which the nanobeam diffraction pattern is indexed to the crystal structure of WC. The a layer directly above the base material has a nanobeam diffraction pattern indexed to the crystal structure of WC, and is a carbide containing tungsten (W), so the affinity with the cemented carbide, which is the base material, is increased and adhesion is increased. It is considered that the property is excellent. In addition, since the a layer contains titanium (Ti), the adhesiveness of the b layer disposed on the base material and the a layer is further increased, and the crystal structure of the hard coating of the b layer immediately above the a layer Tends to have a face-centered cubic lattice (fcc; hereinafter simply abbreviated as “fcc”) structure, and the durability of the coated cutting tool tends to be improved. The a layer preferably has a Ti content ratio (atomic%) of 10% to 25% with respect to the total amount of metal elements.
Moreover, even if a layer becomes too thin or too thick, it is unpreferable for improving adhesiveness with a base material. Therefore, the film thickness of the layer a is in the range of 1 nm to 10 nm. About the minimum of the film thickness of a layer, Preferably it is 2 nm or more, Furthermore, 3 nm or more is preferable. The upper limit of the thickness of the a layer is preferably 7 nm or less. Furthermore, it is preferable that it is 6 nm or less.
本発明のa層は、WおよびTi以外に皮膜成分および母材成分を含有しても良い。本発明のa層には、基材側のCoや硬質皮膜側のAl、Nが拡散して含まれ得るが、a層は、ナノビーム回折パターンがWCの結晶構造に指数付けされ、タングステン(W)とチタン(Ti)を含有する炭化物であることで、本発明の効果を発揮することができる。a層は、工具刃先の透過型電子顕微鏡観察による断面観察、組成分析、ナノビーム回折パターンより確認することができる。 The a layer of the present invention may contain a film component and a base material component in addition to W and Ti. The a layer of the present invention may contain Co on the substrate side and Al and N on the hard coating side in a diffused manner. However, the a layer has a nanobeam diffraction pattern indexed to the crystal structure of WC and tungsten (W ) And titanium (Ti), the effect of the present invention can be exhibited. The a layer can be confirmed by cross-sectional observation, composition analysis, and nanobeam diffraction pattern of the tool edge by observation with a transmission electron microscope.
b層は、金属元素の総量に対し、Alの含有比率(原子%)が60%以上75%以下、Tiの含有比率(原子%)が20%以上である窒化物または炭窒化物からなる。
AlとTiを含む窒化物または炭窒化物は、耐熱性と耐摩耗性に優れた皮膜種である。b層は、金属元素の総量に対し、Alの含有比率(原子%)が60%以上とすることで、加工中に切削工具の刃先への溶着が抑制され易くなり、加工中の切削抵抗が低減する傾向にある。b層のAlの含有量が60%未満であると、加工中の切削抵抗が増加するとともに皮膜の耐熱性が低下し易くなる。また、b層のAlの含有量が75%よりも多くなると脆弱な六方最密充墳(hcp;以下、単に「hcp」と省略することがある)構造の結晶構造が主体となり易く、被覆切削工具の耐久性が低下する傾向にある。
b層はa層の直上に設けることで基材とb層の密着性が高まり、加工中に切削抵抗を低減する効果が有効に発揮されて好ましい。
The b layer is made of a nitride or carbonitride having an Al content ratio (atomic%) of 60% to 75% and a Ti content ratio (atomic%) of 20% or more with respect to the total amount of metal elements.
Nitride or carbonitride containing Al and Ti is a film type excellent in heat resistance and wear resistance. The b layer has an Al content ratio (atomic%) of 60% or more with respect to the total amount of metal elements, so that welding to the cutting edge of the cutting tool is easily suppressed during processing, and cutting resistance during processing is reduced. It tends to decrease. When the Al content in the b layer is less than 60%, the cutting resistance during processing increases and the heat resistance of the coating tends to decrease. Further, when the Al content of the b layer is more than 75%, the crystal structure of a fragile hexagonal close-packed (hcp; hereinafter sometimes abbreviated as “hcp”) structure is likely to be mainly used, and the coated cutting The durability of the tool tends to decrease.
The b layer is preferably provided immediately above the a layer, so that the adhesion between the base material and the b layer is enhanced, and the effect of reducing cutting resistance during processing is effectively exhibited.
b層の結晶構造をfcc構造とするためには、金属元素の総量に対し、Tiの含有比率(原子%)を20%以上とする。b層のTiが20%未満であると、耐摩耗性が低下するとともに、被覆切削工具として優れた耐久性を実現できるfcc構造とすることが困難となる。高硬度鋼の切削加工において、より優れた耐久性を実現するには、b層は、AlとTiの合計の含有比率(原子%)が90%以上であることが好ましい。 In order to change the crystal structure of the b layer to the fcc structure, the Ti content ratio (atomic%) is set to 20% or more with respect to the total amount of metal elements. When Ti of the b layer is less than 20%, the wear resistance is lowered and it is difficult to obtain an fcc structure capable of realizing excellent durability as a coated cutting tool. In order to realize more excellent durability in cutting of hard steel, the b layer preferably has a total content ratio (atomic%) of Al and Ti of 90% or more.
b層は、AlとTiの含有量を考慮し、fcc構造の結晶構造を維持する範囲であれば、周期律表の4a族、5a族、6a族の金属元素およびSi、Bから選択される1種または2種以上の元素の合計を金属元素の総量に対し、10%以下の原子比率で含有することができる。また、b層は、窒化物または炭窒化物であれば、皮膜の一部に酸素等の非金属元素を含有してもよい。b層は、耐熱性が優れる傾向にある窒化物であることがより好ましい。b層は、Wを含有することで高硬度鋼だけでなく高炭素鋼やNi基超耐熱合金の切削加工においても優れた耐久性を示す傾向にあり好ましい。Wの含有比率(原子%)は、金属元素の総量に対し、2%以上7%以下とすることが特に好ましい。
本発明においてfcc構造であるとは、電子線回折やX線回折において、fcc構造に対応するピーク強度が最大強度を示すものをいう。本発明においてb層は、皮膜構造の一部にhcp構造を含有してもよい。b層の膜厚は1μm〜5μmであることが好ましい。b層の膜厚の下限については、より好ましくは1.5μm以上である。b層の膜厚の上限については、より好ましくは3μm以下である。
The b layer is selected from 4a group, 5a group and 6a group metal elements of the periodic table and Si and B as long as the fcc structure crystal structure is maintained in consideration of the contents of Al and Ti. The total of one or more elements can be contained in an atomic ratio of 10% or less with respect to the total amount of metal elements. Moreover, if b layer is a nitride or carbonitride, you may contain nonmetallic elements, such as oxygen, in a part of membrane | film | coat. The b layer is more preferably a nitride that tends to have excellent heat resistance. The b layer is preferable because it contains W and tends to exhibit excellent durability not only in high-hardness steel but also in cutting of high-carbon steel and Ni-base superalloys. The content ratio (atomic%) of W is particularly preferably 2% or more and 7% or less with respect to the total amount of metal elements.
In the present invention, the fcc structure means that the peak intensity corresponding to the fcc structure shows the maximum intensity in electron beam diffraction or X-ray diffraction. In the present invention, the b layer may contain an hcp structure as part of the film structure. The film thickness of the b layer is preferably 1 μm to 5 μm. About the minimum of the film thickness of b layer, More preferably, it is 1.5 micrometers or more. About the upper limit of the film thickness of b layer, More preferably, it is 3 micrometers or less.
高硬度鋼の湿式加工においては、加熱と冷却のサイクルにより硬質皮膜が剥離し易くなることから、高い残留圧縮応力を有する硬質皮膜を保護皮膜として設けることが有効である。本発明では、金属元素の総量に対し、Tiの含有比率(原子%)が最も多いTiSi系の窒化物または炭窒化物からなるc層をb層の上に配置する。c層に高い耐摩耗性を付与するために、金属元素の総量に対し、Tiの含有比率(原子%)を55%以上とすることが好ましい。また、硬質皮膜に高い残留圧縮応力を付与するために、Siの含有比率(原子%)を10%以上とすることが好ましい。c層は耐熱衝撃性が優れる高い残留圧縮応力を有する膜種であり、c層を設けることでb層の摩耗が抑制され、高硬度鋼の切削加工においても持続的に切削抵抗が低下して工具損傷が抑制される傾向にある。
c層に高い残留圧縮応力を付与した上で耐摩耗性をより高めるには、c層は、金属元素の総量に対し、Tiの含有比率(原子%)を60%以上85%以下、Siの含有比率(原子%)を15%以上40%以下とすることが好ましい。
In wet processing of high hardness steel, it is effective to provide a hard film having a high residual compressive stress as a protective film because the hard film is easily peeled off by heating and cooling cycles. In the present invention, a c layer made of TiSi nitride or carbonitride having the largest Ti content ratio (atomic%) with respect to the total amount of metal elements is disposed on the b layer. In order to impart high wear resistance to the c layer, the Ti content (atomic%) is preferably 55% or more with respect to the total amount of metal elements. Moreover, in order to give a high residual compressive stress to the hard coating, the Si content ratio (atomic%) is preferably 10% or more. The c layer is a film type having a high residual compressive stress with excellent thermal shock resistance. By providing the c layer, the wear of the b layer is suppressed, and the cutting resistance continuously decreases even in the cutting of high-hardness steel. Tool damage tends to be suppressed.
In order to further improve the wear resistance after applying a high residual compressive stress to the c layer, the c layer has a Ti content ratio (atomic%) of 60% to 85% with respect to the total amount of metal elements. The content ratio (atomic%) is preferably 15% or more and 40% or less.
c層が薄くなり過ぎると耐摩耗性が低下する傾向にある。また、c層が厚くなり過ぎれば皮膜剥離が発生し易くなる。そのため、c層の膜厚は0.3μm〜5μmとすることが好ましい。c層の膜厚の下限については、より好ましくは0.5μm以上である。c層の膜厚の上限については、より好ましくは3μm以下であり、更には2.5μm以下であることが好ましい。また、c層は、周期律表の4a族、5a族、6a族の金属元素およびAl、Bから選択される1種または2種以上の元素の合計を、金属元素の総量に対し、10%以下の原子比率で含有することができる。
c層は、窒化物または炭窒化物であれば、皮膜の一部に酸素等の非金属元素を含有してもよい。c層は、耐熱性が優れる傾向にある窒化物であることがより好ましい。密着性を高めるためには、b層の直上にはc層を設けることが好ましいが、b層とc層の組成からなる相互積層皮膜を設けてもよい。
If the c layer becomes too thin, the wear resistance tends to decrease. Also, if the c layer becomes too thick, film peeling tends to occur. Therefore, the film thickness of the c layer is preferably 0.3 μm to 5 μm. About the minimum of the film thickness of c layer, More preferably, it is 0.5 micrometer or more. The upper limit of the thickness of the c layer is more preferably 3 μm or less, and further preferably 2.5 μm or less. In addition, the c layer has a total of one or more elements selected from Group 4a, Group 5a, Group 6a of the periodic table and Al, B, and 10% of the total amount of the metal elements. It can be contained in the following atomic ratio.
If c layer is nitride or carbonitride, you may contain nonmetallic elements, such as oxygen, in a part of membrane | film | coat. The c layer is more preferably a nitride that tends to have excellent heat resistance. In order to enhance the adhesion, it is preferable to provide the c layer immediately above the b layer, but an interlaminate film composed of the composition of the b layer and the c layer may be provided.
高硬度鋼の切削加工においては、保護皮膜であるc層が一定以上の膜厚を有することが好ましい。本発明の被覆切削工具は、c層の膜厚を1μm以上とすることで、高硬度な冷間工具鋼を切削加工する場合においても、優れた耐久性を発揮することができ好ましい。例えば、切削速度200m/min以上の高速加工を行った場合でも優れた耐久性を発揮することができ好ましい。更には、切削速度250m/min以上とした場合でも優れた耐久性を発揮することができ好ましい。本発明は、55HRC以上の冷間工具鋼の切削加工に適用することで優れた工具性能を発揮できるので好ましい。更には、60HRC以上の冷間工具鋼の切削加工にも適用でき好ましい。切削速度を上げることで切削に要する時間を短縮できるため金型の製造能率が向上するという効果が期待できる。
なお、本発明における切削速度とは、作業面(刃先)の速度である。つまり、刃先交換式工具であれば、インサートチップをセットしたときのインサート最外刃部の速度、ドリルやエンドミルなどの旋回工具であれば、その外周刃部の速度である。
In the cutting of high-hardness steel, it is preferable that the c layer that is a protective film has a certain thickness or more. The coated cutting tool of the present invention is preferable because the film thickness of the c layer is 1 μm or more, so that excellent durability can be exhibited even when cutting a hard tool steel having high hardness. For example, even when high speed machining at a cutting speed of 200 m / min or more is performed, excellent durability can be exhibited. Furthermore, even when the cutting speed is 250 m / min or more, excellent durability can be exhibited, which is preferable. Since this invention can exhibit the outstanding tool performance by applying to cutting of cold tool steel of 55HRC or more, it is preferred. Furthermore, it can be preferably applied to cutting of cold tool steel of 60HRC or more. Since the time required for cutting can be shortened by increasing the cutting speed, an effect that the manufacturing efficiency of the mold is improved can be expected.
The cutting speed in the present invention is the speed of the work surface (blade edge). That is, in the case of a blade-tip replaceable tool, the speed is the speed of the outermost edge of the insert when the insert tip is set, and in the case of a turning tool such as a drill or end mill, the speed of the outer peripheral edge.
本発明のa層を形成するには、ターゲットの外周にコイル磁石を配備してアークスポットをターゲット内部に閉じ込めるような磁場構成としたカソードを用いてTiボンバードを実施することが好ましい。このようなカソードを用いて炭化物を形成し易い元素種であるTiでボンバード処理することで、基材表面の酸化物が除去されて清浄化されると共にボンバードされたTiイオンが基材表面のWCに拡散して、ナノビーム回折パターンがWCの結晶構造に指数付けされ、WおよびTiを含む炭化物が形成され易くなる。
また、Tiボンバードの際に基材に印加する負のバイアス電圧およびターゲットへ投入する電流が低いとWおよびTiを含む炭化物が形成され難い。そのため、基材に印加する負のバイアス電圧は−1000V〜−700Vとすることが好ましい。また、ターゲットへ投入する電流は80A〜150Aとすることが好ましい。
ボンバードはアルゴンガス、窒素ガス、水素ガス、炭化水素系ガス等を導入しながら実施してもよいが、炉内雰囲気を1.0×10−2Pa以下の真空下で実施することで基材表面が清浄化されるとともに、拡散層が形成され易くなり好ましい。
In order to form the a layer of the present invention, it is preferable to perform Ti bombardment using a cathode having a magnetic field configuration in which a coil magnet is provided on the outer periphery of the target to confine the arc spot inside the target. By using such a cathode and bombarding with Ti, which is an element species that easily forms carbides, the oxide on the substrate surface is removed and cleaned, and the bombarded Ti ions are converted into WC on the substrate surface. And the nanobeam diffraction pattern is indexed to the crystal structure of WC, and carbides containing W and Ti are easily formed.
Further, when the negative bias voltage applied to the base material during Ti bombardment and the current applied to the target are low, carbides containing W and Ti are hardly formed. Therefore, the negative bias voltage applied to the substrate is preferably −1000 V to −700 V. Further, the current supplied to the target is preferably 80A to 150A.
Bombarding may be carried out while introducing argon gas, nitrogen gas, hydrogen gas, hydrocarbon-based gas, etc., but the substrate is formed by carrying out the furnace atmosphere under a vacuum of 1.0 × 10 −2 Pa or less. It is preferable because the surface is cleaned and a diffusion layer is easily formed.
本発明の被覆切削工具は、外周刃を主に使用するラジアスエンドミルまたはスクエアエンドミル等の工具に適用することで特に効果が発揮され易く好ましい。 The coated cutting tool of the present invention is preferable because it is particularly effective when applied to a tool such as a radius end mill or a square end mill that mainly uses an outer peripheral blade.
基材として、WC基超硬合金からなるスクエアエンドミルを用い、各条件で硬質皮膜を被覆して被覆切削工具を作製し、その特性評価を行った。硬質皮膜の成膜にはアークイオンプレーティング成膜装置を用いた。真空容器内に設置した基材にはバイアス電源が接続されおり、基材に負のDCバイアス電圧を印加して硬質皮膜を被覆した。
表1に成膜に用いたカソードおよびバイアス条件について示す。本発明のb層、c層を被覆するには、ターゲットの外周および背面に永久磁石を配備し、20.2mTの平均磁束密度のカソード(以下、C1、C2と記載する。)を用いた。本発明例のメタルボンバード処理には、ターゲットの外周にコイル磁石を配備したカソード(以下、C3と記載する。)を用いた。
A square end mill made of a WC-based cemented carbide was used as a base material, and a coated cutting tool was produced by coating a hard film under each condition, and the characteristics were evaluated. An arc ion plating film forming apparatus was used for forming the hard film. A bias power source was connected to the base material installed in the vacuum vessel, and a negative DC bias voltage was applied to the base material to coat the hard film.
Table 1 shows cathodes and bias conditions used for film formation. In order to cover the b layer and the c layer of the present invention, permanent magnets were provided on the outer periphery and the back surface of the target, and cathodes having an average magnetic flux density of 20.2 mT (hereinafter referred to as C1 and C2) were used. In the metal bombardment process of the example of the present invention, a cathode (hereinafter referred to as C3) provided with a coil magnet on the outer periphery of the target was used.
本発明例1〜4および比較例1、5は、基材を真空容器内のパイプ状治具に固定し、約500℃、1×10−3Paの真空中で加熱脱ガスを行った後、Arプラズマによるクリーニングを行った。そして、8×10−3Pa以下になるように真空排気して、C3に150Aのアーク電流を供給してTiボンバード処理を4分間実施した。その後、窒素ガスを導入して、C1に電力を投入して窒化物のb層を被覆した。続いてC2に電力を投入して窒化物のc層を被覆した被覆切削工具を作製した。
比較例2、3は、C2にターゲットを設けずに、Tiボンバード処理後に、C1に電力を投入して単層の窒化物皮膜を被覆した。
比較例4は、基材の表面をArプラズマによるクリーニングを行った後に、Tiボンバード処理をせず、窒化物皮膜を被覆した。その後、C1、C2に電力を投入してそれぞれa層、b層を被覆した。
In Invention Examples 1 to 4 and Comparative Examples 1 and 5, after fixing the base material to a pipe-shaped jig in a vacuum vessel and performing heat degassing in a vacuum of about 500 ° C. and 1 × 10 −3 Pa Cleaning with Ar plasma was performed. And it vacuum-evacuated so that it might become 8 * 10 < -3 > Pa or less, The arc current of 150 A was supplied to C3, and Ti bombarding process was implemented for 4 minutes. Thereafter, nitrogen gas was introduced, and electric power was applied to C1 to coat the nitride b layer. Subsequently, power was supplied to C2 to produce a coated cutting tool coated with a nitride c layer.
In Comparative Examples 2 and 3, a target was not provided on C2, and after Ti bombarding, power was applied to C1 to coat a single-layer nitride film.
In Comparative Example 4, after the surface of the base material was cleaned with Ar plasma, Ti bombarding was not performed and the nitride film was coated. Thereafter, power was applied to C1 and C2 to coat the a layer and the b layer, respectively.
株式会社日本電子製の電子プローブマイクロアナライザー装置(型番:JXA−8500F)を用いて、付属の波長分散型電子プローブ微小分析(WDS−EPMA)でb層とc層の皮膜組成を測定した。この皮膜組成の分析は、分析用の被覆切削工具を加工して断面観察し、各層を加速電圧10kV、照射電流5×10−8A、取り込み時間10秒、分析領域直径0.5μmで5点測定してその平均から組成を求めることにより行った。 Using an electronic probe microanalyzer device (model number: JXA-8500F) manufactured by JEOL Ltd., the coating compositions of the b layer and the c layer were measured by the attached wavelength dispersion type electron probe microanalysis (WDS-EPMA). The analysis of the coating composition was performed by processing a coated cutting tool for analysis and observing a cross section. Each layer was subjected to an acceleration voltage of 10 kV, an irradiation current of 5 × 10 −8 A, an acquisition time of 10 seconds, and an analysis region diameter of 0.5 μm at 5 points. The measurement was performed by determining the composition from the average.
分析用の被覆切削工具を加工してTEM解析を行った。装置は、日本電子株式会社製の電界放出型透過電子顕微鏡(型番:JEM−2010F型)を用いた。制限視野回折パターンから、本発明例1〜4、比較例1〜5のb層は、fcc構造に対応するピーク強度が最大強度を示し、fcc構造であることを確認した。また、hcp構造に対応するピーク強度は僅かに確認された。 A coated cutting tool for analysis was processed and TEM analysis was performed. As the apparatus, a field emission transmission electron microscope (model number: JEM-2010F type) manufactured by JEOL Ltd. was used. From the limited field diffraction pattern, it was confirmed that the b layers of Invention Examples 1 to 4 and Comparative Examples 1 to 5 had the peak intensity corresponding to the fcc structure and the fcc structure. Further, the peak intensity corresponding to the hcp structure was slightly confirmed.
工具刃先部分について、膜面に垂直な面で切断した場合の切断面をTEMで解析した。a層の組成は付属のUTW型Si(Li)半導体検出器を用いてビーム径1nmで分析した。ナノビーム回折は、カメラ長50cmとし、2nm以下のビーム径で分析した。EDSスペクトル分析およびナノビーム回折パターンから、基材、a層、b層の確認を行った。EDSスペクトル分析結果から、本発明例のa層は、金属元素の含有比率(原子%)でWを最も多く含有し、次いでTiを多く含有することを確認した。金属元素の含有比率(原子%)でWの含有比率(原子%)は約80%であった。また、Tiの含有比率(原子%)は約15%であった。また、WおよびTi以外には硬質皮膜の成分であるAl、Nを含有していた。また、母材成分であるCoも僅かに含有していた。そして、本発明例のa層はナノビーム回折パターンがWCの結晶構造に指数付けが可能であった。EDSスペクトル分析およびナノビーム回折パターンから、本発明例のa層はWCの結晶構造に指数付けされ、タングステン(W)とチタン(Ti)を含有する炭化物であることを確認した。各試料の物性評価の結果を表2に示す。 About the tool blade edge | tip part, the cut surface at the time of cut | disconnecting in a surface perpendicular | vertical to a film surface was analyzed by TEM. The composition of the a layer was analyzed at a beam diameter of 1 nm using the attached UTW type Si (Li) semiconductor detector. Nanobeam diffraction was performed with a camera length of 50 cm and a beam diameter of 2 nm or less. From the EDS spectrum analysis and the nanobeam diffraction pattern, the substrate, a layer, and b layer were confirmed. From the EDS spectrum analysis results, it was confirmed that the layer a of the present invention example contained the largest amount of W in the metal element content ratio (atomic%), and then contained a large amount of Ti. The content ratio (atomic%) of W was about 80% with the content ratio (atomic%) of the metal element. The Ti content ratio (atomic%) was about 15%. In addition to W and Ti, Al and N, which are hard film components, were contained. Further, Co, which is a base material component, was also slightly contained. The layer a of the present invention example could be indexed to the crystal structure of the WC nanobeam diffraction pattern. From the EDS spectrum analysis and the nanobeam diffraction pattern, it was confirmed that the layer a of the example of the present invention was indexed to the crystal structure of WC and was a carbide containing tungsten (W) and titanium (Ti). The results of physical property evaluation of each sample are shown in Table 2.
作製した被覆切削工具を用いて切削試験を行った。表2に切削試験結果を示す。切削条件は以下の通りである。
工具:スクエアエンドミル(CEPR6080)
φ8×6枚刃(日立ツール株式会社製)
基材:WC(bal.)−Co(8質量%)−TaC(0.25質量%)−Cr3C2(0.9質量%)、WC平均粒径0.6μm、硬度93.4HRAの超硬合金
切削方法:側面切削
被削材:SKD11(60HRC)
切込み:軸方向、9mm、径方向、0.16mm
切削速度:150m/min
一刃送り量:0.06mm/tooth
切削油:エアーブロー
切削距離:10m
A cutting test was performed using the manufactured coated cutting tool. Table 2 shows the cutting test results. Cutting conditions are as follows.
Tool: Square end mill (CEPR6080)
φ8 × 6 blades (Hitachi Tool Co., Ltd.)
Base material: WC (bal.)-Co (8 mass%)-TaC (0.25 mass%)-Cr 3 C 2 (0.9 mass%), WC average particle diameter 0.6 μm, hardness 93.4HRA Cemented carbide cutting method: Side cutting Work material: SKD11 (60HRC)
Cutting depth: axial direction, 9 mm, radial direction, 0.16 mm
Cutting speed: 150 m / min
Single blade feed rate: 0.06mm / tooth
Cutting oil: Air blow Cutting distance: 10m
本発明例は、保護皮膜として高い残留圧縮応力を有するc層を設けているため、高硬度鋼の切削加工においても工具損傷が少なくなることを確認した。
比較例1は、b層のAl含有量が少ないため、本発明例よりも切削加工中の抵抗が大きくなり工具刃先の最大摩耗幅が大きくなった。
比較例2、3は、保護皮膜として高い残留圧縮応力を有するc層を設けていないため、高硬度鋼の切削加工において、本発明例に比べて工具刃先の最大摩耗幅が大きくなることを確認した。
比較例4は、基材とb層の密着性が十分でないため、工具刃先の最大摩耗幅が大きくなった。
比較例5は、高い残留圧縮応力を付与できないAlCrNを保護皮膜として設けたため、工具刃先の最大摩耗幅が大きくなった。
Since the c example which has high residual compressive stress was provided as the protective film in the example of the present invention, it was confirmed that the tool damage was reduced even in the cutting of high hardness steel.
In Comparative Example 1, since the Al content in the b layer was small, the resistance during cutting was larger than that of the inventive example, and the maximum wear width of the tool edge was increased.
In Comparative Examples 2 and 3, since the c layer having a high residual compressive stress is not provided as a protective coating, it is confirmed that the maximum wear width of the tool edge is larger in cutting of hard steel than in the present invention. did.
In Comparative Example 4, since the adhesion between the base material and the b layer was not sufficient, the maximum wear width of the tool blade edge was increased.
Since the comparative example 5 provided AlCrN which cannot give a high residual compressive stress as a protective film, the maximum wear width of the tool edge became large.
実施例1で評価した本発明例1、2について、切削速度を速めて評価した。切削条件は以下の通りである。試験結果を表3に示す。
工具:スクエアエンドミル(CEPR6080)
φ8×6枚刃(日立ツール株式会社製)
基材:WC(bal.)−Co(8質量%)−TaC(0.25質量%)−Cr3C2(0.9質量%)、WC平均粒径0.6μm、硬度93.4HRAの超硬合金
切削方法:側面切削
被削材:SKD11(60HRC)
切込み:軸方向、9mm、径方向、0.16mm
切削速度:250m/min
一刃送り量:0.06mm/tooth
切削油:エアーブロー
切削距離:1.25m
The inventive examples 1 and 2 evaluated in Example 1 were evaluated by increasing the cutting speed. Cutting conditions are as follows. The test results are shown in Table 3.
Tool: Square end mill (CEPR6080)
φ8 × 6 blades (Hitachi Tool Co., Ltd.)
Base material: WC (bal.)-Co (8 mass%)-TaC (0.25 mass%)-Cr 3 C 2 (0.9 mass%), WC average particle diameter 0.6 μm, hardness 93.4HRA Cemented carbide cutting method: Side cutting Work material: SKD11 (60HRC)
Cutting depth: axial direction, 9 mm, radial direction, 0.16 mm
Cutting speed: 250 m / min
Single blade feed rate: 0.06mm / tooth
Cutting oil: Air blow Cutting distance: 1.25m
図1、2に切削試験後の工具刃先の観察写真を示す。c層の膜厚が1μm以上とした本発明例2の方が、本発明例1よりも工具刃先の最大摩耗幅が抑制されており、より高速での切削加工に有効であることが確認された。 1 and 2 show observation photographs of the tool edge after the cutting test. It is confirmed that the present invention example 2 in which the film thickness of the c layer is 1 μm or more suppresses the maximum wear width of the tool edge than the present invention example 1, and is more effective for cutting at a higher speed. It was.
Claims (2)
前記基材の上に配置され、ナノビーム回折パターンがWCの結晶構造に指数付けされ、WとTiを含有する炭化物からなるa層と、
前記a層の上に配置され、金属(半金属を含む)元素の総量に対し、Alの含有比率(原子%)が60%以上75%以下、Tiの含有比率(原子%)が20%以上である窒化物または炭窒化物からなるb層と、
前記b層の上に配置され、金属(半金属を含む)元素の総量に対し、Tiの含有比率(原子%)が最も多いTiSi系の窒化物または炭窒化物からなるc層と、を含み、
前記a層の膜厚は1nm〜10nmであり、前記b層の結晶構造が面心立方格子構造である被覆切削工具。 A substrate;
An a layer of carbide comprising W and Ti disposed on the substrate, the nanobeam diffraction pattern being indexed to the crystal structure of WC, and
The Al content ratio (atomic%) is 60% to 75% and the Ti content ratio (atomic%) is 20% or more with respect to the total amount of metal (including metalloid) elements disposed on the a layer. A layer b made of nitride or carbonitride that is
A c layer made of TiSi-based nitride or carbonitride having the highest Ti content ratio (atomic%) with respect to the total amount of metal (including metalloid) elements disposed on the b layer. ,
A coated cutting tool in which the thickness of the a layer is 1 nm to 10 nm, and the crystal structure of the b layer is a face-centered cubic lattice structure.
The coated cutting tool according to claim 1, wherein the film thickness of the c layer is 1 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014215128A JP6385237B2 (en) | 2013-10-22 | 2014-10-22 | Coated cutting tool |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013219248 | 2013-10-22 | ||
JP2013219248 | 2013-10-22 | ||
JP2014215128A JP6385237B2 (en) | 2013-10-22 | 2014-10-22 | Coated cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015107546A true JP2015107546A (en) | 2015-06-11 |
JP6385237B2 JP6385237B2 (en) | 2018-09-05 |
Family
ID=53438331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014215128A Active JP6385237B2 (en) | 2013-10-22 | 2014-10-22 | Coated cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6385237B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000326108A (en) * | 1999-05-19 | 2000-11-28 | Hitachi Tool Engineering Ltd | Hard film coated tool |
JP2000334606A (en) * | 1999-03-19 | 2000-12-05 | Hitachi Tool Engineering Ltd | Hard film coated tool |
JP2005001043A (en) * | 2003-06-11 | 2005-01-06 | Mitsubishi Materials Corp | Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed cutting |
JP2006326729A (en) * | 2005-05-25 | 2006-12-07 | Mitsubishi Materials Corp | Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent high-temperature strength |
JP2009061520A (en) * | 2007-09-05 | 2009-03-26 | Mitsubishi Materials Corp | Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting |
JP2012196756A (en) * | 2011-03-18 | 2012-10-18 | Kennametal Inc | Coating with improved wear resistance |
WO2013018768A1 (en) * | 2011-08-01 | 2013-02-07 | 日立ツール株式会社 | Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member |
JP2013534186A (en) * | 2010-08-06 | 2013-09-02 | バルター アクチェンゲゼルシャフト | Cutting tool with multilayer coating |
-
2014
- 2014-10-22 JP JP2014215128A patent/JP6385237B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000334606A (en) * | 1999-03-19 | 2000-12-05 | Hitachi Tool Engineering Ltd | Hard film coated tool |
JP2000326108A (en) * | 1999-05-19 | 2000-11-28 | Hitachi Tool Engineering Ltd | Hard film coated tool |
JP2005001043A (en) * | 2003-06-11 | 2005-01-06 | Mitsubishi Materials Corp | Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed cutting |
JP2006326729A (en) * | 2005-05-25 | 2006-12-07 | Mitsubishi Materials Corp | Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent high-temperature strength |
JP2009061520A (en) * | 2007-09-05 | 2009-03-26 | Mitsubishi Materials Corp | Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting |
JP2013534186A (en) * | 2010-08-06 | 2013-09-02 | バルター アクチェンゲゼルシャフト | Cutting tool with multilayer coating |
JP2012196756A (en) * | 2011-03-18 | 2012-10-18 | Kennametal Inc | Coating with improved wear resistance |
WO2013018768A1 (en) * | 2011-08-01 | 2013-02-07 | 日立ツール株式会社 | Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member |
Also Published As
Publication number | Publication date |
---|---|
JP6385237B2 (en) | 2018-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10156010B2 (en) | Coated cutting tool and method for producing the same | |
JP5673904B1 (en) | Coated cutting tool and manufacturing method thereof | |
US11224921B2 (en) | Coated cutting tool | |
JP6525310B2 (en) | Coated tools | |
JP2009078351A (en) | Method of manufacturing coated cutting tool | |
JP2017001147A (en) | Coated cutting tool | |
JP6311700B2 (en) | Hard coating, hard coating covering member, and manufacturing method thereof | |
JP6555796B2 (en) | Coated cutting tool | |
JP6163141B2 (en) | Hard coating | |
JP5700171B2 (en) | Coated cutting tool | |
JP6385243B2 (en) | Coated cutting tool | |
JP6385233B2 (en) | Coated cutting tool | |
JP6529262B2 (en) | Coated tools | |
JP2006225708A (en) | Wear resistant film, wear resistant film-coated cutting tool, and method for producing wear resistant film | |
JP6385237B2 (en) | Coated cutting tool | |
WO2019188967A1 (en) | Surface-coated cutting tool | |
WO2019035219A1 (en) | Coated cutting tool | |
JP2015174196A (en) | Manufacturing method of coated cutting tool | |
JP7164828B2 (en) | coated cutting tools | |
JP2007119810A (en) | Coated member | |
JP2016064488A (en) | Coated cutting tool | |
JP2012192513A (en) | Surface coated cutting tool excellent in peel resistance and wear resistance | |
JPWO2019188783A1 (en) | Surface coating cutting tool | |
JP2014079875A (en) | Method of producing coated tool | |
JP2014069239A (en) | Method of producing coated tool having excellent durability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170911 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180807 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6385237 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |