[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015174985A - Polishing material and method of polishing - Google Patents

Polishing material and method of polishing Download PDF

Info

Publication number
JP2015174985A
JP2015174985A JP2014054845A JP2014054845A JP2015174985A JP 2015174985 A JP2015174985 A JP 2015174985A JP 2014054845 A JP2014054845 A JP 2014054845A JP 2014054845 A JP2014054845 A JP 2014054845A JP 2015174985 A JP2015174985 A JP 2015174985A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
polished
electric field
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014054845A
Other languages
Japanese (ja)
Other versions
JP6340497B2 (en
Inventor
陽一 赤上
Yoichi Akagami
陽一 赤上
孝幸 久住
Takayuki Kusumi
孝幸 久住
竜太 中村
Ryuta Nakamura
竜太 中村
浩一 川原
Koichi Kawahara
浩一 川原
俊正 鈴木
Toshimasa Suzuki
俊正 鈴木
聖一 須田
Seiichi Suda
聖一 須田
伸英 齊藤
Nobuhide Saito
伸英 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITO OPTICAL SCIENCE MANUFACTURING Ltd
Japan Fine Ceramics Center
Akita Prefecture
Original Assignee
SAITO OPTICAL SCIENCE MANUFACTURING Ltd
Japan Fine Ceramics Center
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITO OPTICAL SCIENCE MANUFACTURING Ltd, Japan Fine Ceramics Center, Akita Prefecture filed Critical SAITO OPTICAL SCIENCE MANUFACTURING Ltd
Priority to JP2014054845A priority Critical patent/JP6340497B2/en
Publication of JP2015174985A publication Critical patent/JP2015174985A/en
Application granted granted Critical
Publication of JP6340497B2 publication Critical patent/JP6340497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing material that is specialized in an electric field application polishing technique and that can realize a high electric field application effect, and to provide a method of polishing.SOLUTION: A polishing material is provided that is to be fed between a polishing surface table and a member to be polished and to which electric voltage is applied, the polishing material including abrasive grain and a dispersant drawn between the polishing surface table and the member to be polished by the electric field generated by the voltage. The polishing material is a composite polishing material in which a core material having a higher dielectric constant than the dispersant is coated with a shell material having a higher polishing amount (polishing rate) per unit time with respect to the member to be polished than the core material. The core material is a titanium metal complex oxide and SrTiOand/or BaTiO, and the shell material is at least one material selected from an oxide, carbide, nitride, boride, and diamond.

Description

本発明は、被研磨部材の研磨に用いられる研磨材および研磨方法に関するものである。   The present invention relates to an abrasive used for polishing a member to be polished and a polishing method.

今日、硬質脆性材料などの精密研磨は、さまざまな産業において重要な基盤技術となっている。精密研磨における研磨効率および研磨品質の向上に関し、例えば、研磨砥粒、溶媒、パッドなどの研磨用副資材の開発や、研磨技術の向上を目指した技術開発が盛んである(下記特許文献1参照)。   Today, precision polishing of hard and brittle materials is an important basic technology in various industries. With regard to improvement in polishing efficiency and polishing quality in precision polishing, for example, development of auxiliary materials for polishing such as abrasive grains, solvents, pads, etc., and technical development aimed at improving polishing technology are active (see Patent Document 1 below) ).

こうした流れの中で、研磨中に外部電界を印加してスラリー流れを制御することで研磨効率を向上させる技術が開発されている。研磨中に外部電界を印加することで、例えばスラリーがオイルベースであれば砥粒に電界が印加作用し、スラリーが水ベースであれば主に分散媒に電界が作用する。   In such a flow, a technique for improving the polishing efficiency by applying an external electric field during polishing to control the slurry flow has been developed. By applying an external electric field during polishing, for example, if the slurry is oil-based, an electric field is applied to the abrasive grains, and if the slurry is water-based, the electric field mainly acts on the dispersion medium.

特開2012−81529号公報JP 2012-81529 A

しかし、スラリーを用いた精密研磨において、外部電界を印加することによって研磨効率を向上させる場合、スラリーを構成する砥粒と分散媒の誘電率が重要な因子となる。例えば、水ベースのスラリーの場合、水の誘電率は約80であることから、砥粒(例えば、シリカ、セリア、ダイヤモンドなど)の誘電率の方が水の誘電率よりも低い場合が多い。したがって、水ベースのスラリーを用いた場合、外部電界を印加しても、積極的に砥粒に電界を作用させることが困難である。一方、水よりも誘電率が高い材料(例えば、SrTiO3、BaTiO3など)は研磨レート(単位時間当たりの研磨除去量)が低いため、砥粒として用いることが困難である。 However, in precision polishing using a slurry, when the polishing efficiency is improved by applying an external electric field, the dielectric constant of the abrasive grains and the dispersion medium constituting the slurry is an important factor. For example, in the case of a water-based slurry, since the dielectric constant of water is about 80, the dielectric constant of abrasive grains (eg, silica, ceria, diamond, etc.) is often lower than that of water. Therefore, when a water-based slurry is used, it is difficult to positively apply an electric field to abrasive grains even when an external electric field is applied. On the other hand, a material having a dielectric constant higher than that of water (for example, SrTiO 3 , BaTiO 3, etc.) has a low polishing rate (polishing removal amount per unit time), and thus is difficult to use as abrasive grains.

本発明は、上記の実情に鑑みて提案されたものである。すなわち、電界印加研磨技術に特化した研磨材であり、分散媒の種類によらず高い電界印加効果を実現することができる研磨材および研磨方法の提供を目的とする。   The present invention has been proposed in view of the above circumstances. That is, it is an abrasive specialized in electric field application polishing technology, and an object thereof is to provide an abrasive and a polishing method capable of realizing a high electric field application effect regardless of the type of dispersion medium.

上記目的を達成するために、本発明に係る研磨材は、研磨定盤と被研磨部材との間に供給されると共に電圧が印加され、電圧によって生じた電界によって前記研磨定盤と前記被研磨部材との間に寄せられる砥粒および分散媒が含まれた研磨材において、前記砥粒が、コア材料と、このコア材料を被覆したシェル材料とから構成され、前記砥粒の誘電率が前記分散媒よりも高く、前記被研磨部材に対する単位時間当たりの研磨量が、前記コア材料よりも前記シェル材料の方が高い、ことを特徴とする。   In order to achieve the above object, a polishing material according to the present invention is supplied between a polishing surface plate and a member to be polished and a voltage is applied thereto, and the polishing platen and the object to be polished are generated by an electric field generated by the voltage. In an abrasive containing abrasive grains and a dispersion medium brought close to a member, the abrasive grains are composed of a core material and a shell material covering the core material, and the dielectric constant of the abrasive grains is The shell material has a higher polishing amount per unit time than the dispersion medium, and the shell material is higher than the core material.

本発明に係る研磨材は、前記コア材料の誘電率が前記分散媒よりも高い、ことを特徴とする。   The abrasive according to the present invention is characterized in that the core material has a dielectric constant higher than that of the dispersion medium.

本発明に係る研磨材は、前記コア材料がチタン金属複合酸化物である、ことを特徴とする。   The abrasive according to the present invention is characterized in that the core material is a titanium metal composite oxide.

本発明に係る研磨材は、前記コア材料がSrTiO3、BaTiO3、から選択される一種または二種以上が含まれる、ことを特徴とする。 The abrasive according to the present invention is characterized in that the core material includes one or more selected from SrTiO 3 and BaTiO 3 .

本発明に係る研磨材は、前記シェル材料が、酸化物、炭化物、窒化物、硼化物、ダイヤモンドから選択される一種または二種以上の材料である、ことを特徴とする。   The abrasive according to the present invention is characterized in that the shell material is one or more materials selected from oxides, carbides, nitrides, borides, and diamonds.

本発明に係る研磨材は、前記シェル材料が、酸化鉄、酸化マンガン、シリカ、セリア、ダイヤモンド、アルミナ、チタニア、ジルコニア、cBN、SiC、B4Cから選択される一種または二種以上が含まれる、ことを特徴とする。 In the abrasive according to the present invention, the shell material includes one or more selected from iron oxide, manganese oxide, silica, ceria, diamond, alumina, titania, zirconia, cBN, SiC, and B 4 C. It is characterized by that.

本発明に係る研磨方法は、研磨材を研磨定盤と被研磨部材との間に供給し、電圧を印加して生じさせた電界によって前記研磨定盤と前記被研磨部材との間で前記砥粒の配置制御を行う、ことを特徴とする。   In the polishing method according to the present invention, an abrasive is supplied between a polishing surface plate and a member to be polished, and an electric field generated by applying a voltage causes the polishing between the polishing surface plate and the member to be polished. It is characterized by controlling the arrangement of grains.

本発明に係る研磨材および研磨方法は上記した構成である。この構成により、砥粒の誘電率が分散媒よりも高いため、電界が砥粒に作用し、砥粒は研磨定盤と被研磨部材との間において配置制御される。また、被研磨部材に対するシェル材料の研磨レートがコア材料よりも高いため、被研磨部材が効率よく研磨される。したがって、分散媒よりも誘電率が高いコア材料を、被研磨部材に対する研磨レートがコア材料よりも高いシェル材料で被覆することで、外部電界への高い応答性と優れた研磨特性を複合化し、電界印加研磨技術において高い電界印加効果を実現することができる。   The abrasive and the polishing method according to the present invention have the above-described configuration. With this configuration, since the dielectric constant of the abrasive grains is higher than that of the dispersion medium, an electric field acts on the abrasive grains, and the arrangement of the abrasive grains is controlled between the polishing surface plate and the member to be polished. Further, since the polishing rate of the shell material with respect to the member to be polished is higher than that of the core material, the member to be polished is efficiently polished. Therefore, by covering the core material having a dielectric constant higher than that of the dispersion medium with a shell material whose polishing rate for the member to be polished is higher than that of the core material, a high response to an external electric field and excellent polishing characteristics are combined, A high electric field application effect can be realized in the electric field application polishing technique.

本発明の実施例に係る研磨材を用いて被研磨部材の研磨を行った場合の研磨速度をコア材料のみで構成される研磨材と比較したグラフを示した図である。It is the figure which showed the graph which compared the polishing rate at the time of grind | polishing a to-be-polished member using the abrasive | polishing material which concerns on the Example of this invention with the abrasive | polishing material comprised only by a core material. 本発明の実施例に係る研磨材を用いて被研磨部材の研磨を行った場合の研磨速度‐周波数グラフを示した図である。It is the figure which showed the grinding | polishing speed-frequency graph at the time of grind | polishing a to-be-polished member using the abrasive | polishing material which concerns on the Example of this invention. 本発明の実施例に係る研磨材を用いて被研磨部材の研磨を行った場合の研磨速度を比較例と比較したグラフを示した図である。It is the figure which showed the graph which compared the polishing rate at the time of grind | polishing a to-be-polished member using the abrasive | polishing material which concerns on the Example of this invention with the comparative example.

以下に、本発明の実施形態に係る研磨材および研磨方法を説明する。   Hereinafter, an abrasive and a polishing method according to embodiments of the present invention will be described.

本実施形態に係る研磨材は、研磨定盤としての上定盤および下定盤(図示省略)との間に被研磨部材を配置して、電界を印加しながら被研磨部材の研磨を行う際、両定盤と被研磨部材との間に供給される。被研磨部材は、例えばガラス、サファイア、炭化ケイ素(SiC)、窒化ガリウム(GaN)、ダイヤモンドなどである。   The abrasive according to the present embodiment is arranged when the member to be polished is disposed between an upper surface plate and a lower surface plate (not shown) as a polishing surface plate, and the member to be polished is polished while applying an electric field. Supplied between both surface plates and the member to be polished. Examples of the member to be polished include glass, sapphire, silicon carbide (SiC), gallium nitride (GaN), and diamond.

研磨材は、砥粒および分散媒が含まれたスラリーである。砥粒は、高い誘電率と高い研磨レートを実現するために、コア材料がシェル材料で被覆されている。コア材料の誘電率は分散媒よりも高い。分散媒が、例えば水やオイルであれば、コア材料は、例えば、チタン金属複合酸化物であり、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウム(BaTiO3)、などから選択される。 The abrasive is a slurry containing abrasive grains and a dispersion medium. In the abrasive grains, the core material is coated with a shell material in order to realize a high dielectric constant and a high polishing rate. The dielectric constant of the core material is higher than that of the dispersion medium. If the dispersion medium is, for example, water or oil, the core material is, for example, a titanium metal composite oxide, and is selected from strontium titanate (SrTiO 3 ), barium titanate (BaTiO 3 ), and the like.

シェル材料は、被研磨部材に対する研磨レートがコア材料よりも高い。シェル材料は、例えば、金属酸化物、炭化物、窒化物、硼化物、ダイヤモンドであり、酸化鉄、酸化マンガン、二酸化ケイ素(シリカ、SiO2)、酸化セリウム(セリア)、ダイヤモンド(C)、酸化アルミニウム(アルミナ、Al23)、酸化チタン(チタニア、TiO2)、酸化ジルコニウム(ジルコニア、ZrO2)、炭化ホウ素(B4C)、立方晶窒化ホウ素(cBN)、炭化ケイ素(SiC)などから選択される。 The shell material has a higher polishing rate for the member to be polished than the core material. Examples of the shell material include metal oxides, carbides, nitrides, borides, and diamonds, and iron oxide, manganese oxide, silicon dioxide (silica, SiO 2 ), cerium oxide (ceria), diamond (C), and aluminum oxide. (Alumina, Al 2 O 3 ), titanium oxide (titania, TiO 2 ), zirconium oxide (zirconia, ZrO 2 ), boron carbide (B 4 C), cubic boron nitride (cBN), silicon carbide (SiC), etc. Selected.

なお、研磨レートは砥粒の化学的特性および機械的特性に依存する。例えば、被研磨部材がサファイアであれば、シリカ系砥粒はサファイアに対する化学的特性および機械的特性のバランスがとれているため、研磨レートが高い。一方、チタン酸ストロンチウムやチタン酸バリウムは、サファイアに対する化学的特性および機械的特性のバランスがとれていないため、研磨レートが低い。したがって、シェル材料は、被研磨部材に対する化学的特性および機械的特性の観点から被研磨部材に応じて適宜選択される。例えば、被研磨部材がガラスであれば、シェル材料はセリア系が良い。   The polishing rate depends on the chemical characteristics and mechanical characteristics of the abrasive grains. For example, if the member to be polished is sapphire, silica-based abrasive grains have a high polishing rate because the chemical characteristics and mechanical characteristics of sapphire are balanced. On the other hand, strontium titanate and barium titanate have a low polishing rate because the chemical and mechanical properties of sapphire are not balanced. Therefore, the shell material is appropriately selected according to the member to be polished from the viewpoint of the chemical characteristics and mechanical properties of the member to be polished. For example, if the member to be polished is glass, the shell material is preferably ceria.

次に本実施形態の効果を説明する。   Next, the effect of this embodiment will be described.

上記したとおり、本実施形態によれば、コア材料であるチタン酸ストロンチウムやチタン酸バリウムの誘電率が、分散媒である水やオイルよりも高いため、電界がコア材料に作用し、砥粒は研磨盤と被研磨部材であるサファイアとの間に寄せられる。また、シェル材料であるシリカなどは、被研磨部材であるサファイアに対する研磨レートが、チタン酸ストロンチウムやチタン酸バリウムよりも高いため、被研磨部材が効率よく研磨される。したがって、分散媒よりも誘電率が高いコア材料を、被研磨部材に対する研磨レートがコア材料よりも高いシェル材料で被覆することで、外部電界への高い応答性と優れた研磨特性を複合化し、電界印加研磨技術において高い電界印加効果を実現することができる。   As described above, according to this embodiment, since the dielectric constant of strontium titanate or barium titanate that is the core material is higher than that of water or oil that is the dispersion medium, the electric field acts on the core material, and the abrasive grains It is brought between the polishing board and sapphire which is a member to be polished. Moreover, since the polishing rate with respect to sapphire which is a member to be polished is higher than that of strontium titanate or barium titanate, silica or the like which is a shell material is efficiently polished. Therefore, by covering the core material having a dielectric constant higher than that of the dispersion medium with a shell material whose polishing rate for the member to be polished is higher than that of the core material, a high response to an external electric field and excellent polishing characteristics are combined, A high electric field application effect can be realized in the electric field application polishing technique.

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

実施例として、チタン酸ストロンチウムをシリカで被覆することで研磨材(SiO2被覆SrTiO3砥粒)を生成した。なお、本実施例では噴霧熱分解法で合成したSrTiO3をコア材料に、シェル材料であるSiO2をゾルゲル法で合成したが、砥粒の合成方法は特にこの方法に限定するものではない。 As an example, an abrasive (SiO 2 -coated SrTiO 3 abrasive grains) was produced by coating strontium titanate with silica. In this embodiment, SrTiO 3 synthesized by the spray pyrolysis method is synthesized as the core material and SiO 2 as the shell material is synthesized by the sol-gel method. However, the method for synthesizing the abrasive grains is not particularly limited to this method.

比較例は、砥粒の基礎研磨特性評価においては、被覆をしない状態のSrTiO3砥粒、熱分解合成法を用いて合成したシリカ砥粒を用い、電界研磨評価においては、LED基板用のサファイア基板の精密研磨において一般的に用いられる水溶媒コロイダルシリカ砥粒(ニッタ・ハース株式会社製:MS−2000)を用いた。基礎研磨特性評価では、各砥粒の研磨速度を検証した。一方、電界研磨評価では、実施例のSiO2被覆SrTiO3砥粒、および比較例のシリカ砥粒(MS−2000)を用いて、サファイア基板の研磨を行った場合の研磨特性をそれぞれ検証した。 The comparative example uses uncoated SrTiO 3 abrasive grains in the evaluation of the basic polishing characteristics of the abrasive grains, and silica abrasive grains synthesized using a thermal decomposition synthesis method. In the electropolishing evaluation, sapphire for an LED substrate is used. Aqueous solvent colloidal silica abrasive grains (manufactured by Nitta Haas Co., Ltd .: MS-2000) generally used in precision polishing of substrates were used. In the basic polishing characteristic evaluation, the polishing rate of each abrasive grain was verified. On the other hand, in the electropolishing evaluation, the polishing characteristics when the sapphire substrate was polished were verified using the SiO 2 coated SrTiO 3 abrasive grains of the example and the silica abrasive grains (MS-2000) of the comparative example.

シリカ砥粒(MS−2000)を用いて外部電界を印加しながら研磨を行った場合、シリカの誘電率が2であることから、電界は分散媒である水に作用する。一方、本発明では、チタン酸ストロンチウム粒子にシリカを被覆させたため、水よりも誘電率が高いチタン酸ストロンチウム粒子によって、電界への高い応答性を実現させ、サファイア基板の研磨をシリカによって行うことで、優れた研磨特性を実現させることができる。以下、検証する。   When polishing is performed while applying an external electric field using silica abrasive grains (MS-2000), since the dielectric constant of silica is 2, the electric field acts on water as a dispersion medium. On the other hand, in the present invention, since strontium titanate particles are coated with silica, strontium titanate particles having a dielectric constant higher than that of water realize high response to an electric field, and polishing a sapphire substrate with silica. Excellent polishing characteristics can be realized. The following is verified.

<噴霧熱分解法によるチタン酸ストロンチウム粒子合成>
硝酸ストロンチウムとチタンペロキソクエン酸アンモニウムを水に溶かし、クエン酸とアンモニア水でpH8.5に調整する。原料溶液0.25mol/Lを、キャリアガス(空気)3L/minで流しながら、加熱温度の異なる順(200℃−400℃−800℃−1000℃)に設置された管状路を通過させ、熱分解反応を行う。管状路を通過してフィルターにトラップされた粒子を、800℃で4時間仮焼し、チタン酸ストロンチウム粒子を得た。
<Synthesis of strontium titanate particles by spray pyrolysis method>
Dissolve strontium nitrate and titanium peroxo ammonium citrate in water and adjust to pH 8.5 with citric acid and aqueous ammonia. While flowing 0.25 mol / L of the raw material solution at a carrier gas (air) of 3 L / min, it passes through the tubular path installed in the order of different heating temperatures (200 ° C.-400 ° C.-800 ° C.-1000 ° C.) Perform a decomposition reaction. The particles passing through the tubular passage and trapped on the filter were calcined at 800 ° C. for 4 hours to obtain strontium titanate particles.

<ゾルゲル法によるSrTiO3粒子へのシリカ被覆>
噴霧熱分解法で得られたチタン酸ストロンチウム粒子20gをエタノールなどのアルコール(エコノール)2000ml中に分散させた後、さらに超音波処理を30分間行い、粒子を分散させた。その後、室温で攪拌しながら25%アンモニア水120mlを加え、45分間攪拌した。その後、オルトケイ酸テトラエチル(TEOS)60mlを加え、24時間攪拌した。静置後、上澄み液を除去し、65℃で乾燥させた。シェル材料の厚みは、コア材料の粒径に依存するが、コア材料の粒子半径の0.5%以上、好ましくは5%以上、より好ましくは15%以上、また、80%以下、好ましくは60%以下、より好ましくは50%以下であることが望ましい。
<SilTiO 3 particles coated with silica by the sol-gel method>
After dispersing 20 g of strontium titanate particles obtained by the spray pyrolysis method in 2000 ml of alcohol (econol) such as ethanol, ultrasonic treatment was further performed for 30 minutes to disperse the particles. Thereafter, 120 ml of 25% aqueous ammonia was added while stirring at room temperature, and the mixture was stirred for 45 minutes. Thereafter, 60 ml of tetraethyl orthosilicate (TEOS) was added and stirred for 24 hours. After standing, the supernatant was removed and dried at 65 ° C. The thickness of the shell material depends on the particle size of the core material, but is 0.5% or more, preferably 5% or more, more preferably 15% or more, and 80% or less, preferably 60% of the particle radius of the core material. % Or less, more preferably 50% or less.

<SiO2被覆SrTiO3砥粒 基礎特性研磨条件>
研磨機は一般財団法人ファインセラミックスセンターが所有する研磨機を用いた。研磨機の仕様は次のとおりである。上定盤径:φ150mm、下定盤径:φ300mm、上定盤回転速度範囲:150rpm、下定盤回転速度範囲:40〜600rmp、研磨荷重(研磨圧力)印加方式:エアーシリンダー加圧方式、研磨荷重範囲:1kgf〜10kgf、スラリー流量範囲:30〜280ml/min。
<SiO 2 coated SrTiO 3 abrasive grain basic characteristics polishing conditions>
The polishing machine used was a polishing machine owned by the Fine Ceramics Center. The specifications of the polishing machine are as follows. Upper surface plate diameter: φ150 mm, lower surface plate diameter: φ300 mm, upper surface plate rotation speed range: 150 rpm, lower surface plate rotation speed range: 40 to 600 rpm, polishing load (polishing pressure) application method: air cylinder pressurization method, polishing load range 1 kgf to 10 kgf, slurry flow rate range: 30 to 280 ml / min.

研磨は、上定盤、下定盤の回転速度を150rpmとし、スラリー供給速度は100mL/min、研磨圧力は314gcm-2で行った。 Polishing was performed at an upper surface plate and a lower surface plate at a rotation speed of 150 rpm, a slurry supply speed of 100 mL / min, and a polishing pressure of 314 gcm −2 .

実施例のSiO2被覆SrTiO3砥粒、比較例のSrTiO3砥粒およびシリカ砥粒を用いた研磨速度特性を図1に示す。各砥粒における研磨速度を測定した。 The polishing rate characteristics using the SiO 2 -coated SrTiO 3 abrasive grains of the examples, the SrTiO 3 abrasive grains and the silica abrasive grains of the comparative examples are shown in FIG. The polishing rate in each abrasive grain was measured.

SrTiO3砥粒は0.03μmh-1程度の研磨速度に対し、SiO2被覆SrTiO3砥粒は0.52μmh-1であり、約17倍増加し、SiO2砥粒と同等の研磨レートであった。 SrTiO 3 abrasive grains have a polishing rate of about 0.03 μmh −1, while SiO 2 coated SrTiO 3 abrasive grains are 0.52 μmh −1 , an increase of about 17 times, and a polishing rate equivalent to that of SiO 2 abrasive grains. It was.

この結果は、ゾルゲル法にてコア材料であるSrTiO3にシェル材料であるSiO2が適切に被覆されていること、また複合粒子では研磨場においてSiO2とサファイア基板が接触することからCMPが発現していることを示している。 This result shows that CMP is manifested by the fact that SrTiO 3 as the core material is appropriately coated with SiO 2 as the shell material by the sol-gel method, and that SiO 2 and the sapphire substrate come into contact with each other in the polishing field in the composite particles. It shows that you are doing.

<電界印加研磨条件>
研磨機は秋田産業技術センターが所有する研磨機を用いた。研磨機の仕様は次のとおりである。上定盤径:φ80mm、下定盤径:φ160mm、上定盤回転速度範囲:0〜800rpm、下定盤回転速度範囲:0〜120rmp、研磨荷重(研磨圧力)印加方式:エアーシリンダー加圧方式、研磨荷重範囲:1kgf〜14kgf、スラリー流量範囲:0〜70ml/min。ここで、研磨材に対するpH調整や分散剤、添加材の添加などは適宜行っても良い。
<Electric field polishing conditions>
As the polishing machine, a polishing machine owned by Akita Industrial Technology Center was used. The specifications of the polishing machine are as follows. Upper surface plate diameter: φ80 mm, lower surface plate diameter: φ160 mm, upper surface plate rotation speed range: 0 to 800 rpm, lower surface plate rotation speed range: 0 to 120 rpm, polishing load (polishing pressure) application method: air cylinder pressurization method, polishing Load range: 1 kgf to 14 kgf, slurry flow rate range: 0 to 70 ml / min. Here, pH adjustment for the abrasive, addition of a dispersant, an additive, and the like may be appropriately performed.

研磨は、上定盤、下定盤の回転速度を100rpmとし、スラリー供給速度は5mL/min、研磨圧力は100〜300gcm-2で行った。印加した電圧の波形は矩形波で、電圧は0kVから3kVである。 Polishing was performed at an upper surface plate and a lower surface plate at a rotation speed of 100 rpm, a slurry supply speed of 5 mL / min, and a polishing pressure of 100 to 300 gcm −2 . The waveform of the applied voltage is a rectangular wave, and the voltage is from 0 kV to 3 kV.

SiO2被覆SrTiO3砥粒を用いた各研磨圧力での研磨速度に及ぼす周波数依存性を図2に示す。研磨圧力を変化させて研磨速度を測定した。 FIG. 2 shows the frequency dependence on the polishing rate at each polishing pressure using SiO 2 -coated SrTiO 3 abrasive grains. The polishing rate was measured while changing the polishing pressure.

無電界の場合、研磨圧力の増加に伴い、研磨速度が0.20μmh-1、0.28μmh-1、0.47μmh-1に増加した。 For electroless, with an increase in polishing pressure, the polishing rate 0.20μmh -1, 0.28μmh -1, increased to 0.47μmh -1.

周波数を変化させた場合、研磨圧力が100gcm-2のときは、2Hz:0.21μmh-1、5Hz:0.20μmh-1、10Hz:0.19μmh-1、32Hz:0.22μmh-1であった。無電界の場合と比較して、研磨速度が最大で10.1%向上した。 When the frequency was changed, when the polishing pressure was 100 gcm −2 , 2 Hz: 0.21 μmh −1 , 5 Hz: 0.20 μmh −1 , 10 Hz: 0.19 μmh −1 , 32 Hz: 0.22 μmh −1 It was. Compared to the case of no electric field, the polishing rate was improved by 10.1% at maximum.

研磨圧力が300gcm-2の場合、3Hz:0.47μmh-1、10Hz:0.53μmh-1、32Hz:0.49μmh-1であった。無電界の場合と比較して、研磨速度が最大で13.5%向上した。 When the polishing pressure was 300 gcm −2 , 3 Hz: 0.47 μmh −1 , 10 Hz: 0.53 μmh −1 , 32 Hz: 0.49 μmh −1 . Compared to the case of no electric field, the polishing rate was improved by 13.5% at the maximum.

研磨圧力が200gcm-2の場合、無電界の場合と比較して研磨速度が27%増加した。 When the polishing pressure was 200 gcm −2 , the polishing rate increased by 27% compared to the case of no electric field.

以上の結果から、実施例のSiO2被覆SrTiO3砥粒は電界に対して応答し、最も研磨速度の高くなる周波数の値が、研磨圧力によって異なることがわかった。無電界の場合と比較して研磨速度が最も増加したのは、研磨圧力が200gcm-2、周波数が32Hzのときであった。このときにおけるSiO2被覆SrTiO3砥粒と比較例のシリカ砥粒(MS−2000)との研磨速度の比較を、電界の有無に分けて行った。 From the above results, it was found that the SiO 2 coated SrTiO 3 abrasive grains of the example responded to the electric field, and the frequency value at which the polishing rate was highest differs depending on the polishing pressure. The polishing rate increased most as compared with the case of no electric field when the polishing pressure was 200 gcm −2 and the frequency was 32 Hz. At this time, the comparison of the polishing rate between the SiO 2 -coated SrTiO 3 abrasive grains and the silica abrasive grains (MS-2000) of the comparative example was carried out separately depending on the presence or absence of an electric field.

電界に対する比較例のシリカ砥粒(MS−2000)および実施例のSiO2被覆SrTiO3砥粒の研磨速度の変化を図3に示す。印加電圧1−3kV、周波数32Hzで研磨を行った場合、0.28μmh-1から0.15μmh-1に変化し、無電界の場合と比較して研磨速度が約45%減少した。これに対し、印加電圧0−3kV、周波数32Hzで研磨を行った場合、0.28μmh-1から0.35μmh-1に変化し、無電界の場合と比較して研磨速度が約27%増加した。 FIG. 3 shows changes in the polishing rate of the comparative silica abrasive grains (MS-2000) and the SiO 2 coated SrTiO 3 abrasive grains of the examples with respect to the electric field. When polishing was performed at an applied voltage of 1-3 kV and a frequency of 32 Hz, the polishing rate changed from 0.28 μmh −1 to 0.15 μmh −1 , and the polishing rate was reduced by about 45% compared to the case of no electric field. On the other hand, when polishing was performed at an applied voltage of 0-3 kV and a frequency of 32 Hz, the polishing rate changed from 0.28 μmh −1 to 0.35 μmh −1 , and the polishing rate increased by about 27% compared to the case of no electric field. .

研磨場のような非一様な電界が印加される系では、分散媒より分散質(砥粒)の誘電率が大きい場合、強電界側へ泳動力が働き、分散質を電極近傍へ固定する。この現象は誘電泳動として知られており、本結果はこの現象に類似する。印加電圧1−3kVの場合、砥粒が研磨場に留まって劣化し、研磨速度の減少につながる。一方で、印加電圧0−3kVの場合、印加電圧が0kVのときに研磨場から使用済砥粒や加工屑が放出される。また電界が印加されて、新規の砥粒スラリーが研磨場に流れ込むため、研磨速度の増加につながったと考えられる。   In a system where a non-uniform electric field is applied, such as a polishing field, when the dielectric constant of the dispersoid (abrasive grain) is larger than that of the dispersion medium, the migration force acts on the strong electric field side, and the dispersoid is fixed near the electrode. . This phenomenon is known as dielectrophoresis and the results are similar to this phenomenon. When the applied voltage is 1-3 kV, the abrasive grains stay in the polishing field and deteriorate, leading to a reduction in the polishing rate. On the other hand, when the applied voltage is 0-3 kV, used abrasive grains and processing waste are released from the polishing field when the applied voltage is 0 kV. In addition, it is considered that the polishing rate was increased because an electric field was applied and new abrasive slurry flowed into the polishing field.

比較例のシリカ砥粒(MS−2000)は、印加電圧0−3kV、周波数32Hzで研磨を行った場合、0.23μmh-1から0.25μmh-1に変化し、無電界の場合と比較して研磨速度が約11%増加した。 Silica abrasive grains in Comparative Example (MS-2000) is the applied voltage 0-3KV, when performing polishing at a frequency 32 Hz, it varies from 0.23Myumh -1 to 0.25Myumh -1, compared with the case of no electric field As a result, the polishing rate increased by about 11%.

この結果、実施例のSiO2被覆SrTiO3砥粒は、比較例のシリカ砥粒(MS−2000)よりも電界に対して、より顕著に応答し、研磨速度を増加させることがわかった。すなわち、SiO2被覆SrTiO3砥粒は、外部電界への高い応答性と優れた研磨特性を備え、電界印加研磨技術において高い電界印加効果を実現することができることがわかった。 As a result, it was found that the SiO 2 -coated SrTiO 3 abrasive grains of the examples responded more remarkably to the electric field and increased the polishing rate than the silica abrasive grains (MS-2000) of the comparative example. That is, it was found that the SiO 2 coated SrTiO 3 abrasive grains have high responsiveness to an external electric field and excellent polishing characteristics, and can realize a high electric field application effect in the electric field application polishing technique.

以上、本発明の実施形態を詳述したが、本発明は上記実施形態に限定されるものではない。本発明は、特許請求の範囲に記載された事項を逸脱することがなければ、種々の設計変更を行うことが可能である。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to the said embodiment. The present invention can be modified in various ways without departing from the scope of the claims.

Claims (7)

研磨定盤と被研磨部材との間に供給されると共に電圧が印加され、電圧によって生じた電界によって前記研磨定盤と前記被研磨部材との間に寄せられる砥粒および分散媒が含まれた研磨材において、
前記砥粒が、コア材料と、このコア材料を被覆するシェル材料とから構成され、
前記砥粒の誘電率が前記分散媒よりも高く、
前記被研磨部材に対する単位時間当たりの研磨量が、前記コア材料よりも前記シェル材料の方が高い、
ことを特徴とする研磨材。
A voltage is applied between the polishing platen and the member to be polished, and abrasive grains and a dispersion medium brought between the polishing platen and the member to be polished by an electric field generated by the voltage are included. In abrasives,
The abrasive is composed of a core material and a shell material covering the core material,
The abrasive has a higher dielectric constant than the dispersion medium,
The amount of polishing per unit time for the member to be polished is higher in the shell material than in the core material,
An abrasive characterized by the above.
前記コア材料の誘電率が前記分散媒よりも高い、
ことを特徴とする請求項1に記載された研磨材。
The dielectric constant of the core material is higher than that of the dispersion medium,
The abrasive according to claim 1.
前記コア材料がチタン金属複合酸化物である、
ことを特徴とする請求項1または請求項2に記載された研磨材。
The core material is a titanium metal composite oxide;
The abrasive according to claim 1 or 2, characterized in that
前記コア材料がSrTiO3、BaTiO3、から選択される一種または二種以上が含まれる、
ことを特徴とする請求項1から請求項3のいずれか1項に記載された研磨材。
The core material includes one or more selected from SrTiO 3 and BaTiO 3 ,
The abrasive according to any one of claims 1 to 3, wherein:
前記シェル材料が、酸化物、炭化物、窒化物、硼化物、ダイヤモンドから選択される一種または二種以上の材料である、
ことを特徴とする請求項1から請求項4のいずれか1項に記載された研磨材。
The shell material is one or more materials selected from oxides, carbides, nitrides, borides, and diamonds.
The abrasive according to any one of claims 1 to 4, wherein:
前記シェル材料が、酸化鉄、酸化マンガン、シリカ、セリア、ダイヤモンド、アルミナ、チタニア、ジルコニア、cBN、SiC、B4Cから選択される一種または二種以上が含まれる、
ことを特徴とする請求項1から請求項5のいずれか1項に記載された研磨材。
The shell material includes one or more selected from iron oxide, manganese oxide, silica, ceria, diamond, alumina, titania, zirconia, cBN, SiC, and B 4 C.
The abrasive according to any one of claims 1 to 5, wherein:
請求項1から請求項6のいずれか1項に記載された研磨材を研磨定盤と被研磨部材との間に供給し、電圧を印加して生じさせた電界によって前記研磨定盤と前記被研磨部材との間で前記砥粒の配置制御を行う、
ことを特徴とする研磨方法。
The abrasive according to any one of claims 1 to 6 is supplied between a polishing platen and a member to be polished, and an electric field generated by applying a voltage to the polishing platen and the substrate. The arrangement control of the abrasive grains is performed with the polishing member.
A polishing method characterized by the above.
JP2014054845A 2014-03-18 2014-03-18 Abrasive material and polishing method Active JP6340497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054845A JP6340497B2 (en) 2014-03-18 2014-03-18 Abrasive material and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054845A JP6340497B2 (en) 2014-03-18 2014-03-18 Abrasive material and polishing method

Publications (2)

Publication Number Publication Date
JP2015174985A true JP2015174985A (en) 2015-10-05
JP6340497B2 JP6340497B2 (en) 2018-06-13

Family

ID=54254462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054845A Active JP6340497B2 (en) 2014-03-18 2014-03-18 Abrasive material and polishing method

Country Status (1)

Country Link
JP (1) JP6340497B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297159B1 (en) * 1999-07-07 2001-10-02 Advanced Micro Devices, Inc. Method and apparatus for chemical polishing using field responsive materials
JP2003277732A (en) * 2002-03-27 2003-10-02 Catalysts & Chem Ind Co Ltd Abrasive particle and abrasive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297159B1 (en) * 1999-07-07 2001-10-02 Advanced Micro Devices, Inc. Method and apparatus for chemical polishing using field responsive materials
JP2003277732A (en) * 2002-03-27 2003-10-02 Catalysts & Chem Ind Co Ltd Abrasive particle and abrasive material

Also Published As

Publication number Publication date
JP6340497B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP7071495B2 (en) Compositions for performing material removal operations and methods for forming them
EP2215176B1 (en) Improved silicon carbide particles, methods of fabrication, and methods using same
TW200415259A (en) Improved polishing formulations for SiO2-based substrates
AU2006297240B2 (en) Polishing slurries and methods for utilizing same
US6428392B1 (en) Abrasive
KR20050043789A (en) Particles for use in cmp slurries and method for producing them
WO2006123562A1 (en) Process for producing composition for polishing
JP2972488B2 (en) Sintered composite abrasive grits, their production and use
JP5979340B1 (en) Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing
JP6340497B2 (en) Abrasive material and polishing method
CN104403575B (en) A kind of preparation method of high accuracy aluminum oxide polishing powder
JP6102922B2 (en) Abrasive particles and method for producing the same
JP2011506263A (en) Fused ceramic product, process for its production and use
CN107936917A (en) A kind of micro mist performed polymer formula and preparation method thereof
TWM500653U (en) Polishing system and polishing pad set
CN104045326A (en) Ceramic corundum abrasive
CN1379803A (en) Improved CMP products
JP2004261945A (en) Polishing abrasive grain and polishing tool
JP4890883B2 (en) Molded body and grindstone containing SiOx powder, and grinding method using the same
AU2016342384A1 (en) Bead made of a fused product
CN106147615A (en) Ceramic polished liquid of iron-containing catalyst and preparation method thereof
JP2003117806A (en) Mirror-polishing method for polycrystalline ceramics
JPWO2016204248A1 (en) Polishing abrasive, polishing slurry, method for polishing hard brittle material, and method for producing hard brittle material
JP5554052B2 (en) Polishing composition and polishing method
TW201715012A (en) Polishing composition, polishing method, and production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6340497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250