[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015191760A - Dispersant, dispersion composition, dispersion composition for batteries, and battery - Google Patents

Dispersant, dispersion composition, dispersion composition for batteries, and battery Download PDF

Info

Publication number
JP2015191760A
JP2015191760A JP2014067638A JP2014067638A JP2015191760A JP 2015191760 A JP2015191760 A JP 2015191760A JP 2014067638 A JP2014067638 A JP 2014067638A JP 2014067638 A JP2014067638 A JP 2014067638A JP 2015191760 A JP2015191760 A JP 2015191760A
Authority
JP
Japan
Prior art keywords
group
dispersant
added
substituent
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014067638A
Other languages
Japanese (ja)
Inventor
秋生 日水
Akio Himizu
秋生 日水
北村 健一
Kenichi Kitamura
健一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2014067638A priority Critical patent/JP2015191760A/en
Publication of JP2015191760A publication Critical patent/JP2015191760A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dispersant for a battery electrode, which is electrochemically stable against oxidation and reduction reactions in an electrode.SOLUTION: A dispersant comprises a triazine derivative expressed by the general formula (1). [Ris -X-Y; Xis an arylene group which may have a substituent group; Yis a sulfo group or a carboxyl group; Rand Rindependently H, an aryl group which may have a substituent group, a heterocyclic group which may have a substituent group, an organic pigment residue, a group expressed by -X-Y, or a group expressed by -X-Y-X; Xis an arylene group which may have a substituent group; Xis an aryl group which may have a substituent group, a heterocyclic group which may have a substituent group, or an organic pigment residue; Yis -CONH-, -NHCO-, -NHSO-, or -N=N-CH(-COCH)-CONH-, provided that both of Rand Rare never -X-Yat the same time.]

Description

本発明は、分散剤に関する。更に詳しくは、電気化学耐性のある分散剤に関する。また、該分散剤を使用した分散組成物と電池に関する。   The present invention relates to a dispersant. More particularly, the present invention relates to a dispersant having electrochemical resistance. The present invention also relates to a dispersion composition using the dispersant and a battery.

有機顔料、カーボン、無機ナノ粒子等の微粒子を溶媒中に均一に分散し、安定化させるために様々な分散剤が使用されている。特に電池電極用の炭素材料分散体に分散剤を使用する場合、電極で酸化還元反応が起こるため、それに伴う反応や分解を起こしにくい電気化学的に安定な化合物が求められていた。   Various dispersants are used to uniformly disperse and stabilize fine particles such as organic pigments, carbon, and inorganic nanoparticles in a solvent. In particular, when a dispersant is used in the carbon material dispersion for battery electrodes, an oxidation-reduction reaction occurs at the electrode, and therefore, an electrochemically stable compound that hardly causes the reaction and decomposition associated therewith has been demanded.

例えば、特許文献1〜特許文献4には、電池用分散剤として有用な有機色素誘導体またはトリアジン誘導体が開示されている。しかしながら、これらの特許文献で開示されている分散剤では、高い電圧がかかると酸化反応を起こし、繰り返し充放電による放電容量維持率の低下が起こるという問題点があった。   For example, Patent Documents 1 to 4 disclose organic dye derivatives or triazine derivatives useful as battery dispersants. However, the dispersants disclosed in these patent documents have a problem in that an oxidation reaction occurs when a high voltage is applied, and a reduction in discharge capacity retention rate due to repeated charge and discharge occurs.

国際公開公報第WO2008/108360号パンフレットInternational Publication No. WO2008 / 108360 Pamphlet 特開2009−26744号公報JP 2009-26744 A 特開2010−061932号公報JP 2010-061932 A 特開2011−162698号公報JP 2011-162698 A

以上の状況を鑑み、本発明では、従来の分散剤と比較して、電気化学的に安定な分散剤を提供することが課題である。   In view of the above situation, it is an object of the present invention to provide an electrochemically stable dispersant as compared with conventional dispersants.

本発明者らは、上記課題を解決するため鋭意検討を行った結果、トリアジン環との連結部位が酸素である化合物が、電気化学的に安定な分散剤として非常に効果があることを見出し、本発明をなすに至ったものである。   As a result of intensive studies to solve the above problems, the present inventors have found that a compound in which the connecting site to the triazine ring is oxygen is very effective as an electrochemically stable dispersant, The present invention has been achieved.

すなわち本発明は、下記一般式(1)で表わされるトリアジン誘導体よりなる分散剤に関する。   That is, the present invention relates to a dispersant comprising a triazine derivative represented by the following general formula (1).

Figure 2015191760
Figure 2015191760

[一般式(1)中、R1は、−X1−Y1で表される基を表す。X1は置換基を有してもよいアリーレン基を表し、Y1はスルホ基またはカルボキシル基を表す。
2、R3は、それぞれ独立に水素原子、置換基を有してもよいアリール基、置換基を有してもよい複素環基、有機色素残基、−X1−Y1で表される基、または−X2−Y2−X3で表される基を表す。X2は置換基を有してもよいアリーレン基を表す。X3は置換基を有してもよいアリール基、置換基を有してもよい複素環基、有機色素残基を表す。Y2は−CONH−、−NHCO−、−NHSO2−、−N=N−CH(−COCH3)−CONH−を表す。但し、R2、R3は、同時に−X1−Y1になることはない。]
[In General Formula (1), R 1 represents a group represented by —X 1 —Y 1 . X 1 represents an arylene group which may have a substituent, and Y 1 represents a sulfo group or a carboxyl group.
R 2 and R 3 are each independently represented by a hydrogen atom, an aryl group that may have a substituent, a heterocyclic group that may have a substituent, an organic dye residue, or —X 1 —Y 1. represents a that group or a group represented by -X 2 -Y 2 -X 3,. X 2 represents an arylene group which may have a substituent. X 3 represents an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or an organic dye residue. Y 2 represents —CONH—, —NHCO—, —NHSO 2 —, —N═N—CH (—COCH 3 ) —CONH—. However, R 2 and R 3 are not simultaneously -X 1 -Y 1 . ]

また、本発明は、さらに、アミンを含んでなる前記分散剤に関する。   The present invention further relates to the dispersant comprising an amine.

また、本発明は、前記分散剤と炭素材料と溶剤とを含んでなる分散組成物に関する。   The present invention also relates to a dispersion composition comprising the dispersant, a carbon material, and a solvent.

また、本発明は、さらに、バインダーを含んでなる前記分散組成物に関する。   The present invention further relates to the dispersion composition comprising a binder.

また、本発明は、前記分散組成物と活物質とを含んでなる電池用分散組成物に関する。   The present invention also relates to a battery dispersion composition comprising the dispersion composition and an active material.

また、本発明は、集電体上に正極合剤層を有する正極と、集電体上に負極合剤層を有する負極と、電解質とを具備してなる電池であって、正極合剤層が前記電池用分散組成物を使用して形成されてなる電池に関する。   The present invention also provides a battery comprising a positive electrode having a positive electrode mixture layer on a current collector, a negative electrode having a negative electrode mixture layer on the current collector, and an electrolyte, the positive electrode mixture layer Relates to a battery formed by using the battery dispersion composition.

本発明により、従来公知の分散剤を用いた場合よりも、電気化学的に安定な分散組成物を得ることが可能となる。その結果、高い電圧が電極にかかった場合でも、酸化反応を起こさず、電池容量や充放電サイクル特性等の電池特性に優れた電池を提供することが可能となる。   According to the present invention, an electrochemically stable dispersion composition can be obtained as compared with the case where a conventionally known dispersant is used. As a result, even when a high voltage is applied to the electrode, it is possible to provide a battery having excellent battery characteristics such as battery capacity and charge / discharge cycle characteristics without causing an oxidation reaction.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

<分散剤>
本発明の一態様は、一般式(1)で表わされるトリアジン誘導体よりなる分散剤である。一般式(1)中、R1は、−X1−Y1で表される基を表す。X1は置換基を有してもよいアリーレン基を表し、Y1はスルホ基またはカルボキシル基を表す。
<Dispersant>
One embodiment of the present invention is a dispersant comprising a triazine derivative represented by the general formula (1). In General Formula (1), R 1 represents a group represented by —X 1 —Y 1 . X 1 represents an arylene group which may have a substituent, and Y 1 represents a sulfo group or a carboxyl group.

1の置換基を有してもよいアリーレン基の「置換基」は、同一でも異なっても良く、その具体例としては、フッ素、塩素、臭素などのハロゲン基、ニトロ基、アルキル基、アリール基、シクロアルキル基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基等を挙げることができる。また、これらの置換基は、複数あっても良い。 The “substituents” of the arylene group which may have a substituent for X 1 may be the same or different. Specific examples thereof include halogen groups such as fluorine, chlorine and bromine, nitro groups, alkyl groups, aryls. Group, cycloalkyl group, alkoxyl group, aryloxy group, alkylthio group, arylthio group and the like. Moreover, there may be a plurality of these substituents.

置換基を有してもよいアリーレン基の「アリーレン基」は、フェニレン基、ナフチレン基、アンスリレン基等が挙げられる。   Examples of the “arylene group” of the arylene group which may have a substituent include a phenylene group, a naphthylene group, and an anthrylene group.

1は、置換基数が少ないフェニレン基またはナフチレン基が好ましく、置換基をもたないフェニレン基またはナフチレン基がより好ましい。 X 1 is preferably a phenylene group or naphthylene group having a small number of substituents, and more preferably a phenylene group or naphthylene group having no substituent.

2、R3は、それぞれ独立に水素原子、置換基を有してもよいアリール基、置換基を有してもよい複素環基、有機色素残基、−X1−Y1で表される基、または−X2−Y2−X3で表される基を表す。X2は置換基を有してもよいアリーレン基を表す。X3は置換基を有してもよいアリール基、置換基を有してもよい複素環基、有機色素残基を表す。Y2は−CONH−、−NHCO−、−NHSO2−、−N=N−CH(−COCH3)−CONH−を表す。但し、R2、R3は、同時に−X1−Y1になることはない。 R 2 and R 3 are each independently represented by a hydrogen atom, an aryl group that may have a substituent, a heterocyclic group that may have a substituent, an organic dye residue, or —X 1 —Y 1. represents a that group or a group represented by -X 2 -Y 2 -X 3,. X 2 represents an arylene group which may have a substituent. X 3 represents an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or an organic dye residue. Y 2 represents —CONH—, —NHCO—, —NHSO 2 —, —N═N—CH (—COCH 3 ) —CONH—. However, R 2 and R 3 are not simultaneously -X 1 -Y 1 .

2、R3の置換基を有してもよいアリール基、置換基を有してもよい複素環基の「置換基」は、X1の置換基と同義である。 The “substituent” of the aryl group which may have a substituent of R 2 and R 3 and the heterocyclic group which may have a substituent has the same meaning as the substituent of X 1 .

2、R3の置換基を有してもよいアリール基の「アリール基」は、フェニル基、ナフチル基、アンスリル基等が挙げられる。 Examples of the “aryl group” of the aryl group which may have a substituent for R 2 and R 3 include a phenyl group, a naphthyl group, and an anthryl group.

2、R3の置換基を有してもよい複素環基の「複素環基」は、例えば、窒素原子、酸素原子、硫黄原子、リン原子を含む、芳香族あるいは脂肪族の複素環が挙げられ、具体的には、チエニル基、ベンゾ[b]チエニル基、ナフト[2,3−b]チエニル基、ピロリル基、チアントレニル基、フリル基、ピラニル基、イソベンゾフラニル基、クロメニル基、キサンテニル基、フェノキサチイニル基、2H−ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリジニル基、イソインドリル基、3H−インドリル基、インドリル基、1H−インダゾリル基、プリニル基、4H−キノリジニル基、イソキノリル基、キノリル基、フタラジニル基、ナフチリジニル基、キノキサリニル基、キナゾリニル基、シンノリニル基、プテリジニル基、4aH−カルバゾリル基、カルバゾリル基、β−カルボリニル基、フェナントリジニル基、アクリジニル基、ペリミジニル基、フェナントロリニル基、フェナジニル基、フェナルサジニル基、イソチアゾリル基、フェノチアジニル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、イソクロマニル基、クロマニル基、ピロリジニル基、ピロリニル基、イミダゾリジニル基、イミダゾリニル基、ピラゾリジニル基、ピラゾリニル基、ピペリジル基、ピペラジニル基、インドリニル基、イソインドリニル基、キヌクリジニル基、モルホリニル基、チオキサントリル基、ベンゾフリル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンゾイミダゾリル基、ベンゾトリアゾリル基、等が挙げられる。とりわけ、少なくとも窒素原子、酸素原子のいずれかを含む複素環基が分散性に優れるため好ましく、中でもカルバゾリル基、ベンゾイミダゾリル基がより好ましい。 The “heterocyclic group” of the heterocyclic group which may have a substituent of R 2 or R 3 is, for example, an aromatic or aliphatic heterocyclic ring containing a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom. Specifically, thienyl group, benzo [b] thienyl group, naphtho [2,3-b] thienyl group, pyrrolyl group, thiantenyl group, furyl group, pyranyl group, isobenzofuranyl group, chromenyl group, Xanthenyl group, phenoxathiinyl group, 2H-pyrrolyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, indolizinyl group, isoindolyl group, 3H-indolyl group, indolyl group, 1H-indazolyl group , Purinyl group, 4H-quinolidinyl group, isoquinolyl group, quinolyl group, phthalazinyl group, naphthyridinyl group, quinoxalinyl Quinazolinyl group, cinnolinyl group, pteridinyl group, 4aH-carbazolyl group, carbazolyl group, β-carbolinyl group, phenanthridinyl group, acridinyl group, perimidinyl group, phenanthrolinyl group, phenazinyl group, phenalsadinyl group, isothiazolyl group, Phenothiazinyl, isoxazolyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, indolinylyl, isoindolinyl Group, morpholinyl group, thioxanthryl group, benzofuryl group, benzothiazolyl group, benzoxazolyl group, benzoimidazolyl group, benzotriazolyl group Etc. The. In particular, a heterocyclic group containing at least either a nitrogen atom or an oxygen atom is preferable because of its excellent dispersibility, and among these, a carbazolyl group and a benzoimidazolyl group are more preferable.

2、R3の有機色素残基の「有機色素」は、例えば、ジケトピロロピロール系色素、アゾ、ジスアゾ、ポリアゾ等のアゾ系色素、無金属フタロシアニン系色素、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系色素、キナクリドン系色素、ジオキサジン系色素、ぺリノン系色素、ぺリレン系色素、チオインジゴ系色素、イソインドリン系色素、イソインドリノン系色素、キノフタロン系色素、スレン系色素等が挙げられる。中でもアゾ系色素、アントラキノン系色素、無金属フタロシアニン系色素、キナクリドン系色素、ジオキサジン系色素が分散性に優れるため好ましい。さらに好ましくはアゾ系色素、キナクリドン系色素、ジオキサジン系色素である。 Examples of the “organic dye” of the organic dye residue of R 2 and R 3 include diketopyrrolopyrrole dyes, azo dyes such as azo, disazo, polyazo, metal-free phthalocyanine dyes, diaminodianthraquinone, anthrapyrimidine, Anthraquinone dyes such as flavantron, anthanthrone, indanthrone, pyranthrone, violanthrone, quinacridone dye, dioxazine dye, perinone dye, perylene dye, thioindigo dye, isoindoline dye, isoindolinone dye Quinophthalone dyes, selenium dyes, and the like. Of these, azo dyes, anthraquinone dyes, metal-free phthalocyanine dyes, quinacridone dyes, and dioxazine dyes are preferable because of their excellent dispersibility. More preferred are azo dyes, quinacridone dyes, and dioxazine dyes.

2の置換基を有してもよいアリーレン基は、X1の置換基を有してもよいアリーレン基と同義である。 The arylene group which may have a substituent for X 2 has the same meaning as the arylene group which may have a substituent for X 1 .

3の置換基を有してもよいアリール基は、R2、R3の置換基を有してもよいアリール基と同義である。 The aryl group which may have a substituent for X 3 has the same meaning as the aryl group which may have a substituent for R 2 and R 3 .

3の置換基を有してもよい複素環基の「置換基」は、X1の置換基と同義である。 The “substituent” of the heterocyclic group which may have a substituent for X 3 has the same meaning as the substituent for X 1 .

3の置換基を有してもよい複素環基の「複素環基」は、R2、R3の複素環基と同義である。 The “heterocyclic group” of the heterocyclic group which may have a substituent for X 3 has the same meaning as the heterocyclic group for R 2 and R 3 .

3の有機色素残基は、R2、R3の有機色素残基と同義である。 The organic dye residue of X 3 is synonymous with the organic dye residues of R 2 and R 3 .

2の−CONH−、−NHCO−、−NHSO2−、−N=N−CH(−COCH3)−CONH−は、左側がX2との結合位置を、右側がX3との結合位置を表す。 Y 2 —CONH—, —NHCO—, —NHSO 2 —, —N═N—CH (—COCH 3 ) —CONH— is the bonding position with X 2 on the left side and the bonding position with X 3 on the right side. Represents.

2、R3の組み合わせとしては、水素原子、置換基をもたない複素環基、有機色素残基、または−X2−Y2−X3で表される基のうち置換基をもたない複素環基または有機色素残基を有するものから選ばれることが好ましく、さらには上記の複素環基がカルバゾリル基またはベンゾイミダゾリル基であるもの、有機色素残基がアゾ系色素、キナクリドン系色素、ジオキサジン系色素であるものから選ばれることが好ましい。 The combination of R 2 and R 3 includes a hydrogen atom, a heterocyclic group having no substituent, an organic dye residue, or a group represented by —X 2 —Y 2 —X 3. Are preferably selected from those having no heterocyclic group or organic dye residue, and those in which the above heterocyclic group is a carbazolyl group or a benzoimidazolyl group, and the organic dye residue is an azo dye, quinacridone dye, dioxazine It is preferable that the dye is selected from those which are system dyes.

また、分散剤含有量としては、後に説明する炭素材料に対して質量%で0.5〜20%が好ましく、0.5〜10%がより好ましく、0.5〜5%がさらに好ましい。   Moreover, as a dispersing agent content, 0.5-20% is preferable with respect to the carbon material demonstrated later by mass%, 0.5-10% is more preferable, 0.5-5% is further more preferable.

また、本発明の他の態様は、一般式(1)で表わされるトリアジン誘導体に、さらに、アミンを含有させた分散剤である。これは、特に電池用途におけるカーボンブラック等の炭素材料に対する分散剤として好適に使用することができる。   Another aspect of the present invention is a dispersant in which an amine is further contained in the triazine derivative represented by the general formula (1). This can be suitably used as a dispersant for a carbon material such as carbon black in battery applications.

ここで、一般式(1)で表わされるトリアジン誘導体と併用可能なアミンとしては、水酸基やエーテル結合を含んでいてもよい炭素数1〜40の直鎖または分岐の1級、2級、3級アルキルアミンが挙げられる。   Here, as an amine that can be used in combination with the triazine derivative represented by the general formula (1), a linear or branched primary, secondary, tertiary, which has 1 to 40 carbon atoms and may contain a hydroxyl group or an ether bond. An alkylamine is mentioned.

水酸基やエーテル結合を含んでいてもよい炭素数1〜40の直鎖または分岐の1級アルキルアミンとしては、プロピルアミン、ブチルアミン、イソブチルアミン、オクチルアミン、2ーエチルヘキシルアミン、ラウリルアミン、ステアリルアミン、オレイルアミン、2−アミノエタノール、3−アミノプロパノール、3−エトキシプロピルアミン、3−ラウリルオキシプロピルアミン等が挙げられる。
水酸基で置換されていてもよい炭素数1〜40の直鎖または分岐の2級アルキルアミンとしては、ジブチルアミン、ジイソブチルアミン、N−メチルヘキシルアミン、ジオクチルアミン、ジステアリルアミン、2−メチルアミノエタノール等が挙げられる。
水酸基で置換されていてもよい炭素数1〜40の直鎖または分岐の3級アルキルアミンとしては、トリエチルアミン、トリブチルアミン、N,N−ジメチルブチルアミン、N,N−ジイソプロピルエチルアミン、ジメチルオクチルアミン、トリオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジラウリルモノメチルアミン、トリエタノールアミン、2−(ジメチルアミノ)エタノール等が挙げられる。
Examples of the linear or branched primary alkylamine having 1 to 40 carbon atoms which may contain a hydroxyl group or an ether bond include propylamine, butylamine, isobutylamine, octylamine, 2-ethylhexylamine, laurylamine, stearylamine, Examples include oleylamine, 2-aminoethanol, 3-aminopropanol, 3-ethoxypropylamine, and 3-lauryloxypropylamine.
Examples of the linear or branched secondary alkylamine having 1 to 40 carbon atoms which may be substituted with a hydroxyl group include dibutylamine, diisobutylamine, N-methylhexylamine, dioctylamine, distearylamine, and 2-methylaminoethanol. Etc.
Examples of the linear or branched tertiary alkylamine having 1 to 40 carbon atoms which may be substituted with a hydroxyl group include triethylamine, tributylamine, N, N-dimethylbutylamine, N, N-diisopropylethylamine, dimethyloctylamine, Examples include octylamine, dimethyldecylamine, dimethyllaurylamine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, dilaurylmonomethylamine, triethanolamine, and 2- (dimethylamino) ethanol.

この内、炭素数1〜40の直鎖もしくは分岐の1級、2級または3級アルキルアミンが好ましく、炭素数5〜20の直鎖もしくは分岐の1級、2級または3級アルキルアミンがより好ましく、炭素数8〜20の直鎖もしくは分岐の1級、2級または3級アルキルアミンがさらに好ましい。   Among these, a linear or branched primary, secondary or tertiary alkylamine having 1 to 40 carbon atoms is preferable, and a linear or branched primary, secondary or tertiary alkylamine having 5 to 20 carbon atoms is more preferable. A linear or branched primary, secondary or tertiary alkylamine having 8 to 20 carbon atoms is more preferable.

本発明で使用されるアミンの添加量は、特に限定されるものではないが、一般式(1)で表わされるトリアジン誘導体1モル当量に対して、0.1モル当量以上、3モル当量以下が好ましく、0.5モル当量以上、2モル当量以下がより好ましい。   The addition amount of the amine used in the present invention is not particularly limited, but is 0.1 mole equivalent or more and 3 mole equivalent or less with respect to 1 mole equivalent of the triazine derivative represented by the general formula (1). Preferably, 0.5 molar equivalent or more and 2 molar equivalent or less are more preferable.

<炭素材料>
本発明で使用される炭素材料は、特に限定されるものではないが、電池用の炭素材料として使用する場合、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー、フラーレン等を単独で、もしくは2種類以上併せて使用することが好ましい。炭素材料として用いる場合、導電性、入手の容易さ、およびコスト面から、カーボンブラックの使用が好ましい。
<Carbon material>
The carbon material used in the present invention is not particularly limited, but when used as a carbon material for a battery, graphite, carbon black, carbon nanotube, carbon nanofiber, carbon fiber, fullerene, etc. alone, Or it is preferable to use 2 or more types together. When used as a carbon material, carbon black is preferably used from the viewpoint of conductivity, availability, and cost.

本発明に用いられるカーボンブラックとしては、市販のファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、ケッチェンブラックなど各種のものを単独で、もしくは2種類以上併せて使用することができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。また、カーボンブラクの粒径は、0.01〜1μmが好ましく、0.01〜0.2μmがより好ましい。ここでいう粒径とは、電子顕微鏡で測定された平均一次粒子径を示し、この物性値は一般にカーボンブラックの物理的特性を表すのに用いられている。   As the carbon black used in the present invention, various types such as commercially available furnace black, channel black, thermal black, acetylene black, and ketjen black can be used alone or in combination of two or more. Ordinarily oxidized carbon black, hollow carbon and the like can also be used. The carbon black has a particle diameter of preferably 0.01 to 1 μm, more preferably 0.01 to 0.2 μm. As used herein, the particle size refers to the average primary particle size measured with an electron microscope, and the physical property values are generally used to represent the physical characteristics of carbon black.

本発明に用いられるカーボンナノチューブは、グラファイトを筒状に巻いた形状を有する炭素材料であり、電子顕微鏡で観察して求めた直径は数nmから100nm程度で、長さは数nmから1mm程度である。半導体特性、塗膜の透明性等を発揮するには、直径50nm以下、特に20nm以下が好ましい。長さは100nmから1mmが好ましく、特に500nmから1mmが好ましい。カーボンナノチューブには単層のものや多層構造になったものがあるが、いずれの構造であってもよい。また、カーボンナノファイバーとして分類される、電子顕微鏡で観察して求めた繊維径が100nmから1μm程度のものについても使用可能である。   The carbon nanotube used in the present invention is a carbon material having a shape in which graphite is wound in a cylindrical shape. The diameter obtained by observation with an electron microscope is about several nm to 100 nm, and the length is about several nm to 1 mm. is there. In order to exhibit semiconductor characteristics, transparency of the coating film, etc., the diameter is preferably 50 nm or less, particularly preferably 20 nm or less. The length is preferably from 100 nm to 1 mm, particularly preferably from 500 nm to 1 mm. There are single-walled carbon nanotubes and multi-walled carbon nanotubes, but any structure may be used. In addition, fibers having a fiber diameter of about 100 nm to about 1 μm, which are classified as carbon nanofibers and obtained by observation with an electron microscope, can be used.

<溶剤>
本発明に使用する溶剤としては、非プロトン性の極性溶剤であることが好ましい。特に電池用途で使用する場合には、アミド系溶剤が好ましく、特に、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン、ヘキサメチルリン酸トリアミド等のアミド系非プロトン性溶剤の使用が好ましい。
<Solvent>
The solvent used in the present invention is preferably an aprotic polar solvent. Particularly when used in battery applications, amide solvents are preferred, and in particular, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl- The use of amide aprotic solvents such as 2-pyrrolidone and hexamethylphosphoric triamide is preferred.

<バインダー>
使用するバインダーとしては特に限定されないが、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、スチレン、ビニルブチラール、ビニルアセタール、ビニルピロリドン等を構成単位として含む重合体または共重合体、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシメチルセルロースのようなセルロース樹脂、スチレン−ブタジエンゴム、フッ素ゴムのようなゴム類、ポリアニリン、ポリアセチレンのような導電性樹脂等が挙げられる。また、これらの樹脂の変性体および共重合体でも良い。特に、電池用途で使用する場合には、耐性面から分子内にフッ素原子を含む高分子化合物、例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、テトラフルオロエチレン等の使用が好ましい。これらバインダーは、1種または複数を組み合わせて使用することもできる。
<Binder>
The binder to be used is not particularly limited, but ethylene, propylene, vinyl chloride, vinyl acetate, vinyl alcohol, maleic acid, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, acrylonitrile, styrene, vinyl butyral, vinyl acetal, Polymer or copolymer containing vinylpyrrolidone as a structural unit, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, acrylic resin, formaldehyde resin, silicon resin, fluorine resin And cellulose resins such as carboxymethyl cellulose, rubbers such as styrene-butadiene rubber and fluororubber, and conductive resins such as polyaniline and polyacetylene. Moreover, the modified body and copolymer of these resin may be sufficient. In particular, when used in battery applications, it is preferable to use a polymer compound containing a fluorine atom in the molecule, for example, polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene, etc. from the viewpoint of resistance. These binders can be used alone or in combination.

<活物質>
活物質は、電池内において、電子を送り出し、または受け取り、酸化または還元反応を行う物質である。正極に用いられる正極活物質と、負極に用いられる負極活物質が挙げられる。
<Active material>
The active material is a material that sends out or receives electrons and performs an oxidation or reduction reaction in the battery. Examples include a positive electrode active material used for a positive electrode and a negative electrode active material used for a negative electrode.

<正極活物質>
使用する正極活物質は、電池用活物質として機能するものであれば、特に限定はされない。例えば、リチウムイオン二次電池に使用する場合には、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。
<Positive electrode active material>
The positive electrode active material to be used is not particularly limited as long as it functions as a battery active material. For example, when used in a lithium ion secondary battery, metal oxides capable of doping or intercalating lithium ions, metal compounds such as metal sulfides, conductive polymers, and the like can be used.

具体的には、リチウムマンガン複合酸化物(例えばLixMn24またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(LixCo2)、リチウムニッケルコバルト複合酸化物(例えばLixNi1-yCoy2)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-y2)、リチウムニッケルマンガンコバルト複合酸化物(例えばLixNi1/3Co1/3Mn1/32)、スピネル型リチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4)等のリチウムと遷移金属との複合酸化物粉末、オリビン構造を有するリチウムリン酸化物粉末(例えばLixFePO4、LixFe1-yMnyPO4、LixCoPO4など)、酸化マンガン、酸化鉄、酸化銅、酸化ニッケル、バナジウム酸化物(例えばV25、V613)、酸化チタン等の遷移金属酸化物粉末、硫酸鉄(Fe2(SO43)、TiS2、およびFeS等の遷移金属硫化物粉末等が挙げられる。また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性ポリマーを使用することもできる。これら正極活物質は、1種または複数を組み合わせて使用することもできる。 Specifically, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide (for example, Li x NiO 2 ), lithium cobalt composite oxide (Li x Co 2 ), lithium nickel cobalt composite oxide (e.g., Li x Ni 1-y Co y O 2), lithium manganese cobalt composite oxides (e.g., Li x Mn y Co 1-y O 2), lithium nickel manganese cobalt composite oxide (e.g., Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 ), spinel-type lithium manganese nickel composite oxide (for example, Li x Mn 2 -y Ni y O 4 ), etc., composite oxide powder of lithium and transition metal , lithium phosphorus oxide powder having an olivine structure (for example, Li x FePO 4, Li x Fe 1-y Mn y PO 4, Li x CoPO 4), manganese oxide, iron oxide, Copper, nickel oxide, vanadium oxide (e.g. V 2 O 5, V 6 O 13), a transition metal oxide powder such as titanium oxide, iron sulfate (Fe 2 (SO 4) 3 ), TiS 2, and FeS, etc. Transition metal sulfide powder and the like. In addition, conductive polymers such as polyaniline, polyacetylene, polypyrrole, and polythiophene can also be used. These positive electrode active materials can be used alone or in combination.

<負極活物質>
使用する負極活物質としては特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属Li、またはその合金、スズ合金、シリコン合金負極、LiXFe23、LiXFe34、LiXWO2等の金属酸化物系、ポリアセチレン、ポリ−p−フェニレン等の導電性高分子、ソフトカーボンやハードカーボンといったアモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が用いられる。これら負極活物質は、1種または複数を組み合わせて使用することもできる。
<Negative electrode active material>
There are no particular limitations on the negative electrode active material to be used, lithium ion doping or capable of intercalating Li metal or its alloy, tin alloy, silicon alloy negative electrode, Li X Fe 2 O 3, Li X Fe 3 O 4 Metal oxides such as Li x WO 2 , conductive polymers such as polyacetylene and poly-p-phenylene, amorphous carbonaceous materials such as soft carbon and hard carbon, artificial graphite such as highly graphitized carbon materials, or Carbonaceous powders such as natural graphite, carbon black, mesophase carbon black, resin-fired carbon materials, gas-grown carbon fibers, carbon fibers and the like are used. These negative electrode active materials can be used alone or in combination.

<分散組成物>
以上述べた通り、本発明の分散組成物は、均質で良好な塗膜物性が求められる印刷インキ、塗料、プラスチック、トナー、カラーフィルタレジストインキ、電池等の分野に使用することができる。特に、均質で良好な塗膜物性と、表面抵抗の低い電極層に適した塗膜を提供することができるため、電池の電極を形成する用途で好適に使用することができる。
<Dispersion composition>
As described above, the dispersion composition of the present invention can be used in the fields of printing inks, paints, plastics, toners, color filter resist inks, batteries and the like that require uniform and good film properties. In particular, since a coating film suitable for an electrode layer having a uniform and good coating film property and a low surface resistance can be provided, it can be suitably used in an application for forming a battery electrode.

分散は、分散剤と炭素材料、溶剤、更に必要に応じて、バインダー等の種々の添加剤と共に、ボールミル、ビーズミル、ロールミルまたは高速度衝撃ミル等の分散装置を使用して分散組成物を得ることができる。   Dispersion is obtained by using a dispersing device such as a ball mill, a bead mill, a roll mill, or a high-speed impact mill together with a dispersant, a carbon material, a solvent, and optionally various additives such as a binder. Can do.

<電池用分散組成物>
本発明の電池用分散組成物は、上記分散剤、炭素材料、溶剤、バインダーを含む分散組成物に、正極活物質を含有させた電池用組成物(以下、「正極合剤ペースト」と云う)として使用することが好ましい。
<Dispersion composition for battery>
The battery dispersion composition of the present invention is a battery composition in which a positive electrode active material is contained in a dispersion composition containing the dispersant, carbon material, solvent, and binder (hereinafter referred to as “positive electrode mixture paste”). It is preferable to use as.

この正極合剤ペーストは、上記分散剤と、炭素材料と、溶剤と、バインダーと、活物質とを混合することにより製造することができる。各成分の添加順序などについては限定されるものではなく、例えば、全成分を一括に混合する方法、炭素材料を分散剤によってあらかじめ溶剤に分散させ、そこに残りの成分を投入して混合する方法、分散剤を溶剤に溶解した後、炭素材料とバインダーを投入して、炭素材料の分散とバインダーの溶解を同時に行い、そこに残りの成分を投入して混合する方法等が挙げられる。また、必要に応じて上記に記載の溶剤を更に追加しても良い。   This positive electrode mixture paste can be produced by mixing the dispersant, a carbon material, a solvent, a binder, and an active material. The order of addition of each component is not limited. For example, a method in which all components are mixed at once, a method in which a carbon material is dispersed in a solvent in advance using a dispersant, and the remaining components are added thereto and mixed. In addition, after dissolving the dispersant in a solvent, a carbon material and a binder are added, the carbon material is dispersed and the binder is dissolved simultaneously, and the remaining components are added and mixed. Moreover, you may add the above-mentioned solvent further as needed.

合剤ペーストを製造するための装置としては、顔料分散等に通常用いられている分散機が使用できる。例えば、ディスパー、ホモミキサー、プラネタリーミキサー等のミキサー類、ホモジナイザー(エム・テクニック社製「クレアミックス」、PRIMIX社「フィルミックス」等)類、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、コボールミル等のメディア型分散機、湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、奈良機械社製「MICROS」等のメディアレス分散機、その他ロールミル等が挙げられるが、これらに限定されるものではない。   As an apparatus for producing the mixture paste, a disperser usually used for pigment dispersion or the like can be used. For example, mixers such as dispersers, homomixers, planetary mixers, homogenizers ("Clearmix" manufactured by M Technique, PRIMIX "Fillmix", etc.), paint conditioners (manufactured by Red Devil), ball mills, sand mills ( Media type dispersers such as “Dynomill” manufactured by Shinmaru Enterprises, Inc.), Attritor, Pearl Mill (“DCP Mill” manufactured by Eirich), Coball Mill, etc., Wet Jet Mill (“Genus PY” manufactured by Genus, Sugino Machine Co., Ltd.) Media-less dispersers such as “Starburst” manufactured by Nanomizer, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, and “MICROS” manufactured by Nara Machinery Co., other roll mills, etc. It is not limited to.

また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。金属混入防止処理としては、例えばメディア型分散機を使用する場合は、アジテーターおよびベッセルがセラミック製または樹脂製の分散機を使用する方法や、金属製アジテーターおよびベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。メディアとしては、ガラスビーズまたはジルコニアビーズもしくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散機は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。   Moreover, as the disperser, it is preferable to use a disperser that has been subjected to a metal contamination prevention treatment from the disperser. For example, when using a media-type disperser, a metal agitator and vessel are made of ceramic or resin dispersers, or the metal agitator and vessel surface are coated with tungsten carbide spray or resin coating. It is preferable to use a disperser that has been treated as described above. As the medium, glass beads, ceramic beads such as zirconia beads or alumina beads are preferably used. Moreover, also when using a roll mill, it is preferable to use a ceramic roll. Only one type of disperser may be used, or a plurality of types of devices may be used in combination.

<電池>
次に、本発明の組成物を用いた電池について説明する。本発明の組成物は、特にリチウムイオン二次電池に好適に使用することができる。以下ではリチウムイオン二次電池について説明するが、本発明の組成物を用いた電池はリチウムイオン二次電池に限定されるものではない。
<Battery>
Next, a battery using the composition of the present invention will be described. The composition of the present invention can be suitably used particularly for a lithium ion secondary battery. Hereinafter, a lithium ion secondary battery will be described, but a battery using the composition of the present invention is not limited to a lithium ion secondary battery.

リチウムイオン二次電池は、集電体上に正極合剤層を有する正極と、集電体上に負極合剤層を有する負極と、リチウムを含む電解質とを具備する。   The lithium ion secondary battery includes a positive electrode having a positive electrode mixture layer on a current collector, a negative electrode having a negative electrode mixture layer on the current collector, and an electrolyte containing lithium.

電極について、使用する集電体の材質や形状は特に限定されず、材質としては、アルミニウム、銅、ニッケル、チタン、ステンレス等の金属や合金が用いられるが、特に正極材料としてはアルミニウムが、負極材料としては銅の使用が好ましい。また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、穴あき箔状のもの、およびメッシュ状のものも使用できる。   Regarding the electrode, the material and shape of the current collector to be used are not particularly limited, and as the material, metals and alloys such as aluminum, copper, nickel, titanium, and stainless steel are used. In particular, as the positive electrode material, aluminum is used as the negative electrode. The material is preferably copper. As the shape, a flat plate foil is generally used, but a roughened surface, a perforated foil shape, and a mesh shape can also be used.

電極合剤層は、集電体上に上記の電極合剤ペーストを直接塗布し、乾燥することで形成できる。電極合剤層の厚みとしては、一般的には1μm以上、500μm以下であり、好ましくは10μm以上、300μm以下である。塗布方法については特に制限はなく、公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法、静電塗装法等が挙げられる。また、塗布後に平版プレスやカレンダーロール等による圧延処理を行っても良い。   The electrode mixture layer can be formed by directly applying the electrode mixture paste on a current collector and drying it. The thickness of the electrode mixture layer is generally 1 μm or more and 500 μm or less, preferably 10 μm or more and 300 μm or less. There is no restriction | limiting in particular about the coating method, A well-known method can be used. Specific examples include a die coating method, a dip coating method, a roll coating method, a doctor coating method, a spray coating method, a gravure coating method, a screen printing method, and an electrostatic coating method. Moreover, you may perform the rolling process by a lithographic press, a calender roll, etc. after application | coating.

リチウムイオン二次電池を構成する電解液としては、リチウムを含んだ電解質を非水系の溶剤に溶解したものを用いる。電解質としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiCF3SO3、Li(CF3SO22N、LiC49SO3、Li(CF3SO23C、LiI、LiBr、LiCl、LiAlCl、LiHF2、LiSCN、LiBPh4等が挙げられるがこれらに限定されない。 As an electrolytic solution constituting the lithium ion secondary battery, a solution in which an electrolyte containing lithium is dissolved in a non-aqueous solvent is used. As electrolytes, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C , LiI, LiBr, LiCl, LiAlCl, LiHF 2 , LiSCN, LiBPh 4 and the like, but are not limited thereto.

非水系の溶剤としては特に限定はされないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート類、γ−ブチロラクトン、γ−バレロラクトン、γ−オクタノイックラクトン等のラクトン類、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−メトキシエタン、1,2−エトキシエタン、1,2−ジブトキシエタン等のグライム類、メチルフォルメート、メチルアセテート、メチルプロピオネート等のエステル類、ジメチルスルホキシド、スルホラン等のスルホキシド類、アセトニトリル等のニトリル類、1−メチル−2−ピロリドン等が挙げられる。またこれらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。   The non-aqueous solvent is not particularly limited, but carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, γ-butyrolactone, γ-valerolactone, γ-octanoic lactone. Lactones such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, 1,2-dibutoxyethane, etc. Glymes, esters such as methyl formate, methyl acetate and methyl propionate, sulfoxides such as dimethyl sulfoxide and sulfolane, nitriles such as acetonitrile, and 1-methyl-2-pyrrolidone . These solvents may be used alone or in combination of two or more.

更に上記電解液を、ポリマーマトリクスに保持しゲル状とした高分子電解質とすることもできる。ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、ポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。   Furthermore, the electrolyte solution may be a gelled polymer electrolyte held in a polymer matrix. Examples of the polymer matrix include, but are not limited to, an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, a polysiloxane having a polyalkylene oxide segment, and the like.

本発明の組成物を用いた電池の構造については特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレーターとから構成され、ペーパー型、円筒型、ボタン型、積層型など、使用する目的に応じた種々の形状とすることができる。   The structure of the battery using the composition of the present invention is not particularly limited, but is usually composed of a positive electrode and a negative electrode, and a separator provided as necessary, such as a paper type, a cylindrical type, a button type, a laminated type, Various shapes can be formed according to the purpose of use.

本発明の分散剤は、特に電池やコンデンサー、キャパシター用途で使用されるカーボンブラック等の炭素材料の分散剤として好適に使用することができるが、各種インキ、塗料、カラーフィルターレジスト等の着色組成物に使用される顔料の分散剤としても使用可能である。   The dispersant of the present invention can be suitably used as a dispersant for carbon materials such as carbon black used for batteries, capacitors and capacitors, but it can be used as a coloring composition for various inks, paints, color filter resists and the like. It can also be used as a dispersant for pigments used in the above.

以下、実施例に基づき本発明を詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。また、個々の組成物の違いを明確にするために、分散剤、炭素材料、溶剤からなる分散組成物を「炭素材料分散液」、分散剤、炭素材料、溶剤、バインダーからなる分散組成物を「炭素材料分散ワニス」、分散剤、炭素材料、溶剤、バインダー、活物質からなる電池用分散組成物を「合剤ペースト」と呼称することとする。また、特に断わりの無い限り、溶剤として使用したN−メチル−2−ピロリドンを「NMP」、質量%を「%」と略記する。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example, unless the summary is exceeded. In addition, in order to clarify the difference between individual compositions, a dispersion composition comprising a dispersant, a carbon material, and a solvent is referred to as a “carbon material dispersion”, and a dispersion composition comprising a dispersant, a carbon material, a solvent, and a binder. A battery dispersion composition comprising “carbon material dispersion varnish”, a dispersant, a carbon material, a solvent, a binder, and an active material is referred to as “mixture paste”. Unless otherwise specified, N-methyl-2-pyrrolidone used as a solvent is abbreviated as “NMP”, and mass% is abbreviated as “%”.

<分散剤>
以下に本発明の一般式(1)で表わされるトリアジン誘導体よりなる分散剤A〜Rの構造を示す。また、比較例として挙げる分散剤S〜Uの構造を示す。
<Dispersant>
The structures of the dispersants A to R made of the triazine derivative represented by the general formula (1) of the present invention are shown below. Moreover, the structure of the dispersing agents S-U mentioned as a comparative example is shown.

Figure 2015191760
Figure 2015191760

Figure 2015191760
Figure 2015191760


Figure 2015191760
Figure 2015191760


Figure 2015191760
Figure 2015191760



Figure 2015191760
Figure 2015191760

<分散剤の製造方法>
以下の実施例に記載した方法で本発明の一般式(1)で表わされるトリアジン誘導体よりなる分散剤を製造した。なお、本発明の分散剤は、ブルカー・ダルトニクス社製MALDI質量分析装置autoflex III(以下、TOF−MSと称す)を用い、得られたマススペクトラムの分子イオンピークと、計算によって得られる質量数との一致をもって同定した。また、比較例として、特許文献1に記載のトリアジン誘導体よりなる分散剤を製造した。
<Method for producing dispersant>
A dispersant comprising the triazine derivative represented by the general formula (1) of the present invention was produced by the method described in the following examples. The dispersant of the present invention uses a MALDI mass spectrometer autoflex III (hereinafter referred to as TOF-MS) manufactured by Bruker Daltonics, Inc., the molecular ion peak of the obtained mass spectrum, and the mass number obtained by calculation. Identified with the agreement. Moreover, the dispersing agent which consists of a triazine derivative of patent document 1 was manufactured as a comparative example.

[実施例1]
(分散剤Aの製造)
水200gを5〜10℃に冷却し、塩化シアヌルを0.045モル加えた。温度を5〜10℃に維持したまま、4−ヒドロキシベンゼンスルホン酸ナトリウムを0.045モル加えた。さらに温度を5〜10℃に維持したまま、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、水を200g、苛性ソーダを水酸化ナトリウム換算で0.27モル加え、60℃で3時間加熱した。室温まで冷却後、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。得られた残渣を80℃で24時間乾燥することにより、分散剤Aを得た。TOF−MSによる質量分析の結果、前記分散剤Aの構造であることを確認した。
[Example 1]
(Production of Dispersant A)
200 g of water was cooled to 5 to 10 ° C., and 0.045 mol of cyanuric chloride was added. While maintaining the temperature at 5 to 10 ° C., 0.045 mol of sodium 4-hydroxybenzenesulfonate was added. Further, a solution prepared by dissolving 0.045 mol of triethylamine in 100 g of water was dropped over 30 minutes while maintaining the temperature at 5 to 10 ° C. Thereafter, 200 g of water and 0.27 mol of caustic soda in terms of sodium hydroxide were added and heated at 60 ° C. for 3 hours. After cooling to room temperature, hydrochloric acid was added to adjust the pH to 3.0 or less, and filtration purification was performed. Dispersant A was obtained by drying the obtained residue at 80 ° C. for 24 hours. As a result of mass spectrometry by TOF-MS, the structure of the dispersant A was confirmed.

[実施例2]
(分散剤Bの製造)
分散剤Aの製造において4−ヒドロキシベンゼンスルホン酸ナトリウムの代わりに4−ヒドロキシ安息香酸を添加した以外は、実施例1と同様な方法で製造し、分散剤Bを得た。TOF−MSによる質量分析の結果、前記分散剤Bの構造であることを確認した。
[Example 2]
(Production of Dispersant B)
Dispersant B was obtained in the same manner as in Example 1 except that 4-hydroxybenzoic acid was added instead of sodium 4-hydroxybenzenesulfonate in the manufacture of Dispersant A. As a result of mass spectrometry by TOF-MS, the structure of the dispersant B was confirmed.

[実施例3]
(分散剤Cの製造)
水200gに塩化シアヌルを室温で0.045モル加えた。続いて1−ナフトール−4−スルホン酸ナトリウムを0.090モル加えた。さらに水100gにトリエチルアミン0.090モルを溶解させた溶液を30分かけて滴下した。その後、水を200g、苛性ソーダを水酸化ナトリウム換算で0.27モル加え、60℃で3時間加熱した。室温まで冷却後、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。得られた残渣を80℃で24時間乾燥することにより、分散剤Cを得た。TOF−MSによる質量分析の結果、前記分散剤Cの構造であることを確認した。
[Example 3]
(Production of Dispersant C)
0.045 mol of cyanuric chloride was added to 200 g of water at room temperature. Subsequently, 0.090 mol of sodium 1-naphthol-4-sulfonate was added. Further, a solution prepared by dissolving 0.090 mol of triethylamine in 100 g of water was added dropwise over 30 minutes. Thereafter, 200 g of water and 0.27 mol of caustic soda in terms of sodium hydroxide were added and heated at 60 ° C. for 3 hours. After cooling to room temperature, hydrochloric acid was added to adjust the pH to 3.0 or less, and filtration purification was performed. Dispersant C was obtained by drying the obtained residue at 80 ° C. for 24 hours. As a result of mass spectrometry by TOF-MS, the structure of the dispersant C was confirmed.

[実施例4]
(分散剤Dの製造)
分散剤Cの製造において1−ナフトール−4−スルホン酸ナトリウムの代わりに4−ヒドロキシ−3−メチル安息香酸を添加した以外は、実施例3と同様な方法で製造し、分散剤Dを得た。TOF−MSによる質量分析の結果、前記分散剤Dの構造であることを確認した。
[Example 4]
(Production of Dispersant D)
Dispersant D was obtained in the same manner as in Example 3 except that 4-hydroxy-3-methylbenzoic acid was added instead of sodium 1-naphthol-4-sulfonate in the manufacture of Dispersant C. . As a result of mass spectrometry by TOF-MS, the structure of the dispersant D was confirmed.

[実施例5]
(分散剤Eの製造)
水200gを5〜10℃に冷却し、塩化シアヌルを0.045モル加えた。温度を5〜10℃に維持したまま、4−ヒドロキシベンゼンスルホン酸ナトリウムを0.045モル加えた。さらに温度を5〜10℃に維持したまま、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、室温まで昇温し、5ーヒドロキシ−2−ベンズイミダゾリノンを0.045モル加えた。さらに、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、水を200g、苛性ソーダを水酸化ナトリウム換算で0.27モル加え、90℃で3時間加熱した。その後、室温まで冷却し、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。得られた残渣を80℃で24時間乾燥することにより、分散剤Eを得た。TOF−MSによる質量分析の結果、前記分散剤Eの構造であることを確認した。
[Example 5]
(Production of Dispersant E)
200 g of water was cooled to 5 to 10 ° C., and 0.045 mol of cyanuric chloride was added. While maintaining the temperature at 5 to 10 ° C., 0.045 mol of sodium 4-hydroxybenzenesulfonate was added. Further, a solution prepared by dissolving 0.045 mol of triethylamine in 100 g of water was dropped over 30 minutes while maintaining the temperature at 5 to 10 ° C. Thereafter, the temperature was raised to room temperature, and 0.045 mol of 5-hydroxy-2-benzimidazolinone was added. Further, a solution in which 0.045 mol of triethylamine was dissolved in 100 g of water was dropped over 30 minutes. Thereafter, 200 g of water and 0.27 mol of caustic soda in terms of sodium hydroxide were added and heated at 90 ° C. for 3 hours. Then, it cooled to room temperature, added hydrochloric acid, adjusted pH to 3.0 or less, and filtered and refined. Dispersant E was obtained by drying the obtained residue at 80 ° C. for 24 hours. As a result of mass spectrometry by TOF-MS, the structure of the dispersant E was confirmed.

[実施例6]
(分散剤Fの製造)
分散剤Eの製造において4−ヒドロキシベンゼンスルホン酸ナトリウムの代わりに4−ヒドロキシ安息香酸を添加した以外は、実施例5と同様な方法で製造し、分散剤Fを得た。TOF−MSによる質量分析の結果、前記分散剤Fの構造であることを確認した。
[Example 6]
(Production of Dispersant F)
Dispersant F was obtained in the same manner as in Example 5 except that 4-hydroxybenzoic acid was added instead of sodium 4-hydroxybenzenesulfonate in the manufacture of Dispersant E. As a result of mass spectrometry by TOF-MS, the structure of the dispersant F was confirmed.

[実施例7]
(分散剤Gの製造)
水200gを5〜10℃に冷却し、塩化シアヌルを0.045モル加えた。温度を5〜10℃に維持したまま、3−ヒドロキシ安息香酸を0.045モル加えた。さらに温度を5〜10℃に維持したまま、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、室温まで昇温し、3−ヒドロキシ−2'−メトキシ−2−ナフトアニリドを0.090モル加えた。さらに、トリエチルアミン0.090モルを水200gに溶解させた溶液を30分かけて滴下した。その後、90℃に加熱して4時間撹拌した。室温まで冷却後、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。得られた残渣を80℃で24時間乾燥することにより、分散剤Gを得た。TOF−MSによる質量分析の結果、前記分散剤Gの構造であることを確認した。
[Example 7]
(Production of Dispersant G)
200 g of water was cooled to 5 to 10 ° C., and 0.045 mol of cyanuric chloride was added. While maintaining the temperature at 5 to 10 ° C., 0.045 mol of 3-hydroxybenzoic acid was added. Further, a solution prepared by dissolving 0.045 mol of triethylamine in 100 g of water was dropped over 30 minutes while maintaining the temperature at 5 to 10 ° C. Thereafter, the temperature was raised to room temperature, and 0.090 mol of 3-hydroxy-2′-methoxy-2-naphthanilide was added. Further, a solution prepared by dissolving 0.090 mol of triethylamine in 200 g of water was dropped over 30 minutes. Then, it heated at 90 degreeC and stirred for 4 hours. After cooling to room temperature, hydrochloric acid was added to adjust the pH to 3.0 or less, and filtration purification was performed. The obtained residue was dried at 80 ° C. for 24 hours to obtain Dispersant G. As a result of mass spectrometry by TOF-MS, the structure of the dispersant G was confirmed.

[実施例8]
(分散剤Hの製造)
水200gを5〜10℃に冷却し、塩化シアヌルを0.045モル加えた。温度を5〜10℃に維持したまま、4−ヒドロキシ安息香酸を0.045モル加えた。さらに温度を5〜10℃に維持したまま、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、室温まで昇温し、4−ヒドロキシアセトアニリドを0.045モル加えた。さらに、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、苛性ソーダを添加してpHを12.5〜13.0に調整し、90℃で4時間撹拌した。室温まで冷却後、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。水100gに得られた残渣を加えて5℃に冷却し、塩酸を50g添加して5℃に維持しながら30分間撹拌した。さらに、亜硝酸ナトリウム0.045モルを水20gに溶解させたものを添加して1時間撹拌した。スルファミン酸を添加して過剰の亜硝酸ナトリウムを消去し、これをジアゾニウム塩水溶液とした。一方、水600gに5−アセトアセチルアミノベンズイミダゾロンを0.045モル添加し、苛性ソーダを13.9g、ソーダ灰を43.7g添加して30分間撹拌したものをカップラー溶液とした。このカップラー溶液を上記5℃のジアゾニウム塩水溶液に30分かけて注入し、カップリング反応を行った。この時のpHは9.0以上であることを確認し、室温で2時間攪拌後、ソーダ灰を添加することでpHを9.0以上に調整し、80℃に加熱して1時間撹拌した。その後、室温まで冷却し、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。得られた残渣を80℃で24時間乾燥することにより、分散剤Hを得た。TOF−MSによる質量分析の結果、前記分散剤Hの構造であることを確認した。
[Example 8]
(Production of Dispersant H)
200 g of water was cooled to 5 to 10 ° C., and 0.045 mol of cyanuric chloride was added. While maintaining the temperature at 5 to 10 ° C., 0.045 mol of 4-hydroxybenzoic acid was added. Further, a solution prepared by dissolving 0.045 mol of triethylamine in 100 g of water was dropped over 30 minutes while maintaining the temperature at 5 to 10 ° C. Thereafter, the temperature was raised to room temperature, and 0.045 mol of 4-hydroxyacetanilide was added. Further, a solution in which 0.045 mol of triethylamine was dissolved in 100 g of water was dropped over 30 minutes. Thereafter, caustic soda was added to adjust the pH to 12.5 to 13.0, and the mixture was stirred at 90 ° C. for 4 hours. After cooling to room temperature, hydrochloric acid was added to adjust the pH to 3.0 or less, and filtration purification was performed. The obtained residue was added to 100 g of water and cooled to 5 ° C., and 50 g of hydrochloric acid was added and stirred for 30 minutes while maintaining the temperature at 5 ° C. Further, a solution prepared by dissolving 0.045 mol of sodium nitrite in 20 g of water was added and stirred for 1 hour. Sulfamic acid was added to eliminate excess sodium nitrite, which was used as a diazonium salt aqueous solution. On the other hand, 0.045 mol of 5-acetoacetylaminobenzimidazolone was added to 600 g of water, 13.9 g of caustic soda and 43.7 g of soda ash were added and stirred for 30 minutes to obtain a coupler solution. This coupler solution was poured into the 5 ° C. diazonium salt aqueous solution over 30 minutes to carry out a coupling reaction. At this time, it was confirmed that the pH was 9.0 or more, and after stirring for 2 hours at room temperature, the pH was adjusted to 9.0 or more by adding soda ash, heated to 80 ° C. and stirred for 1 hour. . Then, it cooled to room temperature, added hydrochloric acid, adjusted pH to 3.0 or less, and filtered and refined. The obtained residue was dried at 80 ° C. for 24 hours to obtain Dispersant H. As a result of mass spectrometry by TOF-MS, the structure of the dispersant H was confirmed.

[実施例9]
(分散剤Iの製造)
分散剤Hの製造において4−ヒドロキシ安息香酸の代わりに4−ヒドロキシベンゼンスルホン酸ナトリウムを、5−アセトアセチルアミノベンズイミダゾロンの代わりに5−(3'ーヒドロキシー2’−ナフトイルアミノ)ベンズイミダゾロンを添加した以外は、実施例8と同様な方法で製造し、分散剤Iを得た。TOF−MSによる質量分析の結果、前記分散剤Iの構造であることを確認した。
[Example 9]
(Production of Dispersant I)
In the preparation of Dispersant H, 4-hydroxybenzenesulfonic acid sodium is used instead of 4-hydroxybenzoic acid and 5- (3′-hydroxy-2′-naphthoylamino) benzimidazolone is used instead of 5-acetoacetylaminobenzimidazolone. A dispersant I was obtained in the same manner as in Example 8 except that was added. As a result of mass spectrometry by TOF-MS, the structure of the dispersant I was confirmed.

[実施例10]
(分散剤Jの製造)
分散剤Gの製造において3−ヒドロキシ安息香酸の代わりに2−ヒドロキシ安息香酸を、3−ヒドロキシ−2'−メトキシ−2−ナフトアニリドの代わりに1−ナフトールを添加した以外は、実施例7と同様な方法で製造し、分散剤Jを得た。TOF−MSによる質量分析の結果、前記分散剤Jの構造であることを確認した。
[Example 10]
(Production of Dispersant J)
Except that 2-hydroxybenzoic acid was added instead of 3-hydroxybenzoic acid and 1-naphthol was added instead of 3-hydroxy-2′-methoxy-2-naphthanilide in the production of Dispersant G, the same as Example 7 Dispersant J was obtained. As a result of mass spectrometry by TOF-MS, the structure of the dispersant J was confirmed.

[実施例11]
(分散剤Kの製造)
水200gを5〜10℃に冷却し、塩化シアヌルを0.045モル加えた。温度を5〜10℃に維持したまま、4−ヒドロキシベンゼンスルホン酸ナトリウムを0.045モル加えた。さらに温度を5〜10℃に維持したまま、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、室温まで昇温し、4−ヒドロキシアセトアニリドを0.045モル加えた。さらに、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、苛性ソーダを添加してpHを12.5〜13.0に調整し、90℃で4時間撹拌した。室温まで冷却後、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。一方、氷水500g(水200g、氷300g)に、公知の技術で製造したキナクリドン顔料のスルホニルクロリドをキナクリドン骨格部分換算で0.045モル加えた。10℃以下に保持しながら、炭酸ソーダ水溶液で中和してpH=3.0に調整した。このキナクリドン誘導体スラリーに、先に製造したトリアジン化合物残渣を加え、その後、室温で1時間撹拌し、さらに70℃で2時間撹拌した。室温まで冷却後、ろ過精製を行い、得られた残渣を80℃で24時間乾燥することにより、分散剤Kを得た。TOF−MSによる質量分析の結果、前記分散剤Kの構造であることを確認した。
[Example 11]
(Production of Dispersant K)
200 g of water was cooled to 5 to 10 ° C., and 0.045 mol of cyanuric chloride was added. While maintaining the temperature at 5 to 10 ° C., 0.045 mol of sodium 4-hydroxybenzenesulfonate was added. Further, a solution prepared by dissolving 0.045 mol of triethylamine in 100 g of water was dropped over 30 minutes while maintaining the temperature at 5 to 10 ° C. Thereafter, the temperature was raised to room temperature, and 0.045 mol of 4-hydroxyacetanilide was added. Further, a solution in which 0.045 mol of triethylamine was dissolved in 100 g of water was dropped over 30 minutes. Thereafter, caustic soda was added to adjust the pH to 12.5 to 13.0, and the mixture was stirred at 90 ° C. for 4 hours. After cooling to room temperature, hydrochloric acid was added to adjust the pH to 3.0 or less, and filtration purification was performed. On the other hand, 0.045 mol of sulfonyl chloride of quinacridone pigment produced by a known technique was added to 500 g of ice water (200 g of water, 300 g of ice). While maintaining the temperature at 10 ° C. or lower, the solution was neutralized with an aqueous sodium carbonate solution and adjusted to pH = 3.0. The previously prepared triazine compound residue was added to the quinacridone derivative slurry, and then the mixture was stirred at room temperature for 1 hour and further stirred at 70 ° C. for 2 hours. After cooling to room temperature, filtration and purification were performed, and the resulting residue was dried at 80 ° C. for 24 hours to obtain Dispersant K. As a result of mass spectrometry by TOF-MS, the structure of the dispersant K was confirmed.

[実施例12]
(分散剤Lの製造)
分散剤Kの製造において4−ヒドロキシベンゼンスルホン酸ナトリウムの代わりに4−ヒドロキシ安息香酸を、キナクリドン顔料の代わりにジオキサジン顔料を添加した以外は、実施例11と同様な方法で製造し、分散剤Lを得た。TOF−MSによる質量分析の結果、前記分散剤Lの構造であることを確認した。
[Example 12]
(Production of Dispersant L)
Dispersant L was produced in the same manner as in Example 11 except that 4-hydroxybenzoic acid was added in place of sodium 4-hydroxybenzenesulfonate and dioxazine pigment was added in place of quinacridone pigment. Got. As a result of mass spectrometry by TOF-MS, the structure of the dispersant L was confirmed.

[実施例13]
(分散剤Mの製造)
分散剤Gの製造において3−ヒドロキシ安息香酸の代わりに4−ヒドロキシベンゼンスルホン酸ナトリウムを、3−ヒドロキシ−2'−メトキシ−2−ナフトアニリドの代わりに7−クロロ−6−ニトロ−4−ヒドロキシキナゾリンを添加した以外は実施例7と同様な方法で製造し、分散剤Mを得た。TOF−MSによる質量分析の結果、前記分散剤Mの構造であることを確認した。
[Example 13]
(Production of Dispersant M)
In the preparation of Dispersant G, sodium 4-hydroxybenzenesulfonate is used instead of 3-hydroxybenzoic acid, and 7-chloro-6-nitro-4-hydroxyquinazoline is used instead of 3-hydroxy-2′-methoxy-2-naphthanilide. A dispersant M was obtained in the same manner as in Example 7 except that was added. As a result of mass spectrometry by TOF-MS, the structure of the dispersant M was confirmed.

[実施例14]
(分散剤Nの製造)
分散剤Gの製造において3−ヒドロキシ安息香酸の代わりに4−ヒドロキシ安息香酸を、3−ヒドロキシ−2'−メトキシ−2−ナフトアニリドの代わりにサリチルアニリドを添加した以外は実施例7と同様な方法で製造し、分散剤Nを得た。TOF−MSによる質量分析の結果、前記分散剤Nの構造であることを確認した。
[Example 14]
(Production of Dispersant N)
The same method as in Example 7 except that 4-hydroxybenzoic acid was added instead of 3-hydroxybenzoic acid and salicylanilide was added instead of 3-hydroxy-2′-methoxy-2-naphthanilide in the production of Dispersant G Dispersant N was obtained. As a result of mass spectrometry by TOF-MS, the structure of the dispersant N was confirmed.

[実施例15]
(分散剤Oの製造)
分散剤Gの製造において3−ヒドロキシ安息香酸の代わりに4−ヒドロキシ−3−メトキシベンゼンスルホン酸カリウム0.5水和物を、3−ヒドロキシ−2'−メトキシ−2−ナフトアニリドの代わりに2−ヒドロキシアントラキノンを添加した以外は実施例7と同様な方法で製造し、分散剤Oを得た。TOF−MSによる質量分析の結果、前記分散剤Oの構造であることを確認した。
[Example 15]
(Production of Dispersant O)
In the production of Dispersant G, potassium 4-hydroxy-3-methoxybenzenesulfonate hemihydrate instead of 3-hydroxybenzoic acid is used instead of 3-hydroxy-2′-methoxy-2-naphthanilide. A dispersant O was obtained in the same manner as in Example 7 except that hydroxyanthraquinone was added. As a result of mass spectrometry by TOF-MS, the structure of the dispersant O was confirmed.

[実施例16]
(分散剤Pの製造)
分散剤Gの製造において3−ヒドロキシ安息香酸の代わりに4−ヒドロキシ安息香酸を、3−ヒドロキシ−2'−メトキシ−2−ナフトアニリドの代わりに4−フェノキシフェノールを添加した以外は実施例7と同様な方法で製造し、分散剤Pを得た。TOF−MSによる質量分析の結果、前記分散剤Pの構造であることを確認した。
[Example 16]
(Production of Dispersant P)
The same as in Example 7 except that 4-hydroxybenzoic acid was added instead of 3-hydroxybenzoic acid and 4-phenoxyphenol was added instead of 3-hydroxy-2′-methoxy-2-naphthanilide in the production of Dispersant G. The dispersant P was obtained. As a result of mass spectrometry by TOF-MS, the structure of the dispersant P was confirmed.

[実施例17]
(分散剤Qの製造)
分散剤Gの製造において3−ヒドロキシ安息香酸の代わりに3−クロロ−4−ヒドロキシ安息香酸を、3−ヒドロキシ−2'−メトキシ−2−ナフトアニリドの代わりに4−ヒドロキシカルバゾールを添加した以外は実施例7と同様な方法で製造し、分散剤Qを得た。TOF−MSによる質量分析の結果、前記分散剤Qの構造であることを確認した。
[Example 17]
(Production of Dispersant Q)
Implemented except that 3-chloro-4-hydroxybenzoic acid was added in place of 3-hydroxybenzoic acid and 4-hydroxycarbazole was added in place of 3-hydroxy-2′-methoxy-2-naphthanilide in the production of Dispersant G Production was conducted in the same manner as in Example 7 to obtain Dispersant Q. As a result of mass spectrometry by TOF-MS, the structure of the dispersant Q was confirmed.

[実施例18]
(分散剤Rの製造)
水200gを5〜10℃に冷却し、塩化シアヌルを0.045モル加えた。温度を5〜10℃に維持したまま、4−ヒドロキシ安息香酸を0.045モル加えた。さらに温度を5〜10℃に維持したまま、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、水を200g、4−ヒドロキシアセトアニリドを0.090モル加えた。さらに、トリエチルアミン0.090モルを水200gに溶解させた溶液を30分かけて滴下した。その後、90℃に加熱して4時間撹拌した。室温まで冷却後、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。一方、氷水500g(水200g、氷300g)に、ピリジン−3−カルボニルクロリド塩酸塩を0.045モル加えた。10℃以下に保持しながら、炭酸ソーダ水溶液で中和してpH=3.0に調整した。この水溶液に、先に製造したトリアジン化合物残渣を加え、その後、室温で1時間撹拌し、さらに70℃で2時間撹拌した。室温まで冷却後、ろ過精製を行い、得られた残渣を80℃で24時間乾燥することにより、分散剤Rを得た。TOF−MSによる質量分析の結果、前記分散剤Rの構造であることを確認した。
[Example 18]
(Production of Dispersant R)
200 g of water was cooled to 5 to 10 ° C., and 0.045 mol of cyanuric chloride was added. While maintaining the temperature at 5 to 10 ° C., 0.045 mol of 4-hydroxybenzoic acid was added. Further, a solution prepared by dissolving 0.045 mol of triethylamine in 100 g of water was dropped over 30 minutes while maintaining the temperature at 5 to 10 ° C. Thereafter, 200 g of water and 0.090 mol of 4-hydroxyacetanilide were added. Further, a solution prepared by dissolving 0.090 mol of triethylamine in 200 g of water was dropped over 30 minutes. Then, it heated at 90 degreeC and stirred for 4 hours. After cooling to room temperature, hydrochloric acid was added to adjust the pH to 3.0 or less, and filtration purification was performed. On the other hand, 0.045 mol of pyridine-3-carbonyl chloride hydrochloride was added to 500 g of ice water (water 200 g, ice 300 g). While maintaining the temperature at 10 ° C. or lower, the solution was neutralized with an aqueous sodium carbonate solution and adjusted to pH = 3.0. The previously prepared triazine compound residue was added to this aqueous solution, and then the mixture was stirred at room temperature for 1 hour and further stirred at 70 ° C. for 2 hours. After cooling to room temperature, filtration and purification were performed, and the resulting residue was dried at 80 ° C. for 24 hours to obtain Dispersant R. As a result of mass spectrometry by TOF-MS, the structure of the dispersant R was confirmed.

[比較例1]
(分散剤Sの製造)
水200gを5〜10℃に冷却し、塩化シアヌルを0.045モル加えた。温度を5〜10℃に維持したまま、4−アミノアセトアニリドを0.045モル加えた。さらに温度を5〜10℃に維持したまま、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、室温まで昇温し、4−ヒドロキシベンゼンスルホン酸を0.045モル加えた。さらに、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、ナトリウムメトキシドのメタノール溶液をナトリウムメトキシド換算で0.135モル添加し、90℃で4時間撹拌した。室温まで冷却後、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。一方、氷水500g(水200g、氷300g)に、公知の技術で製造したキナクリドン顔料のスルホニルクロリドをキナクリドン骨格部分換算で0.045モル加えた。10℃以下に保持しながら、炭酸ソーダ水溶液で中和してpH=3.0に調整した。このキナクリドン誘導体スラリーに、先に製造したトリアジン化合物残渣を加え、その後、室温で1時間撹拌し、さらに70℃で2時間撹拌した。室温まで冷却後、ろ過精製を行い、得られた残渣を80℃で24時間乾燥することにより、分散剤Sを得た。TOF−MSによる質量分析の結果、前記分散剤Sの構造であることを確認した。
[Comparative Example 1]
(Production of Dispersant S)
200 g of water was cooled to 5 to 10 ° C., and 0.045 mol of cyanuric chloride was added. While maintaining the temperature at 5-10 ° C., 0.045 mol of 4-aminoacetanilide was added. Further, a solution prepared by dissolving 0.045 mol of triethylamine in 100 g of water was dropped over 30 minutes while maintaining the temperature at 5 to 10 ° C. Thereafter, the temperature was raised to room temperature, and 0.045 mol of 4-hydroxybenzenesulfonic acid was added. Further, a solution in which 0.045 mol of triethylamine was dissolved in 100 g of water was dropped over 30 minutes. Thereafter, 0.135 mol of a methanol solution of sodium methoxide was added in terms of sodium methoxide, and the mixture was stirred at 90 ° C. for 4 hours. After cooling to room temperature, hydrochloric acid was added to adjust the pH to 3.0 or less, and filtration purification was performed. On the other hand, 0.045 mol of sulfonyl chloride of quinacridone pigment produced by a known technique was added to 500 g of ice water (200 g of water, 300 g of ice). While maintaining the temperature at 10 ° C. or lower, the solution was neutralized with an aqueous sodium carbonate solution and adjusted to pH = 3.0. The previously prepared triazine compound residue was added to the quinacridone derivative slurry, and then the mixture was stirred at room temperature for 1 hour and further stirred at 70 ° C. for 2 hours. After cooling to room temperature, filtration purification was performed, and the resulting residue was dried at 80 ° C. for 24 hours to obtain Dispersant S. As a result of mass spectrometry by TOF-MS, the structure of the dispersant S was confirmed.

[比較例2]
(分散剤Tの製造)
水200gを5〜10℃に冷却し、塩化シアヌルを0.045モル加えた。温度を5〜10℃に維持したまま、4−アミノアセトアニリドを0.045モル加えた。さらに温度を5〜10℃に維持したまま、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、室温まで昇温し、4−ヒドロキシベンゼンスルホン酸を0.045モル加えた。さらに、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、ナトリウムメトキシドのメタノール溶液をナトリウムメトキシド換算で0.135モル添加し、90℃で4時間撹拌した。室温まで冷却後、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。一方、氷水500g(水200g、氷300g)に、公知の技術で製造した9−エチルカルバゾールのスルホニルクロリドをカルバゾール骨格部分換算で0.045モル加えた。10℃以下に保持しながら、炭酸ソーダ水溶液で中和してpH=3.0に調整した。このカルバゾール誘導体スラリーに、先に製造したトリアジン化合物残渣を加え、その後、室温で1時間撹拌し、さらに70℃で2時間撹拌した。室温まで冷却後、ろ過精製を行い、得られた残渣を80℃で24時間乾燥することにより、分散剤Tを得た。TOF−MSによる質量分析の結果、前記分散剤Tの構造であることを確認した。
[Comparative Example 2]
(Production of Dispersant T)
200 g of water was cooled to 5 to 10 ° C., and 0.045 mol of cyanuric chloride was added. While maintaining the temperature at 5-10 ° C., 0.045 mol of 4-aminoacetanilide was added. Further, a solution prepared by dissolving 0.045 mol of triethylamine in 100 g of water was dropped over 30 minutes while maintaining the temperature at 5 to 10 ° C. Thereafter, the temperature was raised to room temperature, and 0.045 mol of 4-hydroxybenzenesulfonic acid was added. Further, a solution in which 0.045 mol of triethylamine was dissolved in 100 g of water was dropped over 30 minutes. Thereafter, 0.135 mol of a methanol solution of sodium methoxide was added in terms of sodium methoxide, and the mixture was stirred at 90 ° C. for 4 hours. After cooling to room temperature, hydrochloric acid was added to adjust the pH to 3.0 or less, and filtration purification was performed. On the other hand, 0.045 mol of sulfonyl chloride of 9-ethylcarbazole produced by a known technique was added to 500 g of ice water (200 g of water, 300 g of ice). While maintaining the temperature at 10 ° C. or lower, the solution was neutralized with an aqueous sodium carbonate solution and adjusted to pH = 3.0. To this carbazole derivative slurry, the previously prepared triazine compound residue was added, and then stirred at room temperature for 1 hour and further stirred at 70 ° C. for 2 hours. After cooling to room temperature, filtration and purification were performed, and the resulting residue was dried at 80 ° C. for 24 hours to obtain Dispersant T. As a result of mass spectrometry by TOF-MS, the structure of the dispersant T was confirmed.

[比較例3]
(分散剤Uの製造)
水200gを5〜10℃に冷却し、塩化シアヌルを0.045モル加えた。温度を5〜10℃に維持したまま、5−アミノサリチル酸を0.045モル加えた。さらに温度を5〜10℃に維持したまま、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、室温まで昇温し、3−アミノー9−エチルカルバゾールを0.045モル加えた。さらに、トリエチルアミン0.045モルを水100gに溶解させた溶液を30分かけて滴下した。その後、苛性ソーダを添加してpHを12.5〜13.0に調整し、90℃で4時間撹拌した。室温まで冷却後、塩酸を添加してpHを3.0以下に調整し、ろ過精製を行った。得られた残渣を80℃で24時間乾燥することにより、分散剤Uを得た。TOF−MSによる質量分析の結果、前記分散剤Uの構造であることを確認した。
[Comparative Example 3]
(Manufacture of dispersant U)
200 g of water was cooled to 5 to 10 ° C., and 0.045 mol of cyanuric chloride was added. While maintaining the temperature at 5-10 ° C, 0.045 mol of 5-aminosalicylic acid was added. Further, a solution prepared by dissolving 0.045 mol of triethylamine in 100 g of water was dropped over 30 minutes while maintaining the temperature at 5 to 10 ° C. Thereafter, the temperature was raised to room temperature, and 0.045 mol of 3-amino-9-ethylcarbazole was added. Further, a solution in which 0.045 mol of triethylamine was dissolved in 100 g of water was dropped over 30 minutes. Thereafter, caustic soda was added to adjust the pH to 12.5 to 13.0, and the mixture was stirred at 90 ° C. for 4 hours. After cooling to room temperature, hydrochloric acid was added to adjust the pH to 3.0 or less, and filtration purification was performed. The obtained residue was dried at 80 ° C. for 24 hours to obtain Dispersant U. As a result of mass spectrometry by TOF-MS, the structure of the dispersant U was confirmed.

<アミンを含有する分散剤の製造方法>
以下の実施例に記載した方法で表1記載の分散剤a〜afを製造した。
<Method for producing dispersant containing amine>
Dispersants a to af shown in Table 1 were produced by the methods described in the following examples.

Figure 2015191760
Figure 2015191760

[実施例19]
(分散剤aの製造)
水200gに実施例1で得られた分散剤Aを0.040モル加えた。これにオクチルアミンを0.040モル加え、60℃で2時間撹拌した。室温まで冷却後、ろ過精製を行った。得られた残渣を80℃で48時間乾燥することにより、分散剤aを得た。
[Example 19]
(Production of Dispersant a)
0.040 mol of dispersant A obtained in Example 1 was added to 200 g of water. 0.040 mol of octylamine was added to this, and it stirred at 60 degreeC for 2 hours. After cooling to room temperature, filtration purification was performed. The obtained residue was dried at 80 ° C. for 48 hours to obtain Dispersant a.

[実施例20]〜[実施例36]
(分散剤b〜分散剤rの製造)
分散剤aの製造において分散剤Aの代わりに表1の実施例20〜実施例36に記載の分散剤B〜分散剤Rを添加した以外は、実施例19と同様な方法で製造し、分散剤b〜分散剤rを得た。
[Example 20] to [Example 36]
(Production of Dispersant b to Dispersant r)
In the production of Dispersant a, Dispersant B was produced in the same manner as Example 19 except that Dispersant B to Dispersant R described in Example 20 to Example 36 of Table 1 were added instead of Dispersant A. Agents b to r were obtained.

[実施例37]〜[実施例46]
(分散剤s〜分散剤abの製造)
分散剤fの製造においてオクチルアミンの代わりに表1の実施例37〜実施例46に記載のアミンを添加した以外は、実施例24と同様な方法で製造し、分散剤s〜分散剤abを得た。
[Example 37] to [Example 46]
(Production of Dispersant s to Dispersant ab)
A dispersant f was prepared in the same manner as in Example 24 except that amines described in Examples 37 to 46 in Table 1 were added instead of octylamine in the manufacture of the dispersant f. Obtained.

[実施例47]
(分散剤acの製造)
分散剤fの製造においてオクチルアミンの添加量を0.040モルから0.004モルに変更した以外は実施例24と同様な方法で製造し、分散剤acを得た。
[Example 47]
(Manufacture of dispersant ac)
A dispersant ac was obtained in the same manner as in Example 24 except that the amount of octylamine added was changed from 0.040 mol to 0.004 mol in the manufacture of the dispersant f.

[実施例48]
(分散剤adの製造)
分散剤fの製造においてオクチルアミンの添加量を0.040モルから0.020モルに変更した以外は実施例24と同様な方法で製造し、分散剤adを得た。
[Example 48]
(Manufacture of dispersant ad)
Manufacture was performed in the same manner as in Example 24 except that the amount of octylamine added was changed from 0.040 mol to 0.020 mol in the manufacture of Dispersant f to obtain Dispersant ad.

[実施例49]
(分散剤aeの製造)
分散剤fの製造においてオクチルアミンの添加量を0.040モルから0.080モルに変更した以外は実施例24と同様な方法で製造し、分散剤aeを得た。
[Example 49]
(Production of dispersant ae)
Manufacture was performed in the same manner as in Example 24 except that the amount of octylamine added was changed from 0.040 mol to 0.080 mol in the manufacture of Dispersant f to obtain Dispersant ae.

[実施例50]
(分散剤afの製造)
分散剤fの製造においてオクチルアミンの添加量を0.040モルから0.120モルに変更した以外は実施例24と同様な方法で製造し、分散剤afを得た。
[Example 50]
(Production of dispersant af)
A dispersant af was obtained in the same manner as in Example 24 except that the amount of octylamine added was changed from 0.040 mol to 0.120 mol in the manufacture of the dispersant f.

<炭素材料分散液の製造および評価>
以下の実施例、比較例に記載した方法で炭素材料分散液を製造し、分散粒径と粘度を測定することにより分散性を評価した。
<Production and evaluation of carbon material dispersion>
Carbon material dispersions were produced by the methods described in the following examples and comparative examples, and the dispersibility was evaluated by measuring the dispersed particle size and viscosity.

炭素材料分散液の製造には、実施例1〜実施例18に記載の分散剤A〜分散剤R、比較例1〜比較例3に記載の分散剤S〜分散剤U、および実施例19〜実施例50に記載の分散剤a〜分散剤afと、N−メチル−2−ピロリドン、および以下の炭素材料を使用した。   For the production of carbon material dispersions, Dispersant A to Dispersant R described in Examples 1 to 18, Dispersant S to Dispersant U described in Comparative Examples 1 to 3, and Examples 19 to Dispersant a to Dispersant af described in Example 50, N-methyl-2-pyrrolidone, and the following carbon materials were used.

#30(三菱化学社製):ファーネスブラック、電子顕微鏡で観察して求めた平均一次粒子径が30nm、窒素吸着量からS−BET式で求めた比表面積が74m2/g。
モナーク800(キャボット社製):ファーネスブラック、電子顕微鏡で観察して求めた平均一次粒子径が17nm、窒素吸着量からS−BET式で求めた比表面積が210m2/g、以下「M800」と略記する。
デンカブラック粒状品(電気化学工業社製):アセチレンブラック、電子顕微鏡で観察して求めた平均一次粒子径が35nm、窒素吸着量からS−BET式で求めた比表面積が68m2/g、以下「粒状品」と略記する。
EC−300J(アクゾ社製):ケッチェンブラック、電子顕微鏡で観察して求めた平均一次粒子径が40nm、窒素吸着量からS−BET式で求めた比表面積が800m2/g。
カーボンナノチューブ:多層カーボンナノチューブ、電子顕微鏡で観察して求めた繊維径10〜20nm、繊維長2〜5μm、以下CNTと略記する。
VGCF(昭和電工社製):カーボンナノファイバー、電子顕微鏡で観察して求めた繊維径150nm、繊維長10〜20μm。
# 30 (Mitsubishi Chemical Co., Ltd.): Furnace black, the average primary particle diameter determined by observation with an electron microscope is 30 nm, and the specific surface area determined by the S-BET formula from the nitrogen adsorption amount is 74 m 2 / g.
Monarch 800 (manufactured by Cabot): Furnace black, average primary particle diameter determined by observation with an electron microscope of 17 nm, specific surface area determined by S-BET formula from nitrogen adsorption amount is 210 m 2 / g, hereinafter referred to as “M800” Abbreviated.
Denka black granular product (manufactured by Denki Kagaku Kogyo Co., Ltd.): acetylene black, the average primary particle diameter determined by observation with an electron microscope is 35 nm, the specific surface area determined by the S-BET formula from the amount of nitrogen adsorption is 68 m 2 / g or less Abbreviated as “granular product”.
EC-300J (manufactured by Akzo): Ketjen black, the average primary particle diameter determined by observation with an electron microscope is 40 nm, and the specific surface area determined by the S-BET formula from the amount of nitrogen adsorbed is 800 m 2 / g.
Carbon nanotubes: multi-walled carbon nanotubes, fiber diameters of 10 to 20 nm and fiber lengths of 2 to 5 μm determined by observation with an electron microscope, hereinafter abbreviated as CNT.
VGCF (manufactured by Showa Denko KK): carbon nanofiber, fiber diameter 150 nm, fiber length 10-20 μm determined by observation with an electron microscope.

[実施例51〜実施例68]
表2に示す組成に従い、ガラス瓶にN−メチル−2−ピロリドンと各分散剤を仕込み、混合溶解した後、各炭素材料を加え、ジルコニアビーズをメディアとして、ペイントコンディショナーで2時間分散し、炭素材料分散液を得た。いずれも分散性は良好であった。
[Example 51 to Example 68]
In accordance with the composition shown in Table 2, N-methyl-2-pyrrolidone and each dispersant were charged into a glass bottle, mixed and dissolved, then each carbon material was added, and zirconia beads were used as media to disperse with a paint conditioner for 2 hours. A dispersion was obtained. In all cases, the dispersibility was good.

[実施例69〜実施例105]
表3に示す組成に従い、ガラス瓶にN−メチル−2−ピロリドンと各分散剤を仕込み、混合溶解した後、各炭素材料を加え、ジルコニアビーズをメディアとして、ペイントコンディショナーで2時間分散し、炭素材料分散液を得た。いずれも分散性は良好であった。
[Examples 69 to 105]
In accordance with the composition shown in Table 3, N-methyl-2-pyrrolidone and each dispersant were charged in a glass bottle, mixed and dissolved, then each carbon material was added, and dispersed with a paint conditioner for 2 hours using zirconia beads as a medium. A dispersion was obtained. In all cases, the dispersibility was good.

[比較例4〜比較例11]
表4に示す組成に従い、ガラス瓶にN−メチル−2−ピロリドンと各分散剤を仕込み、混合溶解した後、各炭素材料を加え、ジルコニアビーズをメディアとして、ペイントコンディショナーで2時間分散し、炭素材料分散液を得た。いずれも分散性は良好であった。
[Comparative Examples 4 to 11]
In accordance with the composition shown in Table 4, N-methyl-2-pyrrolidone and each dispersant were charged in a glass bottle, mixed and dissolved, then each carbon material was added, and dispersed using a zirconia bead as a medium with a paint conditioner for 2 hours. A dispersion was obtained. In all cases, the dispersibility was good.

Figure 2015191760
Figure 2015191760

Figure 2015191760
Figure 2015191760

Figure 2015191760
Figure 2015191760

<炭素材料分散ワニスの製造および評価>
以下の実施例、比較例に記載した方法で炭素材料分散ワニスを製造した。また、製造した炭素材料分散ワニスを使用して、サイクリックボルタンメトリー(以下、CVと略記する)を測定し、電気化学耐性の評価を行った。
<Production and evaluation of carbon material dispersion varnish>
Carbon material-dispersed varnishes were produced by the methods described in the following examples and comparative examples. Moreover, using the produced carbon material-dispersed varnish, cyclic voltammetry (hereinafter abbreviated as CV) was measured to evaluate electrochemical resistance.

炭素材料分散ワニスの製造には、実施例51〜実施例105、比較例4〜比較例11に記載の炭素材料分散液と、N−メチル−2−ピロリドン、および以下のバインダーを使用した。   For the production of the carbon material-dispersed varnish, the carbon material dispersions described in Examples 51 to 105 and Comparative Examples 4 to 11, N-methyl-2-pyrrolidone, and the following binders were used.

KFポリマーW1100(クレハ社製):ポリフッ化ビニリデン(PVDF)、以下PVDFと略記する。   KF polymer W1100 (manufactured by Kureha): polyvinylidene fluoride (PVDF), hereinafter abbreviated as PVDF.

また、CV測定用の作用極は、以下のようにして作製した。得られた炭素材料分散ワニスを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧下120℃で加熱乾燥し、塗布量1.5mg/cm2の電極シートを作製した。これを直径16mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極および対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(厚さ20μm、空孔率50%)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを体積比1:1に混合した混合溶媒にLiPF6を1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝泉社製HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグローブボックス内で行った。 Moreover, the working electrode for CV measurement was produced as follows. The obtained carbon material-dispersed varnish was applied onto a 20 μm-thick aluminum foil serving as a current collector using a doctor blade, and then heated and dried at 120 ° C. under reduced pressure to obtain an electrode having a coating amount of 1.5 mg / cm 2 . A sheet was produced. This was punched out to a diameter of 16 mm as a working electrode, a metallic lithium foil (thickness 0.15 mm) as a counter electrode, and a separator (thickness 20 μm, porosity 50%) made of a porous polypropylene film between the working electrode and the counter electrode Inserted and laminated, filled with electrolyte (non-aqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1M in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1) and filled with a bipolar metal cell (treasure) HS flat cell manufactured by Izumi Co., Ltd.) was assembled. The cell was assembled in a glove box substituted with argon gas.

CVの評価は、HOKUTO HSV−110を使用して、OCV(開回路電圧)よりプラス側に走査して、2.0Vから4.5Vの間を、走査速度0.1mV/秒で10サイクル行った。酸化ピークが観察されなかった場合を○、観察された場合を×として評価を行った。   Evaluation of CV is performed using HOKUTO HSV-110, scanning from the OCV (open circuit voltage) to the plus side, and performing 10 cycles between 2.0V and 4.5V at a scanning speed of 0.1 mV / sec. It was. The evaluation was performed with ◯ when the oxidation peak was not observed and x when the oxidation peak was observed.

[実施例106〜実施例123]
表5に示す組成に従い、実施例51〜実施例68で調整した各種炭素材料分散液とバインダー、N−メチル−2−ピロリドンをディスパーにて混合し、各種炭素材料分散ワニスを得た。いずれも分散性良好であった。また、いずれも酸化ピークは観察されなかった。
[Example 106 to Example 123]
According to the composition shown in Table 5, various carbon material dispersions prepared in Examples 51 to 68, a binder, and N-methyl-2-pyrrolidone were mixed with a disper to obtain various carbon material dispersion varnishes. All had good dispersibility. In addition, no oxidation peak was observed in either case.

[実施例124〜実施例160]
表6に示す組成に従い、実施例69〜実施例103で調整した各種炭素材料分散液とバインダー、N−メチル−2−ピロリドンをディスパーにて混合し、各種炭素材料分散ワニスを得た。いずれも分散性良好であった。また、いずれも酸化ピークは観察されなかった。
[Examples 124 to 160]
According to the composition shown in Table 6, the various carbon material dispersions prepared in Examples 69 to 103, the binder, and N-methyl-2-pyrrolidone were mixed with a disper to obtain various carbon material dispersion varnishes. All had good dispersibility. In addition, no oxidation peak was observed in either case.

[比較例12〜比較例19]
表7に示す組成に従い、比較例4〜比較例11で調整した各種炭素材料分散液とバインダー、N−メチル−2−ピロリドンをディスパーにて混合し、各種炭素材料分散ワニスを得た。いずれも分散性良好であったが、CV評価にて酸化ピークが観察された。
[Comparative Examples 12 to 19]
According to the composition shown in Table 7, the various carbon material dispersions prepared in Comparative Examples 4 to 11, the binder, and N-methyl-2-pyrrolidone were mixed with a disper to obtain various carbon material dispersion varnishes. In all cases, the dispersibility was good, but an oxidation peak was observed by CV evaluation.

Figure 2015191760
Figure 2015191760

Figure 2015191760
Figure 2015191760

Figure 2015191760
Figure 2015191760

<合剤ペーストの製造および評価>
以下の実施例、比較例に記載した方法で合剤ペーストを調製し、ポリエチレンテレフタレート(PET)フィルム上にドクターブレードを用いて塗布した後、乾燥させてそれぞれの塗膜の表面抵抗を評価した。
<Production and evaluation of mixture paste>
A mixture paste was prepared by the method described in the following examples and comparative examples, applied onto a polyethylene terephthalate (PET) film using a doctor blade, and then dried to evaluate the surface resistance of each coating film.

合剤ペーストの製造には、実施例106〜実施例160、比較例12〜比較例19に記載の炭素材料分散ワニスと、N−メチル−2−ピロリドン、および以下の活物質を使用した。   For the production of the mixture paste, the carbon material-dispersed varnish described in Examples 106 to 160 and Comparative Examples 12 to 19, N-methyl-2-pyrrolidone, and the following active materials were used.

HLC−22(本荘ケミカル社製):正極活物質、コバルト酸リチウム(LiCoO2)、電子顕微鏡で観察して求めた平均一次粒子径が6.6μm、窒素吸着量からS−BET式で求めた比表面積が0.62m2/g、以下LCOと略記する。 HLC-22 (Honjo Chemical Co., Ltd.): Positive electrode active material, lithium cobaltate (LiCoO 2 ), average primary particle size determined by observation with an electron microscope was 6.6 μm, determined from the amount of nitrogen adsorption by the S-BET equation Specific surface area is 0.62 m 2 / g, hereinafter abbreviated as LCO.

[実施例161〜実施例215]
表8および表9に示す組成に従い、実施例106〜実施例160で調整した各種炭素材料分散ワニスと活物質、N−メチル−2−ピロリドンをディスパーにて混合し、各種合剤ペーストを得た。いずれも塗膜の表面抵抗値に問題はなく、本発明の炭素材料分散ワニスを使用しても合剤ペーストの作製の際に特に問題はなかった。
[Example 161 to Example 215]
According to the composition shown in Table 8 and Table 9, various carbon material dispersion varnishes prepared in Examples 106 to 160, the active material, and N-methyl-2-pyrrolidone were mixed with a disper to obtain various mixture pastes. . In any case, there was no problem in the surface resistance value of the coating film, and even when the carbon material-dispersed varnish of the present invention was used, there was no particular problem in the preparation of the mixture paste.

[比較例20〜比較例27]
表10に示す組成に従い、比較例12〜比較例19で調整した各種炭素材料分散ワニスと活物質、N−メチル−2−ピロリドンをディスパーにて混合し、各種合剤ペーストを得た。いずれも塗膜の表面抵抗値に問題はなく、本発明の炭素材料分散ワニスを使用しても合剤ペーストの作製の際に特に問題はなかった。
[Comparative Examples 20 to 27]
According to the composition shown in Table 10, various carbon material-dispersed varnishes prepared in Comparative Examples 12 to 19, active materials, and N-methyl-2-pyrrolidone were mixed with a disper to obtain various mixture pastes. In any case, there was no problem in the surface resistance value of the coating film, and even when the carbon material-dispersed varnish of the present invention was used, there was no particular problem in the preparation of the mixture paste.

Figure 2015191760
Figure 2015191760

Figure 2015191760
Figure 2015191760

Figure 2015191760
Figure 2015191760

<リチウムイオン二次電池正極評価用セルの組み立ておよび特性評価>
[実施例216〜実施例270]
先に調製した合剤ペースト(実施例161〜実施例215)を、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧下120℃で加熱乾燥し、ローラープレス機にて圧延処理し、塗布量20mg/cm2、密度3.0g/cm3の正極合剤層を作製した。これを直径16mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極および対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(厚さ20μm、空孔率50%)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを体積比1:1に混合した混合溶媒にLiPF6を1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝泉社製HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグローブボックス内で行った。
<Assembly and evaluation of lithium ion secondary battery positive electrode evaluation cell>
[Example 216 to Example 270]
The previously prepared mixture paste (Example 161 to Example 215) was applied onto a 20 μm thick aluminum foil serving as a current collector using a doctor blade, and then heat-dried at 120 ° C. under reduced pressure to obtain a roller. A positive electrode mixture layer having a coating amount of 20 mg / cm 2 and a density of 3.0 g / cm 3 was produced by rolling with a press. This was punched out to a diameter of 16 mm as a working electrode, a metallic lithium foil (thickness 0.15 mm) as a counter electrode, and a separator (thickness 20 μm, porosity 50%) made of a porous polypropylene film between the working electrode and the counter electrode Inserted and laminated, filled with electrolyte (non-aqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1M in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1) and filled with a bipolar metal cell (treasure) HS flat cell manufactured by Izumi Co., Ltd.) was assembled. The cell was assembled in a glove box substituted with argon gas.

作製した電池評価用セルを室温(25℃)で、充電レート0.2C、1.0Cの定電流定電圧充電(上限電圧4.5V)で満充電とし、充電時と同じレートの定電流で放電下限電圧3.0Vまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とし、このサイクルを合計200サイクル行い、充放電サイクル特性評価(評価装置:北斗電工社製SM−8)を行った。表11、表12より、本発明の電極を使用した電池は、放電レート0.2C、1.0Cいずれについても、電池容量、200サイクル容量維持率において良好な結果が得られた。   The produced battery evaluation cell is fully charged at a constant current and constant voltage charge (upper limit voltage 4.5 V) at room temperature (25 ° C.) and at a charge rate of 0.2 C and 1.0 C, and at a constant current at the same rate as during charging. Charge / discharge for discharging to a discharge lower limit voltage of 3.0V is defined as one cycle (charge / discharge interval rest time 30 minutes). ) From Table 11 and Table 12, the battery using the electrode of the present invention showed good results in the battery capacity and the 200 cycle capacity retention rate for both discharge rates of 0.2C and 1.0C.

[比較例28〜比較例35]
比較例20〜比較例27で調製した合剤ペーストを使用して、実施例216〜実施例270と同様に電池評価用セルを組み立て、充放電サイクル特性評価を行った。その結果、200サイクル容量維持率の低下が、表11、表12の実施例216〜実施例270に比べて著しかった(表13)。
[Comparative Example 28 to Comparative Example 35]
Using the mixture paste prepared in Comparative Examples 20 to 27, battery evaluation cells were assembled in the same manner as in Examples 216 to 270, and charge / discharge cycle characteristics were evaluated. As a result, the decrease in the 200-cycle capacity retention rate was significant compared to Examples 216 to 270 in Tables 11 and 12 (Table 13).

Figure 2015191760
Figure 2015191760

Figure 2015191760
Figure 2015191760

Figure 2015191760
Figure 2015191760

Claims (6)

下記一般式(1)で表わされるトリアジン誘導体よりなる分散剤。
Figure 2015191760
[一般式(1)中、R1は、−X1−Y1で表される基を表す。X1は置換基を有してもよいアリーレン基を表し、Y1はスルホ基またはカルボキシル基を表す。
2、R3は、それぞれ独立に水素原子、置換基を有してもよいアリール基、置換基を有してもよい複素環基、有機色素残基、−X1−Y1で表される基、または−X2−Y2−X3で表される基を表す。X2は置換基を有してもよいアリーレン基を表す。X3は置換基を有してもよいアリール基、置換基を有してもよい複素環基、有機色素残基を表す。Y2は−CONH−、−NHCO−、−NHSO2−、−N=N−CH(−COCH3)−CONH−を表す。但し、R2、R3は、同時に−X1−Y1になることはない。]
A dispersant comprising a triazine derivative represented by the following general formula (1).
Figure 2015191760
[In General Formula (1), R 1 represents a group represented by —X 1 —Y 1 . X 1 represents an arylene group which may have a substituent, and Y 1 represents a sulfo group or a carboxyl group.
R 2 and R 3 are each independently represented by a hydrogen atom, an aryl group that may have a substituent, a heterocyclic group that may have a substituent, an organic dye residue, or —X 1 —Y 1. represents a that group or a group represented by -X 2 -Y 2 -X 3,. X 2 represents an arylene group which may have a substituent. X 3 represents an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or an organic dye residue. Y 2 represents —CONH—, —NHCO—, —NHSO 2 —, —N═N—CH (—COCH 3 ) —CONH—. However, R 2 and R 3 are not simultaneously -X 1 -Y 1 . ]
さらに、アミンを含んでなる請求項1記載の分散剤。   The dispersant according to claim 1, further comprising an amine. 請求項1または請求項2記載の分散剤と炭素材料と溶剤とを含んでなる分散組成物。   A dispersion composition comprising the dispersant according to claim 1 or 2, a carbon material, and a solvent. さらに、バインダーを含んでなる請求項3記載の分散組成物。   The dispersion composition according to claim 3, further comprising a binder. 請求項3または4記載の分散組成物と活物質とを含んでなる電池用分散組成物。   A battery dispersion composition comprising the dispersion composition according to claim 3 or 4 and an active material. 集電体上に正極合剤層を有する正極と、集電体上に負極合剤層を有する負極と、電解質とを具備してなる電池であって、正極合剤層が請求項5に記載の電池用分散組成物を使用して形成されてなる電池。   6. A battery comprising a positive electrode having a positive electrode mixture layer on a current collector, a negative electrode having a negative electrode mixture layer on the current collector, and an electrolyte, wherein the positive electrode mixture layer is defined in claim 5. A battery formed by using the battery dispersion composition.
JP2014067638A 2014-03-28 2014-03-28 Dispersant, dispersion composition, dispersion composition for batteries, and battery Pending JP2015191760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067638A JP2015191760A (en) 2014-03-28 2014-03-28 Dispersant, dispersion composition, dispersion composition for batteries, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067638A JP2015191760A (en) 2014-03-28 2014-03-28 Dispersant, dispersion composition, dispersion composition for batteries, and battery

Publications (1)

Publication Number Publication Date
JP2015191760A true JP2015191760A (en) 2015-11-02

Family

ID=54426103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067638A Pending JP2015191760A (en) 2014-03-28 2014-03-28 Dispersant, dispersion composition, dispersion composition for batteries, and battery

Country Status (1)

Country Link
JP (1) JP2015191760A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174708A (en) * 2016-03-25 2017-09-28 東洋インキScホールディングス株式会社 Dispersion composition, dispersion composition for battery, and battery
JP6380642B1 (en) * 2017-11-01 2018-08-29 東洋インキScホールディングス株式会社 Dispersant, dispersion composition, battery dispersion composition, electrode, battery
WO2018207933A1 (en) * 2017-05-12 2018-11-15 東洋インキScホールディングス株式会社 Dispersant, dispersant composition, dispersion composition for batteries, electrode and battery
US20210062005A1 (en) * 2019-08-30 2021-03-04 Heidelberger Druckmaschinen Ag Radiation-curable compositions of pigment violet 23 with improved removability from surfaces, method of making a radiation-curable composition and ink containing a radiation-curable composition
WO2023032717A1 (en) * 2021-08-31 2023-03-09 日本ゼオン株式会社 Binder composition for electromechanical element positive electrode, conductive material dispersion for electromechanical element positive electrode, slurry composition for electromechanical element positive electrode, positive electrode for electromechanical element, and electromechanical element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174708A (en) * 2016-03-25 2017-09-28 東洋インキScホールディングス株式会社 Dispersion composition, dispersion composition for battery, and battery
WO2018207933A1 (en) * 2017-05-12 2018-11-15 東洋インキScホールディングス株式会社 Dispersant, dispersant composition, dispersion composition for batteries, electrode and battery
JP6380642B1 (en) * 2017-11-01 2018-08-29 東洋インキScホールディングス株式会社 Dispersant, dispersion composition, battery dispersion composition, electrode, battery
JP2019087304A (en) * 2017-11-01 2019-06-06 東洋インキScホールディングス株式会社 Dispersant, dispersion composition, dispersion composition for battery, electrode, and battery
US20210062005A1 (en) * 2019-08-30 2021-03-04 Heidelberger Druckmaschinen Ag Radiation-curable compositions of pigment violet 23 with improved removability from surfaces, method of making a radiation-curable composition and ink containing a radiation-curable composition
US12084578B2 (en) * 2019-08-30 2024-09-10 Heidelberger Druckmaschinen Ag Radiation-curable compositions of pigment violet 23 with improved removability from surfaces, method of making a radiation-curable composition and ink containing a radiation-curable composition
WO2023032717A1 (en) * 2021-08-31 2023-03-09 日本ゼオン株式会社 Binder composition for electromechanical element positive electrode, conductive material dispersion for electromechanical element positive electrode, slurry composition for electromechanical element positive electrode, positive electrode for electromechanical element, and electromechanical element

Similar Documents

Publication Publication Date Title
JP5273274B1 (en) Lithium secondary battery electrode forming composition, secondary battery electrode
JP5470780B2 (en) Battery composition
KR100952277B1 (en) Composition for battery
JP5446178B2 (en) Positive electrode mixture paste for lithium secondary battery
WO2020017656A1 (en) Compound, dispersant, dispersion composition for battery, electrode, and battery
JP5369550B2 (en) Battery composition
JP6746875B2 (en) Secondary battery electrode forming composition, secondary battery electrode and secondary battery
JP2014194927A (en) Mixture slurry and production method thereof, and electrode and battery using the mixture slurry
JP6274343B1 (en) Dispersant, dispersion composition, battery dispersion composition, electrode, battery
JP2015191760A (en) Dispersant, dispersion composition, dispersion composition for batteries, and battery
JP6202397B2 (en) Secondary battery electrode forming composition, secondary battery electrode and secondary battery
JP6380642B1 (en) Dispersant, dispersion composition, battery dispersion composition, electrode, battery
JP5136303B2 (en) Capacitor composition
JP2014135198A (en) Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
JP2015125964A (en) Composition for forming secondary battery electrode, secondary battery electrode and secondary battery
JP6202395B2 (en) Dispersant for battery, battery composition using the same, and lithium secondary battery
JP6728851B2 (en) Dispersion composition, dispersion composition for battery, battery
JP5764804B2 (en) Compound paste for positive electrode of lithium ion secondary battery
JP6003634B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP2015176688A (en) Composition for secondary battery, and secondary battery electrode and secondary battery using the composition
JP2016181479A (en) Composition for lithium secondary battery
JP2016177910A (en) Composition for forming electricity storage device electrode, electricity storage device electrode, and electricity storage device
JP6040783B2 (en) Secondary battery electrode forming composition, secondary battery electrode and secondary battery
JP6740564B2 (en) Electric storage device electrode forming composition, electric storage device electrode, and electric storage device
JP2012195243A (en) Dispersant for battery, composite for battery comprising the same, and lithium secondary battery