JP2015169249A - Piston ring and manufacturing method thereof - Google Patents
Piston ring and manufacturing method thereof Download PDFInfo
- Publication number
- JP2015169249A JP2015169249A JP2014043753A JP2014043753A JP2015169249A JP 2015169249 A JP2015169249 A JP 2015169249A JP 2014043753 A JP2014043753 A JP 2014043753A JP 2014043753 A JP2014043753 A JP 2014043753A JP 2015169249 A JP2015169249 A JP 2015169249A
- Authority
- JP
- Japan
- Prior art keywords
- piston ring
- steel
- ring
- nominal diameter
- cylindrical material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 36
- 239000010959 steel Substances 0.000 claims abstract description 36
- 238000005242 forging Methods 0.000 claims abstract description 24
- 238000005096 rolling process Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 70
- 238000000576 coating method Methods 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 12
- 238000007747 plating Methods 0.000 claims description 11
- 238000003754 machining Methods 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 8
- 229910001105 martensitic stainless steel Inorganic materials 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- 238000007733 ion plating Methods 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 4
- 229910000639 Spring steel Inorganic materials 0.000 claims description 4
- 239000010962 carbon steel Substances 0.000 claims description 4
- 238000007739 conversion coating Methods 0.000 claims description 4
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims 1
- 239000000446 fuel Substances 0.000 abstract description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 13
- 238000005121 nitriding Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 238000005496 tempering Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 238000007514 turning Methods 0.000 description 4
- 239000013585 weight reducing agent Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910001141 Ductile iron Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000005422 blasting Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 101100043866 Caenorhabditis elegans sup-10 gene Proteins 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 101100381534 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) BEM2 gene Proteins 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Landscapes
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
本発明は、ピストンリングに関し、特に呼び径(d1)が200 mm以上の大型ピストンリング(以下「大型リング」ともいう。)に関する。 The present invention relates to a piston ring, and more particularly to a large piston ring (hereinafter also referred to as “large ring”) having a nominal diameter (d1) of 200 mm or more.
大型ディーゼルエンジンに使用される大型リングは、耐熱性、耐摩耗性に優れた鋳鉄製ピストンリングが主流である。しかし、近年、大型ディーゼルエンジンにおいても、地球環境問題の顕在化とともに、ますます高出力化、高効率化(CO2低減)の傾向にあり、具体的には、シリンダ有効圧力や最高圧力の上昇、熱負荷増大による作用応力の増大、あるいは平均ピストン速度の上昇などのため、その使用環境はますます過酷になっている。例えば、低速2ストローク機関のトップリングには、摺動特性に優れる片状黒鉛鋳鉄と強度に優れる球状黒鉛鋳鉄との中間的なCV(Compacted Vermicular)黒鉛鋳鉄が採用されてきた。 Large rings used in large diesel engines are mainly cast iron piston rings with excellent heat resistance and wear resistance. However, in recent years, large diesel engines have also become increasingly more powerful and more efficient (reduced CO 2 ) as global environmental problems become more apparent. Specifically, the effective cylinder pressure and the maximum pressure increase. The working environment has become increasingly severe due to an increase in working stress due to an increase in heat load or an increase in average piston speed. For example, CV (Compacted Vermicular) graphite cast iron intermediate between flake graphite cast iron having excellent sliding characteristics and spheroidal graphite cast iron having excellent strength has been employed for the top ring of a low speed two-stroke engine.
一般に、鋳鉄は組織中に黒鉛が分散しているため、耐スカッフ性などの摺動特性に優れ、また熱伝導特性にも優れている。しかし、使用環境が過酷になると、強度面で十分でないために、ピストンリングの折損という致命的な欠点がクローズアップされてくる。 In general, cast iron has excellent sliding characteristics such as scuff resistance and heat conduction characteristics because graphite is dispersed in the structure. However, when the usage environment becomes harsh, since the strength is not sufficient, the fatal defect of broken piston ring is highlighted.
自動車エンジン用の小型ピストンリングでは、鋳鉄から鋼への材料置換(以下「スチール化」ともいう。)が進み、トップリングでは、今やマルテンサイト系ステンレス鋼に窒化処理やイオンプレーティング処理(例えば、CrNやTiN等)を施したものが主流である。このトップリングは、所定の断面形状に伸線されたマルテンサイト系ステンレス線材からリングの自由形状に成形するコイリング加工によって製造されるのが一般的である。 In small piston rings for automobile engines, material replacement from cast iron to steel (hereinafter also referred to as “steeling”) has progressed, and in top rings, martensitic stainless steel is now subjected to nitriding and ion plating (for example, Those with CrN or TiN) are the mainstream. The top ring is generally manufactured by a coiling process in which a martensitic stainless wire drawn in a predetermined cross-sectional shape is formed into a free shape of the ring.
しかし、舶用エンジンなどの大型リングになると、リング断面積も大きくなるため、使用するスチール線材もより断面積の大きい素線が必要になる。断面積の大きい素線は取扱いが困難なこと、圧延機や熱処理装置が大型化することから、線材から大型リングを成形するスチール化は進んでいない。特に、精密成形が難しいため、軽量化、低張力化に繋がる薄幅化が困難である。また、特許文献1は、特殊な鋼を鋳造法でリング形状に成形した鋳鋼製ピストンリング材を開示しているが、結局、鋳造に起因する引け巣やピンホール等の鋳造欠陥のない製法と材料特性との両立が困難で、信頼性の点で実用化できていないのが実情である。 However, when a large-sized ring such as a marine engine is used, the cross-sectional area of the ring also increases. Therefore, the steel wire to be used requires a strand having a larger cross-sectional area. Since a wire having a large cross-sectional area is difficult to handle and a rolling mill and a heat treatment device are enlarged, steel making of a large ring from a wire has not progressed. In particular, since precision molding is difficult, it is difficult to reduce the width that leads to weight reduction and lower tension. Moreover, although patent document 1 is disclosing the cast-ring piston ring material which shape | molded special steel in the ring shape with the casting method, after all, the manufacturing method without casting defects, such as a shrinkage nest and a pinhole resulting from casting, The reality is that it is difficult to achieve compatibility with material properties and it has not been put into practical use in terms of reliability.
本発明者らは、大型ディーゼルエンジンの信頼性向上のため、ピストンリング高強度化対策の一つとしてスチール化を検討し、リングローリング加工を含む熱間鍛造により、耐スカッフ性、耐摩耗性及び耐熱ヘタリ性に優れた、高強度の大型スチールリングの製造方法を特願2013−120497として、また、鋳鉄に匹敵する熱伝導特性を備えた大型スチールリングを特願2013−252020として出願した。本発明は、さらにリング幅(h1)とリング厚さ(a1)の最適化を進め、燃費向上に貢献する軽量、低張力の大型スチールリングを提供することを課題とする。 In order to improve the reliability of a large diesel engine, the present inventors examined steel as one of measures for increasing the piston ring strength, and by hot forging including ring rolling, scuff resistance, wear resistance and Patent application No. 2013-120497 was filed as a manufacturing method of a high-strength large-sized steel ring excellent in heat resistance and Japanese Patent Application No. 2013-252020 having a heat conduction characteristic comparable to cast iron. It is an object of the present invention to further optimize the ring width (h1) and the ring thickness (a1) and provide a large-sized steel ring with light weight and low tension that contributes to improving fuel efficiency.
すなわち、本発明のピストンリングは、呼び径(d1)が200 mm以上のピストンリングであって、前記ピストンリングの母材が鋼であり、幅(h1)と呼び径(d1)が
1×10-2< h1/d1 < 1.8×10-2
の関係を満たすことを特徴とする。また、厚さ(a1)と呼び径(d1)は
2×10-2< a1/d1 < 2.8×10-2
の関係を満たすことが好ましく、さらに、幅(h1)と厚さ(a1)と呼び径(d1)は
2×10-4 < h1×a1/(d1)2 < 5×10-4
の関係を満たすことがより好ましい。さらに、前記ピストンリングの張力(Ft)の前記呼び径(d1)に対する比(Ft/d1)は0.1〜0.25 N/mmであることが好ましい。
That is, the piston ring of the present invention is a piston ring having a nominal diameter (d1) of 200 mm or more, the base material of the piston ring is steel, and the width (h1) and the nominal diameter (d1) are
1 × 10 -2 <h1 / d1 <1.8 × 10 -2
It is characterized by satisfying the relationship. Thickness (a1) and nominal diameter (d1) are
2 × 10 -2 <a1 / d1 <2.8 × 10 -2
The width (h1), thickness (a1) and nominal diameter (d1) are preferably
2 × 10 -4 <h1 × a1 / (d1) 2 <5 × 10 -4
It is more preferable to satisfy the relationship. Furthermore, the ratio (Ft / d1) of the tension (Ft) of the piston ring to the nominal diameter (d1) is preferably 0.1 to 0.25 N / mm.
また、前記ピストンリングの母材に用いられる鋼は、炭素鋼、低合金鋼、バネ鋼、軸受鋼、マルテンサイト系ステンレス鋼から選択された鋼であることが好ましい。 The steel used for the base material of the piston ring is preferably a steel selected from carbon steel, low alloy steel, spring steel, bearing steel, and martensitic stainless steel.
また、本発明のピストンリングの外周摺動面は、窒化処理、めっき処理、溶射皮膜、化成処理皮膜、及びイオンプレーティング皮膜からなるグループから選択された1又は2以上の皮膜を有していることが好ましい。さらに、前記ピストンリングの側面も、窒化処理、めっき処理、及び化成処理皮膜からなるグループから選択された1又は2以上の皮膜を有していることが好ましい。 Further, the outer peripheral sliding surface of the piston ring of the present invention has one or more coatings selected from the group consisting of nitriding treatment, plating treatment, thermal spray coating, chemical conversion coating, and ion plating coating. It is preferable. Furthermore, it is preferable that the side surface of the piston ring also has one or more coatings selected from the group consisting of nitriding treatment, plating treatment, and chemical conversion coating.
前記ピストンリングを製造する方法は、前記鋼の所定の長さに切断された円柱状素材を加熱し、プレス成形によって円板状成形体に据込み加工する第1の熱間鍛造工程と、前記円板状成形体からコアポンチにより中央部に凹部を形成し穴開け加工して第1の円筒状素材に加工する第2の熱間鍛造工程と、前記第1の円筒状素材からリングローリングミルにより拡径した第2の円筒状素材に加工する第3の熱間加工工程と、前記第2の円筒状素材からピストンリングに加工する機械加工工程を含むことが好ましい。さらに、前記ピストンリングが軸に直角な断面で非円形形状を有するように、前記第3の熱間鍛造工程の後に、前記第2の円筒状素材の軸に直角な方向にプレス成形することが好ましい。 The method of manufacturing the piston ring includes a first hot forging step in which a columnar material cut into a predetermined length of the steel is heated and upset into a disk-shaped formed body by press molding; A second hot forging step in which a concave portion is formed in a central portion by a core punch from a disk-shaped molded body and drilled to form a first cylindrical material; and a ring rolling mill from the first cylindrical material. It is preferable to include a third hot working process for processing the expanded second cylindrical material and a machining process for processing the second cylindrical material into a piston ring. Further, after the third hot forging step, the piston ring may be press-formed in a direction perpendicular to the axis of the second cylindrical material so that the piston ring has a non-circular shape with a cross section perpendicular to the axis. preferable.
本発明のピストンリングは、従来の鋳鉄製ピストンリングと比べ、リング幅(h1)を縮小しているため、動力部品の軽量化に貢献し、従来所定の面圧に調整しても低張力化が可能となって、摩擦力を低減し、燃費向上に貢献する。リング厚さ(a1)も縮小すれば、軽量化や低張力化に加え、リングのシリンダ壁への追従性を著しく向上して、優れたシール性を実現する。従来の鋳鉄製又は鋳鋼製リングで不可能であったピストンリングの断面縮小化は、基本的に延性に優れ、高強度、高靱性の鋼材を用いることにより、熱負荷が増大しても、折損の心配が無く安心して使用できること、並びに、リングローリング加工を含む熱間鍛造法と機械加工の組合せにより、呼び径200 mm以上のピストンリングを精度良く製造できること、により実現可能となった。さらに、所定のサイズの円筒状素材を軸に垂直にプレス成形することによって、リングの自由形状が非円形形状(楕円形状等)の圧力リング形状に成形することができ、後工程の機械加工工程での取り代を少なくすることも可能となる。 The piston ring of the present invention has a reduced ring width (h1) compared to the conventional cast iron piston ring, which contributes to weight reduction of power components and lowers the tension even if it is adjusted to the conventional surface pressure. This reduces friction and contributes to improved fuel efficiency. If the ring thickness (a1) is also reduced, in addition to lightening and lowering the tension, the followability of the ring to the cylinder wall will be significantly improved, and excellent sealing performance will be realized. Piston ring cross-section reduction, which was not possible with conventional cast iron or cast steel rings, is basically excellent in ductility, and even if the heat load increases, breakage can be prevented by using steel materials with high strength and high toughness. This can be realized by the fact that the piston ring with a nominal diameter of 200 mm or more can be manufactured with high accuracy by combining the hot forging method including the ring rolling process and machining. Furthermore, by pressing a cylindrical material of a predetermined size perpendicularly to the axis, the ring can be formed into a pressure ring shape with a non-circular shape (such as an elliptical shape), which is a subsequent machining step. It is also possible to reduce the stock removal cost.
図1は、呼び径d1、幅h1(軸方向)、厚さa1(径方向)の代表的なピストンリングの軸方向の平面図と、径方向の断面図を示す。自由形状のピストンリング(1)が破線で描かれ、ピストンに装着され、ピストンを呼び径d1のシリンダ内に挿入されたときのピストンリング(2)が実線で描かれている。なお、自由状態の合口隙間をm、シリンダ挿入時の合口隙間をs1としている。ピストンリング(1)をシリンダ内に挿入すると、合口隙間がmからs1まで閉じるため、接線方向にFtなる張力を発生する。この張力Ftによってシリンダとピストンの間のシールを維持している。本発明のピストンリングは、呼び径d1が200 mm以上(但し、呼び径d1が1100 mmを超えるものはほとんど無い。)の大型スチールリングである。スチールリングの特徴は、従来の鋳鉄製ピストンリングに対し、強度面で優れており、呼び径d1を大きく、幅h1を薄く設定しても、折損のおそれがない。しかし、ねじれが生じて平行度や平面度が悪くなるので、h1/d1は1×10-2を超えるものとする。一方、幅h1が厚ければ、従来の鋳鉄製ピストンリングに対し薄幅化が十分でなく、低張力化による効果も限定されてしまうので、h1/d1は1.8×10-2未満とする。また、厚さa1は面圧や摩擦力には寄与しないが、発生する張力Ftやリングの追従性Kに密接に関係する。よって、ピストンリングとして所定の張力Ftを得るためには、厚さa1の呼び径d1に対する比(a1/d1)は2×10-2を超えることが好ましく、追従性を向上し、優れたシール性を実現するためには2.8×10-2未満であることが好ましい。総合的には、幅h1と厚さa1の積(h1×a1)の呼び径d1の二乗((d1)2)に対する比が2×10-4を超え、5×10-4未満であることが好ましい。 FIG. 1 shows an axial plan view and a radial sectional view of a typical piston ring having a nominal diameter d1, a width h1 (axial direction), and a thickness a1 (radial direction). The free-form piston ring (1) is drawn with a broken line, and the piston ring (2) when the piston is inserted into the cylinder of the nominal diameter d1 is drawn with a solid line. In addition, the joint gap in the free state is m, and the joint gap when the cylinder is inserted is s1. When the piston ring (1) is inserted into the cylinder, the abutment gap is closed from m to s1, so that a tension of Ft in the tangential direction is generated. This tension Ft maintains the seal between the cylinder and the piston. The piston ring of the present invention is a large steel ring having a nominal diameter d1 of 200 mm or more (however, there are almost no nominal diameters d1 exceeding 1100 mm). The steel ring is superior in strength to the conventional cast iron piston ring, and there is no risk of breakage even if the nominal diameter d1 is set large and the width h1 is set thin. However, since twist occurs and parallelism and flatness deteriorate, h1 / d1 exceeds 1 × 10 −2 . On the other hand, if the width h1 is thick, the conventional cast iron piston ring is not sufficiently thinned and the effect of lowering the tension is limited, so h1 / d1 is less than 1.8 × 10 −2 . Further, the thickness a1 does not contribute to the surface pressure or the frictional force, but is closely related to the generated tension Ft and the ring followability K. Therefore, in order to obtain a predetermined tension Ft as a piston ring, the ratio of the thickness a1 to the nominal diameter d1 (a1 / d1) is preferably more than 2 × 10 -2 , improving followability and excellent sealing In order to realize the property, it is preferable that the ratio is less than 2.8 × 10 −2 . Overall, the ratio of the product of width h1 and thickness a1 (h1 × a1) to the square of nominal diameter d1 ((d1) 2 ) is greater than 2 × 10 −4 and less than 5 × 10 −4 Is preferred.
本発明のピストンリングは、シリンダに装着されたとき、自己張力Ftに基づき面圧を発生させる。この面圧は、ピストンとシリンダ間のシール性や、オイル消費、摩耗や摩擦損失に密接に影響する。低燃費、低フリクションの観点からは低面圧が選択されるが、一方、シール性やオイル消費を無視することはできないので、所定の面圧は維持されなければならない。本発明では張力Ftの呼び径d1に対する比(Ft/d1)を0.1〜0.25 N/mmとすることが好ましく、0.1〜0.2 N/mmとすることがより好ましい。 The piston ring of the present invention generates a surface pressure based on the self-tension Ft when mounted on the cylinder. This surface pressure closely affects the sealing performance between the piston and the cylinder, oil consumption, wear and friction loss. From the viewpoint of low fuel consumption and low friction, a low surface pressure is selected. On the other hand, since sealability and oil consumption cannot be ignored, a predetermined surface pressure must be maintained. In the present invention, the ratio of the tension Ft to the nominal diameter d1 (Ft / d1) is preferably 0.1 to 0.25 N / mm, and more preferably 0.1 to 0.2 N / mm.
本発明のピストンリングに使用される鋼は、特に限定するものではないが、炭素鋼、低合金鋼、バネ鋼、軸受鋼、マルテンサイト系ステンレスから選択された鋼であることが好ましい。炭素鋼であればCが0.6〜0.8質量%程度の高炭素鋼、バネ鋼であればSUP9、 SUP10、SUP12等、軸受鋼であればSUJ2、マルテンサイト系ステンレスであればSUS420J2やSUS440Bが好ましく使用される。高温強度、熱伝導率、耐熱ヘタリ性等、求められる要求特性により適した鋼材が選択される。 The steel used for the piston ring of the present invention is not particularly limited, but is preferably a steel selected from carbon steel, low alloy steel, spring steel, bearing steel, and martensitic stainless steel. High carbon steel with C of about 0.6 to 0.8 mass% for carbon steel, SUP9, SUP10, SUP12 etc. for spring steel, SUJ2 for bearing steel, SUS420J2 or SUS440B for martensitic stainless steel Is done. A steel material suitable for required characteristics such as high-temperature strength, thermal conductivity, and heat resistance is selected.
例えば、熱ヘタリ率(リングを呼び径に閉じた状態で、300℃、3時間加熱した後の、接線張力減退度(%)で評価される。)については、大型ピストンリングでは、JIS B 8037-5:1998によれば、材料がねずみ鋳鉄(片状黒鉛鋳鉄)と球状黒鉛鋳鉄に対し、それぞれ、15%以下と10%以下と規定されている。しかし、材料が鋼の場合には、呼び径が200 mm以上のピストンリングが実現(製造)されていないため、何も規定されていない。本発明の大型ピストンリングも球状黒鉛鋳鉄と同レベルの熱ヘタリ率10%以下を満足することが好ましいが、組成を選択することによって、耐熱ヘタリ性を向上することができるので、熱ヘタリ率8%未満、あるいは6%未満、あるいは5%未満とするように調整することが可能である。 For example, the thermal settling rate (evaluated by the degree of tangential tension loss (%) after heating at 300 ° C for 3 hours with the ring closed to the nominal diameter) is JIS B 8037 for large piston rings. -5: According to 1998, the material is specified to be 15% or less and 10% or less for gray cast iron (flaky graphite cast iron) and spheroidal graphite cast iron, respectively. However, when the material is steel, nothing is specified because a piston ring with a nominal diameter of 200 mm or more has not been realized (manufactured). The large piston ring of the present invention preferably satisfies the same level of thermal sag rate of 10% or less as that of spheroidal graphite cast iron. However, the heat sag rate can be improved by selecting the composition. It can be adjusted to be less than%, or less than 6%, or less than 5%.
本発明のピストンリングは、上記のように、その母材を鋼としているため、そのままでは、鋳鉄に比べ、耐スカッフ性等の摺動特性に課題がある。しかし、それらの課題は、近年の表面処理技術の進歩により克服されつつある。よって、本発明のピストンリングは、その外周摺動面に、窒化皮膜、めっき皮膜、溶射皮膜、化成処理皮膜、及びイオンプレーティング皮膜からなるグループから選択された1又は2以上の皮膜を有していることが好ましい。また、側面には、窒化皮膜、めっき皮膜、及び化成処理皮膜からなるグループから選択された1又は2以上の皮膜を有していることが好ましい。特に、側面への窒化処理の適用は、従来から側面に適用してきた硬質クロムめっきに代えることが可能となり、コスト低減に貢献することができる。めっき皮膜には、硬質クロムめっき皮膜、多層クロムめっき皮膜、ニッケル複合分散めっき皮膜が含まれ、溶射皮膜には、モリブデン溶射皮膜やサーメット溶射皮膜、イオンプレーティング皮膜には、CrN皮膜やTiN皮膜が含まれる。 Since the base material of the piston ring of the present invention is steel as described above, there is a problem in the sliding characteristics such as scuff resistance as compared with cast iron as it is. However, these problems are being overcome by recent advances in surface treatment technology. Therefore, the piston ring of the present invention has one or more coatings selected from the group consisting of a nitride coating, a plating coating, a thermal spray coating, a chemical conversion coating, and an ion plating coating on the outer peripheral sliding surface. It is preferable. Further, it is preferable that the side surface has one or more films selected from the group consisting of a nitride film, a plating film, and a chemical conversion treatment film. In particular, the application of the nitriding treatment to the side surface can replace the hard chrome plating that has been conventionally applied to the side surface, and can contribute to cost reduction. Plating coatings include hard chrome plating coatings, multilayer chrome plating coatings, and nickel composite dispersion plating coatings. Thermal spray coatings include molybdenum and cermet spray coatings, and ion plating coatings include CrN and TiN coatings. included.
本発明のピストンリングは、所定の長さに切断された円柱状鋼素材を加熱し、プレス成形によって円板状成形体に据込み加工する第1の熱間鍛造工程と、前記円板状成形体からコアポンチにより中央部に凹部を形成し穴開け加工して第1の円筒状素材に加工する第2の熱間鍛造工程と、前記第1の円筒状素材からリングローリングミルにより拡径した第2の円筒状素材に加工する第3の熱間鍛造工程と、前記第2の円筒状素材からピストンリングに加工する機械加工工程を含む方法によって製造することができる。図2は、本発明の製造方法において、ピストンリング素材の形状変化を素材の中心軸をとおる断面で模式的に示した図である。円柱状素材(3)から円板状成形体(4)を成形する第1の熱間鍛造工程、円板状成形体(4)から第1の円筒状素材(5)を成形する第2の熱間鍛造工程、そして、第1の円筒状素材(5)から第2の円筒状素材(6)を成形する第3の熱間鍛造工程を含んでいる。第3の熱間鍛造工程は、図3にその加工方法を模式的に示すリングローリングミルを使用する。リングローリングミルは、主ロール(8)、マンドレル(9)、アキシャルロール(10)、バックアップロール(11)等から構成されている。主ロール(8)は一定の回転数で駆動される一方、マンドレル(9)、アキシャルロール(10)及びバックアップロール(11)は被加工材(7)との摩擦で回転する従動式である。リングローリング加工は、基本的に、主ロール(8)とマンドレル(9)間でリングの径方向への圧下が行われ、被加工材(7)の肉厚を減少させながら径を拡大して所望の形状、寸法とする加工方法であるが、軸方向寸法については一対のアキシャルロール(10)間により、また被加工材(7)の真円度や表面性状については複数のバックアップロールにより調整されている。 The piston ring according to the present invention includes a first hot forging process in which a columnar steel material cut to a predetermined length is heated and upset into a disk-shaped body by press molding, and the disk-shaped molding A second hot forging step in which a concave portion is formed in the central portion by a core punch from the body and drilled to form a first cylindrical material; and a first diameter expanded from the first cylindrical material by a ring rolling mill It can be manufactured by a method including a third hot forging step for processing into a cylindrical material of No. 2 and a machining step for processing into a piston ring from the second cylindrical material. FIG. 2 is a diagram schematically showing a shape change of the piston ring material in a cross section passing through the central axis of the material in the manufacturing method of the present invention. A first hot forging step for forming a disk-shaped molded body (4) from the columnar material (3), and a second hot-forging process for molding the first cylindrical material (5) from the disk-shaped molded body (4). It includes a hot forging step and a third hot forging step of forming the second cylindrical material (6) from the first cylindrical material (5). In the third hot forging step, a ring rolling mill schematically showing the processing method in FIG. 3 is used. The ring rolling mill includes a main roll (8), a mandrel (9), an axial roll (10), a backup roll (11), and the like. The main roll (8) is driven at a constant rotational speed, while the mandrel (9), the axial roll (10) and the backup roll (11) are driven so as to rotate by friction with the workpiece (7). In the ring rolling process, the ring is reduced in the radial direction between the main roll (8) and the mandrel (9), and the diameter of the workpiece (7) is increased while reducing the wall thickness. Although it is a processing method to obtain the desired shape and dimensions, the axial dimension is adjusted between a pair of axial rolls (10), and the roundness and surface properties of the workpiece (7) are adjusted by a plurality of backup rolls. Has been.
上記のリングローリング加工により製造した第2の円筒状素材(6,12)は、ピストンリングに加工する機械加工工程を含むことが好ましい。この機械加工工程には、例えば、外周旋削加工、内周旋削加工、端面旋削加工、突切加工又は切断加工、側面研削加工、合口切断加工、合口フライス加工、外周カムならい旋削加工、外周研磨加工、外周バフ研磨加工、さらには、オイルリングのオイル穴加工、等が含まれる。 The second cylindrical material (6, 12) manufactured by the above-described ring rolling process preferably includes a machining process for processing into a piston ring. This machining process includes, for example, outer peripheral turning, inner peripheral turning, end face turning, parting or cutting, side grinding, joint cutting, joint milling, peripheral cam profile turning, peripheral polishing, Peripheral buffing processing, and further, oil ring oil hole processing and the like are included.
本発明において、ピストンリングの製造方法は、非円形の自由形状をもつ大型リング、すなわち、大型圧力リングの製造方法に関する。圧力リングは、いわゆるシングルピース型で、合口を閉じてシリンダに装着したときに、ガスをシールするため、径方向外側に張り出すような自己張力を持つ必要がある。上述した第3の熱間鍛造工程のリングローリング加工は、基本的に円形リングを成形する加工方法であり、自己張力をもたせるためには、図4に示すように、第3の熱間鍛造工程で成形した第2の円筒状素材(6)を非円形(楕円形)の自由形状素材(12)にプレス成形して修正することが好ましい。図4では、プレス方向以外を拘束しない、いわゆる自由鍛造を示しているが、もちろん所定の楕円形状をした下型及び/又は上型を利用した型鍛造としてもよい。円筒状素材(12)の断面が、短軸d2、長軸d3の楕円形状になるよう、温度、圧力P、圧下量Δdを調整し、d3/d2は1.005〜1.05とすることが好ましく、1.01〜1.03とすることがより好ましい。 In the present invention, a method for manufacturing a piston ring relates to a method for manufacturing a large ring having a non-circular free shape, that is, a large pressure ring. The pressure ring is a so-called single piece type, and needs to have a self-tension that projects outward in the radial direction in order to seal the gas when the abutment is closed and attached to the cylinder. The ring rolling process in the third hot forging step described above is basically a processing method for forming a circular ring, and in order to have a self-tension, as shown in FIG. It is preferable that the second cylindrical material (6) formed by the above method is press-molded into a non-circular (elliptical) free-form material (12) for correction. In FIG. 4, so-called free forging is shown in which the directions other than the pressing direction are not constrained, but of course, die forging using a lower die and / or an upper die having a predetermined elliptical shape may be used. The temperature, pressure P, and reduction amount Δd are adjusted so that the cross section of the cylindrical material (12) has an elliptical shape with a short axis d2 and a long axis d3, and d3 / d2 is preferably 1.005 to 1.05, 1.01 More preferably, it is set to ˜1.03.
円形形状のピストンリングから非円形(楕円形)の自由形状をもつピストンリングに修正するには、所定のサイズの合口ピースを合口に挟んだ状態で熱処理することによっても可能であるが、大型リングでしばしば用いられる、二重段付き合口のような特殊合口とする場合は、合口部の機械加工を考慮すると難しい。特殊合口の大型リングを製造するには、素材の段階で自由形状であることが必要となり、その点でも、第2の円筒状素材(6)を非円形の自由形状素材(12)に修正することが好ましい。 In order to modify a circular piston ring to a non-circular (elliptical) free-form piston ring, it is also possible to heat-treat with a predetermined size abutment piece sandwiched between the abutment, but a large ring In the case of a special joint such as a double step joint, which is often used in the above, it is difficult to consider machining of the joint. In order to produce a large ring with a special joint, it is necessary to have a free shape at the material stage. In this respect, the second cylindrical material (6) is modified to a non-circular free shape material (12). It is preferable.
上記の熱間鍛造工程における被加工材の温度は、使用される材料により適宜選択されるが、例えば、マルテンサイトステンレス鋼を使用する場合は、素材温度が850〜1250℃であることが好ましく、900〜1100℃であることがより好ましい。 The temperature of the workpiece in the hot forging step is appropriately selected depending on the material used, but for example, when using martensitic stainless steel, the material temperature is preferably 850 to 1250 ° C, It is more preferable that it is 900-1100 degreeC.
リングローリング加工により製造した第2の円筒状素材(6,12)は、焼鈍処理により鍛造後の内部応力を除去し、切削性を改善することが好ましい。また、焼鈍処理後、ショットブラストによる酸化スケールを除去した後、表面の脱炭層の除去加工を行うことが好ましい、さらに、第2の円筒状素材からは複数本のリングが取れるため、脱炭層の除去加工後に、所定の幅のリングに突切又は切断することが好ましい。 It is preferable that the second cylindrical material (6, 12) manufactured by the ring rolling process removes internal stress after forging by annealing and improves the machinability. In addition, after the annealing treatment, it is preferable to remove the decarburized layer on the surface after removing the oxidized scale by shot blasting. Further, since a plurality of rings can be taken from the second cylindrical material, It is preferable to cut off or cut into a ring having a predetermined width after the removal processing.
得られたリング素材は、リングローリング加工により得られた周方向ファイバーフロー(鍛流線)組織により、欠陥のない高強度の材料となるが、ピストンリング材料としては、耐熱ヘタリ性等、所定の特性を付与するため、焼入・焼戻処理を行うことが好ましい。素材としてマルテンサイト径ステンレス鋼を使用する場合は、焼入温度を800〜1100℃、焼戻温度を470〜550℃とする焼入・焼戻処理を行うことが好ましい。この熱処理により、焼戻マルテンサイト中に微細な炭化物が分散した顕微鏡組織が得られる。本発明の材料は、好ましくは、Hv 430〜500のビッカース硬度、190 GPa以上のヤング率を有する。 The obtained ring material becomes a high-strength material with no defects due to the circumferential fiber flow (forged line) structure obtained by ring rolling, but the piston ring material has a predetermined heat resistance and a predetermined property such as In order to impart characteristics, it is preferable to perform a quenching / tempering treatment. When using martensitic stainless steel as a raw material, it is preferable to perform a quenching and tempering treatment with a quenching temperature of 800 to 1100 ° C. and a tempering temperature of 470 to 550 ° C. By this heat treatment, a microstructure in which fine carbides are dispersed in tempered martensite is obtained. The material of the present invention preferably has a Vickers hardness of Hv 430-500 and a Young's modulus of 190 GPa or higher.
実施例1(E1)
SUS420J2材の外径110 mm、長さ200 mmの棒鋼を、1000℃に加熱し、外径約165 mm、高さ約90 mmの円板状成形体にプレス成形し、さらに、コアポンチにより中央部に凹部を形成し、それを貫通、穴開けして、外径約180 mm、内径約50 mmの第1の円筒状素材を作製した。次に第1の円筒状素材を、高周波誘導加熱装置により再度加熱し、リングローリングミルにセットし、リングローリング加工により外径約364 mm、内径約332 mm、幅約110 mmの第2の円筒状素材を作製した。この第2の円筒状素材を790℃、10時間の焼鈍後、ショットブラストによる酸化スケールの除去後、長径362 mm、短径356 mmの非円形形状(楕円形状等)に内外周を同時に粗加工した後、突切加工して非円形形状のリングを8本得た。900℃からの焼入、490℃、3時間の焼戻しの後、仕上加工を施して、呼び径(d1) 350 mm、幅(h1) 5 mm、厚さ(a1) 9.5 mmの矩形断面で外周面がバレル形状、二重段付き合口形状の圧力リングとした。次に、460℃、5時間のガス窒化によりリング全面に窒化層を約70μm形成し、さらに外周には、高速フレーム溶射によりNi合金基地中に微細なCr炭化物粒子が分散した複合材粒子を主たる構成粒子(スルザーメテコ社のSM5241粉末)とするサーメット溶射被膜を約500μm形成し、最終的には溶射被膜の膜厚約350μmまで仕上研磨を施した。ここで、ガス窒化により表面に生成した化合物層(白層)は研削除去した。なお、面圧が0.08 MPaとなるように、張力Ftは70 Nに調整した。
Example 1 (E1)
A SUS420J2 steel bar with an outer diameter of 110 mm and a length of 200 mm is heated to 1000 ° C and pressed into a disk-shaped product with an outer diameter of about 165 mm and a height of about 90 mm. A concave portion was formed in the through hole, and through the hole, a first cylindrical material having an outer diameter of about 180 mm and an inner diameter of about 50 mm was produced. Next, the first cylindrical material is heated again by a high-frequency induction heating device, set in a ring rolling mill, and a second cylinder having an outer diameter of about 364 mm, an inner diameter of about 332 mm, and a width of about 110 mm by ring rolling. A shaped material was prepared. This second cylindrical material is annealed for 10 hours at 790 ° C, and after removing the oxide scale by shot blasting, the inner and outer circumferences are roughly machined simultaneously into a non-circular shape (elliptical shape, etc.) with a major axis of 362 mm and minor axis of 356 mm After that, parting was performed to obtain eight non-circular rings. Quenching from 900 ° C, tempering at 490 ° C for 3 hours, then finish processing, outer periphery with rectangular cross section of nominal diameter (d1) 350 mm, width (h1) 5 mm, thickness (a1) 9.5 mm The surface was a barrel-shaped pressure ring with a double stepped joint. Next, a nitride layer of about 70 μm is formed on the entire ring surface by gas nitriding at 460 ° C. for 5 hours, and the outer periphery mainly comprises composite particles in which fine Cr carbide particles are dispersed in a Ni alloy matrix by high-speed flame spraying. A cermet sprayed coating having a constituent particle (SM5241 powder from Sulzer Metco Co., Ltd.) was formed to a thickness of about 500 μm, and final polishing was performed to a final coating thickness of about 350 μm. Here, the compound layer (white layer) formed on the surface by gas nitriding was removed by grinding. The tension Ft was adjusted to 70 N so that the surface pressure was 0.08 MPa.
[1] 重量の測定
実施例1の圧力リングの重量は、電子天秤にて測定した8本の重量の平均値とした。平均値は397 gであった。
[1] Measurement of Weight The weight of the pressure ring of Example 1 was an average value of eight weights measured with an electronic balance. The average value was 397 g.
[2] 平面度の測定
実施例1のリングを定盤上に置き、合口部2点、合口から90°、180°及び270°の各点の5点に5 Nの荷重を加え、半径方向と円周方向の平面度を測定した。平面度は基準面に平行な面からのリング側面の自然に発生する偏差と定義され(JIS B 8037-2)、リングのねじれや皿状態を評価するのに用いられる。半径方向の平面度は、半径が1.5±0.05 mmの球面形測定子を用いて約1 Nの測定荷重で、リングの上側面において、荷重点の中央で測定する4点の測定値の最大値とし、円周方向の平面度は、リングの厚さの中心で、かつ荷重点の中央で測定し、振れの最大値と最小値との差とする。実施例1の半径方向の平面度は0.011 mm、円周方向の平面度は0.044 mmであった。
[2] Measurement of flatness Place the ring of Example 1 on the surface plate, apply a 5 N load to 5 points, 2 points at the abutment, 90 °, 180 ° and 270 ° from the abutment, in the radial direction And the flatness in the circumferential direction was measured. Flatness is defined as the naturally occurring deviation of the ring side surface from a plane parallel to the reference plane (JIS B 8037-2) and is used to evaluate ring twist and dish condition. The flatness in the radial direction is the maximum value of four measured values measured at the center of the load point on the upper surface of the ring with a measuring load of about 1 N using a spherical probe with a radius of 1.5 ± 0.05 mm. The flatness in the circumferential direction is measured at the center of the thickness of the ring and at the center of the load point, and is defined as the difference between the maximum value and the minimum value of runout. In Example 1, the flatness in the radial direction was 0.011 mm, and the flatness in the circumferential direction was 0.044 mm.
比較例1(C1)
材料組成が、質量%で、C:3.8%、Si:2.6%、Mn:0.5%、P:0.04%、S:0.01%、Cr:0.09%、Ni:0.88%、V:0.06%、Cu:2.42%の鋳鉄から、溶解、鋳造して第2の円筒状素材に該当するCV黒鉛鋳鉄製素材を作製し、窒化処理及び溶射処理を省略した以外は、実施例1と同様にして、呼び径(d1) 350 mm、幅(h1) 7 mm、厚さ(a1) 10.5 mmの矩形断面で外周面がバレル形状、二重段付き合口形状の圧力リングを作製した。比較例1のリングの重量は611 gであった。比較例1においても、面圧が0.08 MPaとなるように、張力Ftは98 Nに調整した。実施例1と同様にして平面度の測定を行った結果、半径方向の平面度は0.005 mm、円周方向の平面度は0.026 mmであった。実施例1と比較すると、平面度は約40〜55%小さかったが、実施例1では、比較例1に対し、約35%軽量化されていることがわかる。
Comparative Example 1 (C1)
Material composition is mass%, C: 3.8%, Si: 2.6%, Mn: 0.5%, P: 0.04%, S: 0.01%, Cr: 0.09%, Ni: 0.88%, V: 0.06%, Cu: The nominal diameter is the same as in Example 1 except that a CV graphite cast iron material corresponding to the second cylindrical material is prepared by melting and casting from 2.42% cast iron and omitting the nitriding treatment and thermal spraying treatment. A pressure ring having a rectangular cross section of (d1) 350 mm, width (h1) 7 mm, thickness (a1) 10.5 mm and a barrel shape on the outer peripheral surface and a double stepped joint shape was produced. The weight of the ring of Comparative Example 1 was 611 g. Also in Comparative Example 1, the tension Ft was adjusted to 98 N so that the surface pressure was 0.08 MPa. As a result of measuring the flatness in the same manner as in Example 1, the flatness in the radial direction was 0.005 mm, and the flatness in the circumferential direction was 0.026 mm. Compared with Example 1, the flatness was about 40 to 55% smaller, but it can be seen that Example 1 is about 35% lighter than Comparative Example 1.
実施例2(E2)
実施例1と同じ組成の鋼材を用い、リングローリング加工により外径約368 mm、内径約339 mm、幅約120 mmの第2の円筒状素材を作製し、さらに、その円筒状素材を再度加熱し、軸に直角な方向にプレス成形して、長軸370 mm、短軸364 mmの非円形形状の円筒状素材に成形した。なお、このプレス成形では、所定の楕円形状をした下型及び上型を使用した。得られた非円形形状の円筒状素材は、実施例1と同様にして、焼鈍し、ショットブラストによる酸化スケールの除去後、内外周同時加工、突切加工して非円形形状のリングを8本得た。実施例1と同様に、焼入、焼戻の後、仕上加工を行い、さらに窒化処理と溶射処理を施して、圧力リングとした。実施例2では、実施例1に比べ内外周同時加工の加工時間が約1/5に短縮された。
Example 2 (E2)
A second cylindrical material having an outer diameter of about 368 mm, an inner diameter of about 339 mm, and a width of about 120 mm is fabricated by ring rolling using the steel material having the same composition as in Example 1, and the cylindrical material is heated again. Then, it was press-molded in a direction perpendicular to the axis to form a non-circular cylindrical material having a major axis of 370 mm and a minor axis of 364 mm. In this press molding, a lower mold and an upper mold having a predetermined elliptical shape were used. The obtained non-circular cylindrical material was annealed in the same manner as in Example 1. After removing the oxidized scale by shot blasting, the inner and outer circumferences were simultaneously processed and parted off to obtain eight non-circular rings. It was. As in Example 1, after quenching and tempering, finishing was performed, and nitriding treatment and thermal spraying treatment were further performed to obtain a pressure ring. In Example 2, compared to Example 1, the processing time for simultaneous inner and outer peripheral processing was reduced to about 1/5.
実施例3〜4(E3〜E4)、比較例2〜4(C2〜C4)
実施例2で作製した、外径約368 mm、内径約339 mm、幅約120 mmの第2の円筒状素材から、呼び径(d1)を350 mm、幅(h1)と厚さ(a1)を表1に示す数値とし、面圧が0.08 MPaとなるように張力Ftを調整した以外は、実施例2と同様にして、各実施例及び比較例につき8本の圧力リングを作製した。寸法関係及び張力Ft関係を表1に、実施例1と同様に測定した重量及び平面度の測定結果、並びに比較例1に対する重量比率及び追従性係数率を、実施例1及び比較例1の結果も含め表2に示す。ここで、追従性係数率(対比較例1)は、実施例1の鋼材のヤング率(E)を215 GPa、比較例1の鋳鉄のヤング率(E)を160 GPaとし、K=3Ftd12/Eh1a13により計算した。
Examples 3 to 4 (E3 to E4), Comparative Examples 2 to 4 (C2 to C4)
From the second cylindrical material produced in Example 2 with an outer diameter of about 368 mm, an inner diameter of about 339 mm, and a width of about 120 mm, the nominal diameter (d1) is 350 mm, the width (h1), and the thickness (a1). Were set to the numerical values shown in Table 1, and eight pressure rings were produced for each example and comparative example in the same manner as in Example 2 except that the tension Ft was adjusted so that the surface pressure was 0.08 MPa. Table 1 shows the dimensional relationship and tension Ft relationship, the measurement results of the weight and flatness measured in the same manner as in Example 1, the weight ratio and the follow-up coefficient ratio with respect to Comparative Example 1, and the results of Example 1 and Comparative Example 1. Are shown in Table 2. Here, the followability coefficient ratio (vs. Comparative Example 1) is that the Young's modulus (E) of the steel material of Example 1 is 215 GPa, the Young's modulus (E) of the cast iron of Comparative Example 1 is 160 GPa, and K = 3Ftd1 2 / Eh1a1 3 was calculated.
実施例1及び3〜4は、いずれも従来の鋳鉄製リングと比較して、重量比率が0.46〜0.82、低張力化率が0.57〜0.86と軽量化及び低張力化が図れる一方、平面度が半径方向0.007〜0.013 mm、円周方向0.040〜0.056 mmで、使用上問題ないレベルのリング精度に加工できることが確認された。比較例2は、鋼材を使用して比較例1の鋳鉄製リングより断面縮小化しているものの、比重差(鋼材比重7.8 g/cm3に対し、鋳鉄材比重は7.0 g/cm3)により重量比率は1に近く、またヤング率差(鋼材ヤング率215 GPaに対し、鋳鉄材ヤング率は160 GPa)により追従性係数は14%悪化している。比較例3〜4は、いずれも軽量化及び低張力化が大きいが、加工後の平面度が半径方向0.015 mm、円周方向0.070 mmを超え、リング精度上、問題が残った。 In each of Examples 1 and 3 to 4, the weight ratio is 0.46 to 0.82 and the tension reduction ratio is 0.57 to 0.86 as compared with the conventional cast iron ring, while the weight reduction and tension reduction can be achieved, while the flatness is high. It was confirmed that the ring accuracy could be processed to a level with no problem in use in the radial direction of 0.007 to 0.013 mm and the circumferential direction of 0.040 to 0.056 mm. Although Comparative Example 2 uses a steel material and is reduced in cross section from the cast iron ring of Comparative Example 1, the specific gravity difference (steel material specific gravity is 7.8 g / cm 3 , cast iron specific gravity is 7.0 g / cm 3 ). The ratio is close to 1, and the tracking coefficient is 14% worse due to the difference in Young's modulus (the Young's modulus of steel is 215 GPa and that of cast iron is 160 GPa). In all of Comparative Examples 3 to 4, although the weight reduction and the reduction in tension were large, the flatness after processing exceeded 0.015 mm in the radial direction and 0.070 mm in the circumferential direction, and problems remained in ring accuracy.
1 自由状態のピストンリング
2 シリンダ内に挿入したときのピストンリング
3 円柱状鋼素材
4 円板状成形体
5 第1の円筒状素材
6 第2の円筒状素材
7 被加工材
8 主ロール
9 マンドレル
10 アキシャルロール
11 バックアップロール
12 自由形状素材
1 Free piston ring
2 Piston ring when inserted into the cylinder
3 Cylindrical steel material
4 Disc shaped body
5 First cylindrical material
6 Second cylindrical material
7 Work material
8 Main roll
9 Mandrel
10 Axial roll
11 Backup roll
12 Free-form material
Claims (9)
1×10-2< h1/d1 < 1.8×10-2
の関係を満たすことを特徴とするピストンリング。 A piston ring having a nominal diameter (d1) of 200 mm or more, wherein the base material of the piston ring is steel, and the width (h1) and the nominal diameter (d1) are
1 × 10 -2 <h1 / d1 <1.8 × 10 -2
Piston ring characterized by satisfying the relationship
2×10-2< a1/d1 < 2.8×10-2
の関係を満たすことを特徴とするピストンリング。 The piston ring according to claim 1, wherein the thickness (a1) and the nominal diameter (d1) are
2 × 10 -2 <a1 / d1 <2.8 × 10 -2
Piston ring characterized by satisfying the relationship
2×10-4 < h1×a1/(d1)2 < 5×10-4
の関係を満たすことを特徴とするピストンリング。 The piston ring according to claim 1 or 2, wherein the width (h1), the thickness (a1), and the nominal diameter (d1) are:
2 × 10 -4 <h1 × a1 / (d1) 2 <5 × 10 -4
Piston ring characterized by satisfying the relationship
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014043753A JP6475416B2 (en) | 2014-03-06 | 2014-03-06 | Piston ring and manufacturing method thereof |
CN201480030692.2A CN105283697B (en) | 2013-06-07 | 2014-06-05 | Piston ring and its raw material and their manufacture method |
CN201710243454.5A CN107269836A (en) | 2013-06-07 | 2014-06-05 | Piston ring raw material |
PCT/JP2014/065010 WO2014196614A1 (en) | 2013-06-07 | 2014-06-05 | Piston ring, raw material therefor, and production method for both |
CN201710243544.4A CN107255053B (en) | 2013-06-07 | 2014-06-05 | Piston ring raw material |
CN201710243543.XA CN107262641A (en) | 2013-06-07 | 2014-06-05 | The manufacture method of piston ring |
KR1020167000225A KR20160029793A (en) | 2013-06-07 | 2014-06-05 | Piston ring, raw material therefor, and production method for both |
EP14807123.6A EP3006787A4 (en) | 2013-06-07 | 2014-06-05 | Piston ring, raw material therefor, and production method for both |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014043753A JP6475416B2 (en) | 2014-03-06 | 2014-03-06 | Piston ring and manufacturing method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2015169249A true JP2015169249A (en) | 2015-09-28 |
JP2015169249A5 JP2015169249A5 (en) | 2017-03-30 |
JP6475416B2 JP6475416B2 (en) | 2019-02-27 |
Family
ID=54202182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014043753A Active JP6475416B2 (en) | 2013-06-07 | 2014-03-06 | Piston ring and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6475416B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110835674A (en) * | 2019-10-14 | 2020-02-25 | 攀钢集团江油长城特殊钢有限公司 | Forging method of tungsten-containing high-chromium martensitic stainless steel |
CN112658612A (en) * | 2020-12-17 | 2021-04-16 | 哈尔滨电气动力装备有限公司 | Manufacturing and detecting process method of nuclear main pump piston ring of nuclear power station |
CN113977363A (en) * | 2021-11-22 | 2022-01-28 | 中国航发贵州黎阳航空动力有限公司 | Method for processing high-precision flatness and high-grade roughness plane |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237819A (en) * | 1987-03-27 | 1988-10-04 | Riken Corp | Manufacture of inside bevel ring |
JPH02217667A (en) * | 1989-02-17 | 1990-08-30 | Honda Motor Co Ltd | Fiber-reinforced piston ring for internal combustion engine |
JPH04105262U (en) * | 1991-02-19 | 1992-09-10 | 株式会社リケン | piston ring |
JPH06313482A (en) * | 1991-02-19 | 1994-11-08 | Riken Corp | Piston ring |
JP2003254157A (en) * | 2002-03-05 | 2003-09-10 | Nippon Piston Ring Co Ltd | Piston ring |
JP2004069048A (en) * | 2002-06-14 | 2004-03-04 | Riken Corp | Piston ring and method of manufacturing the same |
-
2014
- 2014-03-06 JP JP2014043753A patent/JP6475416B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237819A (en) * | 1987-03-27 | 1988-10-04 | Riken Corp | Manufacture of inside bevel ring |
JPH02217667A (en) * | 1989-02-17 | 1990-08-30 | Honda Motor Co Ltd | Fiber-reinforced piston ring for internal combustion engine |
JPH04105262U (en) * | 1991-02-19 | 1992-09-10 | 株式会社リケン | piston ring |
JPH06313482A (en) * | 1991-02-19 | 1994-11-08 | Riken Corp | Piston ring |
JP2003254157A (en) * | 2002-03-05 | 2003-09-10 | Nippon Piston Ring Co Ltd | Piston ring |
JP2004069048A (en) * | 2002-06-14 | 2004-03-04 | Riken Corp | Piston ring and method of manufacturing the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110835674A (en) * | 2019-10-14 | 2020-02-25 | 攀钢集团江油长城特殊钢有限公司 | Forging method of tungsten-containing high-chromium martensitic stainless steel |
CN110835674B (en) * | 2019-10-14 | 2021-04-27 | 攀钢集团江油长城特殊钢有限公司 | Forging method of tungsten-containing high-chromium martensitic stainless steel |
CN112658612A (en) * | 2020-12-17 | 2021-04-16 | 哈尔滨电气动力装备有限公司 | Manufacturing and detecting process method of nuclear main pump piston ring of nuclear power station |
CN113977363A (en) * | 2021-11-22 | 2022-01-28 | 中国航发贵州黎阳航空动力有限公司 | Method for processing high-precision flatness and high-grade roughness plane |
CN113977363B (en) * | 2021-11-22 | 2023-09-22 | 中国航发贵州黎阳航空动力有限公司 | Processing method of high-precision planeness and high-grade roughness plane |
Also Published As
Publication number | Publication date |
---|---|
JP6475416B2 (en) | 2019-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014196614A1 (en) | Piston ring, raw material therefor, and production method for both | |
JP6312988B2 (en) | Large piston ring manufacturing method, large piston ring material, and large piston ring. | |
JP6062357B2 (en) | piston ring | |
CN101915273A (en) | Novel bearing ring material and production process thereof | |
JP2014237152A5 (en) | ||
AU2007276084A1 (en) | A die assembly and a method of making it | |
US10094325B2 (en) | Cylinder liner | |
JP2015059544A (en) | Combination of cylinder bore and piston ring | |
JP6475416B2 (en) | Piston ring and manufacturing method thereof | |
US8882937B2 (en) | Steel material composition for producing piston rings and cylinder sleeves | |
CN106662246A (en) | Piston ring | |
CN107243638A (en) | A kind of high-precision, wear-resistant sprocket wheel method for preparing powder metallurgy | |
CN110355538A (en) | The processing method of the planetary reduction gear ring gear of bio-robot | |
JP2015108417A (en) | Large-sized piston ring, material thereof and manufacturing method thereof | |
JP2015108417A5 (en) | ||
JPWO2014192730A1 (en) | Manufacturing method of cold working mold | |
CN106367690A (en) | Rolling piston for refrigeration compressor and manufacturing method of rolling piston | |
CN105108454A (en) | Engine piston pin processing technology | |
JPWO2016152967A1 (en) | Sliding parts and sliding structures | |
CN103899372B (en) | A kind of powder metallurgy combined sintering formula camshaft and preparation method thereof | |
CN104498692A (en) | Cold-drawn steel pipe mandrel and preparation method thereof | |
CN106148945A (en) | Preparation method for the self-lubricating coat in use of flat head sleeve working face and flat head sleeve thereof | |
JP2006125530A (en) | Piston ring and method of manufacturing the same | |
US20210172470A1 (en) | Crankshaft and method of manufacturing the same | |
CN203363128U (en) | Structure of cylinder body of high-speed reciprocating piston cylinder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170224 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180612 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6475416 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |