[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015170430A - Method of recovering valuable metal from lithium ion secondary battery - Google Patents

Method of recovering valuable metal from lithium ion secondary battery Download PDF

Info

Publication number
JP2015170430A
JP2015170430A JP2014043500A JP2014043500A JP2015170430A JP 2015170430 A JP2015170430 A JP 2015170430A JP 2014043500 A JP2014043500 A JP 2014043500A JP 2014043500 A JP2014043500 A JP 2014043500A JP 2015170430 A JP2015170430 A JP 2015170430A
Authority
JP
Japan
Prior art keywords
electrode material
positive electrode
negative electrode
separated
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014043500A
Other languages
Japanese (ja)
Inventor
鳥居 数馬
Kazuma Torii
数馬 鳥居
松浦 博幸
Hiroyuki Matsuura
博幸 松浦
亮 松井
Akira Matsui
亮 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKOO FLEX KK
Original Assignee
SHINKOO FLEX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKOO FLEX KK filed Critical SHINKOO FLEX KK
Priority to JP2014043500A priority Critical patent/JP2015170430A/en
Publication of JP2015170430A publication Critical patent/JP2015170430A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems in which a conventional recycling method being consistently a wet process is high in cost since it requires a waste water treatment, and it becomes too costly for manganese whose base metal price is cheap.SOLUTION: When a dry type heat decomposition process in which an organic substance such as a separator is vaporized and burnt by heating it under in-furnace fluidization, and a positive electrode material and a negative electrode material are separated by utilizing the vaporization expansion force of the organic substance and the collision shock force with a furnace wall due to the fluidization, and a rounding process in which, preferably, the separated positive electrode material and negative electrode material are made to collide with the furnace wall to round them under the promoted in-furnace fluidization are executed, the positive electrode material and the negative electrode material are separated from a cell to become round as illustrated. By efficiently utilizing already-existing organic substances, they can be removed and the positive electrode material and the negative electrode material can be separated. Also, a separation method using X-ray irradiation can be used by rounding.

Description

本発明は、リチウムイオン二次電池からの有価金属回収方法に関し、特に乾式を利用した有価金属回収方法に関するものである。   The present invention relates to a method for recovering valuable metals from a lithium ion secondary battery, and more particularly to a method for recovering valuable metals using a dry process.

現在利用されているリチウムイオン二次電池は、袋またはケース状の外装体内に、負極材と、正極材と、セパレータと、電解液とが封入されたものになっており、正極活物質がリチウム金属複合酸化物になっている。   Currently used lithium ion secondary batteries include a bag or case-shaped outer package in which a negative electrode material, a positive electrode material, a separator, and an electrolytic solution are sealed, and the positive electrode active material is lithium. It is a metal composite oxide.

リチウムイオン二次電池は、軽量で高電気容量であること等から、各種携帯機器用二次電池として以前から利用されていたが、最近では自動車向けに飛躍的に需要が拡大している。
従って、今後は、使用済み製品が大量に出ることになり、埋め立て場所も限界に来つつあることから、従来と同じように安易に廃棄処分することは最早許されない状況となっており、再資源化が強く求められている。
Lithium ion secondary batteries have been used for a long time as secondary batteries for various portable devices because of their light weight and high electric capacity, but recently there has been a dramatic increase in demand for automobiles.
Therefore, in the future, a large amount of used products will come out, and the landfill site is approaching its limit, so it is no longer allowed to dispose of it as easily as in the past. There is a strong demand for the system.

それに応えて、特許文献1では、有価金属を回収する方法として、電池を解体し、解体物をアルコール又は水で洗浄して電解液を除去し、その後、湿式を利用して、集電体の構成金属であるAl(アルミニウム)とCu(銅)をそれぞれ分離回収すると共に、正極活物質の構成金属であるNi(ニッケル)とCo(コバルト)をそれぞれ分離回収し、残った水溶液中のLi(リチウム)を溶媒抽出と逆抽出により濃縮した後、炭酸リチウムの固体として回収することが提案されている。   In response to this, in Patent Document 1, as a method of recovering valuable metals, the battery is disassembled, the disassembled material is washed with alcohol or water to remove the electrolytic solution, and then wet is used to collect the current collector. The constituent metals Al (aluminum) and Cu (copper) are separated and recovered, and the constituent metals of the positive electrode active material Ni (nickel) and Co (cobalt) are separated and recovered, respectively, and the remaining Li ( It has been proposed that lithium) be concentrated by solvent extraction and back extraction and then recovered as a lithium carbonate solid.

特開2007−122885号公報JP 2007-122885 A

しかしながら、上記の方法は一貫して湿式工程によるものであり、排水処理が必要となり、コストが高くつく。特に、最近では、コバルト酸リチウムに比肩し得る特性を有するマンガン酸リチウムを正極活物質に使用したリチウムイオン二次電池が開発されており、マンガンはコバルトに比べて地金価格が安いことから、今後はこのタイプのものの飛躍的な市場拡大が見込まれている。
而して、上記したような従来の湿式を利用した回収方法では、地金価格の安いマンガンについてはコスト的に到底見合わない。
However, the above method is consistently based on a wet process, requires wastewater treatment, and is expensive. In particular, recently, lithium ion secondary batteries using lithium manganate having a characteristic comparable to lithium cobaltate as a positive electrode active material have been developed, and manganese is cheaper than metal than cobalt, In the future, a dramatic market expansion of this type is expected.
Thus, in the conventional recovery method using the wet method as described above, manganese with a low price of metal cannot meet the cost.

それ故、本発明は、乾式工程を一部でも利用できる、新規且つ有用なリチウムイオン二次電池からの有価金属回収方法を提供することを、その目的とする。   Therefore, an object of the present invention is to provide a novel and useful method for recovering valuable metals from a lithium ion secondary battery, which can utilize a part of the dry process.

本発明は、上記課題を解決するためになされたものであり、請求項1の発明は、リチウムイオン二次電池からの有価金属回収方法において、羽根部材が突設され外装されたリチウムイオン二次電池を切断して封入物を露出させる切断工程と、流動機内で前記切断物を加熱してセパレータ等の有機物を拡散燃焼させ、有機物の気化膨張力と流動による炉壁との衝突衝撃力を利用して、金属を溶融させずに正極材と負極材とを分離させる乾式の加熱解体工程とを備えることを特徴とする有価金属回収方法である。   The present invention has been made to solve the above-mentioned problems, and the invention of claim 1 is a method for recovering valuable metals from a lithium ion secondary battery, wherein a lithium ion secondary having a blade member projecting and sheathed. Cutting process that exposes the inclusions by cutting the battery, and heats the cuttings in the fluidizer to diffuse and burn organic substances such as separators, and uses the vaporization expansion force of organic substances and the impact impact force of the furnace wall due to flow And it is a valuable metal collection | recovery method provided with the dry-type heating dismantling process which isolate | separates a positive electrode material and a negative electrode material, without making a metal melt | dissolve.

請求項2の発明は、請求項1に記載したリチウムイオン二次電池からの有価金属回収方法において、流動機内で分離した正極材と負極材を前記機壁に衝突させて丸める丸め圧縮工程を備えることを特徴とする有価金属回収方法である。   A second aspect of the invention is a method for recovering valuable metals from a lithium ion secondary battery according to the first aspect, further comprising a rounding and compressing step of causing a positive electrode material and a negative electrode material separated in a fluid machine to collide against the machine wall and round. This is a valuable metal recovery method.

請求項3の発明は、請求項2に記載したリチウムイオン二次電池からの有価金属回収方法において、流動機内でともずりを起こさせ、分離した正極材から正極活物質を剥離させて正極集電体を構成する金属を露出させる金属露出工程を備えることを特徴とする有価金属回収方法である。   According to a third aspect of the present invention, there is provided a method for recovering valuable metals from a lithium ion secondary battery according to the second aspect, wherein the positive electrode active material is separated from the separated positive electrode material by causing shearing in the fluidizer. It is a valuable metal collection | recovery method provided with the metal exposure process which exposes the metal which comprises a body.

請求項4の発明は、請求項1から3のいずれかに記載したリチウムイオン二次電池からの有価金属回収方法において、切断工程では、複数の正極材どうしを束ねる正極リードと、複数の負極材どうしを束ねる負極リードをそれぞれ切断して、前記正極材の束と前記負極材の束を共にバラすことを特徴とする有価金属回収方法である。   According to a fourth aspect of the present invention, there is provided a method for recovering a valuable metal from a lithium ion secondary battery according to any one of the first to third aspects, wherein in the cutting step, a positive electrode lead for bundling a plurality of positive electrode materials and a plurality of negative electrode materials In this valuable metal recovery method, the negative electrode leads for bundling each other are cut to separate the positive electrode material bundle and the negative electrode material bundle together.

請求項5の発明は、請求項1から4のいずれかに記載したリチウムイオン二次電池からの有価金属回収方法において、分離した正極材と負極材にX線照射することでそれぞれの構成金属の違いを利用して判別し、その判別結果に基づいて振り分けることで、正極材と負極材とを分別することを特徴とする有価金属回収方法である。   According to a fifth aspect of the present invention, in the method for recovering a valuable metal from the lithium ion secondary battery according to any one of the first to fourth aspects, the separated positive electrode material and negative electrode material are irradiated with X-rays, whereby each constituent metal is recovered. This is a valuable metal recovery method characterized in that the positive electrode material and the negative electrode material are separated by making a determination using the difference and sorting based on the determination result.

請求項6の発明は、請求項5に記載したリチウムイオン二次電池からの有価金属回収方法において、分別工程の前に、篩分けにより正極材と負極材から分離しているものを取り出しておくことを特徴とする有価金属回収方法である。   According to a sixth aspect of the present invention, in the method for recovering valuable metals from the lithium ion secondary battery according to the fifth aspect, the material separated from the positive electrode material and the negative electrode material by sieving is taken out before the separation step. This is a valuable metal recovery method.

請求項7の発明は、請求項5または6に記載したリチウムイオン二次電池からの有価金属回収方法において、マンガン酸リチウムを正極活物質として含む正極材を備えたものを処理対象とし、分別された正極材をさらに破砕分離し、篩分けにより大きいアルミニウム側と小さい金属酸化物側とに分別し、金属酸化物側を溶融還元処理に供して、マンガンベースの合金として回収することを特徴とする有価金属回収方法である。   A seventh aspect of the present invention is a method for recovering valuable metals from a lithium ion secondary battery according to the fifth or sixth aspect, wherein the method comprises a positive electrode material containing lithium manganate as a positive electrode active material, and is classified. The pulverized positive electrode material is further crushed and separated, separated into a larger aluminum side and a smaller metal oxide side for sieving, and the metal oxide side is subjected to a smelting reduction treatment and recovered as a manganese-based alloy. This is a valuable metal recovery method.

本発明の有価金属回収方法によれば、正極材と負極材を分離する工程を乾式により実現できる。
従って、コストパフォーマンスの高い方式で有価金属を回収できる。
According to the valuable metal recovery method of the present invention, the step of separating the positive electrode material and the negative electrode material can be realized by a dry method.
Therefore, valuable metals can be recovered by a method with high cost performance.

本発明の実施の形態に係るリチウムイオン二次電池(ラミネートセル)の斜視図である。1 is a perspective view of a lithium ion secondary battery (laminate cell) according to an embodiment of the present invention. 図1の断面図である。It is sectional drawing of FIG. 図1の切断工程の説明図である。It is explanatory drawing of the cutting process of FIG. 図1の加熱解体・丸め・圧縮・整粒工程に使用する装置の説明図である。It is explanatory drawing of the apparatus used for the heating demolition / rounding / compression / sizing process of FIG. 図1の装置内でのリチウムイオン二次電池の変化のイメージ図である。It is an image figure of the change of the lithium ion secondary battery in the apparatus of FIG. 図4での工程後の状態を示す写真図である。It is a photograph figure which shows the state after the process in FIG. 本発明の実施の形態に係る有価金属回収方法の全体のフロー図である。It is a flowchart of the whole valuable metal collection | recovery method concerning embodiment of this invention.

(処理対象物)
処理対象は、リチウムイオン二次電池である。
リチウムイオン二次電池は、袋またはケース状の外装体内に、主に、正極材と負極材とセパレータが電解液を介して積層した状態で封入されている。
外装体は、金属で構成されており、素材金属はアルミニウムが主流になっている。
正極材は、シート状の正極集電体と、それに固着させた正極活物質とから主になる。現在主流になっているものでは、正極集電体は、アルミ箔で構成したものであり、正極活物質は、リチウム含有複合金属酸化物で、POが含まれているものとしては、一般式LiA1−xPO(AはMn、Co、Niから選ばれる少なくとも1種の元素、BはNa、Mg、Sc、Y、Fe、Cu、Zn、Al、Cr、Pb、Sb、B等から選ばれる少なくとも1種の元素)で構成したものが例として挙げられる。なお、正極活物質には、レアメタルを含み、POを含まないものも当然ながら含まれる。
正極活物質は、カーボンブラック等の導電助剤と、ポリテトラフルオロエチレン(PTFE)等の結着剤を添加し、水やN−メチルピロリドン等の溶媒に懸濁させてスラリー化し、集電体に塗布して固着させている。
負極材は、シート状の負極集電体と、それに固着させた負極活物質とから主になる。現在主流になっているものでは、負極集電体は、銅または銅合金箔で構成したものであり、負極活物質は、リチウムを吸蔵・放出できるグラファイト等の炭素材料で構成したものである。負極活物質は、粉状にし、上記と同様な溶媒に分散させてスラリー化し、集電体に塗布して固着させている。
(Processing object)
The processing target is a lithium ion secondary battery.
Lithium ion secondary batteries are enclosed in a bag or case-shaped exterior body, mainly in a state where a positive electrode material, a negative electrode material, and a separator are stacked with an electrolyte solution interposed therebetween.
The exterior body is made of metal, and the main metal is aluminum.
The positive electrode material mainly includes a sheet-like positive electrode current collector and a positive electrode active material fixed thereto. In the current mainstream, the positive electrode current collector is composed of an aluminum foil, the positive electrode active material is a lithium-containing composite metal oxide, and PO 4 is contained as a general formula. LiA x B 1-x PO 4 (A is at least one element selected from Mn, Co, Ni, B is Na, Mg, Sc, Y, Fe, Cu, Zn, Al, Cr, Pb, Sb, B And at least one element selected from the above. The positive electrode active material naturally includes a material containing rare metal and not containing PO 4 .
The positive electrode active material is made by adding a conductive assistant such as carbon black and a binder such as polytetrafluoroethylene (PTFE), and suspending it in a solvent such as water or N-methylpyrrolidone to form a slurry. It is applied and fixed to.
The negative electrode material is mainly composed of a sheet-like negative electrode current collector and a negative electrode active material fixed thereto. In the current mainstream, the negative electrode current collector is made of copper or a copper alloy foil, and the negative electrode active material is made of a carbon material such as graphite that can occlude and release lithium. The negative electrode active material is powdered, dispersed in a solvent similar to the above to form a slurry, and applied to a current collector to be fixed.

セパレータは、ポリエチレン等の樹脂フィルムで構成されたものが現在代表的なものとなっている。
電解液は、非水溶媒および溶質を含む。非水溶媒は、ジエチルカーボネート、エチレンカーボネート等のカーボネート類、溶質はヘキサフルオロリン酸リチウム等が現在代表的なものとなっている。非水電解液には、ポリフッ化ビニリデン等の高分子材料が含まれるものもある。
集電体に結合させる電極リード(タグ)は、正極側はアルミニウムシ−ト、負極側は銅シ−トにニッケルメッキされたものが現在代表的なものとなっている。
The separator is typically made of a resin film such as polyethylene.
The electrolytic solution includes a non-aqueous solvent and a solute. Typical non-aqueous solvents are carbonates such as diethyl carbonate and ethylene carbonate, and typical solutes are lithium hexafluorophosphate. Some non-aqueous electrolytes contain a polymer material such as polyvinylidene fluoride.
A typical electrode lead (tag) to be bonded to the current collector is an aluminum sheet on the positive electrode side and a nickel sheet on a copper sheet on the negative electrode side.

上記したように、集電体や金属酸化物に含まれるも金属類と、セパレータや電解液を構成する有機物とが一体になっており、回収対象の有価金属としては、アルミニウム、銅、コバルト、ニッケルだけでなく、マンガンも想定されている。   As described above, the metals included in the current collector and the metal oxide are integrated with the organic matter constituting the separator and the electrolyte, and valuable metals to be collected include aluminum, copper, cobalt, Not only nickel but also manganese is envisaged.

図1は、一例のラミネートセル形態のリチウムイオン二次電池1(約30cm×約30cm)を示したものであり、アルミ製袋で外装体3が構成されている。外装体3内では、図2に示すように、正極材5・セパレータ7・負極材9・セパレータ7・正極材5のように交互に積層されている。各正極材5(厳密には正極集電体)には分岐リード11の一端側が固定され、各分岐リード11の他端側は帯状の主リード13に固定されており、それぞれの固定部分には接着剤が介されている。このように、複数の正極材5が一つに束ねられた状態となっている。負極材9側も同様に一つに束ねられている。
図1に示すように、主リード13は通電用に外装体3から外に延出しており、タグとしての機能を担っている。なお、視認の便宜のために、電解液は図示省略されている。
FIG. 1 shows an example of a lithium ion secondary battery 1 (about 30 cm × about 30 cm) in the form of a laminate cell, and an outer package 3 is formed of an aluminum bag. In the outer package 3, as shown in FIG. 2, the positive electrode material 5, the separator 7, the negative electrode material 9, the separator 7, and the positive electrode material 5 are alternately stacked. One end side of each branch lead 11 is fixed to each positive electrode material 5 (strictly, a positive electrode current collector), and the other end side of each branch lead 11 is fixed to a strip-shaped main lead 13. An adhesive is interposed. Thus, the plurality of positive electrode materials 5 are in a bundled state. Similarly, the negative electrode material 9 side is also bundled together.
As shown in FIG. 1, the main lead 13 extends outward from the outer package 3 for energization, and functions as a tag. The electrolyte solution is not shown for the convenience of visual recognition.

上記したものを以下の処理工程に供する。
(処理工程)
≪切断工程≫
図3は、リチウムイオン二次電池1の切断説明図であり、切断予定線Lに沿って切断することが推奨されている。切断予定線L1に沿って切断することで、その分岐リード11と主リード13との固定部分が、図2に示すように、主リード13側と共に正極材5や負極材9側とは分離されるので、正極材5や負極材9の束が解かれる。また、切断予定線L2に沿って切断することで、後述する分別処理に適したサイズにされている。なお、切断予定線L2を切断予定線L1と直交する方向にもってきており、切断物C1、C2、C3のうち、正極材5と負極材9が積層された切断物C2、C3側は同じように切断され、いずれも二辺が切り口になっているので、バラし易くなっている。
この切断工程により、セパレータ7等の有機物が露出して、空気と接触できる状態となる。なお、電解液はセパレータ等に浸みているので、切断してもポタポタと滴下して分離することは殆どない。
What was described above is subjected to the following processing steps.
(Processing process)
≪Cutting process≫
FIG. 3 is an explanatory diagram of the cutting of the lithium ion secondary battery 1, and it is recommended to cut along the planned cutting line L. By cutting along the planned cutting line L1, the fixed portion between the branch lead 11 and the main lead 13 is separated from the positive electrode material 5 and the negative electrode material 9 side as well as the main lead 13 side as shown in FIG. Therefore, the bundle of the positive electrode material 5 and the negative electrode material 9 is unwound. Further, by cutting along the planned cutting line L2, the size is suitable for the separation process described later. The cutting line L2 is also in a direction perpendicular to the cutting line L1, and among the cuts C1, C2, and C3, the cuts C2 and C3 on which the positive electrode material 5 and the negative electrode material 9 are stacked are the same. Since both sides have cut ends, it is easy to break apart.
By this cutting step, the organic matter such as the separator 7 is exposed, and can be brought into contact with air. In addition, since the electrolytic solution is immersed in a separator or the like, even if it is cut, the electrolytic solution is hardly dropped and separated.

≪加熱解体工程(→ともずり工程)→丸め工程→圧縮工程→整粒工程)≫(図4)
連続処理の場合には、例えば、二つの流動機を使用して、前段で処理したものを後段に装入して処理する。図4は、その具体例である。前段は、回転型加熱炉21、いわゆるロータリーキルンであり、軸方向が水平方向より傾いており、軸方向一端側に設けた装入口23とバーナー25が、軸方向反対側に設けられた排出口27より上位に配されている。炉壁には矩形板状の羽根部材が複数取り付けられており、この羽根部材は内方に向かって突設している。羽根部材は、垂直方向より傾斜して突設しており、順次位置をずらせて螺旋状に配設されている。
この回転型加熱炉21は、シュート29を介して、後段の回転型整粒機31とつながっている。この回転型整粒機31は二重壁構造になっており、内側の壁33がパンチング板で構成されている。この整粒機31も、軸方向が水平方向より傾いており、軸方向一端側に設けた装入口35が、軸方向反対側に設けられた排出口37より上位に配されているまた、排出口37側には、落下口39が設けられ、その下側には搬送コンベア41(スクリューコンベア)の一端側が臨んでいる。この搬送コンベア41の他端側には回収ボックス43が臨んでいる。
≪Heating and dismantling process (→ Tomozukuri process) → Rounding process → Compression process → Sizing process) (Fig. 4)
In the case of continuous processing, for example, using two fluidizers, the material processed in the previous stage is charged in the subsequent stage and processed. FIG. 4 is a specific example thereof. The front stage is a rotary heating furnace 21, a so-called rotary kiln, in which the axial direction is inclined with respect to the horizontal direction, and an inlet 23 and a burner 25 provided on one end side in the axial direction are provided with a discharge port 27 provided on the opposite side in the axial direction. It is arranged higher. A plurality of rectangular plate-like blade members are attached to the furnace wall, and the blade members project inward. The blade members are inclined and project from the vertical direction, and are disposed in a spiral shape with their positions shifted sequentially.
The rotary heating furnace 21 is connected to a subsequent rotary granulator 31 via a chute 29. The rotary granulator 31 has a double wall structure, and the inner wall 33 is formed of a punching plate. Also in this granulator 31, the axial direction is inclined from the horizontal direction, and the inlet 35 provided on one end side in the axial direction is disposed higher than the discharge port 37 provided on the opposite side in the axial direction. A drop port 39 is provided on the outlet 37 side, and one end side of the transfer conveyor 41 (screw conveyor) faces the lower side. A recovery box 43 faces the other end side of the conveyor 41.

回転型加熱炉21と整粒機31とは略同じサイズで構成でき、パンチング内壁33の使用を断念すれば、回転型加熱炉21で整粒機31を兼ねさせることもできる。
但し、この場合には、バッチ処理になる。
本発明では、図4の全体で、加熱解体・圧縮・整粒装置を構成している。
The rotary heating furnace 21 and the granulator 31 can be configured with substantially the same size. If the use of the punching inner wall 33 is abandoned, the rotary heating furnace 21 can also serve as the granulator 31.
However, in this case, batch processing is performed.
In the present invention, the whole of FIG. 4 constitutes a heating demolition / compression / size control apparatus.

上記の回転型加熱炉21等を利用しての処理を説明する。
切断物C1〜C3を全て回転型加熱炉21に装入し、回転しながら、バーナー25の火炎を吹きかけて加熱すると、加熱解体工程が開始される。
有機物は加熱されると拡散燃焼して最終的には消失するが、有機物が気化する際には膨張する。有機物はセパレータ7や電解液を構成しており、外装体3の内面側と、正極材5と負極材9との間に回り込んで存在しているので、膨張する際には、外装体3のシール部を剥がして分離すると共に、積層した正極材5と負極材9とを引き離そうとする方向に力が働く。
また、炉本体が軸周りに回転しているので、炉内では、切断物Cが羽根部材によって持ち上げられ、ある程度の高さにくると今度は自然落下する行為が繰り返されており、落下により炉壁と衝突して衝撃を受ける。従って、これらの複合的な作用を受けて、正極材5と負極材9が分離して解体していく。
Processing using the rotary heating furnace 21 and the like will be described.
When all the cut pieces C1 to C3 are charged into the rotary heating furnace 21 and heated by blowing the flame of the burner 25 while rotating, the heating and disassembling process is started.
The organic matter diffuses and burns when heated, and eventually disappears, but expands when the organic matter vaporizes. The organic matter constitutes the separator 7 and the electrolytic solution, and exists around the inner surface side of the outer package 3 and between the positive electrode material 5 and the negative electrode material 9. The seal portion is peeled off and separated, and a force acts in a direction to separate the stacked positive electrode material 5 and negative electrode material 9.
In addition, since the furnace body rotates about the axis, the cut object C is lifted by the blade member in the furnace, and when it reaches a certain level, the action of spontaneous fall is repeated. It collides with a wall and receives an impact. Therefore, the positive electrode material 5 and the negative electrode material 9 are separated and disassembled under these combined actions.

解体の際、外装体や集電体を構成する金属が溶融すると、却って酸化物やカーボンと強固に付着するので、湿式処理を経なければ分離できないが、上記したように、切断して有機物を露出させて加熱するので、有機物の熱が表面側にも回り込んだ状態となり、流動下での衝撃も併せて利用することで、溶融せずに解体でき、しかも、集電体から酸化物やカーボンを浮き上がらせ、剥がせ易くなっている。   At the time of disassembly, if the metal constituting the outer package or current collector melts, it adheres strongly to the oxide and carbon, so it cannot be separated without wet treatment, but as described above, it can be cut to remove the organic matter. Because it is exposed and heated, the heat of the organic matter also circulates to the surface side, and by utilizing the impact under flow, it can be disassembled without melting, and from the current collector to the oxide and Carbon floats up and is easy to peel off.

回転型加熱炉を利用した場合には、ともずり効果も期待できるので、解体して表出した正極材5の表面からは粒状の酸化物が剥がれ始め、負極材9の表面からは粉状のカーボンが剥がれ始めるので、それぞれ基材を構成する金属が露出し始める。
また、正極材5等の尖った先端が表出してきて、炉壁に衝突するが、加熱されて展性が良い状態となっているので、その衝突により圧縮されて丸まっていく。すなわち、粗丸め工程も並行して進行していく。
When a rotary heating furnace is used, a shearing effect can also be expected. Therefore, granular oxide begins to peel off from the surface of the positive electrode material 5 that is disassembled and exposed, and powdery powder from the surface of the negative electrode material 9 As the carbon begins to peel off, the metal constituting the substrate begins to be exposed.
Further, the sharp tip of the positive electrode material 5 or the like comes out and collides with the furnace wall, but since it is heated and has good malleability, it is compressed and rounded by the collision. That is, the rough rounding process also proceeds in parallel.

その後に、回転型整粒機31に装入すると、更に丸まって圧縮され、ある程度のサイズで揃った塊になっていく。
最初から回転速度を上げると、完全に分離する前にこの丸め作用を受けることにより、分離しつつあった正極材5と負極材9とがこの丸め作用により互いに食い込んだ状態となって結合してある程度大きさの揃った一つの塊になる、すなわち整粒化されるので、上記のように、時間毎に処理条件を変えることが必要となるが、回転型加熱炉21と回転型整粒機31とを利用することで、効率的な連続処理を実現している。また、完全に剥がれた粒状の酸化物や粉状のカーボンは、パンチング内壁33を通り抜けて、落下口39から落下し、搬送コンベア41に載せられて搬送され、回収ボックス43で溜められる。
Thereafter, when the rotary granulator 31 is charged, it is further rounded and compressed to form a lump with a certain size.
When the rotational speed is increased from the beginning, this rounding action is applied before complete separation, so that the positive electrode material 5 and the negative electrode material 9 that have been separated are joined together in a state of being bitten together by this rounding action. Since it becomes a lump of a certain size, that is, granulated, it is necessary to change the processing conditions every time as described above, but the rotary heating furnace 21 and the rotary granulator Thus, efficient continuous processing is realized. Further, the completely separated granular oxide or powdery carbon passes through the punching inner wall 33, falls from the dropping port 39, is carried on the conveyor 41, and is collected in the collection box 43.

上記の工程により、切断物C2は、図5に示すように変化する。
なお、各正極材、負極材は、時間的に一律に変化するわけでなく、ある切断物C2が加熱解体工程中でも、他の切断物C2が既に丸め工程に入っていたりする。
Through the above steps, the cut product C2 changes as shown in FIG.
In addition, each positive electrode material and negative electrode material do not change uniformly in time, and other cut products C2 have already entered the rounding process even while a certain cut product C2 is in the heat dismantling process.

図6は、リチウムイオン二次電池1の処理後の状態を示す写真である。この図に示すように、正極材5と負極材9とが分離され、それぞれが丸まった塊になる。   FIG. 6 is a photograph showing the state of the lithium ion secondary battery 1 after processing. As shown in this figure, the positive electrode material 5 and the negative electrode material 9 are separated, and each becomes a rounded lump.

回転型加熱炉21の炉操業条件としては、回転型加熱炉(長さ:5m、径:700mm)に対して、ブロアを稼働させながらバーナー25を点火し炉内雰囲気が250〜300℃に達したら切断物を装入し、自燃させる。自燃し始めたら、バーナー25を止め、そのまま継続的に自燃させる。回転速度と滞留時間は、全体装入量や有機物の相対量にもよっても変わるが、連続処理で、300kg/時間で切断物Cを装入したとすると、推奨条件は、回転速度が3.6回/分で、滞留時間が6分30秒間である。なお、温度は有機物の拡散燃焼によりその付近は800℃以上に上がっているが、その熱は正極材5や負極材9の解体に効率良く利用される。
同じサイズの回転型整粒機31では、推奨条件は、回転速度が4.6回転/分で、滞留時間が5分40秒間である。
As the furnace operating conditions of the rotary heating furnace 21, the burner 25 is ignited while the blower is operated, and the atmosphere in the furnace reaches 250 to 300 ° C. with respect to the rotary heating furnace (length: 5 m, diameter: 700 mm). Then, insert the cut material and let it burn. When the self-combustion starts, the burner 25 is stopped and the self-combustion is continued as it is. The rotation speed and the residence time vary depending on the total charge amount and the relative amount of organic matter. However, if the cut material C is charged at 300 kg / hour in continuous processing, the recommended condition is that the rotation speed is 3. The residence time is 6 minutes and 30 seconds at 6 times / minute. In addition, although the temperature has risen to 800 ° C. or higher due to diffusion combustion of organic matter, the heat is efficiently used for disassembling the positive electrode material 5 and the negative electrode material 9.
In the rotary granulator 31 of the same size, the recommended conditions are a rotation speed of 4.6 rotations / minute and a residence time of 5 minutes and 40 seconds.

≪フルイ分け工程≫
回転型整粒機31から排出された正極材5と負極材9の混合物を、フルイ分けして、20mm upと20mm〜0.25mmと0.25mm under未満に分ける。
また、回転型整粒機31のパンチング内壁33を通り抜けて回収ボックス43に溜めったものは、20mm〜0.25mmに加える。
このように事前にフルイ分けすることで、後述する分別の効率化を図れる。
≪Fluid separation process≫
The mixture of the positive electrode material 5 and the negative electrode material 9 discharged from the rotary granulator 31 is divided into 20 mm up, 20 mm to 0.25 mm, and less than 0.25 mm under.
Moreover, what has accumulated in the collection box 43 through the punching inner wall 33 of the rotary granulator 31 is added to 20 mm to 0.25 mm.
By dividing the fluid in advance in this way, it is possible to improve the efficiency of separation described later.

≪分別工程≫
20mm upのものを、選別機に掛けて自動的に分別する。
現在使用が想定されている選別機は、コンベアに載せられて移送されてくるものに透過X線を照射し、その画像の影の濃淡(原子密度)の差から、正極材5側のアルミニウム(金属)と負極材9側の銅(金属)とを判別し、判別結果に基づいて、濃淡の一方側にはエアノズルからエア流を吹き付け、残りはそのまま落下させることで、分別するようになっている。
ともずり作用が期待される場合には、透過X線の代わりに、色彩センサ(CCDカメラ)を使用胃し、色の差(アルミは銀、銅は黒)から判別するようにしてもよい。
≪Separation process≫
A 20 mm up one is automatically sorted by a sorter.
The sorter currently assumed to be used irradiates the transmitted X-rays on what is transported on the conveyor, and the aluminum (on the positive electrode material 5 side) from the difference in shade (atomic density) of the shadow of the image Metal) and copper (metal) on the negative electrode material 9 side are discriminated, and based on the discrimination result, an air stream is blown from one side of the light and shade to the one side of the light and dark, and the rest is dropped as it is, so that it is separated. Yes.
If a joint action is expected, a color sensor (CCD camera) may be used instead of transmitted X-rays, and the color difference (aluminum is silver and copper is black) may be discriminated.

≪破砕分離工程≫
分別されたものは、一軸高速シュレッダーにより一次破砕し、これをハンマー衝撃式の破砕装置にかけて二次破砕し、0.5mm upと0.5mm underとに篩分けする。
これにより、正極材5側はアルミ原料(最終品)と正極活物質に分離され、それぞれ回収される。また、負極材9側は銅原料(最終品)とカーボン粉に分離され、それぞれ回収される。
≪Crushing separation process≫
The separated material is primarily crushed by a single-shaft high-speed shredder, and is secondarily crushed by a hammer impact type crushing apparatus, and sieved to 0.5 mm up and 0.5 mm under.
Thereby, the positive electrode material 5 side is separated into an aluminum raw material (final product) and a positive electrode active material, and each is recovered. Further, the negative electrode material 9 side is separated into a copper raw material (final product) and carbon powder, and each is recovered.

≪溶融還元による合金化工程≫
上記で分離回収された正極活物質には、Mn、Ni、Co等が含まれており、それぞれの割合によりそれ以降の分離回収工程が異なる。Mnが優位な場合には、ブリケット化した後に、溶融還元法により、(Mn+Ni)合金地金製品にするのがコスト的に推奨される。
≪Alloying process by melting reduction≫
The positive electrode active material separated and recovered as described above contains Mn, Ni, Co and the like, and the subsequent separation and recovery steps differ depending on the respective ratios. When Mn is dominant, it is recommended in terms of cost to make a (Mn + Ni) alloy ingot product by a melt reduction method after briquetting.

上記では、正極材5と負極材9に着目されているが、その他のものについては、先ず、20mm〜0.25mmのものは、上記した≪破砕分離工程≫に同じように供され、(Al+Cu)合金と、カーボン粉に分離され、それぞれ回収される。
また、0.25mm under未満のものは、上記した≪溶融還元による合金化工程≫に同じように供される。
In the above, attention is paid to the positive electrode material 5 and the negative electrode material 9, but for the other materials, first, those of 20 mm to 0.25 mm are used in the same manner in the above-mentioned ‘crushing and separating step’, and (Al + Cu ) Separated into alloy and carbon powder and recovered respectively.
Moreover, the thing below 0.25 mm under is similarly provided to above-mentioned << alloying process by melting reduction >>.

上記で分離回収したものについては、アルミ原料は、アルミ資材(アルミ溶解原料、脱酸材、還元剤等)、銅原料は、銅資材(鉱山銅原料、製鋼用Cu添加剤、Al合金用Cu添加剤等)、カーボン粉は、助燃剤、(Al+Cu)合金は、Al合金化用のCu母合金、(Mn+Ni)合金は、ステンレス鋼製造用の添加剤としての活用がそれぞれ想定されている。
このように、リチウムイオン二次電池を無駄無く再資源化できる。
図7は、上記した工程による再資源化の全体フロー図である。
Regarding the materials separated and recovered above, the aluminum raw material is aluminum material (aluminum melting raw material, deoxidizing material, reducing agent, etc.), the copper raw material is copper material (mine copper raw material, Cu additive for steel making, Cu for Al alloy) Additives etc.), carbon powder is assumed to be an auxiliary agent, (Al + Cu) alloy is assumed to be a Cu mother alloy for Al alloying, and (Mn + Ni) alloy is assumed to be an additive for producing stainless steel.
In this way, the lithium ion secondary battery can be recycled without waste.
FIG. 7 is an overall flow diagram of recycling by the above-described steps.

なお、上記では、正極活物質については、溶融還元法の適用が示されているが、Ni、Coの量が相対的に多い場合には、湿式により、それぞれを分離回収することも考えられ、金属の価値に見合った形態での方法が適宜選択すればよい。   In the above, the application of the smelting reduction method is shown for the positive electrode active material, but when the amount of Ni and Co is relatively large, it may be possible to separate and recover each by wet, A method in a form commensurate with the value of the metal may be selected as appropriate.

(選別試験)
上記の実施の形態に示した条件で、≪切断工程≫と、≪加熱解体工程(→ともずり工程)→丸め工程→整粒工程)≫と、≪分別工程≫を実施し、正極材のサンプルと負極材のサンプルを選んで選別試験を行ったところ、選別品に求められる品位と95%程度と仮定した場合、銅選別では負極材(銅)を品位97.8%、回収率94.7%の精度で選別でき、アルミ選別では正極材(アルミ)を品位98.1%、回収率95.0%の精度で選別できることが確認された。
なお、比較のために、セルを切断しなかったもの(無切断)と、リード(タブ)側だけ切断(リード切断)したものについても同じように試験したところ、無切断においては、銅選別では負極材(銅)を品位 94.5%、回収率 88.7%の精度で選別でき、アルミ選別では正極材(アルミ)を品位 96.1%、回収率 87.4%の精度で選別できることが確認された。また、リード切断では、銅選別では負極材(銅)を品位 96.3%、回収率 89.4%の精度で選別でき、アルミ選別では正極材(アルミ)を品位 96.6%、回収率 90.2%の精度で選別できることが確認された。
(Selection test)
Under the conditions shown in the above embodiment, a «cutting step», a «heating and disassembling step (→ tapping step) → a rounding step → a sizing step)» and a «sorting step» are performed, and a sample of the positive electrode material When a sorting test was conducted by selecting a sample of the negative electrode material, and assuming that the quality required for the sorted product was about 95%, the copper material was classified as 97.8% for the copper sorting, and the recovery rate was 94.7%. It was confirmed that the positive electrode material (aluminum) can be sorted with an accuracy of 98.1% and a recovery rate of 95.0%.
For comparison, when the cell was not cut (no cutting) and only the lead (tab) side was cut (lead cutting), the same test was performed. The negative electrode material (copper) can be sorted with an accuracy of 94.5% grade and a recovery rate of 88.7%. The aluminum sorting can sort the positive electrode material (aluminum) with an accuracy of 96.1% grade and a recovery rate of 87.4%. Was confirmed. In lead cutting, the negative electrode material (copper) can be selected with an accuracy of 96.3% and a recovery rate of 89.4% in the copper selection, and the positive electrode material (aluminum) in the aluminum selection of 96.6% and the recovery rate. It was confirmed that sorting can be performed with an accuracy of 90.2%.

本発明の方法を利用すれば、リチウムイオン二次電池を、廃棄物とせずにコストパフォーマンスの高い方式で再資源化できる。   If the method of this invention is utilized, a lithium ion secondary battery can be recycled by a system with high cost performance, without making it a waste.

1‥‥リチウムイオン二次電池(セル)
3‥‥外装体 5‥‥正極材
7‥‥セパレータ 9‥‥負極材
11‥‥分岐リード 13‥‥主リード
C1〜3‥‥切断物
1. Lithium ion secondary battery (cell)
3 ... Exterior body 5 ... Positive electrode material 7 ... Separator 9 ... Negative electrode material 11 ... Branch lead 13 ... Main lead C1-3 ... Cut

本発明は、上記課題を解決するためになされたものであり、請求項1の発明は、リチウムイオン二次電池からの有価金属回収方法において、リチウムイオン二次電池を切断して封入物を露出させる切断工程と、羽根部材が突設され外装された流動機内で前記切断物を加熱してセパレータ等の有機物を拡散燃焼させ、有機物の気化膨張力と流動による炉壁との衝突衝撃力を利用して、金属を溶融させずに正極材と負極材とを分離させる乾式の加熱解体工程とを備えることを特徴とする有価金属回収方法である。
The present invention has been made to solve the above-mentioned problems, and the invention of claim 1 is a method for recovering valuable metals from a lithium ion secondary battery, wherein the inclusion is exposed by cutting the lithium ion secondary battery. The cutting process to be performed, and the cut material is heated and diffused and burned in a fluid machine with a blade member protruding and sheathed, and the vaporization expansion force of the organic material and the impact impact force between the furnace wall due to the flow are utilized And it is a valuable metal collection | recovery method provided with the dry-type heating dismantling process which isolate | separates a positive electrode material and a negative electrode material, without making a metal melt | dissolve.

Claims (7)

リチウムイオン二次電池からの有価金属回収方法において、
羽根部材が突設された外装されたリチウムイオン二次電池を切断して封入物を露出させる切断工程と、
流動機内で前記切断物を加熱してセパレータ等の有機物を拡散燃焼させ、有機物の気化膨張力と流動による炉壁との衝突衝撃力を利用して、金属を溶融させずに正極材と負極材とを分離させる乾式の加熱解体工程とを備えることを特徴とする有価金属回収方法。
In the method of recovering valuable metals from lithium ion secondary batteries,
A cutting step of cutting the sheathed lithium ion secondary battery with the blade member protruding to expose the inclusion;
The cut material is heated in a fluidizer to diffuse and burn organic substances such as separators, and by utilizing the vaporization expansion force of the organic substance and the impact force of the collision with the furnace wall due to the flow, the positive electrode material and the negative electrode material without melting the metal A valuable metal recovery method comprising: a dry heating and dismantling step for separating the two.
請求項1に記載したリチウムイオン二次電池からの有価金属回収方法において、
流動機内で分離した正極材と負極材を前記機壁に衝突させて丸める丸め工程を備えることを特徴とする有価金属回収方法。
In the method for recovering valuable metals from the lithium ion secondary battery according to claim 1,
A valuable metal recovery method, comprising: a rounding step in which a positive electrode material and a negative electrode material separated in a fluid machine collide with the machine wall and round.
請求項2に記載したリチウムイオン二次電池からの有価金属回収方法において、
流動機内でともずりを起こさせ、分離した正極材から正極活物質を剥離させて正極集電体を構成する金属を露出させる金属露出工程を備えることを特徴とする有価金属回収方法。
In the method for recovering valuable metals from the lithium ion secondary battery according to claim 2,
A valuable metal recovery method comprising a metal exposure step of causing shearing in a fluidizer, peeling a positive electrode active material from a separated positive electrode material, and exposing a metal constituting a positive electrode current collector.
請求項1から3のいずれかに記載したリチウムイオン二次電池からの有価金属回収方法において、
切断工程では、複数の正極材どうしを束ねる正極リードと、複数の負極材どうしを束ねる負極リードをそれぞれ切断して、前記正極材の束と前記負極材の束を共にバラすことを特徴とする有価金属回収方法。
In the method for recovering valuable metals from the lithium ion secondary battery according to any one of claims 1 to 3,
In the cutting step, the positive electrode lead for bundling a plurality of positive electrode materials and the negative electrode lead for bundling a plurality of negative electrode materials are respectively cut to separate the positive electrode material bundle and the negative electrode material bundle together. Valuable metal recovery method.
請求項1から4のいずれかに記載したリチウムイオン二次電池からの有価金属回収方法において、
分離した正極材と負極材にX線照射することでそれぞれの構成金属の違いを利用して判別し、その判別結果に基づいて振り分けることで、正極材と負極材とを分別することを特徴とする有価金属回収方法。
In the method for recovering valuable metals from the lithium ion secondary battery according to any one of claims 1 to 4,
It is characterized by discriminating between the positive electrode material and the negative electrode material by irradiating X-rays to the separated positive electrode material and the negative electrode material using the difference between the respective constituent metals, and sorting based on the determination result. To recover valuable metals.
請求項5に記載したリチウムイオン二次電池からの有価金属回収方法において、
分別工程の前に、篩分けにより正極材と負極材から分離しているものを取り出しておくことを特徴とする有価金属回収方法。
In the method for recovering valuable metals from the lithium ion secondary battery according to claim 5,
A valuable metal recovery method, wherein a material separated from a positive electrode material and a negative electrode material is removed by sieving before the separation step.
請求項5または6に記載したリチウムイオン二次電池からの有価金属回収方法において、
マンガン酸リチウムを正極活物質として含む正極材を備えたものを処理対象とし、分別された正極材をさらに破砕分離し、篩分けにより大きいアルミニウム側と小さい金属酸化物側とに分別し、金属酸化物側を溶融還元処理に供して、マンガンベースの合金として回収することを特徴とする有価金属回収方法。
In the method for recovering valuable metals from the lithium ion secondary battery according to claim 5 or 6,
Metal materials with a positive electrode material containing lithium manganate as a positive electrode active material are treated, and the separated positive electrode material is further crushed and separated, and separated into a larger aluminum side and a smaller metal oxide side for sieving. A valuable metal recovery method, comprising subjecting an object side to a smelting reduction treatment and recovering it as a manganese-based alloy.
JP2014043500A 2014-03-06 2014-03-06 Method of recovering valuable metal from lithium ion secondary battery Pending JP2015170430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014043500A JP2015170430A (en) 2014-03-06 2014-03-06 Method of recovering valuable metal from lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014043500A JP2015170430A (en) 2014-03-06 2014-03-06 Method of recovering valuable metal from lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2015170430A true JP2015170430A (en) 2015-09-28

Family

ID=54203014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014043500A Pending JP2015170430A (en) 2014-03-06 2014-03-06 Method of recovering valuable metal from lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2015170430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219401A (en) * 2015-05-15 2016-12-22 Dowaエコシステム株式会社 Recovery method of valuables from lithium ion secondary battery
CN108695571A (en) * 2018-04-28 2018-10-23 杭州电子科技大学 A kind of method that gamma-ray irradiation improves waste lithium cell FLOTATION SEPARATION effect
EP4164026A4 (en) * 2020-08-24 2023-12-20 LG Energy Solution, Ltd. Apparatus for recovering active material and method for reusing active material by using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256231A (en) * 1994-03-18 1995-10-09 Hitachi Ltd Method and device for selective recovery of metal
JP2006321851A (en) * 2005-05-17 2006-11-30 Mitsumine Kogyo Kk Apparatus and method for pyrolytic conversion into oil, apparatus for treating waste by pyrolysis, and apparatus for recovering valuable metal
JP2010231925A (en) * 2009-03-26 2010-10-14 Nippon Denko Kk Method of collecting valuable resource of manganese lithium-ion secondary battery, and device therefor
JP2012195073A (en) * 2011-03-15 2012-10-11 Mitsui Mining & Smelting Co Ltd Method for producing recycled material
JP2013001990A (en) * 2011-06-21 2013-01-07 Kashima Senko Kk Method for recycling waste battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256231A (en) * 1994-03-18 1995-10-09 Hitachi Ltd Method and device for selective recovery of metal
JP2006321851A (en) * 2005-05-17 2006-11-30 Mitsumine Kogyo Kk Apparatus and method for pyrolytic conversion into oil, apparatus for treating waste by pyrolysis, and apparatus for recovering valuable metal
JP2010231925A (en) * 2009-03-26 2010-10-14 Nippon Denko Kk Method of collecting valuable resource of manganese lithium-ion secondary battery, and device therefor
JP2012195073A (en) * 2011-03-15 2012-10-11 Mitsui Mining & Smelting Co Ltd Method for producing recycled material
JP2013001990A (en) * 2011-06-21 2013-01-07 Kashima Senko Kk Method for recycling waste battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219401A (en) * 2015-05-15 2016-12-22 Dowaエコシステム株式会社 Recovery method of valuables from lithium ion secondary battery
CN108695571A (en) * 2018-04-28 2018-10-23 杭州电子科技大学 A kind of method that gamma-ray irradiation improves waste lithium cell FLOTATION SEPARATION effect
CN108695571B (en) * 2018-04-28 2019-12-31 杭州电子科技大学 Method for improving flotation separation effect of waste lithium battery through gamma ray irradiation
EP4164026A4 (en) * 2020-08-24 2023-12-20 LG Energy Solution, Ltd. Apparatus for recovering active material and method for reusing active material by using same

Similar Documents

Publication Publication Date Title
Kaya State-of-the-art lithium-ion battery recycling technologies
Dobó et al. A review on recycling of spent lithium-ion batteries
Ali et al. Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends
JP6198027B1 (en) How to recover valuable materials from used lithium ion batteries
JP2023053986A (en) Process, apparatus, and system for recovering material from battery
JP6587861B2 (en) Lithium-ion battery processing method
JP3495707B2 (en) Battery dismantling method
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP7122093B2 (en) Method for recovering valuables from used lithium-ion batteries
KR100358528B1 (en) recycling method of lithium ion secondary battery
JP7322687B2 (en) Valuable metal recovery method from waste batteries
Tanong et al. Metal recycling technologies for battery waste
WO2021177005A1 (en) Method for recovering valuable metals from waste battery
JP2015170430A (en) Method of recovering valuable metal from lithium ion secondary battery
Al-Asheh et al. Treatment and recycling of spent lithium-based batteries: a review
WO2022085222A1 (en) Method for recovering lithium and method for producing lithium carbonate
WO2023128773A1 (en) Battery fractionation unit and battery fractionation method
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
JP7447643B2 (en) Valuable metal recovery method
JP6435190B2 (en) Aluminum / copper alloy production method from lithium ion secondary battery
WO2021182452A1 (en) Method for recovering lithium and method for processing lithium ion secondary battery
KR20220136991A (en) How to dispose of battery waste
ITVI20100232A1 (en) PROCEDURE FOR THE RECOVERY OF CONSTITUTING MATERIALS BATTERIES, RECHARGEABLE LITHIUM CELLS AND / OR BATTERIES, AND USE OF RECOVERED CATHODIC MATERIAL
JP2021139020A (en) Valuable metal recovery method from waste battery
JP2021180184A (en) Processing method for lithium ion battery scrap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180125