JP2015104895A - Method for manufacturing fiber-reinforced plastic molding - Google Patents
Method for manufacturing fiber-reinforced plastic molding Download PDFInfo
- Publication number
- JP2015104895A JP2015104895A JP2013248968A JP2013248968A JP2015104895A JP 2015104895 A JP2015104895 A JP 2015104895A JP 2013248968 A JP2013248968 A JP 2013248968A JP 2013248968 A JP2013248968 A JP 2013248968A JP 2015104895 A JP2015104895 A JP 2015104895A
- Authority
- JP
- Japan
- Prior art keywords
- rigid sheet
- reinforced plastic
- fiber
- reinforcing fiber
- laminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002430 Fibre-reinforced plastic Polymers 0.000 title claims abstract description 49
- 239000011151 fibre-reinforced plastic Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000010137 moulding (plastic) Methods 0.000 title claims abstract description 12
- 229920001971 elastomer Polymers 0.000 claims abstract description 52
- 239000005060 rubber Substances 0.000 claims abstract description 51
- 239000012783 reinforcing fiber Substances 0.000 claims description 86
- 238000007493 shaping process Methods 0.000 claims description 73
- 229920005989 resin Polymers 0.000 claims description 43
- 239000011347 resin Substances 0.000 claims description 43
- 239000000463 material Substances 0.000 claims description 33
- 238000005452 bending Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 3
- 239000000835 fiber Substances 0.000 abstract description 21
- 230000037303 wrinkles Effects 0.000 abstract description 11
- 230000007547 defect Effects 0.000 abstract description 10
- 238000000465 moulding Methods 0.000 abstract description 9
- 238000010438 heat treatment Methods 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 9
- 239000004744 fabric Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000003566 sealing material Substances 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000004697 Polyetherimide Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920001601 polyetherimide Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000003856 thermoforming Methods 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920013629 Torelina Polymers 0.000 description 1
- 239000004742 Torelina™ Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920006230 thermoplastic polyester resin Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
本発明は、繊維強化プラスチックからなる輸送機器などの構造部材で、特に複雑な形状を持つ桁材を得るために好適に用いられる繊維強化プラスチック成形体の製造方法に関するものである。 The present invention relates to a method for producing a fiber-reinforced plastic molded article that is suitably used to obtain a girder having a complicated shape, such as a structural member such as transportation equipment made of fiber-reinforced plastic.
近年、輸送機器産業では原油燃料の高騰のあおりを受け、燃費の向上が求められている。殊に航空機業界においては、燃費がランニングコストに直結するためエアラインからの要望が強く、各航空機メーカーでは機体の軽量化を進めるために、比剛性や比強度に優れた繊維強化プラスチック(以下、FRPと略すことがある。)の適用を進めている。 In recent years, the transportation equipment industry has been demanded to improve fuel efficiency in response to soaring crude oil fuel. In the aircraft industry in particular, there is a strong demand from airlines because fuel efficiency is directly linked to running costs. In order to reduce the weight of aircraft in each aircraft manufacturer, fiber reinforced plastics (hereinafter referred to as excellent specific rigidity and specific strength) (FRP) may be abbreviated).
FRP製の成形体は、主としてガラス繊維、炭素繊維およびポリアミド繊維などの強化繊維からなる繊維布帛と樹脂材料からなり、前記の繊維布帛には、予めマトリックス樹脂が含浸されたプリプレグや、マトリックス樹脂を後で注入するドライ基材等があり、それぞれオートクレーブやオーブン等で加熱され、加圧されながら脱気や樹脂含浸が行われ、マトリックス樹脂が硬化一体化され製造される。 The molded body made of FRP is mainly composed of a fiber fabric made of reinforcing fibers such as glass fiber, carbon fiber and polyamide fiber and a resin material. The fiber fabric is made of a prepreg or a matrix resin previously impregnated with a matrix resin. There are dry substrates and the like to be injected later, and each is heated in an autoclave, an oven or the like, and degassed or impregnated with resin while being pressurized, and the matrix resin is cured and integrated.
上述のような成形方法で得られたFRP製の成形体が輸送機器等に用いられる構造部材の場合は、航空機用C型断面桁材に代表されるように複雑な形状のものが多く、形状出し(以下、賦形ということがある。)技術が重要となる。金属材料で形状出しを行う場合は機械加工を行うことができるが、FRPは繊維の切断が剛性や強度低下に直結するため、安易に機械加工を適用することができず、複雑な型に強化繊維基材を沿わせて成形することが必要である。 In the case of a structural member used for transportation equipment or the like, the FRP molded body obtained by the molding method as described above often has a complicated shape as typified by an aircraft C-shaped cross-section beam. Dispensing (hereinafter sometimes referred to as shaping) technology is important. When shaping a metal material, it can be machined, but FRP can be easily applied to machining because fiber cutting is directly linked to reduced rigidity and strength, and it is strengthened to a complicated mold. It is necessary to form along the fiber substrate.
強化繊維を複雑な型に沿わせて賦形するには、種々の課題がある。例えば、型の谷形状に繊維が上手く沿わずに、型の谷形状部分と強化繊維の間に隙間が生じ所望の形状が得られないことがある。また、強化繊維を型に沿わせる際に、力を加えすぎて繊維の屈曲や配向角度のズレが生じ、所望の物性が得られないこともある。 There are various problems in shaping reinforcing fibers along a complicated mold. For example, the fibers do not follow the shape of the valley of the mold, and a gap may be formed between the valley shape portion of the mold and the reinforcing fiber, and a desired shape may not be obtained. Further, when the reinforcing fiber is placed along the mold, an excessive force is applied to cause bending of the fiber or displacement of the orientation angle, and desired physical properties may not be obtained.
加えて近年の航空機業界では、比較的近距離の都市間を乗り換えること無しに直接結ぶ、リージョナル路線が増加してきたこともあり、中小型旅客機の需要が急速に高まってきている。 In addition, in the recent aircraft industry, the demand for small and medium-sized passenger planes has increased rapidly due to an increase in regional routes that connect directly without changing between relatively short cities.
従来、複合材料を採用してきた大型機に比べると、中小型機を構成する構造部材の形状は相対的に複雑になることから、中小型機構造部材にFRPを用いることは、上記のような課題に加え、より技術的難易度が高くなる。 Compared to large machines that have conventionally used composite materials, the shape of the structural members that make up small and medium machines is relatively complicated. In addition to the challenges, the technical difficulty becomes higher.
上記のような課題を解決するために、賦形対象物を覆うラバーのうち、特定の位置のラバーを厚くするなどにより、賦形時ラバーにかかる張力を局所的に高め、型への追従性を向上する方法が提案されている(特許文献1参照。)。しかしながら、このような方法では、賦形最終段階においてラバー張力が高い部分では型と底面の間に空間が出来やすく、その空間部において賦形対象物表面に皺など欠陥が発生しやすいという課題が生じる。また、厚みを変化させたラバーは、1つの型に対して専用のラバーを用意する必要があり、多品種生産する際にはそれぞれ専用ラバーが必要となり、必要なラバー材料費、加工費、保管場所および操作性の面で不利である。 In order to solve the problems described above, among the rubber covering the object to be shaped, the rubber at the specific position is made thicker by increasing the thickness of the rubber at a specific position, etc. Has been proposed (see Patent Document 1). However, in such a method, there is a problem that a space is easily formed between the mold and the bottom surface at a portion where the rubber tension is high in the final shaping step, and defects such as wrinkles are likely to occur on the surface of the shaping object in the space portion. Arise. In addition, for rubber with different thicknesses, it is necessary to prepare a dedicated rubber for one mold. When producing various types of rubber, a dedicated rubber is required for each, and the necessary rubber material costs, processing costs, and storage are required. It is disadvantageous in terms of location and operability.
また別に、プリプレグ積層体の最内層にシート材を貼り合せ、賦形する方法が提案されている(特許文献2参照。)。この提案の目的は、賦形時に型コーナー部で発生する強化繊維の浮き上がりに起因する皺発生を抑えることであり、型側面に谷形状を持った複雑形状に十分に追従できるものではなかった。 Separately, a method has been proposed in which a sheet material is bonded to the innermost layer of the prepreg laminate and shaped (see Patent Document 2). The purpose of this proposal was to suppress wrinkles due to the lifting of reinforcing fibers generated at the corners of the mold during shaping, and could not sufficiently follow the complex shape having a valley shape on the side of the mold.
しかしながら、上記の従来賦形技術では、複雑な形状を持つ雄型に対して、強化繊維積層体を十分に沿わせることができず、賦形後プリフォームは寸法精度に欠けるものであった。 However, in the above-described conventional shaping technique, the reinforcing fiber laminate cannot be sufficiently aligned with the male mold having a complicated shape, and the preform after shaping lacks dimensional accuracy.
そこで本発明の目的は、上記従来の賦形技術の課題を解決しようとするものであり、皺などの欠陥が無く、雄型の形状に追従した寸法精度の良いFRP成形体の賦形を実現する繊維強化プラスチック成形体の製造方法を提供することにある。 Accordingly, an object of the present invention is to solve the problems of the above-mentioned conventional shaping technology, and realizes shaping of an FRP molded body having good dimensional accuracy following the shape of the male mold without defects such as wrinkles. Another object of the present invention is to provide a method for producing a fiber-reinforced plastic molded body.
本発明の繊維強化プラスチック成形体の製造方法は、雄型の上に強化繊維積層体を配置する積層体配置工程と、前記強化繊維積層体の上から賦形ラバーを配置する賦形ラバー配置工程と、前記賦形ラバーと前記雄型との間の密閉された空間を減圧することにより、前記強化繊維積層体を雄型に密着させる賦形工程を少なくとも含む繊維強化プラスチック成形体の製造方法であって、前記強化繊維積層体の表面の一部に剛性シートを配置する工程を含む繊維強化プラスチック成形体の製造方法である。 The method for producing a fiber-reinforced plastic molded body of the present invention includes a laminate arranging step of arranging a reinforcing fiber laminate on a male mold, and a shaping rubber arranging step of arranging a shaped rubber from above the reinforcing fiber laminate. And a method for producing a fiber-reinforced plastic molded article comprising at least a shaping step of closely attaching the reinforcing fiber laminate to the male mold by depressurizing a sealed space between the shaping rubber and the male mold. A method for producing a fiber-reinforced plastic molded body including a step of arranging a rigid sheet on a part of the surface of the reinforcing fiber laminate.
本発明の繊維強化プラスチック成形体の製造方法は、雄型の上に強化繊維積層体を配置する積層体配置工程と、前記強化繊維積層体の上から賦形ラバーを配置する賦形ラバー配置工程と、前記賦形ラバーと前記雄型との間の密閉された空間を減圧することにより、前記強化繊維積層体を雄型に密着させる賦形工程を少なくとも含む繊維強化プラスチック成形体の製造方法であって、前記強化繊維積層体の表面の少なくとも一部に面内方向に曲げ剛性が変化する剛性シート加工体を配置する工程を含む繊維強化プラスチック成形体の製造方法である。 The method for producing a fiber-reinforced plastic molded body of the present invention includes a laminate arranging step of arranging a reinforcing fiber laminate on a male mold, and a shaping rubber arranging step of arranging a shaped rubber from above the reinforcing fiber laminate. And a method for producing a fiber-reinforced plastic molded article comprising at least a shaping step of closely attaching the reinforcing fiber laminate to the male mold by depressurizing a sealed space between the shaping rubber and the male mold. A method for producing a fiber-reinforced plastic molded body including a step of disposing a rigid sheet processed body whose bending rigidity changes in an in-plane direction on at least a part of the surface of the reinforcing fiber laminate.
本発明の繊維強化プラスチック成形体の製造方法の好ましい態様によれば、面内方向に曲げ剛性が変化する剛性シート加工体が、
A.剛性を付与したい部位の剛性シートの厚みを厚くする、
B.剛性を付与したい部位の剛性シートを複数枚重ねる、
C.剛性を付与したい部位の剛性シートの材質をヤング率の高い材質に変える、
D.剛性を弱めたい部位の剛性シートの厚みを薄くする、および
E.剛性を弱めたい部位の剛性シートを切り抜く、
のいずれかの方法により作成されるものである。
According to a preferred aspect of the method for producing a fiber-reinforced plastic molded body of the present invention, the rigid sheet processed body in which the bending rigidity changes in the in-plane direction,
A. Increase the thickness of the rigid sheet where you want to give rigidity.
B. Stack multiple sheets of rigid sheets where you want to add rigidity.
C. Change the material of the rigid sheet where you want to give rigidity to a material with a high Young's modulus.
D. Reduce the thickness of the rigid sheet at the site where rigidity is desired to be reduced; Cut out the rigid sheet where you want to weaken the rigidity.
It is created by either method.
本発明の繊維強化プラスチック成形体の製造方法の好ましい態様によれば、剛性シート加工体は、剛性シートに他のシート材を組み合わせたものである。 According to the preferable aspect of the manufacturing method of the fiber reinforced plastic molding of this invention, a rigid sheet processed body combines another sheet material with a rigid sheet.
本発明の繊維強化プラスチック成形体の製造方法の好ましい態様によれば、剛性シートのヤング率が3GPa以上で、かつ、厚みが0.1〜0.5mmである。 According to the preferable aspect of the manufacturing method of the fiber reinforced plastic molding of this invention, the Young's modulus of a rigid sheet is 3 GPa or more, and thickness is 0.1-0.5 mm.
本発明の繊維強化プラスチック成形体の製造方法の好ましい態様によれば、前記の雄型は、上面部と前記上面部と略垂直の面状の側面部からなり、前記側面部に少なくとも1箇所の谷形状を有するものである。 According to a preferable aspect of the method for producing a fiber-reinforced plastic molded body of the present invention, the male mold includes a top surface portion and a planar side surface portion substantially perpendicular to the top surface portion, and at least one location on the side surface portion. It has a valley shape.
本発明の繊維強化プラスチック成形体の製造方法の好ましい態様によれば、前記の剛性シートまたは剛性シート加工体の曲げ剛性は、前記の雄型側面の谷形状に対して略並行に分布していることである。 According to a preferable aspect of the method for producing a fiber-reinforced plastic molded body of the present invention, the bending rigidity of the rigid sheet or the rigid sheet processed body is distributed substantially in parallel to the valley shape of the male side surface. That is.
本発明の繊維強化プラスチック成形体の製造方法の好ましい態様によれば、前記の剛性シートまたは剛性シート加工体を前記の雄型側面の谷形状部分に掛からないように配置することである。 According to the preferable aspect of the manufacturing method of the fiber reinforced plastic molding of this invention, it is arrange | positioning so that the said rigid sheet or a rigid sheet processed body may not be hung on the trough-shaped part of the said male type | mold side surface.
本発明の繊維強化プラスチック成形体の製造方法の好ましい態様によれば、前記の剛性シートまたは剛性シート加工体を前記の強化繊維積層体と前記のラバーの間に配置することである。 According to a preferred aspect of the method for producing a fiber-reinforced plastic molded body of the present invention, the rigid sheet or the rigid sheet processed body is disposed between the reinforcing fiber laminate and the rubber.
本発明の繊維強化プラスチック成形体の製造方法の好ましい態様によれば、前記の強化繊維積層体は、少なくとも片面に樹脂材料が付与されたドライ基材もしくはプリグレグで構成されていることである。 According to a preferred aspect of the method for producing a fiber-reinforced plastic molded body of the present invention, the reinforcing fiber laminate is composed of a dry base material or prepreg provided with a resin material on at least one surface.
本発明によれば、積層体表面に皺やブリッジなどの欠陥を発生させることなく、型の谷形状にも追従した寸法精度に優れる強化繊維積層体を賦形することが可能になり、寸法精度、表面品位および機械強度に優れる繊維強化プラスチック成形体を確実に得ることができる。 According to the present invention, it is possible to shape a reinforced fiber laminate excellent in dimensional accuracy following the shape of the valley of the mold without causing defects such as wrinkles and bridges on the surface of the laminate. Thus, a fiber-reinforced plastic molded article having excellent surface quality and mechanical strength can be obtained with certainty.
本発明者らは、強化繊維積層体の賦形時において剛性シートを適切に使用することにより、皺などの欠陥が無く、雄型の形状に追従した寸法精度の良いFRP成形体の賦形を実現できることを見出し、本発明に到達した。 By appropriately using a rigid sheet at the time of shaping of the reinforcing fiber laminate, the present inventors can form an FRP molded body having good dimensional accuracy that follows the shape of the male mold without defects such as wrinkles. We have found that it can be realized and have reached the present invention.
すなわち、本発明に係るFRP成形体の製造方法においては、強化繊維積層体を賦形する際に剛性シートを使用することにより、減圧により強化繊維積層体が雄型に接触する順序を任意に制御することができ、寸法精度の良いFRP成形体を得ることができるのである。 That is, in the method for producing an FRP molded body according to the present invention, by using a rigid sheet when shaping the reinforcing fiber laminate, the order in which the reinforcing fiber laminate contacts the male mold by pressure reduction is arbitrarily controlled. Thus, an FRP molded body with good dimensional accuracy can be obtained.
本発明の繊維強化プラスチック成形体の製造方法は、雄型の上に強化繊維積層体を配置する積層体配置工程と、前記強化繊維積層体の上から賦形ラバーを配置する賦形ラバー配置工程と、前記賦形ラバーと前記雄型との間の密閉された空間を減圧することにより、前記強化繊維積層体を雄型に密着させる賦形工程を少なくとも含む繊維強化プラスチック成形体の製造方法であって、前記強化繊維積層体の表面の少なくとも一部に剛性シートを配置する工程を含む繊維強化プラスチック成形体の製造方法である。 The method for producing a fiber-reinforced plastic molded body of the present invention includes a laminate arranging step of arranging a reinforcing fiber laminate on a male mold, and a shaping rubber arranging step of arranging a shaped rubber from above the reinforcing fiber laminate. And a method for producing a fiber-reinforced plastic molded article comprising at least a shaping step of closely attaching the reinforcing fiber laminate to the male mold by depressurizing a sealed space between the shaping rubber and the male mold. A method for producing a fiber-reinforced plastic molded body, comprising a step of disposing a rigid sheet on at least a part of the surface of the reinforcing fiber laminate.
本発明で用いられる剛性シートの形態としては、強化繊維積層体の少なくとも片面を全て覆う形態、もしくは曲げ剛性を付与したい部位のみを部分的に覆う形態から適宜選択することができる。 The form of the rigid sheet used in the present invention can be appropriately selected from a form that covers at least one side of the reinforcing fiber laminate, or a form that partially covers only a portion where bending rigidity is desired.
強化繊維積層体の少なくとも片面を全て覆う形態をとる場合は、賦形順序を制御するために、面内方向に曲げ剛性が変化する剛性シート加工体を用いることが好ましい。面内方向に曲げ剛性を変化させる手段としては、例えば、
A.剛性を付与したい部位の剛性シートの厚みを厚くする、
B.剛性を付与したい部位の剛性シートを複数枚重ねる、
C.剛性を付与したい部位の剛性シートの材質をヤング率の高い材質に変える、
D.剛性を弱めたい部位の剛性シートの厚みを薄くする、および
E.剛性を弱めたい部位の剛性シートを切り抜く、
などの方法をとることができる。
When taking the form which covers all the at least one side of a reinforced fiber laminated body, in order to control a shaping order, it is preferable to use the rigid sheet | seat processed body from which bending rigidity changes to an in-plane direction. As a means for changing the bending rigidity in the in-plane direction, for example,
A. Increase the thickness of the rigid sheet where you want to give rigidity.
B. Stack multiple sheets of rigid sheets where you want to add rigidity.
C. Change the material of the rigid sheet where you want to give rigidity to a material with a high Young's modulus.
D. Reduce the thickness of the rigid sheet at the site where rigidity is desired to be reduced; Cut out the rigid sheet where you want to weaken the rigidity.
It is possible to take a method such as
また、剛性シート加工体は、剛性シートに他のシート材を組み合わせることもできる。このとき他のシート材は剛性シートである必要は無く、剛性シート加工体面内の少なくとも一部のヤング率が3GPa以上であることで、後述するように曲げ剛性の分布を作ることができ、欠陥が無く、精度の良いFRP成形体を得ることが可能になる。 Moreover, the rigid sheet processed body can also combine other sheet materials with the rigid sheet. At this time, the other sheet material does not need to be a rigid sheet, and since the Young's modulus of at least a part of the surface of the rigid sheet processed body is 3 GPa or more, a distribution of bending rigidity can be created as will be described later. Therefore, it is possible to obtain an FRP molded body with high accuracy.
本発明に係るFRP成形体の製造方法においては、上記の剛性シートのヤング率が3GPa以上で、かつ、厚みが0.1〜0.5mmであることが好ましい。剛性シートのようなシート形状部材の曲げ剛性は、ヤング率×(厚み)3で表され、剛性シートのヤング率はASTM−D−882を用いて測定することができる。 In the manufacturing method of the FRP molded object which concerns on this invention, it is preferable that the Young's modulus of said rigid sheet is 3 GPa or more and thickness is 0.1-0.5 mm. The bending rigidity of a sheet-shaped member such as a rigid sheet is represented by Young's modulus × (thickness) 3. The Young's modulus of the rigid sheet can be measured using ASTM-D-882.
剛性シートのヤング率が3GPa未満では、賦形順序を制御するために必要な曲げ剛性が不足することがある。また、剛性シート厚みが0.1mm未満でも同様に曲げ剛性が不足することがある。一方、剛性シートの厚みが0.5mmより大きくなると、曲げ剛性が高くなりすぎて賦形が困難になったり、賦形後の強化繊維積層体表面に剛性シートの跡が大きく残り、FRP成形品の表面意匠性が損なわれる恐れがある。したがって、剛性シートの厚みは0.1〜0.45mmが好ましく、より好ましくは0.1〜0.4mmである。 When the Young's modulus of the rigid sheet is less than 3 GPa, the bending rigidity necessary for controlling the shaping order may be insufficient. Further, even when the rigid sheet thickness is less than 0.1 mm, the bending rigidity may be insufficient. On the other hand, if the thickness of the rigid sheet is larger than 0.5 mm, the bending rigidity becomes too high and shaping becomes difficult, or a large trace of the rigid sheet remains on the surface of the reinforcing fiber laminate after shaping, and the FRP molded product There is a risk that the surface design of the glass will be impaired. Therefore, the thickness of the rigid sheet is preferably 0.1 to 0.45 mm, more preferably 0.1 to 0.4 mm.
剛性シートは樹脂フィルムの他、形状記憶合金や超弾性合金などの金属板、ラバーシートなど種々の材質を使用することが可能であるが、加工のしやすさの観点から樹脂フィルムを用いることが好ましく、そのヤング率の範囲は3〜5GPaが好ましい。上記のような範囲のヤング率と厚みを満たす剛性シートとしては、ポリエステルフィルム(例えば、東レ(株)製“ルミラー”(登録商標))や、ポリフェニレンスルフィドフィルム(例えば、東レ(株)製“トレリナ”(登録商標))、およびポリイミドフィルム(例えば、東レデュポン(株)製“カプトン”(登録商標))などが挙げられる。 The rigid sheet can be made of various materials such as a metal sheet such as a shape memory alloy and a super elastic alloy, and a rubber sheet in addition to a resin film. However, a resin film is used from the viewpoint of ease of processing. The Young's modulus is preferably in the range of 3 to 5 GPa. Examples of the rigid sheet satisfying the Young's modulus and thickness within the above range include polyester films (for example, “Lumirror” (registered trademark) manufactured by Toray Industries, Inc.) and polyphenylene sulfide films (for example, “Torelina manufactured by Toray Industries, Inc.). "(Registered trademark)), and polyimide film (for example," Kapton "(registered trademark) manufactured by Toray DuPont Co., Ltd.).
これらの剛性シートを使用することにより、強化繊維積層体面内で曲げ剛性の分布を効率的に作ることができ、優先的に雄型に接触する部分と、遅れて雄型に接触する部分とで賦形に要する時間に差を付け、より確実に欠陥が無く、精度の良いFRP成形体を得ることが可能になる。 By using these rigid sheets, it is possible to efficiently create a distribution of bending stiffness in the plane of the reinforcing fiber laminate, with a portion that contacts the male mold preferentially and a portion that contacts the male mold with a delay. It becomes possible to obtain a highly accurate FRP molded body with a difference in the time required for shaping, and more reliably without defects.
上記の剛性シートもしくは剛性シート加工体(以下、まとめて「剛性シート群」と記す場合がある)を用いた賦形方法は、上面部と、前記上面部と略垂直の面状の側面部からなり、前記側面部に少なくとも1箇所の谷形状を有する雄型を用いた賦形を行う際に、大きな効果をもたらす。本発明中における雄型側面の谷形状とは、賦形後に強化繊維積層体が接する側面を1枚の面として見たときに周囲より高さが低い部分や、段差形状の脇に存在する凹側に屈曲している部分を指す。 The shaping method using the above-described rigid sheet or rigid sheet processed body (hereinafter sometimes collectively referred to as “rigid sheet group”) includes an upper surface portion and a planar side surface portion substantially perpendicular to the upper surface portion. Therefore, when performing shaping using a male mold having at least one valley shape on the side surface, a great effect is brought about. The trough shape of the male side surface in the present invention is a concave portion present at a side lower than the surroundings or at the side of the step shape when the side surface with which the reinforcing fiber laminate contacts after forming is viewed as one surface. Refers to the side bent.
すなわち、雄型の側面部に上記のような谷形状がある場合、谷形状部分の両側にある山形状部分−山形状部分の間で強化繊維積層体がブリッジングと呼ばれる強化繊維の突っ張りを引き起こし、谷形状部分においては強化繊維積層体が型から浮いた状態となりやすく、十分に雄型に沿いきれず寸法不良や成形品物性の低下などの欠陥を引き起こす。したがって、上記の方法により強化繊維積層体が雄型に接触する順序を制御し、谷形状部分から優先的に賦形することにより、ブリッジングを抑制することができ、寸法精度の良いFRP成形体を得ることができる。 That is, when the male side surface portion has a valley shape as described above, the reinforcing fiber laminate causes stretching of reinforcing fibers called bridging between the mountain-shaped portion on both sides of the valley-shaped portion and the mountain-shaped portion. In the valley-shaped part, the reinforcing fiber laminate tends to float from the mold, and it cannot be sufficiently along the male mold, causing defects such as defective dimensions and deterioration of physical properties of the molded product. Therefore, by controlling the order in which the reinforcing fiber laminate contacts the male mold by the above method and preferentially shaping from the valley-shaped portion, bridging can be suppressed and the FRP molded body with good dimensional accuracy. Can be obtained.
また、賦形後に型の山形状または谷形状に起因する剛性シート群の重なりや隙間が生じると予測されるような場所には、適宜剛性シート群に切れ込みを入れることにより、それらを解消することができる。また、曲げ剛性を付与したい部位のみを部分的に覆う形態をとる場合には、当該部位の剛性を高めることができれば良く、一様な曲げ剛性を持った剛性シートであってもよいし、上述したように剛性シート内で曲げ剛性を変化させた剛性シート加工体でもよい。 In addition, it is necessary to eliminate the rigid sheet group by appropriately cutting in places where it is predicted that overlapping or gaps of the rigid sheet group due to the shape or valley shape of the mold will occur after shaping. Can do. Moreover, when taking the form which covers only the site | part which wants to give bending rigidity, the rigidity sheet | seat with uniform bending rigidity may be sufficient as long as the rigidity of the said part can be improved, and the above-mentioned As described above, a rigid sheet processed body in which the bending rigidity is changed in the rigid sheet may be used.
また、上記の剛性シート群の曲げ剛性が、上記雄型側面の谷形状に対して略並行(好ましくは±10°以内、より好ましくは±5°以内)に分布していることが好ましい。これによって、賦形順序をより正確に制御することができ、強化繊維積層体がより正確に谷形状に沿って雄型に密着され、より精度の良いFRP成形体の賦形が可能になる。 Further, it is preferable that the bending rigidity of the rigid sheet group is distributed substantially in parallel (preferably within ± 10 °, more preferably within ± 5 °) with respect to the valley shape of the male side surface. As a result, the shaping order can be controlled more accurately, the reinforcing fiber laminate is more closely attached to the male mold along the valley shape, and the FRP molded article can be shaped with higher accuracy.
また、上記の剛性シート群の曲げ剛性が高い部分を上記雄型側面の谷形状部分に掛からないように配置することが好ましい。すなわち、雄型側面の山形状部分に密着する部分の強化繊維積層体の曲げ剛性を周囲の曲げ剛性より高くすることにより、山形状部分の賦形順序を意図的に遅らせることができ、谷形状部分から優先的に賦形することが可能となるので、ブリッジングを抑制し、寸法精度の良いFRP成形体を得ることができる。 Moreover, it is preferable to arrange | position so that the part with high bending rigidity of said rigid sheet group may not be applied to the trough-shaped part of the said male side. In other words, by increasing the bending rigidity of the reinforcing fiber laminate in the portion that is in close contact with the mountain-shaped portion on the male side surface, the shaping sequence of the mountain-shaped portion can be intentionally delayed, Since it is possible to preferentially shape from the portion, bridging can be suppressed and an FRP molded body with good dimensional accuracy can be obtained.
上記の剛性シート群は、前記の強化繊維積層体と上記の賦形ラバーの間に配置することが好ましい。すなわち強化繊維積層体の上面(外側表面)に剛性シート群を配置することにより、強化繊維積層体内面の雄型への追従を邪魔せずに、寸法精度良くFRP成形体を賦形することができる。 The rigid sheet group is preferably disposed between the reinforcing fiber laminate and the shaped rubber. That is, by arranging a rigid sheet group on the upper surface (outer surface) of the reinforcing fiber laminate, it is possible to shape the FRP molded body with high dimensional accuracy without disturbing the follow-up of the inner surface of the reinforcing fiber laminate to the male mold. it can.
ただし、剛性シート群を強化繊維積層体の下面(内側表面)に配置する場合でも、本発明の賦形順序を制御する効果を得ることができる。剛性シート群を強化繊維積層体の下面に配置する場合、賦形後に剛性シート群の形状が強化繊維積層体に転写され、表面品位の低下が懸念されるので、剛性シート群の厚みが薄いものを使用したり、剛性シート群が賦形後に密着する部分の雄型の表面を剛性シート群の厚み分だけ切削し、剛性シート群の端部の段差を解消するような加工を施すことが望ましい。 However, even when the rigid sheet group is arranged on the lower surface (inner surface) of the reinforcing fiber laminate, the effect of controlling the shaping order of the present invention can be obtained. When the rigid sheet group is arranged on the lower surface of the reinforcing fiber laminate, the shape of the rigid sheet group is transferred to the reinforcing fiber laminate after shaping, and there is a concern about the deterioration of the surface quality. It is desirable to cut the surface of the male mold where the rigid sheet group is in close contact after shaping, by the thickness of the rigid sheet group, and apply a process to eliminate the step at the end of the rigid sheet group .
また、強化繊維積層体と剛性シート群を、2枚の賦形ラバーで上下から挟み込んでから雄型の上面に配置し、賦形する形態を採ることもできる。2枚の賦形ラバーで強化繊維積層体を挟み込んだ後、2枚の賦形ラバー間を吸引することにより、強化繊維積層体の面外方向から面圧を加えることが可能となり、賦形時の強化繊維の浮き上がりを押さえることができ、より表面品位に優れるFRP成形体を得ることが可能になる。 Alternatively, the reinforcing fiber laminate and the rigid sheet group may be sandwiched from above and below by two shaping rubbers and then placed on the male upper surface to be shaped. After sandwiching the reinforcing fiber laminate between the two shaped rubbers, it is possible to apply surface pressure from the out-of-plane direction of the reinforcing fiber laminated body by sucking between the two shaped rubbers. Therefore, it is possible to obtain an FRP molded body having a superior surface quality.
本発明の繊維強化プラスチック成形体の製造方法においては、上記の賦形工程の前後に前記の強化繊維積層体を加熱する工程および前記強化繊維積層体を冷却する工程を含めることができる。強化繊維積層体が後述のドライ基材である場合は、表面に付与されている樹脂材料が分解しない温度で加熱し、また、強化繊維積層体が後述のプリプレグの場合は、マトリックス樹脂の硬化や分解が過度に進行しない温度で加熱することにより、樹脂材料やマトリックス樹脂を軟化させ、賦形工程に要する時間の短縮や賦形後の強化繊維積層体の品位を向上させることができる。上記の加熱温度は、40℃〜120℃が好ましく、より好ましくは50℃〜100℃、さらに好ましくは60〜80℃である。 In the manufacturing method of the fiber reinforced plastic molding of this invention, the process of heating the said reinforced fiber laminated body and the process of cooling the said reinforced fiber laminated body can be included before and after said shaping process. When the reinforcing fiber laminate is a dry substrate described later, the resin material applied to the surface is heated at a temperature that does not decompose, and when the reinforcing fiber laminate is a prepreg described later, the matrix resin is cured or By heating at a temperature at which decomposition does not proceed excessively, the resin material and the matrix resin can be softened, the time required for the shaping step can be shortened, and the quality of the reinforcing fiber laminate after shaping can be improved. The heating temperature is preferably 40 ° C to 120 ° C, more preferably 50 ° C to 100 ° C, and further preferably 60 to 80 ° C.
加熱機構としては、熱媒配管や電気ヒーターをツール板や雄型内に配置する手段や、装置全体を加熱炉やIRヒーターで加熱する手段等をとることができる。このとき、賦形ラバーの材質は前記の加熱により永久変形しないことが好ましい。賦形ラバーの材質としては、具体的には、ネオプレン、エチレンプロピレンゴム、シリコンゴムおよびフッ素ゴムなどが挙げられるが、加熱や真空吸引の際に所望形状に賦形でき、かつ、繰り返し使用できるものであればこれらに限らない。 As a heating mechanism, a means for arranging a heat medium pipe or an electric heater in a tool plate or a male mold, a means for heating the whole apparatus with a heating furnace or an IR heater, or the like can be used. At this time, it is preferable that the material of the shaping rubber is not permanently deformed by the heating. Specific examples of the material of the shaped rubber include neoprene, ethylene propylene rubber, silicon rubber and fluorine rubber, which can be shaped into a desired shape during heating or vacuum suction and can be used repeatedly. If it is, it will not be restricted to these.
また、上記の賦形工程においては、賦形ラバーと雄型の間の密閉された空間を減圧する手段として、真空ポンプを用いることができる。この賦形工程は、真空吸引により発生する力と賦形ラバーの張力が釣り合うところで終了するので、賦形が終了した時点で雄型と強化繊維積層体の密着すべき側面の密着高さは、少なくとも成形後に製品として使用するラインまで密着していることが望ましい。さらに、強化繊維積層体を賦形して得られる成形品の形態安定性やコンシステンシーを考慮すると、前記の強化繊維積層体の全面が雄型側面に密着していることが好ましい。したがって、賦形ラバーの張力は、上記のとおり前記の強化繊維積層体の全面が雄型側面に密着できる範囲であることが好ましい。 Moreover, in said shaping process, a vacuum pump can be used as a means for decompressing the sealed space between the shaping rubber and the male mold. Since this shaping process ends when the force generated by vacuum suction and the tension of the shaping rubber are balanced, the adhesion height of the side surface to be brought into close contact with the male mold and the reinforcing fiber laminate at the time of shaping is It is desirable that at least the line used as a product is formed after molding. Furthermore, considering the form stability and consistency of a molded product obtained by shaping the reinforcing fiber laminate, it is preferable that the entire surface of the reinforcing fiber laminate is in close contact with the male side surface. Therefore, it is preferable that the tension of the shaped rubber is in a range where the entire surface of the reinforcing fiber laminate can be in close contact with the male side surface as described above.
本発明の繊維強化プラスチック成形体の製造方法において、賦形後に強化繊維積層体を冷却する工程を含める場合、後の工程で一旦雄型から強化繊維積層体を脱型し、別の型に乗せかえるときなどの強化繊維積層体の戻り(いわゆる、スプリングバック)を抑えることができるが、この脱型操作を必要としない場合は、冷却を行わずにそのまま後の加熱成形工程を行うこともできる。 In the method for producing a fiber-reinforced plastic molded body of the present invention, when the step of cooling the reinforcing fiber laminate is included after shaping, the reinforcing fiber laminate is once removed from the male mold in a later step and placed on another mold. Although it is possible to suppress the return (so-called spring back) of the reinforcing fiber laminate when changing, etc., if this demolding operation is not required, the subsequent heat forming step can be performed without cooling. .
本発明で用いられる強化繊維積層体としては、少なくとも片面に樹脂材料が付与されたドライ基材、もしくはプリグレグで構成されている形態のものを挙げることができる。ドライ基材を用いる場合は、上記の賦形工程の後に樹脂注入と加熱工程を行うことにより、また、プリプレグを用いる場合は、オートクレーブを用いる加熱工程を行うことにより、FRP成形体を得ることができる。 Examples of the reinforcing fiber laminate used in the present invention include a dry base material provided with a resin material on at least one surface or a prepreg. When using a dry substrate, an FRP molded body can be obtained by performing a resin injection and a heating step after the above shaping step, and when using a prepreg, by performing a heating step using an autoclave. it can.
本発明で用いられる強化繊維積層体を構成する強化繊維としては、炭素繊維、ガラス繊維およびアラミド繊維などが挙げられる。中でも、炭素繊維は、比強度および非弾性率に優れ、さらに耐吸水性にも優れているので、特に好ましく用いられる。強化繊維はその形態としては、織物、編み物、組み物、不織布および一方向に引き揃えられた強化繊維シートなどが挙げられる。 Examples of the reinforcing fibers constituting the reinforcing fiber laminate used in the present invention include carbon fibers, glass fibers, and aramid fibers. Among these, carbon fibers are particularly preferably used because they are excellent in specific strength and inelastic modulus and are also excellent in water absorption resistance. Examples of the form of the reinforcing fibers include woven fabrics, knitted fabrics, braided fabrics, non-woven fabrics, and reinforcing fiber sheets aligned in one direction.
ドライ基材に付与されている樹脂材料は、賦形後の強化繊維積層体同士の結着剤として機能させる目的から熱可塑性樹脂を主成分とすることが好ましい。熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、およびフェノキシ樹脂から少なくとも1種であることが好ましく、それらの中でもポリアミド樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、ポリエーテルスルフォン樹脂がとりわけ好ましく用いられる。また、樹脂材料の形態としては、繊維、フィルムおよび粒子状等が挙げられるが、中でも粒子状であることが好ましい。 The resin material applied to the dry base material preferably contains a thermoplastic resin as a main component for the purpose of functioning as a binder between the shaped reinforcing fiber laminates. The thermoplastic resin is preferably at least one selected from, for example, polyamide resin, polysulfone resin, polyether sulfone resin, polyetherimide resin, polyphenylene ether resin, polyimide resin, polyamideimide resin, and phenoxy resin. Of these, polyamide resin, polyetherimide resin, polyphenylene ether resin, and polyether sulfone resin are particularly preferably used. In addition, examples of the form of the resin material include fibers, films, particles, and the like. Among these, particles are preferable.
また、プリプレグに含浸されている「マトリックス樹脂」は、熱硬化性樹脂であっても熱可塑性樹脂であってもよい。熱硬化性樹脂の場合、その主材は、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ポリウレタン樹脂およびシリコン樹脂などを例示することができ、これらは1種類だけであってもよく、あるいは2種類以上を混合して使用することもできる。これら熱硬化性樹脂をマトリックス樹脂に採用する場合、前記の熱硬化性樹脂に適切な硬化剤や反応促進剤を添加することが可能である。 The “matrix resin” impregnated in the prepreg may be a thermosetting resin or a thermoplastic resin. In the case of a thermosetting resin, examples of the main material include an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, a polyurethane resin, and a silicon resin, and these may be one kind. Alternatively, two or more types can be mixed and used. When these thermosetting resins are employed as the matrix resin, it is possible to add an appropriate curing agent or reaction accelerator to the thermosetting resin.
また、熱可塑性樹脂の場合、その主材は、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂、ポリスチレン樹脂、AS樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、PPS樹脂、フッ素樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、およびポリイミド樹脂などを例示することができ、これらは1種類だけであってもよく、あるいは2種類以上を混合して使用することもできる。これら熱可塑性樹脂は、単独でも、混合物でも、また共重合体であっても良い。混合物の場合には、相溶化剤を併用することができる。さらに、難燃剤として、臭素系難燃剤、シリコン系難燃剤、赤燐などを加えることができる。 In the case of a thermoplastic resin, the main materials are polyethylene resin, polypropylene resin, polyvinyl chloride resin, ABS resin, polystyrene resin, AS resin, polyamide resin, polyacetal resin, polycarbonate resin, thermoplastic polyester resin, PPS resin, A fluororesin, a polyetherimide resin, a polyetherketone resin, a polyimide resin, and the like can be exemplified. These may be used alone or in combination of two or more. These thermoplastic resins may be used alone, as a mixture, or as a copolymer. In the case of a mixture, a compatibilizer can be used in combination. Further, brominated flame retardants, silicon-based flame retardants, red phosphorus, and the like can be added as flame retardants.
プリプレグに用いられるマトリックス樹脂と、ドライ基材を複数枚積層した積層体に注入されるマトリックス樹脂は、同一であっても良く、特に区別するものではない。 The matrix resin used for the prepreg and the matrix resin injected into the laminate obtained by laminating a plurality of dry base materials may be the same and are not particularly distinguished.
次に、本発明の一実施態様を図1〜図4を用いて説明する。 Next, an embodiment of the present invention will be described with reference to FIGS.
図1は、本発明の繊維化プラスチック成形体の製造方法の一実施態様を説明するための概略断面図であり、図2は、図1の構成を鉛直方向から俯瞰した平面図である。 FIG. 1 is a schematic cross-sectional view for explaining an embodiment of the method for producing a fiberized plastic molded body of the present invention, and FIG. 2 is a plan view of the configuration of FIG. 1 viewed from the vertical direction.
まず、図1と2において、雄型5の上面に強化繊維積層体1および剛性シート2を配置する。図1では、雄型5の上面に直接強化繊維積層体1を配置し、その上面に剛性シート2を配置する形態を示しているが、賦形後の脱型を容易にする目的で強化繊維積層体1の上下に離型フィルムや離型布(図示せず。)を配置することもできる。
First, in FIGS. 1 and 2, the reinforcing
次に、賦形ラバー3で前記の雄型5、強化繊維積層体1および剛性シート2を覆い、ツール板4上に取り付けられたシール材6と前記の賦形ラバー3を密着させて、賦形ラバー3、ツール板4およびシール材6で密閉空間を形成する。
Next, the
次に、上記の賦形ラバー3、ツール板4およびシール材6で形成された密閉空間中の空気を、吸引口7から排出することにより、本発明の繊維化プラスチック成形体を製造することができる。
Next, the fiberized plastic molded body of the present invention can be manufactured by discharging the air in the sealed space formed by the shaping rubber 3, the tool plate 4 and the sealing
図3は、本発明で用いられる雄型を例示説明するための斜視図である。 FIG. 3 is a perspective view for illustrating the male mold used in the present invention.
図3において、雄型5は側面に2箇所の雄型側面山形状部分11、およびそれらに挟まれる形で1箇所の雄型側面谷形状部分12を有する代表的な形状の雄型である。なお本発明はこの形状に限らず、側面に複数の谷形状部分を持つ雄型にも適用することができる。
In FIG. 3, the
また、図4(a)〜(c)は、賦形工程における強化繊維積層体の形状を例示説明するための斜視図である。次に、その賦形工程における強化繊維積層体の形状について、図4と図3を用いて説明する。 4A to 4C are perspective views for illustrating the shape of the reinforcing fiber laminate in the shaping step. Next, the shape of the reinforcing fiber laminate in the shaping step will be described with reference to FIGS. 4 and 3.
前記の図1のように、上記の賦形ラバー3、ツール板4およびシール材6で形成された密閉空間中の空気を、吸引口7から排出すると、強化繊維積層体1は、図4(a)〜(c)(および図3)に示されるように、雄型5の雄型上面8から、雄型肩部9、および雄型側面10の順に、賦形ラバー3により押さえつけられてゆき、最終的に雄型5の形状に賦形される。図4(b)は、その賦形工程の途中の強化繊維積層体1の形状を示すものであるが、雄型5の雄型側面山形状部分11に合わせて配置された剛性シート2の働きによって、雄型5の雄型側面谷形状部分12に対応する部分から優先的に賦形されていることを示している。この効果により、雄型5の雄型側面谷形状部分12に対応する部位の賦形後、強化繊維積層体1に皺やブリッジングなどの欠陥が発生せず、寸法精度の良好な成形品が得られる。
As shown in FIG. 1, when the air in the sealed space formed by the shaping rubber 3, the tool plate 4, and the sealing
最後に、強化繊維積層体1としてドライ基材を用いる場合は、樹脂注入と加熱成形工程を行い、また、プリプレグを用いる場合は、オートクレーブを使用した加熱成形工程を行うことにより、FRP成形体を得ることができる。
Finally, when a dry substrate is used as the reinforcing
次に、本発明の繊維強化プラスチック成形体の製造方法について、実施例に基づいて詳細に説明する。 Next, the manufacturing method of the fiber reinforced plastic molding of this invention is demonstrated in detail based on an Example.
[実施例1]
(積層体配置工程)
まず、図1に示すように、ツール板4の面上に雄型5(材質:ポリウレタン、寸法:最大幅300mm、最小幅250mm、長さ600mm、高さ250mm、コーナー半径5mm)を配置した。次に、雄型5上に離型フィルム(東レ製“トヨフロン”(登録商標)、寸法(長さ600mm、幅600mm、厚さ0.05mm))、表面に粒子状樹脂を有する基材(東レ製“トレカ”(登録商標)、クロス:炭素繊維T800S、目付200g/m2)を48枚擬似等方積層した強化繊維積層体1(寸法:長さ550mm、幅500mm)、および離型布(リッチモンド社製B4444、長さ600mm、幅600mm、厚さ0.05mm)を順に配置した。
[Example 1]
(Laminate placement process)
First, as shown in FIG. 1, a male mold 5 (material: polyurethane, dimensions: maximum width 300 mm, minimum width 250 mm, length 600 mm, height 250 mm,
(剛性シート配置工程)
図2に示すように、剛性シート2(東レ製“ルミラー”(登録商標)、寸法:長さ150mm、幅600mm、厚さ0.35mm)を、雄型5の雄型側面山形状部分11に沿うように、2箇所配置した。
(Rigid sheet placement process)
As shown in FIG. 2, the rigid sheet 2 (“Lumirror” (registered trademark) manufactured by Toray, dimensions: length 150 mm, width 600 mm, thickness 0.35 mm) is applied to the male side surface mountain-shaped
(賦形ラバー配置工程)
上記の強化繊維積層体1および剛性シート2の上から、賦形ラバー3(クレハエラストマー社製SH950T)を配置し、賦形ラバー3、ツール板4およびシール材6で密閉空間を形成した。
(Shaping rubber placement process)
A shaping rubber 3 (SH950T manufactured by Kureha Elastomer Co., Ltd.) was disposed on the reinforcing
(賦形工程)
密閉空間中の空気を、真空ポンプを使用してツール板4上に設けた吸気口7より排出し、強化繊維積層体1を雄型5に密着させた。その後、これら一連の構成部材を加熱炉に入れ80℃の温度で2時間保持した後、30℃以下まで冷却してから脱型した。賦形された強化繊維積層体は、皺やブリッジなどの品質不良が見られなかった。このようにして得られた強化繊維積層体に液状エポキシ樹脂を注入し、加熱硬化おこなうことにより、寸法精度、表面品位および機械強度に優れる繊維強化プラスチック成形体を得ることができた。
(Shaping process)
The air in the sealed space was discharged from the air inlet 7 provided on the tool plate 4 using a vacuum pump, and the reinforcing
[実施例2]
実施例1に記載の剛性シート配置工程において、剛性シートa(寸法:長さ600mm、幅600mm)を配置した後、雄型5の雄型側面山形状部分11に沿う位置に剛性シートb(寸法:長さ150mm、幅600mm)を2箇所配置したこと以外は、実施例1と同様にして賦形をおこなった。賦形された強化繊維積層体は、皺やブリッジなどの品質不良が見られなかった。このようにして得られた強化繊維積層体に液状エポキシ樹脂を注入し、加熱硬化おこなうことにより、寸法精度、表面品位および機械強度に優れる繊維強化プラスチック成形体を得ることができた。
[Example 2]
In the rigid sheet arranging step described in the first embodiment, after the rigid sheet a (dimensions: length 600 mm, width 600 mm) is arranged, the rigid sheet b (dimensions) is provided at a position along the male side mountain-shaped
[比較例1]
実施例1に記載の剛性シート配置工程を除いたこと以外は、実施例1と同様に賦形をおこなった。賦形された強化繊維積層体の内面コーナー部には、型の山形状部分―山形状部分の間にブリッジングに起因する皺が発生していた。このようにして得られた強化繊維積層体に液状エポキシ樹脂を注入し、加熱硬化おこなったが、実施例1により得られた繊維強化プラスチック成形体と比較し、寸法精度、表面品位および機械強度が劣る繊維強化プラスチック成形体が得られた。
[Comparative Example 1]
The shaping was performed in the same manner as in Example 1 except that the rigid sheet arranging step described in Example 1 was omitted. In the inner corner portion of the shaped reinforcing fiber laminate, wrinkles due to bridging occurred between the mountain-shaped portion and the mountain-shaped portion of the mold. A liquid epoxy resin was injected into the reinforced fiber laminate thus obtained and heat-cured. Compared with the fiber-reinforced plastic molded body obtained in Example 1, the dimensional accuracy, surface quality, and mechanical strength were higher. An inferior fiber reinforced plastic molding was obtained.
[比較例2]
実施例2に記載の剛性シートbを配置しなかったこと以外は、実施例2と同様に賦形をおこなった。賦形された強化繊維積層体の内面コーナー部には、型の山形状部分―山形状部分の間にブリッジングに起因する皺が発生していた。このようにして得られた強化繊維積層体に液状エポキシ樹脂を注入し、加熱硬化おこなったが、実施例1により得られた繊維強化プラスチック成形体と比較し、寸法精度、表面品位および機械強度が劣る繊維強化プラスチック成形体が得られた。
[Comparative Example 2]
The shaping was performed in the same manner as in Example 2 except that the rigid sheet b described in Example 2 was not arranged. In the inner corner portion of the shaped reinforcing fiber laminate, wrinkles due to bridging occurred between the mountain-shaped portion and the mountain-shaped portion of the mold. A liquid epoxy resin was injected into the reinforced fiber laminate thus obtained and heat-cured. Compared with the fiber-reinforced plastic molded body obtained in Example 1, the dimensional accuracy, surface quality, and mechanical strength were higher. An inferior fiber reinforced plastic molding was obtained.
本発明の繊維強化プラスチック成形体の製造方法は、型側面に谷形状を有する雄型を用いた、あらゆるFRPの成形(例えば、自動車、航空機、産業用途の型材および補強部材としてのスティフナや桁材。)に適用することができ、特に複雑な形状を持つ桁材の成形に好適なものである。 The method for producing a fiber-reinforced plastic molded body according to the present invention includes molding of any FRP using a male mold having a valley shape on the side surface of the mold (for example, a stiffener or a girder as a mold material and a reinforcing member for automobiles, aircrafts and industrial applications) .), And is particularly suitable for forming a girder having a complicated shape.
1 強化繊維積層体
2 剛性シート
3 賦形ラバー
4 ツール板
5 雄型
6 シール材
7 吸引口
8 雄型上面
9 雄型肩部
10 雄型側面
11 雄型側面山形状部分
12 雄型側面谷形状部分
DESCRIPTION OF
Claims (10)
A.剛性を付与したい部位の剛性シートの厚みを厚くする、
B.剛性を付与したい部位の剛性シートを複数枚重ねる、
C.剛性を付与したい部位の剛性シートの材質をヤング率の高い材質に変える、
D.剛性を弱めたい部位の剛性シートの厚みを薄くする、および
E.剛性を弱めたい部位の剛性シートを切り抜く、
のいずれかの方法により作成されることを特徴とする請求項2に記載の繊維強化プラスチック成形体の製造方法。 A rigid sheet processed body whose bending rigidity changes in the in-plane direction,
A. Increase the thickness of the rigid sheet where you want to give rigidity.
B. Stack multiple sheets of rigid sheets where you want to add rigidity.
C. Change the material of the rigid sheet where you want to give rigidity to a material with a high Young's modulus.
D. Reduce the thickness of the rigid sheet at the site where rigidity is desired to be reduced; Cut out the rigid sheet where you want to weaken the rigidity.
The method for producing a fiber-reinforced plastic molded body according to claim 2, wherein the fiber-reinforced plastic molded body is produced by any one of the methods.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013248968A JP6273804B2 (en) | 2013-12-02 | 2013-12-02 | Manufacturing method of fiber reinforced plastic molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013248968A JP6273804B2 (en) | 2013-12-02 | 2013-12-02 | Manufacturing method of fiber reinforced plastic molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015104895A true JP2015104895A (en) | 2015-06-08 |
JP6273804B2 JP6273804B2 (en) | 2018-02-07 |
Family
ID=53435317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013248968A Expired - Fee Related JP6273804B2 (en) | 2013-12-02 | 2013-12-02 | Manufacturing method of fiber reinforced plastic molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6273804B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017081147A (en) * | 2015-08-10 | 2017-05-18 | ザ・ボーイング・カンパニーThe Boeing Company | Multi-state bladder for manufacture of composite material |
JP2017109408A (en) * | 2015-12-17 | 2017-06-22 | 株式会社 サン・テクトロ | Production method of prepreg |
JP2019516592A (en) * | 2016-05-24 | 2019-06-20 | ゼネラル・エレクトリック・カンパニイ | System and method for forming laminate material |
CN111605228A (en) * | 2020-04-20 | 2020-09-01 | 航天材料及工艺研究所 | Light flexible prefabricated body reinforced composite material dimensional forming die and forming method |
WO2021019604A1 (en) * | 2019-07-26 | 2021-02-04 | 三菱重工業株式会社 | Composite material forming device and composite material forming method |
CN112549590A (en) * | 2020-11-20 | 2021-03-26 | 昌河飞机工业(集团)有限责任公司 | Forming tool for waist drum-shaped molded part |
CN114589936A (en) * | 2022-01-28 | 2022-06-07 | 航天材料及工艺研究所 | Manufacturing method of composite material snowmobile body |
US11691356B2 (en) | 2021-02-08 | 2023-07-04 | General Electric Company | System and method for forming stacked materials |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110815857A (en) * | 2019-11-26 | 2020-02-21 | 航天海鹰(镇江)特种材料有限公司 | Forming method and application of flexible tool for reinforcing rib and web plate co-bonding |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005067089A (en) * | 2003-08-26 | 2005-03-17 | Universal Shipbuilding Corp | Method for molding molded product |
US20050183818A1 (en) * | 2004-02-25 | 2005-08-25 | Zenkner Grant C. | Apparatus and methods for processing composite components using an elastomeric caul |
JP2007015351A (en) * | 2005-07-11 | 2007-01-25 | Kawasaki Heavy Ind Ltd | Corrective fixture for laminated composite, correcting method, and molded article |
US20070108665A1 (en) * | 2005-11-14 | 2007-05-17 | Glain Michael L | Bulk resin infusion system apparatus and method |
JP2009274248A (en) * | 2008-05-13 | 2009-11-26 | Toray Ind Inc | Method for manufacturing frp |
JP2012214042A (en) * | 2011-03-28 | 2012-11-08 | Toray Ind Inc | Method of manufacturing fiber-reinforced plastic |
JP2013513499A (en) * | 2009-12-14 | 2013-04-22 | ザ・ボーイング・カンパニー | High temperature composite tool |
JP2014504564A (en) * | 2011-01-03 | 2014-02-24 | ザ・ボーイング・カンパニー | Method and apparatus for compressing a composite radius |
-
2013
- 2013-12-02 JP JP2013248968A patent/JP6273804B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005067089A (en) * | 2003-08-26 | 2005-03-17 | Universal Shipbuilding Corp | Method for molding molded product |
US20050183818A1 (en) * | 2004-02-25 | 2005-08-25 | Zenkner Grant C. | Apparatus and methods for processing composite components using an elastomeric caul |
JP2007525345A (en) * | 2004-02-25 | 2007-09-06 | ザ・ボーイング・カンパニー | Apparatus and method for processing composite components using elastomeric backing plates |
JP2012187925A (en) * | 2004-02-25 | 2012-10-04 | Boeing Co:The | Apparatus and method for processing composite component using elastomeric caul |
JP2007015351A (en) * | 2005-07-11 | 2007-01-25 | Kawasaki Heavy Ind Ltd | Corrective fixture for laminated composite, correcting method, and molded article |
US20070108665A1 (en) * | 2005-11-14 | 2007-05-17 | Glain Michael L | Bulk resin infusion system apparatus and method |
JP2009274248A (en) * | 2008-05-13 | 2009-11-26 | Toray Ind Inc | Method for manufacturing frp |
JP2013513499A (en) * | 2009-12-14 | 2013-04-22 | ザ・ボーイング・カンパニー | High temperature composite tool |
JP2014504564A (en) * | 2011-01-03 | 2014-02-24 | ザ・ボーイング・カンパニー | Method and apparatus for compressing a composite radius |
JP2012214042A (en) * | 2011-03-28 | 2012-11-08 | Toray Ind Inc | Method of manufacturing fiber-reinforced plastic |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017081147A (en) * | 2015-08-10 | 2017-05-18 | ザ・ボーイング・カンパニーThe Boeing Company | Multi-state bladder for manufacture of composite material |
JP2017109408A (en) * | 2015-12-17 | 2017-06-22 | 株式会社 サン・テクトロ | Production method of prepreg |
JP2019516592A (en) * | 2016-05-24 | 2019-06-20 | ゼネラル・エレクトリック・カンパニイ | System and method for forming laminate material |
US10780614B2 (en) | 2016-05-24 | 2020-09-22 | General Electric Company | System and method for forming stacked materials |
WO2021019604A1 (en) * | 2019-07-26 | 2021-02-04 | 三菱重工業株式会社 | Composite material forming device and composite material forming method |
CN111605228A (en) * | 2020-04-20 | 2020-09-01 | 航天材料及工艺研究所 | Light flexible prefabricated body reinforced composite material dimensional forming die and forming method |
CN112549590A (en) * | 2020-11-20 | 2021-03-26 | 昌河飞机工业(集团)有限责任公司 | Forming tool for waist drum-shaped molded part |
CN112549590B (en) * | 2020-11-20 | 2022-11-18 | 昌河飞机工业(集团)有限责任公司 | Forming tool for waist drum-shaped molded part |
US11691356B2 (en) | 2021-02-08 | 2023-07-04 | General Electric Company | System and method for forming stacked materials |
CN114589936A (en) * | 2022-01-28 | 2022-06-07 | 航天材料及工艺研究所 | Manufacturing method of composite material snowmobile body |
CN114589936B (en) * | 2022-01-28 | 2024-03-15 | 航天材料及工艺研究所 | Manufacturing method of composite snowmobile body |
Also Published As
Publication number | Publication date |
---|---|
JP6273804B2 (en) | 2018-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6273804B2 (en) | Manufacturing method of fiber reinforced plastic molding | |
JP5597134B2 (en) | Molding method of molding material | |
EP3166787B1 (en) | Thinwall composites for electronic enclosures and other devices | |
US11046050B2 (en) | Fabrication of composite laminates using temporarily stitched preforms | |
AU2016247045B2 (en) | Composite structures with stiffeners and method of making the same | |
US8263205B2 (en) | Method of molding complex composite parts using pre-plied multi-directional continuous fiber laminate | |
US10167379B1 (en) | Hybrid fiber layup and fiber-reinforced polymeric composites produced therefrom | |
JP6325193B2 (en) | Carbon fiber reinforced composite material and method for producing the same | |
US9302446B2 (en) | Skin-stiffened composite panel | |
JP2007118598A (en) | Method and apparatus for manufacturing preform | |
TW201919839A (en) | Fiber reinforced plastic and fiber reinforced plastic manufacturing method | |
WO2022260186A1 (en) | Laminate for pressing, and pressed laminate | |
US20180194313A1 (en) | Composite material structural member and method of manufacturing the composite material structural member | |
US9987768B2 (en) | Composite tools and methods for fabricating composite tools | |
US20160129676A1 (en) | Fiber-reinforced plastic, air rectification cover for elevator and process for manufacturing fiber-reinforced plastic | |
US20140150969A1 (en) | Device for the manufacture of a bonded component and also a method | |
JP7474070B2 (en) | Manufacturing method of composite material, and composite material | |
US20240149540A1 (en) | Flat lightweight member and method of producing the same | |
JPH04251715A (en) | Manufacture of carbon fiber reinforced composite material | |
JP2023065897A (en) | Composite member | |
JP2023065898A (en) | Composite member | |
KR20240092595A (en) | Pi-shaped preform and bonded joints thereof | |
JPH04244839A (en) | Manufacture of carbon fiber-reinforced composite material | |
JPH0491934A (en) | Carbon fiber-reinforced composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171225 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6273804 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |