[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015170542A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015170542A
JP2015170542A JP2014045964A JP2014045964A JP2015170542A JP 2015170542 A JP2015170542 A JP 2015170542A JP 2014045964 A JP2014045964 A JP 2014045964A JP 2014045964 A JP2014045964 A JP 2014045964A JP 2015170542 A JP2015170542 A JP 2015170542A
Authority
JP
Japan
Prior art keywords
negative electrode
silicon oxide
electrode active
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014045964A
Other languages
Japanese (ja)
Inventor
安展 岩見
Yasunobu Iwami
安展 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2014045964A priority Critical patent/JP2015170542A/en
Publication of JP2015170542A publication Critical patent/JP2015170542A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which is superior in cycle characteristics, and includes, as a negative electrode active material, a mixture of graphite material and silicon oxide (SiOx, where 0.5≤x<1.6) to which another element is added as means for increasing the capacity of the nonaqueous electrolyte secondary battery.SOLUTION: A nonaqueous electrolyte secondary battery 10 comprises: a positive electrode plate; a negative electrode plate; a separator; and a nonaqueous electrolyte. The negative electrode plate includes a negative electrode active material consisting of a mixture of graphite material and silicon oxide expressed by SiOx (where 0.5≤x<1.6). The content of the graphite material is 92-99.5 mass% to the total mass of the negative electrode active material. The silicon oxide includes at least one element selected from Mn, V, Ti, Al and B within a range of 10-100 ppm.

Description

本発明は、非水電解質二次電池を高容量化する手段として他の元素が添加された酸化ケイ素(SiOx、0.5≦x<1.6)を黒鉛材料と混合して負極活物質として用いた、サイクル特性に優れた非水電解質二次電池に関する。   In the present invention, as a means for increasing the capacity of a non-aqueous electrolyte secondary battery, silicon oxide (SiOx, 0.5 ≦ x <1.6) to which other elements are added is mixed with a graphite material as a negative electrode active material. The present invention relates to a nonaqueous electrolyte secondary battery having excellent cycle characteristics.

非水電解質二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素質材料が広く用いられている。しかしながら、炭素材料からなる負極活物質を用いた場合には、LiCの組成までしかリチウムを挿入できず、理論容量372mAh/gが限度であるため、電池の高容量化への障害となっている。そこで、質量当たり及び体積当たりのエネルギー密度が高い負極活物質として、リチウムと合金化するケイ素ないしケイ素合金や酸化ケイ素を用いる非水電解質二次電池が開発されている。この場合、たとえばケイ素はLi4.4Siの組成までリチウムを挿入できるため、理論容量が4200mAh/gとなり、負極活物質として炭素材料を用いた場合よりも大きな容量を期待し得る。 As a negative electrode active material used for a nonaqueous electrolyte secondary battery, carbonaceous materials such as graphite and amorphous carbon are widely used. However, when a negative electrode active material made of a carbon material is used, lithium can only be inserted up to the composition of LiC 6 and the theoretical capacity is 372 mAh / g, which is an obstacle to increasing the capacity of the battery. Yes. Therefore, a nonaqueous electrolyte secondary battery using silicon or silicon alloy or silicon oxide alloyed with lithium as a negative electrode active material having high energy density per mass and volume has been developed. In this case, for example, since silicon can insert lithium up to the composition of Li 4.4 Si, the theoretical capacity is 4200 mAh / g, and a larger capacity can be expected than when a carbon material is used as the negative electrode active material.

例えば、下記特許文献1には、負極活物質としてケイ素及び酸素を構成元素に含む材料(ただし、ケイ素に対する酸素の元素比xは、0.5≦x≦1.5である)及び黒鉛を含有するものを用いた非水電解質二次電池が開示されている。この非水電解質二次電池では、ケイ素及び酸素を構成元素に含む材料と黒鉛との合計を100質量%としたとき、ケイ素及び酸素を構成元素に含む材料の比率が3〜20質量%の負極活物質合材層が用いられている。   For example, the following Patent Document 1 includes a material containing silicon and oxygen as constituent elements as a negative electrode active material (where the element ratio x of oxygen to silicon is 0.5 ≦ x ≦ 1.5) and graphite. A non-aqueous electrolyte secondary battery using the above is disclosed. In this non-aqueous electrolyte secondary battery, when the total of the material containing silicon and oxygen as constituent elements and graphite is 100% by mass, the ratio of the material containing silicon and oxygen as constituent elements is 3 to 20% by mass. An active material mixture layer is used.

下記特許文献1に開示されている非水電解質二次電池によれば、高容量で、かつ充放電に伴う体積変化の大きな酸化ケイ素を使用しつつ、その体積変化による電池特性の低下を抑制できるため、従来の非水電解質二次電池の構成を大きく変更することなく良好な電池特性も確保できるとされている。   According to the non-aqueous electrolyte secondary battery disclosed in Patent Document 1 below, it is possible to suppress deterioration in battery characteristics due to the volume change while using silicon oxide having a high capacity and a large volume change accompanying charge / discharge. Therefore, it is said that good battery characteristics can be secured without greatly changing the configuration of the conventional nonaqueous electrolyte secondary battery.

しかしながら、負極活物質としてケイ素ないしケイ素合金や酸化ケイ素等を含むものを用いた場合には、充放電サイクルに伴ってこれらの負極活物質の大きな膨張・収縮が起こり、負極活物質が微粉化したり、導電性ネットワークから欠け落ちたりする。これにより、電池のサイクル特性が低下するという課題が存在するので、これらの課題を解決すべく負極活物質の物性についても種々改良が行われている。   However, when a material containing silicon or a silicon alloy or silicon oxide is used as the negative electrode active material, the negative electrode active material undergoes large expansion / contraction along with the charge / discharge cycle, and the negative electrode active material is pulverized. Or fall off the conductive network. Thereby, since the subject that the cycling characteristics of a battery falls exists, various improvement is performed also about the physical property of a negative electrode active material in order to solve these subjects.

例えば、下記特許文献2には、非水電解質二次電池用負極材として、SiOx(x=0.5〜1.6)で表される、ケイ素が二酸化ケイ素に分散した構造を有する複合体ないし混合物に対し、La、V、Co、Mn、Ga、Ge、Sn、B、Al、Fe、Mg、Ag、As、Bi、Br、Cr、Hg、S、Te、P及びNbから選択される元素の少なくとも1種が50〜100000ppmの濃度で含まれているものを用いることが示されている。この特許文献2には、さらに非水電解質二次電池用負極材として、表面にカーボン被覆を形成したものを用いることいること、及び、レーザ回折散乱式粒度分布測定法による体積平均値D50が0.01〜50μmのものを用いることも、示されている。 For example, in the following Patent Document 2, as a negative electrode material for a non-aqueous electrolyte secondary battery, a composite having a structure in which silicon is dispersed in silicon dioxide represented by SiOx (x = 0.5 to 1.6) or Element selected from La, V, Co, Mn, Ga, Ge, Sn, B, Al, Fe, Mg, Ag, As, Bi, Br, Cr, Hg, S, Te, P and Nb with respect to the mixture It is shown that at least one of these is contained at a concentration of 50 to 100,000 ppm. In Patent Document 2, a negative electrode material for a non-aqueous electrolyte secondary battery that has a carbon coating on the surface is used, and a volume average value D 50 by a laser diffraction scattering particle size distribution measurement method is shown. The use of 0.01 to 50 μm is also shown.

下記特許文献3には、負極活物質として、B、Al、V等を含むSiOx(x≦1.5)及び炭素物質を含むものを用いたリチウム二次電池が開示されている。このリチウム二次電池では、B、Al、V等は、SiOxの非晶質度を高めるために、SiOx中に50質量%以下、好ましくは10〜30質量%となるように添加されている。この特許文献3には、さらに炭素物質とB、Al、V等を含むSiOxとの表面を炭素物質で被覆したものを用いることも示されている。   Patent Document 3 below discloses a lithium secondary battery using a material containing SiOx (x ≦ 1.5) containing B, Al, V or the like and a carbon material as a negative electrode active material. In this lithium secondary battery, B, Al, V, and the like are added to SiOx so as to be 50 mass% or less, preferably 10 to 30 mass%, in order to increase the amorphousness of SiOx. This patent document 3 also shows that the surface of a carbon material and SiOx containing B, Al, V, etc. is coated with the carbon material.

下記特許文献4には、非水電解質電池用負極活物質としてFe、Cr、Niの含有量が250ppm以下であるケイ素酸化物と炭素材料との混合物を用いた非水電解質二次電池が示されている。   Patent Document 4 listed below discloses a nonaqueous electrolyte secondary battery using a mixture of a silicon oxide and a carbon material having a content of Fe, Cr, and Ni of 250 ppm or less as a negative electrode active material for a nonaqueous electrolyte battery. ing.

特開2010−212228号公報JP 2010-212228 A 特開2011−192453号公報JP 2011-192453 A 特開2005−259697号公報Japanese Patent Laid-Open No. 2005-259697 特開2004−349057号公報JP 2004-349057 A

上記特許文献2に開示されている非水電解質二次電池によれば、SiOx中に他の元素を含有させない場合よりも、バルクでの負極活物質の導電性を向上させることができ、レート特性及びサイクル特性が改善された非水電解質二次電池が得られるようになる。また、上記特許文献3に開示されている非水電解質二次電池によれば、SiOxの非晶質化を高めてLi原子の拡散速度を向上させることができるため、SiOx中に他の元素を含有させない場合よりも、寿命特性及び高率充放電特性に優れた非水電解質二次電池が得られるようになる。さらに、上記特許文献4に開示されている非水電解質二次電池によれば、SiOx中に他の元素を含有させない場合よりも、充電状態で高温で放置した際の電池脹れが抑制された非水電解質二次電池が得られるようになる。   According to the nonaqueous electrolyte secondary battery disclosed in Patent Document 2, the conductivity of the negative electrode active material in the bulk can be improved as compared with the case where no other element is contained in SiOx, and the rate characteristics In addition, a nonaqueous electrolyte secondary battery with improved cycle characteristics can be obtained. In addition, according to the nonaqueous electrolyte secondary battery disclosed in Patent Document 3, since the amorphous state of SiOx can be increased and the diffusion rate of Li atoms can be improved, other elements are incorporated into SiOx. A non-aqueous electrolyte secondary battery having superior life characteristics and high rate charge / discharge characteristics can be obtained as compared with the case where it is not contained. Furthermore, according to the nonaqueous electrolyte secondary battery disclosed in Patent Document 4, battery swelling when left at a high temperature in a charged state is suppressed as compared with the case where no other element is contained in SiOx. A nonaqueous electrolyte secondary battery can be obtained.

上記特許文献2〜4に示されているように、負極活物質としてSiやSiOxに他の元素を添加したものを用いると、高容量化を達成し得るだけでなく、レート特性やサイクル特性を向上させることができ、しかも充電状態で高温で放置した際の電池脹れが抑制された非水電解質二次電池が得られることがわかる。しかしながら、上記特許文献2〜4に開示されている非水電解質二次電池においても、サイクル特性は、200サイクル後の容量維持率で、83〜86%(特許文献2参照)程度でしかなく、依然としてサイクル特性(寿命特性)の向上が望まれている。   As shown in the above Patent Documents 2 to 4, when a material in which other elements are added to Si or SiOx as a negative electrode active material, not only high capacity can be achieved, but also rate characteristics and cycle characteristics can be achieved. It can be seen that a non-aqueous electrolyte secondary battery can be obtained which can be improved and which is suppressed from battery swelling when left in a charged state at a high temperature. However, even in the nonaqueous electrolyte secondary batteries disclosed in Patent Documents 2 to 4, the cycle characteristics are only about 83 to 86% (see Patent Document 2) at a capacity retention rate after 200 cycles, It is still desired to improve cycle characteristics (life characteristics).

本発明の一態様の非水電解質二次電池によれば、
リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極合剤層を備えた正極板と、
リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極合剤層を備えた負極板と、
セパレータと、非水電解質と、
を備え、
前記負極活物質は、
黒鉛材料と、SiOx(0.5≦x<1.6)で表される酸化ケイ素との混合物であり、
前記黒鉛材料の含有割合は全負極活物質中の92質量%以上99.5質量%以下であり、
前記酸化ケイ素にはMn、V、Ti、Al及びBから選択される元素の少なくとも1種類が10ppmから100ppmの範囲で含まれている、
非水電解質二次電池が提供される。
According to the nonaqueous electrolyte secondary battery of one embodiment of the present invention,
A positive electrode plate having a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions;
A negative electrode plate having a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions;
A separator, a non-aqueous electrolyte,
With
The negative electrode active material is
It is a mixture of graphite material and silicon oxide represented by SiOx (0.5 ≦ x <1.6),
The content ratio of the graphite material is 92% by mass or more and 99.5% by mass or less in the entire negative electrode active material,
The silicon oxide contains at least one element selected from Mn, V, Ti, Al and B in a range of 10 ppm to 100 ppm.
A non-aqueous electrolyte secondary battery is provided.

本発明の一態様の非水電解質二次電池においては、負極活物質として、黒鉛だけでなく、SiOx(0.5≦x<1.6)で表される酸化ケイ素を含んでおり、黒鉛材料の含有割合は全負極活物質中の92質量%以上99.5質量%以下とされている。このSiOxで表される酸化ケイ素は、充放電に伴う体積変化が黒鉛材料よりも大きいが、理論容量値は黒鉛材料よりも大きい。そのため、本発明の非水電解質二次電池によれば、黒鉛材料のみからなる負極活物質を用いた非水電解質二次電池よりも電池容量を大きくすることができる。   In the nonaqueous electrolyte secondary battery of one embodiment of the present invention, the negative electrode active material contains not only graphite but also silicon oxide represented by SiOx (0.5 ≦ x <1.6). The content of is 92% by mass or more and 99.5% by mass or less in the entire negative electrode active material. The silicon oxide represented by SiOx has a volume change accompanying charge / discharge larger than that of the graphite material, but has a theoretical capacity value larger than that of the graphite material. Therefore, according to the nonaqueous electrolyte secondary battery of the present invention, the battery capacity can be made larger than that of the nonaqueous electrolyte secondary battery using the negative electrode active material made of only the graphite material.

しかも、本発明の一態様の非水電解質二次電池で使用されているSiOxで表される酸化ケイ素中には、Mn、V、Ti、Al及びBから選択される元素の少なくとも1種類が10ppmから100ppmの範囲で含まれている。SiOxで表される酸化ケイ素中にこれらの元素が含まれていると、これらの元素のイオン半径がSi4+よりも大きいため、Si結晶構造のSi−Si結合間距離もしくはSiO結晶構造のSi−O結合距離が長くなり、充放電に伴う酸化ケイ素の体積変化の割合がこれらの元素が無添加の場合と比すると小さくなる。そのため、本発明の非水電解質二次電池によれば、SiOxで表される酸化ケイ素中にMn、V、Ti、Al及びB等の元素が無添加の場合よりも,サイクル特性が良好となる。 In addition, in the silicon oxide represented by SiOx used in the nonaqueous electrolyte secondary battery of one embodiment of the present invention, at least one element selected from Mn, V, Ti, Al, and B is 10 ppm. To 100 ppm. If these elements are contained in the silicon oxide represented by SiOx, the ionic radius of these elements is larger than Si 4+ , so the distance between Si-Si bonds of the Si crystal structure or Si of the SiO 2 crystal structure The -O bond distance becomes longer, and the rate of volume change of silicon oxide accompanying charge / discharge becomes smaller than when these elements are not added. Therefore, according to the nonaqueous electrolyte secondary battery of the present invention, the cycle characteristics are better than when no element such as Mn, V, Ti, Al, and B is added to the silicon oxide represented by SiOx. .

なお、SiOxで表される酸化ケイ素中のMn、V、Ti、Al及びBから選択される元素の少なくとも1種類の濃度が10ppm未満あるいは100ppmを超える場合には、いずれもサイクル特性が低下する。また、負極活物質中の黒鉛材料の含有割合が全負極活物質中の92質量%未満、すなわちSiOxで表される酸化ケイ素の含有割合が8.0質量%を超える場合には、充放電による酸化ケイ素の大きな膨張・収縮に基づく負極活物質の微粉化や導電性ネットワークからの欠け落のため、サイクル特性が低下する。また、負極活物質中の黒鉛材料の含有割合が全負極活物質中の99.5質量%を超える場合、すなわちSiOxで表される酸化ケイ素の含有割合が0.5質量%未満の場合には、酸化ケイ素添加の効果が小さく、電池容量が低下してしまう。   In addition, when the concentration of at least one element selected from Mn, V, Ti, Al, and B in silicon oxide represented by SiOx is less than 10 ppm or exceeds 100 ppm, the cycle characteristics are all deteriorated. Further, when the content ratio of the graphite material in the negative electrode active material is less than 92% by mass in all the negative electrode active materials, that is, when the content ratio of silicon oxide represented by SiOx exceeds 8.0% by mass, charging and discharging are performed. Cycle characteristics are degraded due to the pulverization of the negative electrode active material based on the large expansion and contraction of silicon oxide and chipping from the conductive network. Further, when the content ratio of the graphite material in the negative electrode active material exceeds 99.5% by mass in all the negative electrode active materials, that is, when the content ratio of silicon oxide represented by SiOx is less than 0.5% by mass. The effect of adding silicon oxide is small, and the battery capacity is reduced.

各実験例に共通するラミネート形非水電解質二次電池の斜視図であるIt is a perspective view of a laminate type nonaqueous electrolyte secondary battery common to each experimental example.

以下、本発明を実施するための形態について各実験例を用いて詳細に説明する。ただし、以下に示す各実験例は、本発明の技術思想を具体化するために例示するものであり、本発明をこれらの実験例に限定することを意図するのものではない。本発明は、特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも適用し得る。   Hereinafter, the form for implementing this invention is demonstrated in detail using each experiment example. However, each experimental example shown below is illustrated in order to embody the technical idea of the present invention, and is not intended to limit the present invention to these experimental examples. The present invention can also be applied to various modifications made without departing from the technical idea shown in the claims.

まず、各実験例に共通する非水電解質二次電池の構成について具体的に説明する。
[正極板の作製]
正極板は、以下のようにして作製した。炭酸コバルト(CoCO)の合成時に、コバルトに対して0.1mol%のジルコニウムと、それぞれ1mol%のマグネシウムとアルミニウムとを共沈させ、これを熱分解反応させて、ジルコニウム・マグネシウム・アルミニウム含有四酸化三コバルトを得た。これにリチウム源としての炭酸リチウム(LiCO)を混合し、850℃で20時間焼成して、ジルコニウム・マグネシウム・アルミニウム含有リチウムコバルト複合酸化物(LiCo0.979Zr0.001Mg0.01Al0.01)を得た。
First, the configuration of the nonaqueous electrolyte secondary battery common to each experimental example will be specifically described.
[Production of positive electrode plate]
The positive electrode plate was produced as follows. During the synthesis of cobalt carbonate (CoCO 3 ), 0.1 mol% of zirconium and 1 mol% of magnesium and aluminum are co-precipitated with respect to cobalt, respectively, and are subjected to a thermal decomposition reaction. Tricobalt oxide was obtained. This was mixed with lithium carbonate (Li 2 CO 3 ) as a lithium source and calcined at 850 ° C. for 20 hours to obtain a zirconium / magnesium / aluminum-containing lithium cobalt composite oxide (LiCo 0.979 Zr 0.001 Mg 0. 01 Al 0.01 O 2 ) was obtained.

正極活物質として上記のようにして合成したジルコニウム・マグネシウム・アルミニウム含有リチウムコバルト複合酸化物粉末を95質量部、導電剤としての炭素材料粉末を2.5質量部、結着剤としてのポリフッ化ビニリデン(PVdF)粉末を2.5質量部となるように混合し、これをN−メチルピロリドン(NMP)溶媒と混合して正極合剤スラリーを調製した。この正極合剤スラリーを厚さ15μmのアルミニウム製の芯体の両面にドクターブレード法により塗布して、正極芯体の両面に正極合剤層を形成した。その後、乾燥してNMPを除去した後、圧縮ローラーを用いて圧延し、所定サイズに裁断して正極板を作製した。   95 parts by mass of the zirconium-magnesium-aluminum-containing lithium cobalt composite oxide powder synthesized as described above as the positive electrode active material, 2.5 parts by mass of the carbon material powder as the conductive agent, and polyvinylidene fluoride as the binder (PVdF) powder was mixed so that it might become 2.5 mass parts, this was mixed with the N-methylpyrrolidone (NMP) solvent, and the positive mix slurry was prepared. This positive electrode mixture slurry was applied to both surfaces of an aluminum core having a thickness of 15 μm by a doctor blade method to form a positive electrode mixture layer on both surfaces of the positive electrode core. Then, after drying and removing NMP, it rolled using the compression roller, it cut | judged to the predetermined size, and produced the positive electrode plate.

[負極板の作製]
(酸化ケイ素負極活物質の調製)
金属ケイ素及び添加元素を電気炉に入れ、アルゴン雰囲気中で高温処理を行い、添加元素を含む金属ケイ素を得た。この金属ケイ素と別途作成した二酸化ケイ素とを混合し、減圧熱処理を行い、添加元素を含む組成がSiO(SiOxにおいてx=1に対応)の酸化ケイ素を得た。次いで、この酸化ケイ素を粉砕・分級して粒度を調整した後、約1000℃に昇温し、アルゴン雰囲気下でCVD法によりこの粒子の表面を炭素材料で被覆した。その際、炭素材料の被覆量は、炭素材料を含めた酸化ケイ素の全量の5質量%となるようにした。そして、これを解砕・分級し、表面が炭素材料で被覆され、添加元素を含有するSiOで表される酸化ケイ素からなる負極活物質を調製した。
[Production of negative electrode plate]
(Preparation of silicon oxide negative electrode active material)
Metallic silicon and the additive element were placed in an electric furnace, and high temperature treatment was performed in an argon atmosphere to obtain metallic silicon containing the additive element. This metal silicon and silicon dioxide prepared separately were mixed and subjected to heat treatment under reduced pressure to obtain silicon oxide having a composition containing additive elements of SiO (corresponding to x = 1 in SiOx). Next, the silicon oxide was pulverized and classified to adjust the particle size, and then the temperature was raised to about 1000 ° C., and the surfaces of the particles were coated with a carbon material by a CVD method in an argon atmosphere. At that time, the coating amount of the carbon material was set to 5 mass% of the total amount of silicon oxide including the carbon material. And this was crushed and classified, and the negative electrode active material which the surface coat | covered with a carbon material and consists of silicon oxide represented by SiO containing an additional element was prepared.

このSiOで表される酸化ケイ素の粒子径は、レーザー回折式粒度分布測定装置(島津製作所製SALD−2000A)を用い、水を分散媒に用い、屈折率は1.70−0.01iとして求めた。平均粒子径は、体積基準での積算粒子量が50%となる粒子径(D50)とした。 The particle diameter of the silicon oxide represented by SiO is obtained by using a laser diffraction particle size distribution analyzer (SALD-2000A manufactured by Shimadzu Corporation), using water as a dispersion medium, and a refractive index of 1.70-0.01i. It was. The average particle size was a particle size (D 50 ) at which the cumulative particle amount on a volume basis was 50%.

また、このSiOで表される酸化ケイ素中の添加元素の量は、SiOで表される酸化ケイ素試料をフッ硝酸により溶解し、誘導結合プラズマ(ICP)発光分析法により測定した。   The amount of the additive element in the silicon oxide represented by SiO was measured by inductively coupled plasma (ICP) emission spectrometry after dissolving a silicon oxide sample represented by SiO with hydrofluoric acid.

(負極合剤層の形成)
上述のようにして調製されたSiOで表される酸化ケイ素と平均粒径22μmの黒鉛とを、それぞれ下記表1〜表4に示した配合割合となるように秤量・混合して負極活物質として用いた。次いで、この負極活物質と、増粘剤としてのカルボキシメチルセルロース(CMC)と、結着材としてのスチレンブタジエンゴム(SBR)とを、質量比で97.0:1.5:1.5となるように水中で混合し、負極合剤スラリーを調製した。この負極合材スラリーを、厚さ8μmの銅箔からなる負極芯体の両面にドクターブレード法により塗布した。次いで、乾燥して水分を除去した後、圧縮ローラーを用いて所定厚さに圧延し、所定サイズに裁断して両面に負極合剤層が形成された負極板を作製した。
(Formation of negative electrode mixture layer)
The silicon oxide represented by SiO prepared as described above and graphite having an average particle diameter of 22 μm were weighed and mixed so as to have the blending ratios shown in Tables 1 to 4 below, respectively, as a negative electrode active material. Using. Subsequently, the negative electrode active material, carboxymethyl cellulose (CMC) as a thickener, and styrene butadiene rubber (SBR) as a binder have a mass ratio of 97.0: 1.5: 1.5. Thus, the mixture was mixed in water to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was applied to both surfaces of a negative electrode core made of a copper foil having a thickness of 8 μm by a doctor blade method. Subsequently, after drying and removing water | moisture content, it rolled to the predetermined thickness using the compression roller, it cut | judged to the predetermined size, and produced the negative electrode plate in which the negative mix layer was formed on both surfaces.

[非水電解液の調製]
エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジエチルカーボネート(DEC)とを、25℃において、体積比で30:60:10の割合で混合した後、ヘキサフルオロリン酸リチウム(LIPF)を濃度が1mol/Lとなるように溶解した。さらに、ビニレンカーボネート(VC)を非水電解液全体に対して2.0質量%、フルオロエチレンカーボネート(FEC)を1.0質量%となるように添加して溶解させ、非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC) were mixed at a volume ratio of 30:60:10 at 25 ° C., and then lithium hexafluorophosphate (LIPF 6 ) Was dissolved to a concentration of 1 mol / L. Furthermore, vinylene carbonate (VC) is added and dissolved so that 2.0 mass% and fluoroethylene carbonate (FEC) are 1.0 mass% with respect to the whole non-aqueous electrolyte, and a non-aqueous electrolyte is prepared. did.

[電池の作製]
上記のようにして作製した正極板及び負極板を、ポリエチレン製微多孔質膜からなるセパレータを介して巻回し、最外周にポリプロピレン製のテープを張り付けて円筒状の巻回電極体を作製し、プレスして偏平状の巻回電極体(図示省略)を作製した。次いで、正極板に正極集電タブを、負極板に負極集電タブを、それぞれ溶接することにより取り付けた。
[Production of battery]
The positive electrode plate and the negative electrode plate prepared as described above are wound through a separator made of a polyethylene microporous film, and a cylindrical wound electrode body is produced by attaching a polypropylene tape to the outermost periphery. A flat wound electrode body (not shown) was produced by pressing. Next, the positive electrode current collector tab was attached to the positive electrode plate, and the negative electrode current collector tab was attached to the negative electrode plate by welding.

ここで、図1を用いて各実験例に共通するラミネート形非水電解質二次電池の構成について説明する。樹脂層(ポリプロピレン)/接着剤層/アルミニウム合金層/接着剤層/樹脂層(ポリプロピレン)の5層構造から成るシート状のアルミラミネート材を用意し、このアルミラミネート材を折り返して底部を形成し、カップ状の電極体収納空間を有するラミネート外装体11を作製した。次いで、アルゴン雰囲気下のグローブボックス内で、ラミネート外装体11の内部に偏平状の巻回電極体を非水電解液とともに収容し、ラミネート外装体11の溶着封止部12から、偏平状の巻回電極体の正極板及び負極板にそれぞれ接続されている正極集電タブ13及び負極集電タブ14を突出させた。   Here, the configuration of a laminated nonaqueous electrolyte secondary battery common to each experimental example will be described with reference to FIG. Prepare a sheet-like aluminum laminate material consisting of a five-layer structure of resin layer (polypropylene) / adhesive layer / aluminum alloy layer / adhesive layer / resin layer (polypropylene) and fold this aluminum laminate material to form the bottom. Then, a laminate outer package 11 having a cup-shaped electrode body storage space was produced. Next, in the glove box under an argon atmosphere, the flat wound electrode body is accommodated in the laminate outer package 11 together with the non-aqueous electrolyte, and the flat wound coil body 12 is welded from the welding sealing portion 12 of the laminate outer package 11. The positive electrode current collecting tab 13 and the negative electrode current collecting tab 14 respectively connected to the positive electrode plate and the negative electrode plate of the rotating electrode body were protruded.

この後、ラミネート外装体11を減圧してセパレータ内部に非水電解質を含浸させ、ラミネート外装体11の開口部を溶着封止部12において封止した。なお、ラミネート外装体11において、正極集電タブ13及び負極集電タブ14とラミネート外装体11との間には、正極集電タブ13及び負極集電タブ14とラミネート外装体11との間の密着性向上及び正極集電タブ13及び負極集電タブ14とラミネート外装体11を構成するアルミニム合金層との間の短絡を防止するため、それぞれ正極集電タブ樹脂15、負極集電タブ樹脂16を配置した。得られた各実験例に共通するラミネート形非水電解質二次電池10は、高さ62mm、幅35mm、厚み3.6mm(溶着封止部12のサイズを除く)であり、設計容量は充電終止電圧4.4Vで、800mAhである。   Thereafter, the laminate exterior body 11 was depressurized to impregnate the separator with a nonaqueous electrolyte, and the opening of the laminate exterior body 11 was sealed with the welded sealing portion 12. In the laminate outer package 11, between the positive electrode current collection tab 13 and the negative electrode current collection tab 14 and the laminate outer package 11, between the positive electrode current collection tab 13 and the negative electrode current collection tab 14 and the laminate outer package 11. In order to improve adhesion and prevent a short circuit between the positive electrode current collector tab 13 and the negative electrode current collector tab 14 and the aluminum alloy layer constituting the laminate outer package 11, a positive electrode current collector tab resin 15 and a negative electrode current collector tab resin 16 respectively. Arranged. The laminate type nonaqueous electrolyte secondary battery 10 common to the obtained experimental examples has a height of 62 mm, a width of 35 mm, and a thickness of 3.6 mm (excluding the size of the welded sealing portion 12), and the design capacity is the end of charging. It is 800 mAh at a voltage of 4.4V.

次に、各実験例の非水電解質二次電池について、それぞれの相違する構成について説明する。
[実験例1〜5]
実験例1〜5の非水電解質二次電池としては、負極活物質について、SiOで表される酸化ケイ素中の添加元素を全てMnとし、その添加量を2ppm(実験例1)、12ppm(実験例2)、48ppm(実験例3)、99ppm(実験例4)及び121ppm(実験例5)と変化させたものを用いた。その際、負極活物質中のSiOで表される酸化ケイ素の含有割合を全て5質量%と一定となるようにした。
Next, the different configurations of the nonaqueous electrolyte secondary battery of each experimental example will be described.
[Experimental Examples 1-5]
In the non-aqueous electrolyte secondary batteries of Experimental Examples 1 to 5, with respect to the negative electrode active material, all of the additive elements in the silicon oxide represented by SiO are Mn, and the addition amount is 2 ppm (Experimental Example 1), 12 ppm (experimental) Examples 2), 48 ppm (Experimental Example 3), 99 ppm (Experimental Example 4) and 121 ppm (Experimental Example 5) were used. At that time, the content ratio of silicon oxide represented by SiO in the negative electrode active material was all kept constant at 5% by mass.

なお、負極活物質中のSiOで表される酸化ケイ素の粒径は、10μmとなるようにしたが、酸化ケイ素中のMnの含有量の相違により測定値が9.1〜10.3μmの範囲でばらついた。   The particle diameter of silicon oxide represented by SiO in the negative electrode active material was 10 μm, but the measured value was in the range of 9.1 to 10.3 μm due to the difference in the Mn content in the silicon oxide. It varied.

[実験例6〜9]
実験例6〜9の非水電解質二次電池としては、負極活物質について、SiOで表される酸化ケイ素中の添加元素を、V(実験例6)、Ti(実験例7)、Al(実験例8)及びB(実験例9)と変えたものを用いた。その際、負極活物質中のSiOで表される酸化ケイ素の含有割合を全て5質量%一定となるようにした。
[Experimental Examples 6 to 9]
As the non-aqueous electrolyte secondary batteries of Experimental Examples 6 to 9, the additive elements in the silicon oxide represented by SiO for the negative electrode active material were V (Experimental Example 6), Ti (Experimental Example 7), Al (Experimental). Examples 8) and B (Experimental Example 9) were used. At that time, the content ratio of silicon oxide represented by SiO in the negative electrode active material was all kept constant at 5% by mass.

なお、負極活物質中の酸化ケイ素中の添加元素の含有割合は、48ppmとなるようにしたが、酸化ケイ素中の添加元素の組成の相違により測定値が43〜54ppmの範囲でばらついた。同じく、負極活物質中のSiOで表される酸化ケイ素の粒径は、10μmとなるように選択したが、SiOで表される酸化ケイ素中の添加元素の組成の相違により、測定値が9.2〜10.3μmの範囲でばらついた。   The content ratio of the additive element in the silicon oxide in the negative electrode active material was set to 48 ppm, but the measured value varied in the range of 43 to 54 ppm due to the difference in the composition of the additive element in the silicon oxide. Similarly, the particle size of silicon oxide represented by SiO in the negative electrode active material was selected to be 10 μm, but the measured value was 9.p due to the difference in the composition of additive elements in silicon oxide represented by SiO. It fluctuated in the range of 2 to 10.3 μm.

[実験例10〜13]
実験例10〜13の非水電解質二次電池としては、負極活物質について、SiOで表される酸化ケイ素中の添加元素を全てMnとし、その添加量を48ppm一定となるようにし、さらに、SiOで表される酸化ケイ素の粒径を10.3μm一定となるようにしたものを用いた。その際、負極活物質中のSiOで表される酸化ケイ素の含有割合を、0.5質量(実験例10)、1質量%(実験例11)、8質量%(実験例12)及び10質量%(実験例13)と変化させた。表3には、SiOで表される酸化ケイ素の含有割合を5質量%とした以外は実験例10〜13の非水電解質二次電池と同様の構成を備えている実験例3の測定結果も併記してある。
[Experimental Examples 10 to 13]
As the non-aqueous electrolyte secondary batteries of Experimental Examples 10 to 13, the negative electrode active material was all Mn as the additive element in the silicon oxide represented by SiO, and the addition amount was kept constant at 48 ppm. The particle size of silicon oxide represented by the formula (1) was set to be constant at 10.3 μm. At that time, the content ratio of silicon oxide represented by SiO in the negative electrode active material was 0.5 mass (Experimental Example 10), 1 mass% (Experimental Example 11), 8 mass% (Experimental Example 12), and 10 mass. % (Experimental Example 13). Table 3 also shows the measurement results of Experimental Example 3 having the same configuration as the nonaqueous electrolyte secondary batteries of Experimental Examples 10 to 13 except that the content ratio of silicon oxide represented by SiO is 5 mass%. It is written together.

[実験例14〜17]
実験例14〜17の非水電解質二次電池としては、負極活物質について、SiOで表される酸化ケイ素中の添加元素を全てMnとし、その添加量が48ppmとなるようにし、さらに、SiOで表される酸化ケイ素の添加量を5質量%一定となるようにしたものを用いた。その際、負極活物質中のSiOで表される酸化ケイ素の粒径を、5.5μm(実験例14)、8.2μm(実験例15)、11.7μm(実験例16)及び15.4μm(実験例17)と変化させた。表4には、SiOで表される酸化ケイ素の粒径を10.3μmとした以外は実験例14〜17の非水電解質二次電池と同様の構成を備えている実験例3の測定結果も併記してある。
[Experimental Examples 14 to 17]
In the non-aqueous electrolyte secondary batteries of Experimental Examples 14 to 17, the negative electrode active material is all Mn as the additive element in the silicon oxide represented by SiO, and the addition amount is 48 ppm. What added the silicon oxide represented so that it might become 5 mass% constant was used. At that time, the particle diameter of silicon oxide represented by SiO in the negative electrode active material was 5.5 μm (Experimental Example 14), 8.2 μm (Experimental Example 15), 11.7 μm (Experimental Example 16), and 15.4 μm. (Experimental example 17) Table 4 also shows the measurement results of Experimental Example 3 having the same configuration as the non-aqueous electrolyte secondary batteries of Experimental Examples 14 to 17 except that the particle size of silicon oxide represented by SiO is 10.3 μm. It is written together.

なお、実験例14〜17においては、負極活物質中のSiOで表される酸化ケイ素中の添加元素の添加量が48ppmとなるように選択したが、SiOで表される酸化ケイ素の粒径の相違により、測定値が45〜54ppmの範囲でばらついた。   In Experimental Examples 14 to 17, the addition amount of the additive element in silicon oxide represented by SiO in the negative electrode active material was selected to be 48 ppm, but the particle size of silicon oxide represented by SiO Due to the difference, the measured values varied in the range of 45 to 54 ppm.

[25℃サイクル容量維持率の測定]
実験例1〜17のそれぞれの非水電解質二次電池を、25℃において、1It=800mAの定電流で電池電圧が4.4Vとなるまで充電した後、4.4Vの定電圧で電流が40mAに収束するまで充電した。次いで、1It=800mAの定電流で電池電圧が2.5Vになるまで放電し、その際に流れた電流を1サイクル目の放電容量として求めた。この充放電サイクルを繰り返し、300サイクル目の放電容量を求め、以下の計算式により300サイクル後の容量維持率として求めた。
300サイクル後の容量維持率(%)
=(300サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of cycle capacity maintenance rate at 25 ° C]
Each non-aqueous electrolyte secondary battery of Experimental Examples 1 to 17 was charged at 25 ° C. with a constant current of 1 It = 800 mA until the battery voltage reached 4.4 V, and then the current was 40 mA at a constant voltage of 4.4 V. Charged until converged. Next, the battery was discharged at a constant current of 1 It = 800 mA until the battery voltage reached 2.5 V, and the current flowing at that time was determined as the discharge capacity of the first cycle. This charge / discharge cycle was repeated, the discharge capacity at the 300th cycle was determined, and the capacity retention rate after 300 cycles was determined by the following formula.
Capacity maintenance rate after 300 cycles (%)
= (Discharge capacity at 300th cycle / Discharge capacity at 1st cycle) × 100

実験例1〜5の測定結果を、SiOで表される酸化ケイ素中の添加元素の種類及び添加量、負極活物質中のSiOで表される酸化ケイ素の含有量、SiOで表される酸化ケイ素の粒径とともに、表1に示した。同じく、実験例6〜9の測定結果を表2に、実験例10〜13の測定結果を実験例3の測定結果とともに表3に、実験例14〜17の測定結果を実験例3の測定結果とともに表4に、それぞれ示した。   The measurement results of Experimental Examples 1 to 5 show the types and amounts of additive elements in silicon oxide represented by SiO, the content of silicon oxide represented by SiO in the negative electrode active material, and silicon oxide represented by SiO. It showed in Table 1 with the particle size of. Similarly, the measurement results of Experimental Examples 6 to 9 are shown in Table 2, the measurement results of Experimental Examples 10 to 13 are shown in Table 3 together with the measurement results of Experimental Example 3, and the measurement results of Experimental Examples 14 to 17 are the measurement results of Experimental Example 3. Table 4 also shows the results.

Figure 2015170542
Figure 2015170542

Figure 2015170542
Figure 2015170542

Figure 2015170542
Figure 2015170542

Figure 2015170542
Figure 2015170542

表1に示した実験例1〜4の測定結果から以下のことがわかる。すなわち、SiOで表される酸化ケイ素中の添加元素がMnの場合、Mnの添加量が最も少ない2ppm(実験例1)及び最も多い121ppm(実験例5)の場合には、全負極活物質中の酸化ケイ素の含有量及び酸化ケイ素の粒径が実験例2〜4の場合とほぼ同一であっても、いずれも300サイクル目の容量維持率が72%台と低くなっている。それに対し、Mnの添加量が12ppm(実験例2)〜99ppm(実験例4)の間ではいずれも300サイクル目の容量維持率が80.5%以上となっている。   From the measurement results of Experimental Examples 1 to 4 shown in Table 1, the following can be understood. That is, when the additive element in the silicon oxide represented by SiO is Mn, when the added amount of Mn is 2 ppm (Experimental Example 1) and 121 ppm (Experimental Example 5) is the highest, Even when the silicon oxide content and the silicon oxide particle size are almost the same as those in Experimental Examples 2 to 4, the capacity retention rate at the 300th cycle is as low as 72%. On the other hand, when the amount of Mn added is between 12 ppm (Experimental Example 2) and 99 ppm (Experimental Example 4), the capacity retention rate at the 300th cycle is 80.5% or more.

したがって、実験例2及び4の測定結果をそれぞれ外挿すると、少なくともSiOで表される酸化ケイ素中のMnの添加量が10〜100ppmの範囲内とすれば、300サイクル目の容量維持率を80%以上を確保できると考えられる。   Therefore, when the measurement results of Experimental Examples 2 and 4 are extrapolated, if the amount of Mn in the silicon oxide represented by SiO is within a range of 10 to 100 ppm, the capacity retention rate at the 300th cycle is 80 % Can be secured.

表2に示した実験例6〜9の測定結果から以下のことがわかる。すなわち、SiOで表される酸化ケイ素中の添加元素がV、Ti、Al、Bの何れであっても、全負極活物質中の酸化ケイ素の含有量及び酸化ケイ素の粒径を表1に示した実験例3の場合とほぼ同一となるようにすると、300サイクル目の容量維持率が78%以上を確保できる。したがって、表2に示した実験例6〜9の測定結果及び表1に示した実験例3の測定結果を対比すると、負極活物質中のSiOで表される酸化ケイ素中の添加元素としては、Mn、V、Ti、Al及びBから選択される元素の少なくとも1種を用いることができると考えられるが、SiOで表される酸化ケイ素中の添加元素はMnが最も好ましいことがわかる。   From the measurement results of Experimental Examples 6 to 9 shown in Table 2, the following can be understood. That is, regardless of whether the additive element in silicon oxide represented by SiO is V, Ti, Al, or B, the content of silicon oxide and the particle size of silicon oxide in all negative electrode active materials are shown in Table 1. If it is substantially the same as in the case of Experimental Example 3, the capacity maintenance rate at the 300th cycle can be ensured to be 78% or more. Therefore, when comparing the measurement results of Experimental Examples 6 to 9 shown in Table 2 and the measurement results of Experimental Example 3 shown in Table 1, as an additive element in silicon oxide represented by SiO in the negative electrode active material, Although it is considered that at least one element selected from Mn, V, Ti, Al and B can be used, it is understood that Mn is the most preferable additive element in silicon oxide represented by SiO.

表3に示した実験例10〜13及び実験例3の測定結果から以下のことがわかる。すなわち、SiOで表される酸化ケイ素中の添加元素、その添加量及び酸化ケイ素の粒径を実験例3の場合と同等にすると、全負極活物質中のSiOで表される酸化ケイ素の含有量が0.5〜8質量%の範囲内、すなわち黒鉛材料の含有量が92質量%(実験例10)以上99.5質量%(実験例8)以下であれば、いずれも300サイクル目の容量維持率が78%以上となる。   From the measurement results of Experimental Examples 10 to 13 and Experimental Example 3 shown in Table 3, the following can be understood. That is, when the additive element in silicon oxide represented by SiO, the amount of addition, and the particle size of silicon oxide are made equal to those in Experimental Example 3, the content of silicon oxide represented by SiO in all negative electrode active materials Is within the range of 0.5 to 8% by mass, that is, the graphite material content is 92% by mass (Experimental Example 10) or more and 99.5% by mass (Experimental Example 8) or less, the capacity of the 300th cycle The maintenance rate is 78% or more.

したがって、上記表2及び3に示した結果を総合的に勘案すると、負極活物質中のSiOで表される酸化ケイ素中の添加元素がMn、V、Ti、Al及びBから選択される元素の少なくとも1種であっても、全負極活物質中のSiOで表される酸化ケイ素の含有量が0.5〜8質量%、すなわち黒鉛材料の含有量が92質量%以上99.5質量%以下の範囲内であれば、いずれも300サイクル目の容量維持率を78%以上を確保できると考えられる。特に、酸化ケイ素に含まれている元素をMnとし、全負極活物質中のSiOで表される酸化ケイ素の含有量を1.0〜5.0質量%の範囲内、すなわち、黒鉛材料の含有量を95〜99質量%とすれば、より良好なサイクル特性が得られることもわかる。   Therefore, considering the results shown in Tables 2 and 3 comprehensively, the additive element in the silicon oxide represented by SiO in the negative electrode active material is an element selected from Mn, V, Ti, Al and B. Even if it is at least one kind, the content of silicon oxide represented by SiO in all negative electrode active materials is 0.5 to 8% by mass, that is, the content of graphite material is 92% by mass or more and 99.5% by mass or less. If it is within the range, it is considered that the capacity maintenance rate at the 300th cycle can be secured at 78% or more. In particular, the element contained in silicon oxide is Mn, and the content of silicon oxide represented by SiO in all negative electrode active materials is within the range of 1.0 to 5.0 mass%, that is, the content of graphite material It can also be seen that if the amount is 95 to 99% by mass, better cycle characteristics can be obtained.

表4に示した実験例14〜17及び実験例3の測定結果から以下のことがわかる。すなわち、SiOで表される酸化ケイ素中の添加元素、その添加量及び全負極活物質中のSiOで表される酸化ケイ素の含有量が実験例3の場合とほぼ同一であれば、SiOで表される酸化ケイ素の粒径が5.5〜15.4μmの範囲で300サイクル目の容量維持率が79%以上を確保することができる。   The following can be understood from the measurement results of Experimental Examples 14 to 17 and Experimental Example 3 shown in Table 4. That is, if the additive element in silicon oxide represented by SiO, the amount added, and the content of silicon oxide represented by SiO in all negative electrode active materials are substantially the same as in Experimental Example 3, it is represented by SiO. When the particle size of the silicon oxide is in the range of 5.5 to 15.4 μm, the capacity retention rate at the 300th cycle can be ensured to be 79% or more.

したがって、実験例14及び17の測定結果を外挿すると、SiOで表される酸化ケイ素中の添加元素がMnでその含有量が48ppmであり、全負極活物質中のSiOで表される酸化ケイ素の含有量が5質量%、すなわち黒鉛材料の含有量が95質量%の場合には、少なくともSiOで表される酸化ケイ素の粒径を5.0〜16μmの範囲内とすれば、いずれも300サイクル目の容量維持率を78%以上を確保できると考えられる。この場合においては、SiOで表される酸化ケイ素の粒径を8.0〜12μmの範囲内とすれば、より良好なサイクル特性が得られることもわかる。   Therefore, extrapolating the measurement results of Experimental Examples 14 and 17, when the additive element in the silicon oxide represented by SiO is Mn and the content thereof is 48 ppm, the silicon oxide represented by SiO in the entire negative electrode active material In the case where the content of graphite is 5% by mass, that is, the content of the graphite material is 95% by mass, if the particle size of silicon oxide represented by SiO is at least in the range of 5.0 to 16 μm, 300% is obtained. It is considered that the capacity maintenance ratio at the cycle can be secured at 78% or more. In this case, it can also be seen that better cycle characteristics can be obtained if the particle size of the silicon oxide represented by SiO is in the range of 8.0 to 12 μm.

なお、各実験例においては、黒鉛として平均粒径が22μmのものを使用したが、黒鉛の平均粒径は16〜26μmの範囲内であれば同様に良好な効果を奏する。同じく負極合剤中のCMC添加量及びSBR添加量をそれぞれ全負極合剤の1.5質量%となるようにした例を示したが、それぞれ0.5〜2質量%の範囲内であれば同様に良好な効果を奏する。同じく非電解液全量に対して、VCの添加量を2.0質量%及びFECの添加量を1.0質量%とした例を示したが、VCの添加量は1〜5質量%、FECの添加量は0.5〜5質量%の範囲内であれば同様に良好な効果を奏する。さらに、SiOで表される酸化ケイ素の表面を被覆している炭素材料の被覆量を、この炭素材料を含めた酸化ケイ素の全量の5質量%とした例を示したが、1質量%以上とすれば同様に良好な効果を奏する。   In each experimental example, graphite having an average particle size of 22 μm was used. However, if the average particle size of graphite is in the range of 16 to 26 μm, the same effect can be obtained. Similarly, an example in which the addition amount of CMC and the addition amount of SBR in the negative electrode mixture was 1.5% by mass of the total negative electrode mixture, respectively, was within the range of 0.5 to 2% by mass, respectively. The same effect is obtained. Similarly, an example in which the addition amount of VC is 2.0 mass% and the addition amount of FEC is 1.0 mass% with respect to the total amount of the non-electrolytic solution is shown, but the addition amount of VC is 1 to 5 mass%, FEC If the addition amount is in the range of 0.5 to 5% by mass, the same effect is obtained. Furthermore, an example in which the coating amount of the carbon material covering the surface of the silicon oxide represented by SiO was 5% by mass of the total amount of silicon oxide including the carbon material was shown. If it does, there exists a favorable effect similarly.

また、各実験例では、正極活物質としてリチウムコバルト複合酸化物にジルコニウムやマグネシウム、アルミニウム等の異種金属元素を添加したものを用いた例を示したが、正極活物質としては公知のリチウムイオンを可逆的に吸蔵・放出することが可能な化合物を用いることができる。このリチウムイオンを可逆的に吸蔵・放出することが可能な化合物としては、例えば、LiMO(ただし、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物(すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiCoMnNi(x+y+z=1)等)や、LiMn、LiFePO等を一種単独又はこれらから複数種を混合したものを用いることができる。 In each experimental example, an example in which a lithium cobalt composite oxide added with a different metal element such as zirconium, magnesium, or aluminum was used as the positive electrode active material. However, a known lithium ion was used as the positive electrode active material. A compound that can be reversibly occluded / released can be used. As a compound capable of reversibly occluding and releasing lithium ions, for example, a lithium transition metal composite oxide represented by LiMO 2 (where M is at least one of Co, Ni, and Mn) (Ie, LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiCo x Mn y Ni z O 2 (x + y + z = 1), etc.), LiMn One kind of 2 O 4 , LiFePO 4 or the like, or a mixture of plural kinds thereof can be used.

本発明の非水電解質二次電池で使用し得る非水電解液における非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状炭酸エステル、フッ素化された環状炭酸エステル;γ−ブチロラクトン(γ−BL)、γ−バレロラクトン(γ−VL)等の環状カルボン酸エステル;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)等の鎖状炭酸エステル;フッ素化された鎖状炭酸エステル;ピバリン酸メチルや、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネート等の鎖状カルボン酸エステル;N,N'−ジメチルホルムアミドや、N−メチルオキサゾリジノン等のアミド化合物;スルホラン等の硫黄化合物;テトラフルオロ硼酸1−エチル−3−メチルイミダゾリウム等の常温溶融塩等を用いることができる。また、これらを2種以上混合して用いるようにしてもよい。   Examples of the nonaqueous solvent in the nonaqueous electrolytic solution that can be used in the nonaqueous electrolyte secondary battery of the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and fluorine. Cyclic carbonate ester; cyclic carboxylic acid ester such as γ-butyrolactone (γ-BL), γ-valerolactone (γ-VL); dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) Chain carbonates such as methylpropyl carbonate (MPC) and dibutyl carbonate (DBC); fluorinated chain carbonates; chains such as methyl pivalate, ethyl pivalate, methyl isobutyrate, and methyl propionate Carboxylic acid ester; N, N′-dimethylform Bromide or, N- methyl oxazolidone amide compound, dimethylsulfoxide or the like; may be used tetrafluoroboric acid 1-ethyl-3- ambient temperature molten salt such as methyl imidazolium and the like; sulfur compounds such as sulfolane. Moreover, you may make it use these in mixture of 2 or more types.

本発明の非水電解質二次電池で使用し得る非水電解液における非水溶媒中に溶解させる電解質塩としては、非水電解質二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、例えば、ヘキサフルオロリン酸リチウム(LiPF)、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12等を一種単独又はこれらから複数種を混合したものを用いることができる。これらの中でも、LiPFが特に好ましい。また、非水溶媒に対する電解質塩の溶解量は、0.8〜1.5mol/Lとするのが好ましい。 As the electrolyte salt dissolved in the non-aqueous solvent in the non-aqueous electrolyte that can be used in the non-aqueous electrolyte secondary battery of the present invention, a lithium salt generally used as an electrolyte salt in the non-aqueous electrolyte secondary battery can be used. . Examples of such lithium salt include lithium hexafluorophosphate (LiPF 6 ), LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 or the like can be used singly or as a mixture of a plurality of them. Among these, LiPF 6 is particularly preferable. The amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.8 to 1.5 mol / L.

本発明の非水電解質二次電池の非水電解液中には、電極の安定化用化合物として、例えば、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、無水コハク酸(SUCAH)、無水マレイン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネート、ビフェニル(BP)等を添加するようにしてもよい。これらの化合物は、2種以上を適宜に混合して用いるようにしてもよい。   In the non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery of the present invention, for example, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), succinic anhydride (SUCAH), maleic anhydride as an electrode stabilizing compound. Acid (MAAH), glycolic anhydride, ethylene sulfite (ES), divinyl sulfone (VS), vinyl acetate (VA), vinyl pivalate (VP), catechol carbonate, biphenyl (BP), etc. may be added. . Two or more of these compounds may be appropriately mixed and used.

10…ラミネート形非水電解質二次電池
11…ラミネート外装体
12…溶着封止部
13…正極集電タブ
14…負極集電タブ
15…正極集電タブ樹脂
16…負極集電タブ樹脂
DESCRIPTION OF SYMBOLS 10 ... Laminate type nonaqueous electrolyte secondary battery 11 ... Laminate exterior body 12 ... Welding sealing part 13 ... Positive electrode current collection tab 14 ... Negative electrode current collection tab 15 ... Positive electrode current collection tab resin 16 ... Negative electrode current collection tab resin

Claims (5)

リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極合剤層を備えた正極板と、
リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極合剤層を備えた負極板と、
セパレータと、非水電解質と、
を備え、
前記負極活物質は、
黒鉛材料と、SiOx(0.5≦x<1.6)で表される酸化ケイ素との混合物であり、
前記黒鉛材料の含有割合は全負極活物質中の92質量%以上99.5質量%以下であり、
前記酸化ケイ素にはMn、V、Ti、Al及びBから選択される元素の少なくとも1種類が10ppmから100ppmの範囲で含まれている、非水電解質二次電池。
A positive electrode plate having a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions;
A negative electrode plate having a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions;
A separator, a non-aqueous electrolyte,
With
The negative electrode active material is
It is a mixture of graphite material and silicon oxide represented by SiOx (0.5 ≦ x <1.6),
The content ratio of the graphite material is 92% by mass or more and 99.5% by mass or less in the entire negative electrode active material,
The non-aqueous electrolyte secondary battery, wherein the silicon oxide contains at least one element selected from Mn, V, Ti, Al and B in a range of 10 ppm to 100 ppm.
前記酸化ケイ素に含まれている元素はMnである、請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the element contained in the silicon oxide is Mn. 前記黒鉛材料の含有割合は全負極活物質中の95〜99質量%である、請求項2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 2, wherein a content ratio of the graphite material is 95 to 99% by mass in all negative electrode active materials. 前記酸化ケイ素の平均粒径(D50)は8〜12μmである、請求項1〜3のいずれかに記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the silicon oxide has an average particle diameter (D 50 ) of 8 to 12 μm. 前記酸化ケイ素の表面は炭素材料で被覆されており、前記炭素材料の被覆量は前記炭素材料を含めた前記酸化ケイ素の全量の1質量%以上5質量%以下である、請求項1〜4のいずれかに記載の非水電解質二次電池。   The surface of the silicon oxide is coated with a carbon material, and the coating amount of the carbon material is 1% by mass or more and 5% by mass or less of the total amount of the silicon oxide including the carbon material. The nonaqueous electrolyte secondary battery according to any one of the above.
JP2014045964A 2014-03-10 2014-03-10 Nonaqueous electrolyte secondary battery Pending JP2015170542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045964A JP2015170542A (en) 2014-03-10 2014-03-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045964A JP2015170542A (en) 2014-03-10 2014-03-10 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015170542A true JP2015170542A (en) 2015-09-28

Family

ID=54203088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045964A Pending JP2015170542A (en) 2014-03-10 2014-03-10 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015170542A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186828A1 (en) * 2018-03-28 2019-10-03 日立化成株式会社 Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN111435746A (en) * 2019-01-15 2020-07-21 丰田自动车株式会社 Negative electrode
CN111602275A (en) * 2018-01-19 2020-08-28 三洋电机株式会社 Nonaqueous electrolyte secondary battery
CN112310384A (en) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 Silicon-oxygen compound and secondary battery
WO2021017813A1 (en) * 2019-07-29 2021-02-04 宁德时代新能源科技股份有限公司 Silicon-oxygen compound, preparation method therefor, and secondary battery, battery module, battery pack and apparatus related thereto
CN113745646A (en) * 2021-09-08 2021-12-03 珠海冠宇电池股份有限公司 Lithium ion battery of silicon cathode system
CN113745466A (en) * 2021-09-08 2021-12-03 珠海冠宇电池股份有限公司 Lithium ion battery of silicon cathode system
EP3951944A4 (en) * 2019-08-22 2022-06-15 Contemporary Amperex Technology Co., Limited Rechargeable battery, battery module related thereto, battery pack, and device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226112A (en) * 2000-02-15 2001-08-21 Shin Etsu Chem Co Ltd Highly active silicon oxide powder and its manufacturing method
JP2003206126A (en) * 2002-01-10 2003-07-22 Denki Kagaku Kogyo Kk HIGHLY PURE AND SUPERFINE SiOx POWDER, AND PRODUCTION METHOD THEREFOR
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
JP2011192453A (en) * 2010-03-12 2011-09-29 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
JP2012054240A (en) * 2011-10-13 2012-03-15 Hitachi Maxell Energy Ltd Lithium secondary battery
GB2495951A (en) * 2011-10-26 2013-05-01 Nexeon Ltd Composite electrode Material for a Rechargeable Battery
WO2013099263A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Nonaqueous electrolyte secondary cell
JP2013200984A (en) * 2012-03-23 2013-10-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013246992A (en) * 2012-05-28 2013-12-09 Hitachi Ltd Lithium ion secondary battery
WO2013183717A1 (en) * 2012-06-07 2013-12-12 日本ゼオン株式会社 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226112A (en) * 2000-02-15 2001-08-21 Shin Etsu Chem Co Ltd Highly active silicon oxide powder and its manufacturing method
JP2003206126A (en) * 2002-01-10 2003-07-22 Denki Kagaku Kogyo Kk HIGHLY PURE AND SUPERFINE SiOx POWDER, AND PRODUCTION METHOD THEREFOR
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
JP2011192453A (en) * 2010-03-12 2011-09-29 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
JP2012054240A (en) * 2011-10-13 2012-03-15 Hitachi Maxell Energy Ltd Lithium secondary battery
GB2495951A (en) * 2011-10-26 2013-05-01 Nexeon Ltd Composite electrode Material for a Rechargeable Battery
WO2013099263A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Nonaqueous electrolyte secondary cell
JP2013200984A (en) * 2012-03-23 2013-10-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013246992A (en) * 2012-05-28 2013-12-09 Hitachi Ltd Lithium ion secondary battery
WO2013183717A1 (en) * 2012-06-07 2013-12-12 日本ゼオン株式会社 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大阪チタニウムテクノロジー株式会社: "各製品詳細ファイル(PDF)", [ONLINE], JPN6018007567, 24 September 2013 (2013-09-24), JP, pages 4, ISSN: 0003890864 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111602275A (en) * 2018-01-19 2020-08-28 三洋电机株式会社 Nonaqueous electrolyte secondary battery
CN111602275B (en) * 2018-01-19 2023-06-09 三洋电机株式会社 Nonaqueous electrolyte secondary battery
WO2019186828A1 (en) * 2018-03-28 2019-10-03 日立化成株式会社 Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2019186828A1 (en) * 2018-03-28 2021-03-18 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP7226431B2 (en) 2018-03-28 2023-02-21 株式会社レゾナック Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20220108013A (en) * 2019-01-15 2022-08-02 도요타지도샤가부시키가이샤 Negative electrode
CN111435746A (en) * 2019-01-15 2020-07-21 丰田自动车株式会社 Negative electrode
KR20200088771A (en) * 2019-01-15 2020-07-23 도요타지도샤가부시키가이샤 Negative electrode
KR102520421B1 (en) * 2019-01-15 2023-04-11 도요타지도샤가부시키가이샤 Negative electrode
KR102520420B1 (en) * 2019-01-15 2023-04-11 도요타지도샤가부시키가이샤 Negative electrode
WO2021017826A1 (en) * 2019-07-29 2021-02-04 宁德时代新能源科技股份有限公司 Siloxane compound, preparation method therefor, and related secondary battery, battery module, battery pack, and apparatus
JP7353458B2 (en) 2019-07-29 2023-09-29 寧徳時代新能源科技股▲分▼有限公司 Silicon oxygen compounds, their preparation methods, and related secondary batteries, battery modules, battery packs, and devices
CN112310384B (en) * 2019-07-29 2022-03-11 宁德时代新能源科技股份有限公司 Silicon-oxygen compound and secondary battery
KR20220030275A (en) * 2019-07-29 2022-03-10 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Silicon oxygen compound, its manufacturing method, and related secondary batteries, battery modules, battery packs and devices
JP2022542272A (en) * 2019-07-29 2022-09-30 寧徳時代新能源科技股▲分▼有限公司 Silicon-oxygen compound, preparation method thereof, and related secondary battery, battery module, battery pack and device
JP2022542586A (en) * 2019-07-29 2022-10-05 寧徳時代新能源科技股▲分▼有限公司 Silicon-oxygen compound, preparation method thereof, and related secondary battery, battery module, battery pack and device
KR102648495B1 (en) 2019-07-29 2024-03-19 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Silicon oxygen compounds, manufacturing methods thereof, and secondary batteries, battery modules, battery packs and devices related thereto
EP3800711A4 (en) * 2019-07-29 2021-08-25 Contemporary Amperex Technology Co., Limited Siloxane compound, preparation method therefor, and related secondary battery, battery module, battery pack, and apparatus
WO2021017813A1 (en) * 2019-07-29 2021-02-04 宁德时代新能源科技股份有限公司 Silicon-oxygen compound, preparation method therefor, and secondary battery, battery module, battery pack and apparatus related thereto
CN112310384A (en) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 Silicon-oxygen compound and secondary battery
JP7301212B2 (en) 2019-07-29 2023-06-30 寧徳時代新能源科技股▲分▼有限公司 Silicon-oxygen compound, preparation method thereof, and related secondary battery, battery module, battery pack and device
EP3951944A4 (en) * 2019-08-22 2022-06-15 Contemporary Amperex Technology Co., Limited Rechargeable battery, battery module related thereto, battery pack, and device
CN113745466A (en) * 2021-09-08 2021-12-03 珠海冠宇电池股份有限公司 Lithium ion battery of silicon cathode system
CN113745646A (en) * 2021-09-08 2021-12-03 珠海冠宇电池股份有限公司 Lithium ion battery of silicon cathode system
CN113745646B (en) * 2021-09-08 2024-07-23 珠海冠宇电池股份有限公司 Lithium ion battery of silicon negative electrode system

Similar Documents

Publication Publication Date Title
JP6030070B2 (en) Nonaqueous electrolyte secondary battery
JP7045547B2 (en) Lithium secondary battery with improved high temperature storage characteristics
KR102301670B1 (en) Lithium secondary battery with improved high temperature storage property
WO2011162169A1 (en) Lithium ion secondary battery
JP2009076468A (en) Nonaqueous electrolyte secondary battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
JP2015170542A (en) Nonaqueous electrolyte secondary battery
JP7469434B2 (en) Nonaqueous electrolyte battery and method of manufacturing same
CN111640975A (en) Electrolyte composition for lithium-ion electrochemical cells
JP2015185491A (en) Nonaqueous electrolyte secondary battery
JP2014135154A (en) Nonaqueous electrolyte secondary battery
WO2014155992A1 (en) Nonaqueous electrolyte secondary battery
JP7214662B2 (en) Non-aqueous electrolyte secondary battery
JP2014067583A (en) Nonaqueous electrolyte secondary battery
US10840508B2 (en) Lithium ion secondary battery
KR102053313B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2011181386A (en) Nonaqueous electrolyte secondary battery
US9590234B2 (en) Nonaqueous electrolyte secondary battery
JP6072689B2 (en) Nonaqueous electrolyte secondary battery
WO2015146079A1 (en) Negative electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11870068B2 (en) Lithium ion secondary battery
JP6397642B2 (en) Nonaqueous electrolyte secondary battery
US20140011068A1 (en) Non-aqueous electrolyte secondary battery
JP2014067625A (en) Nonaqueous electrolytic secondary battery
WO2014050025A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002