JP2015181970A - wastewater treatment method - Google Patents
wastewater treatment method Download PDFInfo
- Publication number
- JP2015181970A JP2015181970A JP2014057907A JP2014057907A JP2015181970A JP 2015181970 A JP2015181970 A JP 2015181970A JP 2014057907 A JP2014057907 A JP 2014057907A JP 2014057907 A JP2014057907 A JP 2014057907A JP 2015181970 A JP2015181970 A JP 2015181970A
- Authority
- JP
- Japan
- Prior art keywords
- component adsorbent
- dirt component
- adsorbent
- dirt
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
この発明は、従来よりも低濃度の有効塩素等で処理することが出来る排水処理方法に関するものである。 The present invention relates to a wastewater treatment method which can be treated with a lower concentration of effective chlorine or the like than before.
従来、残留塩素を再生利用できる排水の処理方法に関する提案があった(特許文献1)。
すなわち、難分解性有機物を含む有害排水の処理方法として、凝集処理、オゾン処理、促進酸化処理、活性炭処理などが知られているところ、凝集沈殿法は固形分の難分解性物質は効率的に除去できるが、溶解性難分解性有機物は単位スラッジ量あたりの除去可能な有機物量が少なく、多量のスラッジが発生するという欠点がある。オゾン処理、促進酸化処理は、オゾンの発生装置や紫外線照射のためのコストが高額であるという欠点があり、固形分に対しては除去性能が劣る。活性炭処理は、吸着した難分解性物質を改めて処理をしなければならないために、効率的に難分解性物質の処理を行うことが困難であったこと、などに鑑み、この提案は排水中のダイオキシン類、界面活性剤などに代表される難分解性有機物を効率よく処理しようとするものであって、難分解性有機物を含有する排水から固形分を除去し、次いで過酸化ニッケルを主成分とする触媒と酸化剤の共存下で接触させて難分解性有機物を無害化する、というものであが、前記酸化剤は酸化能が残っていても使い捨てであるのでランニング・コストが高く付いてしまっていた。
この従来提案は、従来よりもランニング・コストに優れる排水の処理方法を提供しようとし、排水の汚れ評価指標を有効塩素により低減させる浄化工程と、前記浄化工程での処理水を酸性雰囲気の塩素ガス分離槽に送って残留塩素を塩素ガスに変化させて揮発させる塩素分離工程と、前記塩素分離工程で揮発した塩素ガスをアルカリ性雰囲気の気液混合槽に送って液中に溶解させることにより塩素ガスを有効塩素として再生する塩素回収工程とを有し、前記塩素回収工程で再生した有効塩素を浄化工程で利用するようにしたものであり、浄化工程において排水の汚れ評価指標を有効塩素により低減させ、その処理水を酸性雰囲気の塩素ガス分離槽に送って残留塩素を塩素ガスに変化させて揮発させ分離・除去し、この塩素分離工程で揮発した塩素ガスをアルカリ性雰囲気の気液混合槽に送って液中に溶解させることにより塩素ガスを有効塩素として再生し、この塩素回収工程で再生した有効塩素を浄化工程で利用するようにしたので、排水処理後の残留塩素を再利用することができ、従来よりもランニング・コストに優れるという利点を有するものである。
しかし、この提案のものによると高濃度の有効塩素が必要であるという問題があった。
Conventionally, there has been a proposal regarding a wastewater treatment method that can recycle residual chlorine (Patent Document 1).
In other words, coagulation treatment, ozone treatment, accelerated oxidation treatment, activated carbon treatment, etc. are known as treatment methods for hazardous wastewater containing persistent organic substances. Although it can be removed, the soluble hardly decomposable organic substance has a drawback that a small amount of organic substance per unit sludge can be removed and a large amount of sludge is generated. Ozone treatment and accelerated oxidation treatment have the disadvantage that the cost for ozone generator and ultraviolet irradiation is high, and the removal performance is inferior to the solid content. In the activated carbon treatment, since the adsorbed difficult-to-decompose substance has to be treated again, it is difficult to efficiently treat the hardly-decomposable substance. It is intended to efficiently treat difficult-to-decompose organic substances typified by dioxins and surfactants, and removes solids from waste water containing persistent organic substances, and then contains nickel peroxide as the main component. It is said that it makes the persistent organic substances harmless by contacting them in the coexistence of an oxidizing agent and an oxidizing agent. However, since the oxidizing agent is disposable even if the oxidizing ability remains, the running cost is high. It was.
This conventional proposal seeks to provide a wastewater treatment method that is superior in running cost compared to the prior art, a purification process for reducing wastewater contamination evaluation index with effective chlorine, and chlorine gas in an acidic atmosphere for treatment water in the purification process. A chlorine separation step for sending residual chlorine to chlorine gas and volatilizing it by sending it to a separation tank, and chlorine gas volatilized in the chlorine separation step by sending it to a gas-liquid mixing tank in an alkaline atmosphere and dissolving it in the liquid A chlorine recovery process that regenerates as effective chlorine, and the effective chlorine regenerated in the chlorine recovery process is used in the purification process. The treated water is sent to a chlorine gas separation tank in an acidic atmosphere, and the residual chlorine is changed to chlorine gas to volatilize, separate and remove, and volatilizes in this chlorine separation process. Since chlorine gas was regenerated as effective chlorine by sending the raw gas to a gas-liquid mixing tank in an alkaline atmosphere and dissolved in the liquid, the effective chlorine regenerated in this chlorine recovery process was used in the purification process. Residual chlorine after treatment can be reused, and it has the advantage that it is superior in running cost as compared with the conventional method.
However, according to this proposal, there is a problem that a high concentration of effective chlorine is required.
そこでこの発明は、従来よりも低濃度の有効塩素等で処理することが出来る排水処理方法を提供しようとするものである。 Therefore, the present invention intends to provide a wastewater treatment method that can treat with effective chlorine having a lower concentration than conventional ones.
前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の排水処理方法は、汚れ成分吸着剤の貯留槽で排水中の汚れ成分を汚れ成分吸着剤に吸着させる吸着工程と、前記汚れ成分吸着剤の貯留槽から汚れ成分吸着剤の一部を抜き出して汚れ成分吸着剤の浄化槽に移行せしめ、前記汚れ成分吸着剤の浄化槽で汚れ成分吸着剤に汚れ成分分解剤を及ぼして汚れ成分吸着剤を浄化する浄化工程とを有し、浄化された汚れ成分吸着剤を汚れ成分吸着剤の貯留槽に戻すようにしたことを特徴とする。
In order to solve the above problems, the present invention takes the following technical means.
(1) The wastewater treatment method of the present invention includes an adsorption step of adsorbing the dirt component in the wastewater to the dirt component adsorbent in the dirt component adsorbent storage tank, and the dirt component adsorbent from the dirt component adsorbent storage tank. A purification step of purifying the dirt component adsorbent by removing a part of the dirt component adsorbent and transferring it to the dirt component adsorbent purification tank, and applying the dirt component decomposing agent to the dirt component adsorbent in the dirt component adsorbent purification tank. The soiled component adsorbent thus made is returned to the soil component adsorbent storage tank.
前記排水として、化学工場その他の工業廃水、重金属類等の汚染廃水、放射性物質汚染廃水などを例示することが出来る。前記排水中の汚れ成分として、溶剤その他の有機成分を例示することが出来る。前記汚れ成分の評価指標として、化学的酸素要求量(COD)、全有機炭素(TOC)などを例示することが出来る。
前記汚れ成分吸着剤として、活性炭を例示することが出来る。また、汚れ成分分解剤として、塩化物イオン(Cl−)の共存下で電気分解すると生成する電解塩素(Cl2、HOCl、ClO−)や、・OHラジカル、薬剤次亜塩素酸ソーダ(NaOCl)などを例示することが出来る。
Examples of the waste water include chemical factory and other industrial waste water, contaminated waste water such as heavy metals, radioactive material contaminated waste water, and the like. Examples of the soil component in the waste water include a solvent and other organic components. Examples of the evaluation index of the soil component include chemical oxygen demand (COD) and total organic carbon (TOC).
Examples of the dirt component adsorbent include activated carbon. Moreover, electrolytic chlorine (Cl 2 , HOCl, ClO − ) generated by electrolysis in the presence of chloride ions (Cl − ), OH radicals, and sodium hypochlorite (NaOCl) Etc. can be illustrated.
汚れ成分吸着剤の浄化槽に、陽極と陰極からなる電解通路を形成してもよい。汚れ成分吸着剤の浄化槽では、金属製の筒体の内部でスクリュー・コンベアを回転駆動して汚れ成分吸着剤を移送してもよい。前記スクリュー・コンベアをプラスに荷電し、金属製の筒体をマイナスに荷電して塩化物イオン(Cl−)の共存下で電解作用を起こさせてもよい。このようにすると、汚れ成分吸着剤を移送しつつ汚れ成分分解剤(電解塩素)を発生させて作用させることが出来る。
この電解通路において、塩化物イオン(Cl−)の共存下で電気分解すると電解塩素(Cl2、HOCl、ClO−)や、・OHラジカルが生成することとなり、これら汚れ成分分解剤が汚れ成分吸着剤に吸着された汚れ成分に作用して分解せしめることとなる。
An electrolytic passage composed of an anode and a cathode may be formed in the septic tank for the dirt component adsorbent. In the septic tank for the dirty component adsorbent, the dirty component adsorbent may be transferred by rotationally driving a screw conveyor inside a metal cylinder. The screw conveyor may be positively charged, and the metal cylinder may be negatively charged to cause electrolysis in the presence of chloride ions (Cl − ). If it does in this way, a dirt ingredient decomposition agent (electrolytic chlorine) can be generated and made to act, conveying a dirt ingredient adsorption agent.
In this electrolytic path, electrolysis in the presence of chloride ions (Cl − ) generates electrolytic chlorine (Cl 2 , HOCl, ClO − ) and .OH radicals, and these soil component decomposers adsorb soil components. It will act on the dirt component adsorbed on the agent and cause it to decompose.
この排水処理方法によると、吸着工程で、汚れ成分吸着剤の貯留槽で排水中の汚れ成分を汚れ成分吸着剤に吸着させるようにしたので、排水中の汚れ成分を汚れ成分吸着剤に濃縮することが出来る。
そして、浄化工程で、前記汚れ成分吸着剤の貯留槽から汚れ成分吸着剤の一部を抜き出して汚れ成分吸着剤の浄化槽に移行せしめ、前記汚れ成分吸着剤の浄化槽で汚れ成分吸着剤に汚れ成分分解剤を及ぼして汚れ成分吸着剤を浄化するようにしたので、汚れ成分が排水中に拡散した状態ではなく、汚れ成分吸着剤に濃縮した状態で汚れ成分分解剤を及ぼすことができ、汚れ成分分解剤と汚れ成分の遭遇率を向上させて汚れ成分を効率良く分解することが出来る。
さらに、浄化された汚れ成分吸着剤を汚れ成分吸着剤の貯留槽に戻すようにしたので、浄化された汚れ成分吸着剤に再び排水中の汚れ成分を吸着させることが出来る。
According to this waste water treatment method, the dirt component in the waste water is adsorbed to the dirt component adsorbent in the dirt component adsorbent storage tank in the adsorption step, so the dirt component in the waste water is concentrated to the dirt component adsorbent. I can do it.
Then, in the purification step, a part of the dirt component adsorbent is extracted from the dirt component adsorbent storage tank and transferred to the dirt component adsorbent purification tank. Since the dirt component adsorbent is purified by exerting a decomposing agent, the dirt component decomposing agent can be exerted in a state where the dirt component is concentrated in the dirt component adsorbent, not in a state where it is diffused in the waste water. The encounter rate of the decomposing agent and the soil component can be improved, and the soil component can be efficiently decomposed.
Furthermore, since the purified dirt component adsorbent is returned to the dirt component adsorbent storage tank, the dirt component in the waste water can be adsorbed again by the purified dirt component adsorbent.
(2)前記汚れ成分吸着剤の貯留槽の下流側から汚れ成分吸着剤を抜き出して汚れ成分吸着剤の浄化槽に移行せしめ、浄化された汚れ成分吸着剤を汚れ成分吸着剤の貯留槽の上流側に戻すようにしてもよい。
このように構成すると、汚れ成分吸着剤が貯留槽の上流側から下流側に到って、汚れ成分が経時的に累積して吸着した汚れ成分吸着剤を抜き出して、汚れ成分吸着剤の浄化槽に移行せしめることが出来る。
そして、浄化された汚れ成分吸着剤を汚れ成分吸着剤の貯留槽の上流側に戻すようにしたので、汚れ成分が累積して吸着した状態の汚れ成分吸着剤を効率良く再生して再利用することが出来る。
(2) The dirt component adsorbent is extracted from the downstream side of the dirt component adsorbent storage tank and transferred to the dirt component adsorbent purification tank, and the purified dirt component adsorbent is upstream of the dirt component adsorbent storage tank. You may make it return to.
With this configuration, the dirt component adsorbent reaches from the upstream side to the downstream side of the storage tank, and the dirt component adsorbent adsorbed by accumulation of the dirt components with time is extracted, and the dirt component adsorbent is put into the septic tank of the dirt component adsorbent. Can be migrated.
Since the purified dirt component adsorbent is returned to the upstream side of the dirt component adsorbent storage tank, the dirt component adsorbent in a state where the dirt components are accumulated and adsorbed is efficiently regenerated and reused. I can do it.
(3)前記汚れ成分吸着剤の貯留槽で排水を循環処理するようにしてもよい。
このように構成すると、汚れ成分吸着剤の貯留槽で排水を循環処理することにより、排水をフィード・バックして汚れ成分の濃度を希釈することが出来るので、排水原水の汚れ成分の濃度が高くても汚れ成分吸着剤の貯留槽で円滑に処理することが出来る。
(3) The waste water may be circulated in the storage tank for the dirt component adsorbent.
With this configuration, the wastewater is circulated in the storage tank of the dirt component adsorbent, so that the concentration of the dirt component can be diluted by feeding back the wastewater. However, it can be processed smoothly in the storage tank of the dirt component adsorbent.
(4)前記汚れ成分吸着剤を高周波加熱により金属を介して昇温するようにしてもよい。
このように構成すると、汚れ成分吸着剤を高周波加熱により金属を介して間接的に昇温することにより、汚れ成分吸着剤に吸着した汚れ成分(主として有機物)を熱分解(CO2等になる)すると共に、汚れ成分吸着剤を賦活・再生することが出来る。
(4) The dirt component adsorbent may be heated through a metal by high frequency heating.
With this configuration, by indirectly heated via the metal by high-frequency heating soil components adsorbent, (becomes CO 2, etc.) adsorbed dirt components (mainly organic) pyrolysis soil components adsorbent In addition, the dirt component adsorbent can be activated and regenerated.
この発明は上述のような構成であり、次の効果を有する。
汚れ成分分解剤と汚れ成分の遭遇率を向上させて汚れ成分を効率良く分解することが出来るので、従来よりも低濃度の有効塩素等で処理することが出来る排水処理方法を提供することが出来る。
また、従来よりも低濃度の有効塩素等で処理することが出来るので、後工程における有効塩素等の低減処理の負荷が少なくて済むこととなる。
The present invention is configured as described above and has the following effects.
Since it is possible to efficiently decompose the dirt component by improving the encounter rate between the dirt component decomposer and the dirt component, it is possible to provide a wastewater treatment method that can be treated with a low concentration of effective chlorine or the like. .
In addition, since it can be processed with a lower concentration of effective chlorine or the like than in the prior art, the burden of reducing the effective chlorine or the like in the subsequent process can be reduced.
以下、この発明の実施の形態を図面を参照して説明する。
(1)先ず、この排水処理方法を使用した排水処理システムのフローの全体像を説明する。
図1及び図2に示すように、排水(1)を原水調整槽2に流入させ、pH調整装置3によりpHを中性域に調整する。pH調整剤4として、塩酸や水酸化ナトリウムを使用する。次いで、電解凝集沈殿装置5に送り、無機物やss成分を沈降させて分離する。沈降物はフィルタープレス6にかけて水分を分離し、産業廃棄物7として搬出する。
Embodiments of the present invention will be described below with reference to the drawings.
(1) First, an overall image of a flow of a wastewater treatment system using this wastewater treatment method will be described.
As shown in FIGS. 1 and 2, the waste water (1) is caused to flow into the raw water adjustment tank 2, and the pH is adjusted to a neutral range by the pH adjustment device 3. As the pH adjuster 4, hydrochloric acid or sodium hydroxide is used. Subsequently, it sends to the electrolytic coagulation sedimentation apparatus 5, and precipitates and isolate | separates an inorganic substance and ss component. The sediment is filtered through a filter press 6 to separate water and is carried out as industrial waste 7.
そして、沈降物を分離した排水を、第一の汚れ成分吸着剤(8)の貯留槽9に送る。前記汚れ成分吸着剤の貯留槽9には、汚れ成分吸着剤の浄化槽10を併置している(図2参照)。汚れ成分吸着剤の浄化槽10には、電解水生成装置11から電解水を供給するようにしている。前記電解水生成装置11には、電解促進剤12として次亜塩素酸ソーダや食塩水を供給するようにしている。
次に、第一の汚れ成分吸着剤の貯留槽9で浄化された排水を直接電解酸化装置13に送って、食塩(NaCl)の存在下で電気分解することにより、電解次亜塩素酸や・OHラジカルの作用により排水を酸化分解して浄化する。直接電解酸化装置13には、AC再生装置14(後述)で再生した汚れ成分吸着剤を循環するAC混練装置15を併置している。その後、第二の汚れ成分吸着剤の貯留槽9に送って更に浄化を重ね、UF膜濾過装置16を介して処理水槽17に送る。そして、pH調整装置3によりpHを調整して、排水を再利用する。
And the waste_water | drain which isolate | separated the sediment is sent to the storage tank 9 of the 1st dirt component adsorption agent (8). The dirt component adsorbent storage tank 9 is provided with a dirt component adsorbent purifying tank 10 (see FIG. 2). Electrolyzed water is supplied from the electrolyzed water generating device 11 to the septic tank 10 for the dirt component adsorbent. The electrolyzed water generator 11 is supplied with sodium hypochlorite or saline as the electrolysis promoter 12.
Next, the waste water purified in the storage tank 9 for the first fouling component adsorbent is sent directly to the electrolytic oxidation apparatus 13 and electrolyzed in the presence of sodium chloride (NaCl), so that electrolytic hypochlorous acid,. Wastewater is oxidized and purified by the action of OH radicals. The direct electrolytic oxidation apparatus 13 is also provided with an AC kneading apparatus 15 that circulates the dirt component adsorbent regenerated by an AC regeneration apparatus 14 (described later). Thereafter, it is sent to the storage tank 9 for the second dirt component adsorbent and further purified, and sent to the treated water tank 17 via the UF membrane filtration device 16. Then, the pH is adjusted by the pH adjusting device 3 and the waste water is reused.
これが処理フローの全体像であるが、図2に示すように、この実施形態の排水処理方法では、汚れ成分吸着剤の貯留槽9で排水中の汚れ成分を汚れ成分吸着剤に吸着させる吸着工程と、前記汚れ成分吸着剤の貯留槽9から汚れ成分吸着剤の一部を抜き出して汚れ成分吸着剤の浄化槽10に移行せしめ、前記汚れ成分吸着剤の浄化槽10で汚れ成分吸着剤に汚れ成分分解剤を及ぼして汚れ成分吸着剤を浄化する浄化工程とを有する。そして、浄化された汚れ成分吸着剤を汚れ成分吸着剤の貯留槽9に戻すようにした。
汚れ成分吸着剤の貯留槽9では、下部の濾過砂層18の上層に汚れ成分吸着剤が貯留充填され、上方の導入口19から排水が導入される。そして、汚れ成分吸着剤に接触しつつ下方に移行し、濾過砂層を通って下端の排出口20から排出される。
This is the overall image of the processing flow, but as shown in FIG. 2, in the wastewater treatment method of this embodiment, an adsorption process for adsorbing dirt components in the wastewater to the dirt component adsorbent in the dirt component adsorbent storage tank 9. Then, a part of the dirt component adsorbent is extracted from the dirt component adsorbent storage tank 9 and transferred to the dirt component adsorbent purification tank 10, and the dirt component adsorbent is decomposed into the dirt component adsorbent in the dirt component adsorbent purification tank 10. And a purification step of purifying the dirt component adsorbent by exerting the agent. Then, the purified dirt component adsorbent is returned to the dirt component adsorbent storage tank 9.
In the soil component adsorbent storage tank 9, the soil component adsorbent is stored and filled in the upper layer of the lower filtration sand layer 18, and waste water is introduced from the upper inlet 19. Then, it moves downward while in contact with the dirt component adsorbent, and is discharged from the discharge port 20 at the lower end through the filter sand layer.
前記排水(1)として、化学工場その他の工業廃水、重金属類等の汚染廃水、放射性物質汚染廃水を処理した。前記排水中の汚れ成分として、溶剤その他の有機成分を処理した。前記汚れ成分の評価指標として、化学的酸素要求量(COD)、全有機炭素(TOC)などを採用することが出来る。
前記汚れ成分吸着剤(8)として、活性炭(AC)を使用した。また、汚れ成分分解剤として、塩化物イオン(Cl−)の共存下で電気分解すると生成する電解塩素(Cl2、HOCl、ClO−)や、・OHラジカルを使用した。薬剤次亜塩素酸ソーダ(NaOCl)を使用してもよい。
As the wastewater (1), chemical factory and other industrial wastewater, contaminated wastewater such as heavy metals, and radioactive material contaminated wastewater were treated. Solvents and other organic components were treated as dirt components in the waste water. Chemical oxygen demand (COD), total organic carbon (TOC), etc. can be employed as an evaluation index of the soil component.
Activated carbon (AC) was used as the soil component adsorbent (8). In addition, electrolytic chlorine (Cl 2 , HOCl, ClO − ) generated by electrolysis in the presence of chloride ions (Cl − ) and .OH radicals were used as the soil component decomposer. The drug sodium hypochlorite (NaOCl) may be used.
汚れ成分吸着剤の浄化槽10に、陽極と陰極からなる電解通路を形成した。具体的には、汚れ成分吸着剤の浄化槽10では、金属製の筒体の内部でスクリュー・コンベア21を回転駆動して汚れ成分吸着剤を移送するようにした。導電性セラニックス製の前記スクリュー・コンベアをプラスに荷電し、チタン金属製の筒体22をマイナスに荷電して塩化物イオン(Cl−)の共存下で電解作用を起こさせるようにした。このようにしたので、汚れ成分吸着剤を移送しつつ汚れ成分分解剤(電解塩素)を発生させて作用させることが出来た。
汚れ成分吸着剤の浄化槽10のスクリュー・コンベアは、汚れ成分吸着剤の貯留槽9の下方の抜出管23から汚れ成分吸着剤を抜き出の貯留槽の上方の再供給管24から戻すようにしている。
この電解通路において、塩化物イオン(Cl−)の共存下で電気分解すると電解塩素(Cl2、HOCl、ClO−)や、・OHラジカルが生成することとなり、これら汚れ成分分解剤が汚れ成分吸着剤に吸着された汚れ成分に作用して分解せしめることとなる。
An electrolytic passage composed of an anode and a cathode was formed in the septic tank 10 for the dirt component adsorbent. Specifically, in the septic tank 10 for the dirt component adsorbent, the screw conveyor 21 is rotationally driven inside the metal cylinder to transfer the dirt component adsorbent. The screw conveyor made of conductive ceramics was positively charged, and the titanium metal cylinder 22 was negatively charged to cause an electrolytic action in the presence of chloride ions (Cl − ). Since it did in this way, it was able to make it generate | occur | produce and act on a soil component decomposition agent (electrolytic chlorine), transferring a soil component adsorbent.
The screw conveyor of the septic tank 10 for the dirty component adsorbent returns the dirty component adsorbent from the discharge pipe 23 below the dirty component adsorbent storage tank 9 through the resupply pipe 24 above the extracted storage tank. ing.
In this electrolytic path, electrolysis in the presence of chloride ions (Cl − ) generates electrolytic chlorine (Cl 2 , HOCl, ClO − ) and .OH radicals, and these soil component decomposers adsorb soil components. It will act on the dirt component adsorbed on the agent and cause it to decompose.
次に、この実施形態の排水処理方法の使用状態を説明する。
この排水処理方法によると、吸着工程で、汚れ成分吸着剤の貯留槽9で排水中の汚れ成分を汚れ成分吸着剤に吸着させるようにしたので、排水中の汚れ成分を汚れ成分吸着剤に濃縮することが出来る。
そして、浄化工程で、前記汚れ成分吸着剤の貯留槽9から汚れ成分吸着剤の一部を抜き出して汚れ成分吸着剤の浄化槽10に移行せしめ、前記汚れ成分吸着剤の浄化槽10で汚れ成分吸着剤に汚れ成分分解剤を及ぼして汚れ成分吸着剤を浄化するようにしたので、汚れ成分が排水中に拡散した状態ではなく、汚れ成分吸着剤に濃縮した状態で汚れ成分分解剤を及ぼすことができ、汚れ成分分解剤と汚れ成分の遭遇率を向上させて汚れ成分を効率良く分解することができ、従来よりも低濃度の有効塩素等で処理することが出来るという利点を有する。
Next, the use state of the waste water treatment method of this embodiment will be described.
According to this wastewater treatment method, the dirt component in the wastewater is adsorbed to the dirt component adsorbent in the dirt component adsorbent storage tank 9 in the adsorption step, so the dirt component in the wastewater is concentrated to the dirt component adsorbent. I can do it.
In the purification step, a part of the dirt component adsorbent is extracted from the dirt component adsorbent storage tank 9 and transferred to the dirt component adsorbent purification tank 10, and the dirt component adsorbent is purified in the dirt component adsorbent purification tank 10. Since the soil component adsorbent is purified by applying the soil component decomposing agent to the soil, the soil component decomposing agent can be applied in a state where it is concentrated in the soil component adsorbent, not in a state where the soil component is diffused in the waste water. Further, it is possible to improve the encounter rate between the soil component decomposing agent and the soil component, to efficiently decompose the soil component, and to treat with a lower concentration of effective chlorine or the like than in the prior art.
さらに、浄化された汚れ成分吸着剤を汚れ成分吸着剤の貯留槽9に戻すようにしたので、浄化された汚れ成分吸着剤に再び排水中の汚れ成分を吸着させることが出来る。
また、従来よりも低濃度の有効塩素等で処理することが出来るので、後工程における有効塩素等の低減処理の負荷が少なくて済むこととなるという利点を有する。
Furthermore, since the purified dirt component adsorbent is returned to the dirt component adsorbent storage tank 9, the dirt component in the waste water can be adsorbed again by the purified dirt component adsorbent.
In addition, since it can be processed with a lower concentration of effective chlorine or the like than in the prior art, there is an advantage that the burden of reducing the effective chlorine or the like in the subsequent process can be reduced.
(2)前記汚れ成分吸着剤の貯留槽9の下流側から汚れ成分吸着剤を抜き出して汚れ成分吸着剤の浄化槽10に移行せしめ、浄化された汚れ成分吸着剤を汚れ成分吸着剤の貯留槽9の上流側に戻すようにした。
このようにしたので、汚れ成分吸着剤が貯留槽の上流側から下流側に到って、汚れ成分が経時的に累積して吸着した汚れ成分吸着剤を抜き出して、汚れ成分吸着剤の浄化槽10に移行せしめることが出来る。
そして、浄化された汚れ成分吸着剤を汚れ成分吸着剤の貯留槽9の上流側に戻すようにしたので、汚れ成分が累積して吸着した状態の汚れ成分吸着剤を効率良く再生して再利用することが出来るという利点を有する。
(2) The dirt component adsorbent is extracted from the downstream side of the dirt component adsorbent storage tank 9 and transferred to the dirt component adsorbent purification tank 10, and the purified dirt component adsorbent is stored in the dirt component adsorbent storage tank 9. It was made to return to the upstream side.
As a result, the dirt component adsorbent reaches from the upstream side to the downstream side of the storage tank, and the dirt component adsorbent adsorbed by accumulating dirt components with time is extracted, and the septic tank 10 for the dirt component adsorbent is extracted. It can be made to move to.
Since the purified dirt component adsorbent is returned to the upstream side of the dirt component adsorbent storage tank 9, the dirt component adsorbent in a state where the dirt components are accumulated and adsorbed is efficiently regenerated and reused. Has the advantage of being able to.
(3)前記汚れ成分吸着剤の貯留槽9で排水を循環(FB)処理するようにした。
このようにしたので、汚れ成分吸着剤の貯留槽9で排水を循環(FB)処理することにより、排水をフィード・バックして汚れ成分の濃度を希釈することが出来るので、排水原水の汚れ成分の濃度が高くても汚れ成分吸着剤の貯留槽9で円滑に処理することが出来るという利点を有する。
(3) The waste water is circulated (FB) in the soil component adsorbent storage tank 9.
Since it did in this way, it is possible to feed back the waste water and dilute the concentration of the soil component by circulating (FB) the waste water in the storage tank 9 of the soil component adsorbent. Even if the density | concentration of is high, it has the advantage that it can process smoothly with the storage tank 9 of a dirt component adsorbent.
(4)AC再生装置14で、前記汚れ成分吸着剤を高周波加熱により金属を介して昇温するようにした。
このようにしたので、汚れ成分吸着剤を高周波加熱により金属を介して間接的に昇温することにより、汚れ成分吸着剤に吸着した汚れ成分(主として有機物)を熱分解(CO2等になる)すると共に、汚れ成分吸着剤を賦活・再生することが出来るという利点を有する。
(4) In the AC regenerator 14, the fouling component adsorbent was heated through a metal by high frequency heating.
Since it did in this way, the dirt component adsorbent (mainly organic matter) adsorbed on the dirt component adsorbent is thermally decomposed (CO 2 etc.) by indirectly raising the temperature of the dirt component adsorbent through a metal by high frequency heating. In addition, there is an advantage that the dirt component adsorbent can be activated and regenerated.
従来よりも低濃度の有効塩素等で処理することが出来ることによって、種々の排水処理方法の用途に適用することができる。 Since it can be treated with a lower concentration of effective chlorine or the like than conventional ones, it can be applied to various wastewater treatment methods.
1 排水
8 汚れ成分吸着剤
9 汚れ成分吸着剤の貯留槽
10 汚れ成分吸着剤の浄化槽
1 Drainage 8 Dirty Component Adsorbent 9 Storage Tank for Dirty Component Adsorbent
10 Septic tank for adsorbents of dirt components
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014057907A JP2015181970A (en) | 2014-03-20 | 2014-03-20 | wastewater treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014057907A JP2015181970A (en) | 2014-03-20 | 2014-03-20 | wastewater treatment method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015181970A true JP2015181970A (en) | 2015-10-22 |
Family
ID=54349172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014057907A Pending JP2015181970A (en) | 2014-03-20 | 2014-03-20 | wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015181970A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022018403A (en) * | 2020-07-15 | 2022-01-27 | 株式会社オメガ | Wastewater treatment method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5421963A (en) * | 1977-07-19 | 1979-02-19 | Kubota Ltd | Active carbon recirculated type adsorbing and regenrating apparatus |
JPS55159889A (en) * | 1979-05-31 | 1980-12-12 | Agency Of Ind Science & Technol | Treating method of waste water containing phosphorus |
JPS58166916A (en) * | 1982-03-12 | 1983-10-03 | ウエストバコ・コ−ポレ−シヨン | Adsorption by adsorbent and method and apparatus for regenerating same |
JP2009006277A (en) * | 2007-06-28 | 2009-01-15 | National Institute Of Advanced Industrial & Technology | Adsorption column employing high-frequency heating |
-
2014
- 2014-03-20 JP JP2014057907A patent/JP2015181970A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5421963A (en) * | 1977-07-19 | 1979-02-19 | Kubota Ltd | Active carbon recirculated type adsorbing and regenrating apparatus |
JPS55159889A (en) * | 1979-05-31 | 1980-12-12 | Agency Of Ind Science & Technol | Treating method of waste water containing phosphorus |
JPS58166916A (en) * | 1982-03-12 | 1983-10-03 | ウエストバコ・コ−ポレ−シヨン | Adsorption by adsorbent and method and apparatus for regenerating same |
JP2009006277A (en) * | 2007-06-28 | 2009-01-15 | National Institute Of Advanced Industrial & Technology | Adsorption column employing high-frequency heating |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022018403A (en) * | 2020-07-15 | 2022-01-27 | 株式会社オメガ | Wastewater treatment method |
JP7365299B2 (en) | 2020-07-15 | 2023-10-19 | 株式会社オメガ | Wastewater treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5567468B2 (en) | Method and apparatus for treating organic wastewater | |
KR20080033260A (en) | Method for treatment of water containing hardly-degradable substance | |
US20070119779A1 (en) | Method for treating raw water containing hardly decomposable substance | |
KR101360020B1 (en) | Preprocessing of membrane filtration and system using the same | |
JP6242761B2 (en) | Waste water treatment apparatus and treatment method | |
JP4445758B2 (en) | Method for treating contaminated water containing persistent substances | |
WO2019066762A1 (en) | The method for treatment and disinfection of industrial effluents | |
JP2007117965A (en) | Method and apparatus for removing metal from drainage | |
JP4933734B2 (en) | Treatment of water containing persistent substances | |
JP5198648B2 (en) | Treatment of water containing persistent substances | |
JP2004243162A (en) | Method and apparatus for treating hardly decomposable organic matter-containing liquid | |
JP2015181970A (en) | wastewater treatment method | |
KR101206399B1 (en) | Treatment method and treatment system of waste water | |
JP5545841B2 (en) | Wastewater treatment mechanism | |
JP2015123442A (en) | Wastewater treatment mechanism | |
WO2021215099A1 (en) | Waste water treatment method, ultrapure water production method, and waste water treatment apparatus | |
JP5594774B2 (en) | Gas dissolution mechanism | |
JP4641435B2 (en) | Endocrine disrupting chemical substance decomposition method and apparatus | |
JP4422444B2 (en) | Water purifier | |
JP2005125230A (en) | Sludge treatment apparatus and sludge treatment method | |
JP2008264727A (en) | Method for decomposing hardly decomposable harmful material | |
JP2000185289A (en) | Waste water treatment method and apparatus | |
KR101284129B1 (en) | Method for remote controlling the purification of sewage water | |
JP2024107998A (en) | Water treatment device | |
CN108217864A (en) | The system and method that a kind of salt by sewage is detached with organic matter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161111 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170605 |