[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015167396A - Sink apparatus and power supply method - Google Patents

Sink apparatus and power supply method Download PDF

Info

Publication number
JP2015167396A
JP2015167396A JP2015101360A JP2015101360A JP2015167396A JP 2015167396 A JP2015167396 A JP 2015167396A JP 2015101360 A JP2015101360 A JP 2015101360A JP 2015101360 A JP2015101360 A JP 2015101360A JP 2015167396 A JP2015167396 A JP 2015167396A
Authority
JP
Japan
Prior art keywords
power
voltage
source device
terminal
sink device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015101360A
Other languages
Japanese (ja)
Other versions
JP5959692B2 (en
Inventor
甲 展明
Nobuaki Kabuto
展明 甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2015101360A priority Critical patent/JP5959692B2/en
Publication of JP2015167396A publication Critical patent/JP2015167396A/en
Application granted granted Critical
Publication of JP5959692B2 publication Critical patent/JP5959692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Television Receiver Circuits (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve power saving of standby power supplied by a sink apparatus (or a source apparatus) in a system in which a video signal is transmitted from the source apparatus to the sink apparatus, and the sink apparatus (or the source apparatus) supplies power to the source apparatus (or the sink apparatus).SOLUTION: After detecting that a sink apparatus or a source apparatus is connected to the mating apparatus, supply of standby power is started. After confirming that standby current does not flow or confirming that message exchange can be performed with the mating apparatus even if the supply of standby power is temporarily stopped, the supply of standby power is stopped.

Description

技術分野は、映像受信装置と映像送信装置の電力供給に関する。   The technical field relates to power supply of a video reception device and a video transmission device.

特許文献1には、「映像信号を、複数のチャネルで、差動信号により、ケーブルを介して、受信装置に送信する信号送信部と、電源の供給を要求する要求情報を、上記ケーブルを介して、上記受信装置に送信する情報送信部と、上記情報送信部の上記要求情報の送信に伴って上記受信装置から上記ケーブルを介して供給される電源を内部回路に供給する電源切換部とを備えることを特徴とする送信装置」(特許文献1[0017]参照)が開示されている。   In Patent Document 1, “a signal transmission unit that transmits a video signal to a receiving device via a cable using a plurality of channels and a differential signal, and request information for requesting power supply are transmitted via the cable. An information transmission unit that transmits to the reception device, and a power supply switching unit that supplies power supplied from the reception device via the cable to the internal circuit in accordance with transmission of the request information of the information transmission unit. "Transmission device characterized by comprising" (see Patent Document 1 [0017]) is disclosed.

さらに、「ソース機器110AにHDMIケーブル130を介してシンク機器120Aが接続されると、(c)シンク機器120Aの電源回路126Aからの+5V電源がHDMIケーブル130のリザーブラインを介してソース機器110Aに供給される。」(特許文献1[0192])ことや、「ソース機器110Aは、電源供給リクエストである<Request Power Supply>コマンドを、CECラインを介して、シンク機器120Aに送信する」(特許文献1[0192])と、「シンク機器120Aは、要求される電圧値、電流値の供給が可能であるとき、電源回路126Aからの電源の電圧値、電流値を、ソース機器110Aが要求する電圧値、電流値に対応するように制御し、」(特許文献1[0196])、「その後、ソース機器110AでHDMIケーブル130の電源ラインを介しての電源が不要となると、ソース機器110Aは、シンク機器120Aに、電源供給が不要である旨を示す<Request Power Supply>コマンドを送信」(特許文献1[0198])し、「シンク機器120Aからソース機器110Aへの電源供給の状態は最初の状態に戻る。」(特許文献1[0198])ことが開示されている。   Further, “When the sink device 120A is connected to the source device 110A via the HDMI cable 130, (c) + 5V power from the power circuit 126A of the sink device 120A is supplied to the source device 110A via the reserved line of the HDMI cable 130. "The source device 110A transmits a <Request Power Supply> command, which is a power supply request, to the sink device 120A via the CEC line" (Patent Document 1 [0192]) Document 1 [0192]) “When the sink device 120A can supply the required voltage value and current value, the source device 110A requests the voltage value and current value of the power supply from the power supply circuit 126A. Control to correspond to the voltage value and the current value ”(Patent Document 1 [0196]),“ After that, the source device 11 When the power supply via the power line of the HDMI cable 130 is unnecessary in A, the source device 110A transmits a <Request Power Supply> command indicating that power supply is unnecessary to the sink device 120A "(Patent Document 1) [0198]), "the power supply state from the sink device 120A to the source device 110A returns to the initial state" (Patent Document 1 [0198]).

特許文献2には、HDMI(HDMIおよびHigh-Definition Multimedia InterfaceはHDMI Licensing, LLCの商標または登録商標)で接続されたソース機器とシンク機器間で、制御ラインであるCECラインを介して、「機能情報は、CEC(Consumer Electronics Control)データあるいはCDC(Capability Discovery Channel)データとして、ソース機器からシンク機器に、あるいはシンク機器からソース機器に送られる」(特許文献2[0160]参照)ことが開示されている。   Patent Document 2 discloses a “function” between a source device and a sink device connected by HDMI (HDMI and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing, LLC) via a CEC line as a control line. Information is sent as CEC (Consumer Electronics Control) data or CDC (Capability Discovery Channel) data from the source device to the sink device or from the sink device to the source device "(see Patent Document 2 [0160]). ing.

特開2009−44706号公報JP 2009-44706 A 特開2010−4510号公報JP 2010-4510 A

しかし、いずれの引用文献にも、シンク機器やソース機器が供給する待機電力の省電力化については開示がない。   However, none of the cited references disclose the power saving of standby power supplied by the sink device or the source device.

上記の課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、ソース機器から映像信号を受信するシンク機器において、ソース機器へ電力を供給する電力供給部と、ソース機器と接続したことを検出する検出部と、を有し、検出部がソース機器との接続を検出後に、電力供給部が電力供給を開始することを特徴とする。   The present application includes a plurality of means for solving the above-described problems. For example, in a sink device that receives a video signal from a source device, a power supply unit that supplies power to the source device and a connection to the source device And a power supply unit that starts power supply after the detection unit detects a connection with the source device.

上記手段によれば、不要な待機電力を削減し、省電力化できる。   According to the above means, unnecessary standby power can be reduced and power can be saved.

伝送システムの一例を示すブロック図Block diagram showing an example of a transmission system HPD出力部とHPD検出部の一例を示す回路図Circuit diagram showing an example of an HPD output unit and an HPD detection unit 伝送システムにおける動作の一例を示すフローチャートFlow chart showing an example of operation in the transmission system 伝送システムにおけるメッセージの送受信を示す図Diagram showing message transmission and reception in the transmission system ケーブルの一例を示すブロック図Block diagram showing an example of a cable 通信メッセージの構造の一例を示す図Diagram showing an example of the structure of a communication message 伝送システムにおけるメッセージの構造の一例を示す表Table showing an example of a message structure in a transmission system 伝送システムにおけるメッセージの一例を示す表Table showing an example of a message in the transmission system 伝送システムにおけるメッセージの一例を示す表Table showing an example of a message in the transmission system

以下、実施例について説明する。   Examples will be described below.

図1は、本実施例における伝送システムの一例を示すブロック図であって、ソース機器11がシンク機器21とケーブル31を介して接続されており、シンク機器21からソース機器11へ電力を供給し、ソース機器からシンク機器へ映像信号を供給する。   FIG. 1 is a block diagram illustrating an example of a transmission system according to the present embodiment, in which a source device 11 is connected to a sink device 21 via a cable 31 and supplies power from the sink device 21 to the source device 11. The video signal is supplied from the source device to the sink device.

ソース機器11は例えばディスクプレイヤー、ディスクレコーダ、半導体レコーダ、放送受信機、ゲーム機、PC等の映像信号送出機器である。光ディスクや磁気記録ディスク、半導体メモリなどの記憶媒体や放送、ネットワーク等から得たデータから映像信号を再生する再生部111と映像送信部112、EDID(Extended Display Identification Data)読出部113、CEC(Consumer Electronics Control)通信部114、電圧検出部115、DDC(Display Data Channel)+5V供給部116、HPD(Hot Plug Detect)検出部117、制御部118、電源回路119を有する。   The source device 11 is a video signal transmission device such as a disk player, a disk recorder, a semiconductor recorder, a broadcast receiver, a game machine, or a PC. A reproduction unit 111 and a video transmission unit 112 for reproducing a video signal from data obtained from a storage medium such as an optical disk, a magnetic recording disk, and a semiconductor memory, broadcasting, and a network, an extended display identification data (EDID) reading unit 113, a CEC (Consumer) Electronics Control (Communication Control) communication unit 114, voltage detection unit 115, DDC (Display Data Channel) + 5V supply unit 116, HPD (Hot Plug Detect) detection unit 117, control unit 118, and power supply circuit 119.

シンク機器21は、例えば液晶ディスプレイ、プラズマディプレイ、有機ELディスプレイ等の表示デバイスを備えた映像信号受信機器である。シンク機器21は表示部211と映像受信部212、EDID記憶部213、CEC通信部214、電流制限部215、HPD出力部216、制御部217、電力供給部218、電源回路219を有する。なお、アンテナで受信した放送波を処理するチューナ、デスクランブラ、デマルチプレクサ、デコーダ、録画機能等も含む構成とし、シンク機器単体でも映像コンテンツを再生可能としてもよい。   The sink device 21 is a video signal receiving device including a display device such as a liquid crystal display, a plasma display, or an organic EL display. The sink device 21 includes a display unit 211, a video reception unit 212, an EDID storage unit 213, a CEC communication unit 214, a current limiting unit 215, an HPD output unit 216, a control unit 217, a power supply unit 218, and a power supply circuit 219. It should be noted that a tuner, a descrambler, a demultiplexer, a decoder, a recording function, and the like that process broadcast waves received by an antenna may be included, and video content may be played back by a single sink device.

ケーブル31は、ソース機器とシンク機器との間を接続するケーブルであって、例えばHDMIケーブルである。映像信号伝送線302、EDIDを伝送するDDC線303、CEC通信線304、電力を供給するUtility線305.DDC+5V線306、HPD線307を有する。   The cable 31 is a cable for connecting the source device and the sink device, and is, for example, an HDMI cable. Video signal transmission line 302, DDC line 303 for transmitting EDID, CEC communication line 304, Utility line 305 for supplying power. It has a DDC + 5V line 306 and an HPD line 307.

ここで、図1における各ブロックの動作を説明する。ソース機器11の再生部111で再生された映像信号が映像送信部112から送信され、ケーブル31の映像信号伝送線302を介してシンク機器21の映像受信部212で受信される。受信された映像信号はシンク機器21の表示部211に表示される。   Here, the operation of each block in FIG. 1 will be described. The video signal reproduced by the reproduction unit 111 of the source device 11 is transmitted from the video transmission unit 112 and received by the video reception unit 212 of the sink device 21 via the video signal transmission line 302 of the cable 31. The received video signal is displayed on the display unit 211 of the sink device 21.

また、ソース機器11のEDID読出部113は、ケーブル31のDDC線303を介してシンク機器21のEDID記憶部213に記録されているシンク機器のEDIDを読み出す。   Further, the EDID reading unit 113 of the source device 11 reads the EDID of the sink device recorded in the EDID storage unit 213 of the sink device 21 via the DDC line 303 of the cable 31.

また、ソース機器11のCEC通信部114とシンク機器21のCEC通信部214とはケーブル31のCEC通信線304を介してCECメッセージの送受信を行う。   In addition, the CEC communication unit 114 of the source device 11 and the CEC communication unit 214 of the sink device 21 transmit and receive CEC messages via the CEC communication line 304 of the cable 31.

また、シンク機器21の電力供給部218はケーブル31のUtility線305を介してソース機器の電源回路部119に電力を供給する。電流制限部215は、電力供給部218から供給される電力を監視し、必要に応じて供給される電力の制限を行う。電圧検出部115は、電源回路119が受給する電力の電圧を検出する。   The power supply unit 218 of the sink device 21 supplies power to the power supply circuit unit 119 of the source device via the Utility line 305 of the cable 31. The current limiting unit 215 monitors the power supplied from the power supply unit 218 and limits the power supplied as necessary. The voltage detector 115 detects the voltage of power received by the power supply circuit 119.

また、ソース機器のDDC+5V供給部116は、5Vの電流をケーブル31のDDC+5V線306を介してHPD出力216及び電源回路219に供給する。   The DDC + 5V supply unit 116 of the source device supplies a 5V current to the HPD output 216 and the power supply circuit 219 via the DDC + 5V line 306 of the cable 31.

また、ソース機器のHPD検出部117は、ケーブル31のHPD線307を介してシンク機器のHPD出力216からの電流を検出する。   Further, the HPD detection unit 117 of the source device detects the current from the HPD output 216 of the sink device via the HPD line 307 of the cable 31.

次に、CEC通信部114と214が交換するCDCメッセージの構造の一例を図6に示す。特許文献2に記載のように、CDCメッセージはCECメッセージの一つとして定義され、メッセージの先頭を示すStart Bitに続き、メッセージの送信機器の論理アドレスと受信機器の論理アドレスとを記述したCEC Header Block、CDCメッセージであることを示すCEC Opcode Block、メッセージ送信機器の物理アドレスを示すInitiator Physical Address、CDCメッセージの種別を示すCDC Opcode、CDCメッセージの引数を示すCDC Parameterから構成されている。   Next, an example of the structure of the CDC message exchanged between the CEC communication units 114 and 214 is shown in FIG. As described in Patent Document 2, a CDC message is defined as one of CEC messages. Following the Start Bit indicating the head of the message, a CEC Header describing the logical address of the message transmitting device and the logical address of the receiving device. Block, CEC Opcode Block indicating a CDC message, Initiator Physical Address indicating the physical address of the message transmitting device, CDC Opcode indicating the type of the CDC message, and CDC Parameter indicating the argument of the CDC message.

以下、CDCメッセージを例にとって説明するが、本発明はCDCメッセージ構造に限定されること無く、CEC OpcodeにCDC Opcodeを定義すれば、CDCメッセージに代えてCECメッセージを使うこともできる。また、EDID読出しで使われるDDCやHDMI Ethernet(登録商標) Channelなどの双方向通信メッセージを用いても良い。   Hereinafter, a CDC message will be described as an example. However, the present invention is not limited to the CDC message structure, and if the CDC Opcode is defined in the CEC Opcode, the CEC message can be used instead of the CDC message. Alternatively, a bidirectional communication message such as DDC or HDMI Ethernet (registered trademark) channel used for EDID reading may be used.

図7はCDCメッセージの一例を示す表である。<CDC_Power_Request>は、電力受給機器が引数[Port]で示される端子へ、引数[Power]で示される電流供給を、電力供給機器へ要求するメッセージである。引数[Error]は常に”No Error”を意味する0を設定する。   FIG. 7 is a table showing an example of the CDC message. <CDC_Power_Request> is a message for requesting the power supply device to supply the current indicated by the argument [Power] to the terminal indicated by the argument [Port]. The argument [Error] is always set to 0 which means “No Error”.

<CDC_Power_Status>は、電力供給機器が引数[Port]で示される端子から、引数[Power]で示される電流を供給開始したことを知らせるメッセージである。このメッセージは<CDC_Power_Request>や<CDC_Power_Notice>への応答メッセージとして使用される。引数[Error]はその応答結果を示すものである。   <CDC_Power_Status> is a message notifying that the power supply device has started supplying the current indicated by the argument [Power] from the terminal indicated by the argument [Port]. This message is used as a response message to <CDC_Power_Request> and <CDC_Power_Notice>. The argument [Error] indicates the response result.

<CDC_Power_Notice>は、電力供給機器が引数[Port]で示される端子から、引数[Power_Sink]で示される電流へ供給電流の変更を予告するメッセージである。引数[Error]は常に”No Error”を意味する0を設定する。   <CDC_Power_Notice> is a message in which the power supply device notifies the change of the supply current from the terminal indicated by the argument [Port] to the current indicated by the argument [Power_Sink]. The argument [Error] is always set to 0 which means “No Error”.

図7のResponseの欄には、それぞれのメッセージに対して、宛先の機器が本実施例の機能に対応していれば、応答する応答メッセージが記されている。   In the Response column of FIG. 7, a response message is written in response to each message if the destination device corresponds to the function of this embodiment.

図8と図9は、メッセージの引数の一例を示す表である。[Port]は、メッセージ発信元の電力受給端子または電力供給端子を示しおり、Port Numberが4 bits で構成されている。Port Numberは0が映像出力端子を示し、1〜15が映像入力端子を示している。映像入力端子の1〜15は各映像入力端子のEDIDに記載されるソース機器の物理アドレスを決めるInput Port Numberと共通であり、CDCメッセージ中のInitiator Physical Addressと組合せれば、接続先のソース機器の物理アドレスを認識できる。端子番号に代えて接続先の物理アドレス(すなわち、該当入力端子のEDID中に記載されている物理アドレス)2 bytesを用いてもよいが、メッセージ長を抑えて通信時間を短くする為には、Port numberの 4 bitsで示す方が効率的である。   8 and 9 are tables showing examples of message arguments. [Port] indicates the power receiving terminal or power supply terminal of the message source, and the Port Number is composed of 4 bits. In Port Number, 0 indicates a video output terminal, and 1-15 indicate video input terminals. The video input terminals 1 to 15 are common with the input port number that determines the physical address of the source device described in the EDID of each video input terminal. When combined with the initiator physical address in the CDC message, the source device of the connection destination Can recognize the physical address. Instead of the terminal number, the physical address of the connection destination (that is, the physical address described in the EDID of the corresponding input terminal) 2 bytes may be used, but in order to shorten the communication time by suppressing the message length, It is more efficient to indicate the port number as 4 bits.

[Error]は、<CDC_Power_Request>や<CDC_Power_Notice>への応答結果を示すものであり、4bitsから構成されている。0は“No Error”であり、要求された電圧と電流を供給している状態を示している。1は応答するメッセージ中の引数に矛盾がある場合、例えば電圧と電流の組合せや、端子を示すPort Numberとの組合せが不適当であることを示す。2は、要求された電力を供給する機能はあるが、何らかの原因、例えばセット電源オフなどにより電力供給ができないことを示す。この引数2を含む応答メッセージを受信した場合は、所定時間後に再度要求できる。3は、要求された電力を供給する機能を持っていないことを示す。4〜15は将来拡張用の予約領域である。尚、[Error]が0以外の場合であっても、[Port]で示された端子の電力供給状況を適切に[Power]で表記する必要がある。   [Error] indicates a response result to <CDC_Power_Request> or <CDC_Power_Notice>, and is composed of 4 bits. 0 is “No Error”, indicating a state where the requested voltage and current are being supplied. 1 indicates that there is a contradiction in arguments in the response message, for example, that a combination of voltage and current or a combination of a port number indicating a terminal is inappropriate. 2 indicates that there is a function of supplying the requested power, but power cannot be supplied due to some cause, for example, set power off. When a response message including this argument 2 is received, it can be requested again after a predetermined time. 3 indicates that it does not have a function of supplying the requested power. 4 to 15 are reserved areas for future expansion. Even when [Error] is other than 0, the power supply status of the terminal indicated by [Port] needs to be appropriately expressed by [Power].

[Power]は、受給または供給電力を表し、電圧を示す[Voltage]の4bitsと電流を示す[Current]の4bitsから構成される。[Voltage]は0が5 Vを示し、許容範囲を5%程度として。供給電圧範囲は4.8 V〜6.3 Vとしている。1が3.3 Vを示し、供給電圧範囲は3.1 V〜3.5 Vとしている。2が12 Vを示し、供給電圧範囲は11.4 V〜12.6 Vとしている。3が供給電圧なしの場合であり、0から5Vの範囲でもれ電流は0.1 mA 以下としている。3が設定されている場合、[Current]は電流受給能力が無いことを示す0または8でなければならない。4以降は、将来拡張用の予約領域である。   [Power] represents received or supplied power, and includes 4 bits of [Voltage] indicating voltage and 4 bits of [Current] indicating current. [Voltage] 0 is 5 V, and the allowable range is about 5%. Supply voltage range is 4.8 V to 6.3 V. 1 indicates 3.3 V, and the supply voltage range is 3.1 V to 3.5 V. 2 indicates 12 V, and the supply voltage range is 11.4 V to 12.6 V. 3 is the case where there is no supply voltage, and the leakage current is 0.1 mA or less in the range of 0 to 5V. When 3 is set, [Current] must be 0 or 8 to indicate no current receiving capability. 4 and later are reserved areas for future expansion.

[Current]は0〜7が映像入力端子のDDC+5V pinが受給できる電流値を、8〜15が、映像出力端子のUtility端子が受給できる電流値を示している。[Port]が示す入力端子または出力端子とが異なる場合は[Error]を1に設定し、[Current]は[Port]が示す端子の供給電流を記載する。   In [Current], 0 to 7 indicate current values that can be received by the DDC + 5V pin of the video input terminal, and 8 to 15 indicate current values that can be received by the Utility terminal of the video output terminal. If the input terminal or output terminal indicated by [Port] is different, [Error] is set to 1 and [Current] describes the supply current of the terminal indicated by [Port].

[Current]は、電力を受給する映像入力端子のDDC+5V pinがセット電源オン時に受給する電流が10mA以下の場合に0を、50mA以下が1、450mA以下が2と記載する。電力を供給する映像出力端子のDDC+5V pinに対しては、0は 電流供給できないことを、1は55mA以上、2は455mA以上の電流を供給することを示し、3〜7は将来拡張用の予約領域である。0〜2のいずれの設定においても、VESAが規定する500mAを越える電流を供給しないこととすることにより、従来機器との後方互換性を保つことができる。500mAを超える電流を供給する場合は、より安全性を考慮して、前記CECメッセージでの設定に加え、シンク機器のEDIDにも500mAを超える電流受給に関する情報を記載し、てダブルチェックとしてもよい。尚、受給電流上限値と供給電流の下限の差5mAは、ケーブルで消費されることを考慮した結果である。また、電流供給無しの場合、逆電流防止の為、-0.1mAと定義している。   [Current] is described as 0 when the DDC + 5V pin of the video input terminal that receives power when the set power supply is turned on is 10 mA or less, 1 as 50 mA or less, and 2 as 450 mA or less. For the DDC + 5V pin of the video output terminal that supplies power, 0 indicates that current cannot be supplied, 1 indicates that 55 mA or more is supplied, 2 indicates that 455 mA or more is supplied, and 3-7 are for future expansion. This is a reserved area. In any setting of 0 to 2, backward compatibility with conventional devices can be maintained by not supplying a current exceeding 500 mA defined by VESA. When supplying a current exceeding 500 mA, in consideration of safety, in addition to the setting in the CEC message, information regarding current reception exceeding 500 mA may be described in the EDID of the sink device, and double check may be performed. . Note that the difference of 5 mA between the upper limit value of the received current and the lower limit of the supply current is a result in consideration of consumption by the cable. When there is no current supply, -0.1mA is defined to prevent reverse current.

同様に、[Current]は、電力を受給する映像出力端子のUtility pinが受給する電流が無い場合に0.または9、450mA以下である場合に10と記載する。Utility pinとHPD端子双方からそれぞれ450mAずつ受給する場合は11と記載する。12〜15は将来拡張用の予約領域である。8〜11いずれの設定においても、540 mA を超える電流は供給しないものとすることにより、過電流防止による安全性が高まる。この上限電流はDDC+5V端子では500mAとしているが、ケーブルへの電流供給を5mAから40mAに供給拡大した分だけ上限値を大きくしている。同様に、電力供給を行う映像入力端子のUtility Pinは、8が電流供給できないことを、9はケーブルが消費する40mA以上を、10と11は490mA以上、供給することを示している。映像入力端子のHPD pinは、8と9、10が電流供給できないことを、11が490mA供給でき、Utility pinと合せて980mA以上供給できるものとする。   Similarly, [Current] is 0 when there is no current received by the utility pin of the video output terminal that receives power. Or it is described as 10 when it is 9 or 450 mA or less. Indicate 11 when receiving 450mA from both Utility pin and HPD terminal. 12 to 15 are reserved areas for future expansion. In any of the settings 8 to 11, safety by overcurrent prevention is enhanced by not supplying a current exceeding 540 mA. This upper limit current is set to 500mA at the DDC + 5V terminal, but the upper limit is increased by the amount that the current supply to the cable is increased from 5mA to 40mA. Similarly, Utility Pin of the video input terminal for supplying power indicates that 8 cannot supply current, 9 indicates that 40 mA or more consumed by the cable, and 10 and 11 supply 490 mA or more. As for the HPD pin of the video input terminal, 8 and 9, 10 cannot supply current, 11 can supply 490mA, and together with the Utility pin, it can supply 980mA or more.

以上のようにメッセージを定義し、電力受給機器は電力供給機器に対する要求メッセージである<CDC_Power_Request>で所定の電圧と電流を要求し、電力供給機器はその要求された電圧と電流を供給開始した上で、応答メッセージである<CDC_Power_Status>を返信する。この返信を受けた上で、電力受給機器は電力を使用し始める。電力受給が不要になった場合は、電流不要の引数付の電力要求メッセージ<CDC_Power_Request>を送信することによって、電力供給停止してよいことを電力供給機器へ伝え、電力供給機器は電力供給を停止した上で、供給電流無しを示す引数をつけた応答メッセージ<CDC_Power_Status>を返信する。   The message is defined as described above, and the power receiving device requests a predetermined voltage and current with <CDC_Power_Request> which is a request message to the power supply device, and the power supply device starts supplying the requested voltage and current. The response message <CDC_Power_Status> is returned. Upon receiving this reply, the power receiving device starts using the power. When it is no longer necessary to receive power, send a power request message <CDC_Power_Request> with an argument that does not require current to inform the power supply device that the power supply can be stopped, and the power supply device stops supplying power. After that, a response message <CDC_Power_Status> with an argument indicating no supply current is returned.

また、電力供給機器が電力供給を中止または供給電流を変えたい場合は、<CDC_Power_Notice>メッセージを電力受給機器へ送信して予告する。この予告を受けた電力受給機器がそれを受諾できる場合はその予告と同じ引数で、受諾できない場合は必要な電圧と電流を示す引数を付けて、電力要求メッセージとして<CDC_Power_Request>を電力供給機器へ返信する。この返信メッセージを受けて、電力供給機器はそれに対応して、要求どおりの電力を供給するかどうかを判断する。受諾できない場合は、再度予告メッセージである<CDC_Power_Notice>を出す。再度、受諾できない電力供給を示す電力要求メッセージである<CDC_Power_Request>が所定時間(例えば2秒)の間隔で所定回数(例えば2回)繰り返された場合、電力供給を停止することにしてもよい。所定回数繰り返すことで、誤動作を最小限にすることができる。   If the power supply device wants to stop power supply or change the supply current, it sends a <CDC_Power_Notice> message to the power supply device for notification. If the power receiving device that has received this notice can accept it, use the same arguments as the previous notice. If not, attach the arguments indicating the necessary voltage and current and send <CDC_Power_Request> to the power supplying device as a power request message. Send back. In response to this reply message, the power supply device determines whether or not to supply power as requested. If it cannot be accepted, <CDC_Power_Notice> which is a notice message is issued again. When <CDC_Power_Request>, which is a power request message indicating unacceptable power supply, is repeated a predetermined number of times (for example, twice) at an interval of a predetermined time (for example, 2 seconds), the power supply may be stopped. By repeating the operation a predetermined number of times, malfunction can be minimized.

ケーブル31は、電力消費しない導線のみで構成されている場合もあるが、光ファイバや無線伝送など、電気信号を変換または周波数特性を補正するために電力を必要とする変換ケーブルやアクティブケーブルなどがある。上記の例では、ソース機器11のDDC+5V pinから最大5mAを、シンク機器21のUtility端子から5Vの電圧で最大40mAをメッセージ交換無しに使用できる仕組みとしている。しかし、シンク機器21が40mAといえども常に電流供給を続けると、セットの待機電力を増大させてしまう場合もある。このため、本実施例では、常時電源が必要なソース機器11が接続されているか、または常時電源が必要な接続機器が接続されているかどうかを映像受信機器が確認して電流を供給することによって、電力供給時間を最小限として、待機電力を減らすことを特徴としている。   The cable 31 may be composed only of a conductive wire that does not consume power. However, there is a conversion cable, an active cable, or the like that requires electric power to convert an electrical signal or correct frequency characteristics, such as an optical fiber or wireless transmission. is there. In the above example, a maximum of 5 mA from the DDC + 5V pin of the source device 11 and a maximum of 40 mA from the Utility terminal of the sink device 21 at a voltage of 5 V can be used without message exchange. However, even if the sink device 21 is 40 mA, if the current supply is always continued, the standby power of the set may be increased. For this reason, in this embodiment, the video receiving device checks whether the source device 11 that requires constant power supply is connected or the connected device that requires constant power supply is connected, and supplies current. The power supply time is minimized, and standby power is reduced.

図2は、図1のHPD検出部117とHPD出力部216の内部回路の一例を記した回路図である。図1と同じブロックには同じ番号を付与している。308は図1では記載を省略していたGND線であり、ケーブル31に含まれる。   FIG. 2 is a circuit diagram illustrating an example of internal circuits of the HPD detection unit 117 and the HPD output unit 216 in FIG. The same numbers are assigned to the same blocks as in FIG. Reference numeral 308 denotes a GND line that is not shown in FIG. 1 and is included in the cable 31.

HPD検出部117は、HPD線307の電圧レベルを検出する電圧検出器122と、HPD線307とGND線308を接続する抵抗121を有する。抵抗121は例えば10kΩ程度であり、HPD線307が接続されていない場合に、電圧検出器122の入力電位を0Vに保つ特徴があり、プルダウン抵抗と呼ばれる。電圧検出器122は入力電位0Vを“L”と扱い、HPD線307を含むケーブルが未接続時と判断する。   The HPD detection unit 117 includes a voltage detector 122 that detects a voltage level of the HPD line 307 and a resistor 121 that connects the HPD line 307 and the GND line 308. The resistor 121 is, for example, about 10 kΩ, and has a feature of maintaining the input potential of the voltage detector 122 at 0 V when the HPD line 307 is not connected, and is called a pull-down resistor. The voltage detector 122 treats the input potential 0V as “L” and determines that the cable including the HPD line 307 is not connected.

HPD出力部216において、従来機器においてはDDC+5V線306とHPD線を接続する抵抗器221のみで構成されている。抵抗221は例えば1.2kΩ程度が使用される。ケーブルが接続されると、DDC+5V供給部116から5VがDDC+5V線306に供給され、抵抗221を通じてHPD線307に伝えられる。このため、HPD線の電圧は、DDC+5V線306に印加された5Vと、GND線308の0Vを、抵抗221と抵抗121で分圧した電圧である4.46Vになる。この電圧を電圧検出器122が“H”と検出してケーブルが接続されたことを検知する。   In the HPD output unit 216, the conventional device is configured only by the resistor 221 that connects the DDC + 5V line 306 and the HPD line. For example, a resistance of about 1.2 kΩ is used. When the cable is connected, 5V is supplied from the DDC + 5V supply unit 116 to the DDC + 5V line 306 and is transmitted to the HPD line 307 through the resistor 221. For this reason, the voltage of the HPD line is 4.46 V, which is a voltage obtained by dividing the 5 V applied to the DDC + 5 V line 306 and 0 V of the GND line 308 by the resistor 221 and the resistor 121. The voltage detector 122 detects this voltage as “H” and detects that the cable is connected.

この従来機器においては、ソース機器11は、DDC+5V線306に5Vを供給してHPD線が“H”になったことを検出すればシンク機器21と接続されていることがわかる。しかし、シンク機器21は、DDC+5V線306にソース機器11から5Vが供給されないと接続されているかどうかを判別できなかった。本実施例では、それを判別する為に、電源回路219と、抵抗222、スイッチ223、電圧検出器224を追加して備えている。以下、シンク機器21がソース機器11とケーブルで接続されていることを判別する方法について説明する。   In this conventional device, the source device 11 is connected to the sink device 21 when 5V is supplied to the DDC + 5V line 306 and the HPD line is detected to be “H”. However, the sink device 21 cannot determine whether it is connected unless 5 V is supplied from the source device 11 to the DDC + 5V line 306. In this embodiment, a power supply circuit 219, a resistor 222, a switch 223, and a voltage detector 224 are additionally provided in order to determine this. Hereinafter, a method for determining that the sink device 21 is connected to the source device 11 with a cable will be described.

スイッチ223は、通常時は開放されており、短絡していない。ソース機器11がシンク機器21DDC+5V線を通じて5Vを供給している場合、前記したように抵抗221を介してHPD線307をプルアップして“H”レベルとして接続されていることをソース機器11に伝える。しかし、シンク機器21がEDID書き換え中などEDIDの読出しができない期間においては、スイッチ23がHPD線307をGNDに短絡して“L”レベルをソース機器11に伝え、仮想的に未接続状態を作っている。   The switch 223 is normally open and is not short-circuited. When the source device 11 supplies 5V through the sink device 21DDC + 5V line, as described above, the HPD line 307 is pulled up via the resistor 221 to notify the source device 11 that it is connected to the “H” level. . However, during a period when the sink device 21 cannot read EDID, such as during EDID rewriting, the switch 23 short-circuits the HPD line 307 to GND and transmits the “L” level to the source device 11 to create a virtually unconnected state. ing.

シンク機器21がソース機器と接続されていることを判別する場合、スイッチ223はHPD線307と抵抗222を短絡する。抵抗222は抵抗121に比べて十分に高い抵抗値、例えば100kΩであり、電源回路219から供給される電圧、例えば3.3VでHPD線をプルアップする。HPD線307が未接続時には電圧検出器224の入力は3.3Vとなり、電圧検出器224は“H”を検出する。HPD線が接続されている時は、HPD線の電位は、3.3Vを抵抗222の100kΩと抵抗121の10kΩで分圧した電圧0.3Vとなるので、電圧検出器224は“L”を検出する。この時、DDC+5V線306がつながる電源回路219の入力は抵抗222に比べて十分に高いインピーダンスにしておけば、上記の分圧電圧への影響を小さくすることができる。   When determining that the sink device 21 is connected to the source device, the switch 223 short-circuits the HPD line 307 and the resistor 222. The resistor 222 has a sufficiently high resistance value, for example, 100 kΩ, compared to the resistor 121, and pulls up the HPD line with a voltage supplied from the power supply circuit 219, for example, 3.3V. When the HPD line 307 is not connected, the input of the voltage detector 224 is 3.3 V, and the voltage detector 224 detects “H”. When the HPD line is connected, the potential of the HPD line becomes a voltage of 0.3 V obtained by dividing 3.3 V by 100 kΩ of the resistor 222 and 10 kΩ of the resistor 121. Therefore, the voltage detector 224 sets “L”. To detect. At this time, if the input of the power supply circuit 219 connected to the DDC + 5V line 306 has a sufficiently high impedance compared to the resistor 222, the influence on the divided voltage can be reduced.

このように、HPD線が接続時に電圧検出器224は“L”を、HPD線が未接続時に“H”を検出することによって、HPD線307を含むケーブルがソース機器11とシンク機器21を接続しているか、未接続であるかを判別できる。   Thus, the voltage detector 224 detects “L” when the HPD line is connected, and detects “H” when the HPD line is not connected, so that the cable including the HPD line 307 connects the source device 11 and the sink device 21. It can be determined whether it is connected or not connected.

例えばHDMIにおいて、シンク機器21のHPD pinが2.0V〜5.3Vの範囲を“H”、0V〜0.8Vの範囲を“L”と定義している。一方、ソース機器11のHPD pinが2.4V〜5.3Vの範囲を“H”、0V〜0.4Vの範囲を“L”と定義している。シンク機器21からソース機器11との接続を判別する場合においても、この定義を満たすことが。後方互換性の観点から求められる。   For example, in HDMI, the HPD pin of the sink device 21 is defined as “H” in the range of 2.0V to 5.3V and “L” in the range of 0V to 0.8V. On the other hand, the HPD pin of the source device 11 is defined as “H” in the range of 2.4V to 5.3V and “L” in the range of 0V to 0.4V. This definition must be satisfied even when the connection from the sink device 21 to the source device 11 is determined. Required from the viewpoint of backward compatibility.

シンク機器21がHPD線を抵抗222によりプルアップする際に、抵抗121の抵抗値が抵抗222と同程度の場合、HPD線307の電圧は、プルアップ電圧の半分の電圧にまで達する。プルアップ電圧として5Vを用いると2.5V程度まで上昇して、前記のシンク機器21のHPD pinが “H” の下限である2.0Vを超えてしまい、仕様を満足しなくなってしまう。このため、プルアップ電圧は5V未満が望ましく、“H”の下限電圧である2.0Vの2倍以下のプルアップ電圧がさらに望ましい。前記の説明において、電源回路219から供給するプルアップ電圧を、HDMIのデータチャネルの終端電圧として用いられる3.3Vと共通と想定して説明した。終端電圧と共通化することで、セットが用意する電源電圧の種類を減らすことができる利点がある。   When the sink device 21 pulls up the HPD line by the resistor 222, if the resistance value of the resistor 121 is about the same as that of the resistor 222, the voltage of the HPD line 307 reaches half the pull-up voltage. When 5 V is used as the pull-up voltage, the voltage rises to about 2.5 V, and the HPD pin of the sink device 21 exceeds 2.0 V which is the lower limit of “H”, so that the specification is not satisfied. For this reason, the pull-up voltage is preferably less than 5 V, and more preferably a pull-up voltage not more than twice the 2.0 V that is the lower limit voltage of “H”. In the above description, it is assumed that the pull-up voltage supplied from the power supply circuit 219 is common with 3.3 V used as the termination voltage of the HDMI data channel. By sharing the termination voltage, there is an advantage that the types of power supply voltages prepared by the set can be reduced.

図3は、本実施例における処理の一例を示すフローチャートである。以下、図3を用いてその動作を説明する。   FIG. 3 is a flowchart illustrating an example of processing in the present embodiment. The operation will be described below with reference to FIG.

シンク機器21がスタンバイ状態であるとする(601)。   Assume that the sink device 21 is in a standby state (601).

シンク機器21は電源回路219がDDC+5V線306のDDC+5Vの電圧を判別する(601)。+5Vを検出すると、抵抗221を通じてHPD線307を“H”とする(608)。0.4V以下の場合は603へ進み、ソース機器11との接続を確認する動作に入る。ここで、DDC+5V線306が0.4V〜4.5Vの範囲であった場合については、例えば2.5Vをスレシホールド(閾値)としてそれ以上を“H”,それ以下を“L”と扱ってもよい。スレシホールドとなる電圧は、シンク機器の設置環境に基づいて、適宜変えてもよい。   In the sink device 21, the power supply circuit 219 determines the voltage DDC + 5V of the DDC + 5V line 306 (601). When + 5V is detected, the HPD line 307 is set to “H” through the resistor 221 (608). When the voltage is 0.4 V or less, the process proceeds to 603 and the operation of confirming the connection with the source device 11 is started. Here, in the case where the DDC + 5V line 306 is in the range of 0.4V to 4.5V, for example, 2.5V is set as a threshold (threshold), and more than that is treated as “H” and less than that is treated as “L”. May be. The threshold voltage may be changed as appropriate based on the installation environment of the sink device.

ソース機器11との接続確認動作として、シンク機器21はスイッチ223が抵抗222を選択し、HPD線を抵抗222が3.3Vにプルアップする(603)。続いて電圧検出器224でHPD線307の電圧を判別する(604)。“L”であればHPD線307がソース機器11と接続されていると判断し、電力供給を開始する606へ進む。   As a connection confirmation operation with the source device 11, the sink device 21 selects the resistor 222 by the switch 223 and pulls up the HPD line to 3.3V by the resistor 222 (603). Subsequently, the voltage detector 224 determines the voltage of the HPD line 307 (604). If “L”, it is determined that the HPD line 307 is connected to the source device 11, and the process proceeds to 606 to start power supply.

電圧検出器224の判別結果が“H”であれば、HPD線307がソース機器11と接続されていないと判断し、スイッチ223を非接続状態としてHPD pinのプルアップを終了する(615)。所定時間、例えば2秒間待機する(616)。その後DDC+5Vの電圧を判別する602に進む。   If the determination result of the voltage detector 224 is “H”, it is determined that the HPD line 307 is not connected to the source device 11, the switch 223 is disconnected, and the HPD pin pull-up is terminated (615). Wait for a predetermined time, for example, 2 seconds (616). Thereafter, the process proceeds to 602 for determining the voltage of DDC + 5V.

このように、シンク機器21はソース機器11がケーブル接続されたことを検出するまで、所定の時間間隔で検出動作を繰り返す。繰返し周期は、各機器の使用状況に応じて変えてもよい。例えば、シンク機器の動作履歴から使用される確率が高い時間帯や、人感センサで人を検知した場合、照度センサで明るい環境にある場合などは、所定時間周期を短くすると使い勝手がよい。さらに、所定時間周期を例えば10秒と長くとる一方で、DDC+5V検出の602のステップは常時動作させてもよい。   As described above, the sink device 21 repeats the detection operation at predetermined time intervals until it detects that the source device 11 is connected to the cable. The repetition period may be changed according to the usage status of each device. For example, in a time zone in which there is a high probability of being used from the operation history of the sink device, when a person is detected by a human sensor, or in a bright environment by an illuminance sensor, it is convenient to shorten the predetermined time period. Furthermore, the predetermined time period may be as long as 10 seconds, for example, while the step 602 of DDC + 5V detection may be always operated.

HPD線307がソース機器11と接続されていると判断された場合、スイッチ223を非接続状態としてHPD pinのプルアップを終了して、Utility pinへ待機電流として、例えば40mAを供給開始する(606)。供給電流を制限回路215で最大40mAまたは500mAを超えない値とするとよい。最大40mAであれば、電力供給部218の電流供給能力を小さくできるので電力損失を減らせる利点がある。   When it is determined that the HPD line 307 is connected to the source device 11, the switch 223 is disconnected and the HPD pin pull-up is terminated, and supply of 40 mA, for example, as a standby current to the utility pin is started (606). ). The supply current may be a value that does not exceed 40 mA or 500 mA at the maximum in the limit circuit 215. If it is 40 mA at the maximum, the current supply capability of the power supply unit 218 can be reduced, which has the advantage of reducing power loss.

DDC+5V pinへ5Vの電圧が印加されているかどうかを電源回路219が判別する(607)。所定時間、例えば10秒待って5V印加が検出できない場合はUtility pinへの待機電力供給を停止する(613)。その後、所定時間、例えば10秒待機する(614)。その後、DDC+5V電圧検出の602に戻る。   The power supply circuit 219 determines whether a voltage of 5V is applied to the DDC + 5V pin (607). When 5V application cannot be detected after waiting for a predetermined time, for example, 10 seconds, the standby power supply to the utility pin is stopped (613). Then, it waits for a predetermined time, for example, 10 seconds (614). Thereafter, the process returns to 602 of DDC + 5V voltage detection.

607で5Vの電圧が検出されると、抵抗221を介してHPD pinを“H”にプルアップする(608)。続いてソース機器11のEDID読出し部113の求めに応じて、シンク機器21のEDID記憶部213がEDID情報を出力する(609)。   When a voltage of 5V is detected at 607, the HPD pin is pulled up to “H” via the resistor 221 (608). Subsequently, in response to a request from the EDID reading unit 113 of the source device 11, the EDID storage unit 213 of the sink device 21 outputs EDID information (609).

その後、ソース機器11から電力要求のメッセージを待つ(610)。同メッセージを受信したら、Utility pinへ要求された所定電力を供給する(611)。続いて、ソース機器11の映像送信部112が出力する映像信号を、シンク機器21の映像受信部212が受信する(612)。   After that, it waits for a power request message from the source device 11 (610). When the message is received, the requested predetermined power is supplied to the Utility pin (611). Subsequently, the video signal output from the video transmitter 112 of the source device 11 is received by the video receiver 212 of the sink device 21 (612).

610において、所定時間例えば10秒、電力要求メッセージを受信できない場合はUtility待機電力の供給を停止する(617)。続いて、シンク機器21のCEC通信部214がソース機器11のCEC通信部114へ、ソース機器11の存在を確認するCECメッセージ、例えば<Request Physical Address>や、ポーリングメッセージなどをソース機器へ送る(618)。CEC通信部214は応答メッセージを所定時間、例えば1秒待つ(619)。   In 610, when the power request message cannot be received for a predetermined time, for example, 10 seconds, the supply of Utility standby power is stopped (617). Subsequently, the CEC communication unit 214 of the sink device 21 sends a CEC message for confirming the existence of the source device 11 such as <Request Physical Address> or a polling message to the CEC communication unit 114 of the source device 11 ( 618). The CEC communication unit 214 waits for a response message for a predetermined time, for example, 1 second (619).

応答メッセージが受信できれば、待機電力供給不要と判断して待機電力供給停止状態を継続する(620)。 応答メッセージが無い場合は、ソース機器11とシンク機器21間のCEC通信メッセージ交換に待機電力が必要と判断して、待機電力供給を再開する(621)。   If a response message can be received, it is determined that standby power supply is unnecessary, and the standby power supply stop state is continued (620). If there is no response message, it is determined that standby power is required for exchanging CEC communication messages between the source device 11 and the sink device 21, and standby power supply is resumed (621).

尚、618において、ソース機器11とシンク機器21間のCECメッセージ交換が無い場合は、存在確認メッセージを送信できないので、待機電力供給不要と判断して待機電力供給停止状態を継続してよい。   In 618, if there is no CEC message exchange between the source device 11 and the sink device 21, the existence confirmation message cannot be transmitted, so that it is determined that standby power supply is unnecessary and the standby power supply stop state may be continued.

また、CECメッセージ交換だけでなく、HEC(HDMI Ethernet channel)の通信が確立されている場合は同通信動作もあわせて確認するとよい。   In addition to exchanging CEC messages, if communication of HEC (HDMI Ethernet channel) is established, the communication operation may be checked together.

図4は、本実施例における、メッセージの送受信や信号の送受信の一例を示す図である。最初、ソース機器11はDDC+5Vに5Vを出力せず(699)、ソース機器11とシンク機器21が未接続状態(622)から始めている。この状態で、シンク機器は前に述べた方法によって、ソース機器とケーブル接続されているかどうかを判定し、未接続と判別している(623)。   FIG. 4 is a diagram illustrating an example of message transmission / reception and signal transmission / reception in the present embodiment. Initially, the source device 11 does not output 5V to DDC + 5V (699), and the source device 11 and the sink device 21 start from an unconnected state (622). In this state, the sink device determines whether it is connected to the source device by a cable by the method described above, and determines that it is not connected (623).

次にケーブルでソース機器11とシンク機器21を接続する(624)。シンク機器はHPD線を3.3Vへ100kΩでプルアップする(625)。この時、HPD線が“H”にならないことを検出して、ソース機器11とシンク機器21がケーブル接続されていることを判別する(626)。判別したらHPD線のプルアップは中止し、Utility線へ5Vの所定の待機電流、たとえば最大40mAを供給開始する(627)。   Next, the source device 11 and the sink device 21 are connected with a cable (624). The sink device pulls up the HPD line to 3.3 V with 100 kΩ (625). At this time, it is detected that the HPD line does not become “H”, and it is determined that the source device 11 and the sink device 21 are connected by a cable (626). When it is determined, the pull-up of the HPD line is stopped, and a predetermined standby current of 5 V, for example, a maximum of 40 mA is started to be supplied to the Utility line (627).

待機電力の供給を受けたソース機器11は、DDC+5V線へ5Vの供給を開始する(628)。シンク機器21は、DDC+5V線から受けた5Vを、抵抗を介してHPD線へ伝え、HPD線を“H”レベルにする(629)。HPD線が“H”になったことを検出したソース機器11は、シンク機器の映像受信に関する機器情報を記述したEDIDを読み出す(630)。   The source device 11 that has received the standby power starts to supply 5V to the DDC + 5V line (628). The sink device 21 transmits 5V received from the DDC + 5V line to the HPD line via the resistor, and sets the HPD line to the “H” level (629). The source device 11 that has detected that the HPD line has become “H” reads the EDID describing the device information related to the video reception of the sink device (630).

EDID情報を読み出して自身の物理アドレスを設定または確認したソース機器11は、シンク機器へ電力供給を要求する要求メッセージである<CDC_Power_Rewuest>をシンク機器21へ送信する(631)。図4において、631は、引数として電流値のみ表記して、他を省略記述している。同メッセージを受信したシンク機器21は、Utility線へ要求された電圧と電流を供給開始する(632)。電力供給を開始したことを、シンク機器21はソース機器11へ、応答メッセージである<CDC_Power_Status>を送信する(633)。   The source device 11 that reads the EDID information and sets or confirms its own physical address transmits <CDC_Power_Rewuest>, which is a request message for requesting power supply to the sink device, to the sink device 21 (631). In FIG. 4, 631 indicates only the current value as an argument, and omits the others. The sink device 21 that has received the message starts to supply the requested voltage and current to the Utility line (632). The sink device 21 transmits a response message <CDC_Power_Status> to the source device 11 that the power supply has been started (633).

ソース機器11は論理アドレスの空きを調べるメッセージである<Polling message>をブロードキャスト」して、ACK応答が無いことを確かめて論理アドレスを取得する(634)。続けて、シンク機器へ電源ONと映像表示を要求するメッセージである<Image View On>を送信(635)する、さらに映像信号送信開始を示すメッセージである<Active Source>を送信し(636)、映像信号をシンク機器21へ供給開始する(637)。   The source device 11 broadcasts <Polling message>, which is a message for checking the vacancy of the logical address, and confirms that there is no ACK response and acquires the logical address (634). Subsequently, <Image View On>, which is a message for requesting power on and video display to the sink device, is transmitted (635), and <Active Source> which is a message indicating the start of video signal transmission is transmitted (636). The supply of the video signal to the sink device 21 is started (637).

ユーザがシンク機器の電源オフを操作する(636)と、シンク機器21は、待機状態移行を要求するメッセージである<Standby>をソース機器11へ送る(637)。同メッセージを受信したソース機器11は映像信号出力とDDC+5V出力を停止し(640)、シンク機器21へ電力供給が不要になったことを伝える引数例えば」[0]をつけたメッセージ<CDC_Power_Request>を送信する(641)。同メッセージを受信したシンク機器21は、Utility線への電流を減らして、待機電流として例えば40mAのみ供給とする(642)。合わせて、待機電流のみの電流供給としたことを知らせる引数をつけた応答メッセージである<CDC_Power_Status>を、ソース機器11へ送信して知らせる。   When the user operates to turn off the sink device (636), the sink device 21 sends <Standby>, which is a message requesting transition to the standby state, to the source device 11 (637). The source device 11 that has received the message stops outputting the video signal and DDC + 5V (640), and sends a message <CDC_Power_Request> with an argument such as “0”, for example, indicating that power supply to the sink device 21 is no longer necessary. Transmit (641). The sink device 21 that has received the message reduces the current to the Utility line and supplies only 40 mA, for example, as a standby current (642). At the same time, <CDC_Power_Status>, which is a response message with an argument notifying that only the standby current is supplied, is transmitted to the source device 11 to be notified.

この後、シンク機器21は、ソース機器と接続しているケーブルが待機電流を必要としているかを確かめる。このために、シンク機器21はUtility線への電流供給を停止(642)後、ソース機器11」へ<Polling message>を送る(645)。<Polling message>への応答がある場合は待機電流不要と判断する。所定時間、例えば2秒待っても応答が無い場合は、待機電流供給が必要と判断してUtility線への待機電流供給を復活させる(646)。   Thereafter, the sink device 21 confirms whether the cable connected to the source device requires standby current. For this purpose, the sink device 21 stops supplying current to the utility line (642), and then sends <Polling message> to the source device 11 "(645). If there is a response to <Polling message>, it is determined that standby current is not required. If there is no response after waiting for a predetermined time, for example, 2 seconds, it is determined that standby current supply is necessary, and standby current supply to the Utility line is restored (646).

以上で述べてきたように、シンク機器はソース機器と接続されていない間や、接続されていても待機電力供給なしてCECメッセージの送受信ができる場合のみ、電力供給を停止することができる。このようにして省電力化を実現できる。   As described above, the power supply of the sink device can be stopped while the sink device is not connected to the source device or only when the CEC message can be transmitted / received without supplying standby power even if the sink device is connected. In this way, power saving can be realized.

実施例1では、シンク機器21はUtility線への電流供給を停止後、CECメッセージの応答有無を検知して待機電流要または不要を判断していた。本実施例ではそれに代えて、電流制限回路215が電流値を監視し、所定時間、例えば30秒程度電流が検出されない場合に待機電流不要と判断して待機電流を停止させる。   In the first embodiment, the sink device 21 determines whether the standby current is necessary or unnecessary by detecting the presence or absence of a response to the CEC message after stopping the current supply to the Utility line. Instead, in this embodiment, the current limiting circuit 215 monitors the current value, and when no current is detected for a predetermined time, for example, about 30 seconds, it is determined that the standby current is not necessary, and the standby current is stopped.

実施例1では、待機電流を止めた際に、ソース機器11のCEC通信部が保持していた物理アドレスなどの制御パラメータが消去されてしまい、CEC通信が停止してしまう場合が考えられる。本実施例では電流使用が継続されている間は電流供給を継続するので、CEC通信が中断することなく継続できる。また、信頼性向上のために、電流制限回路215が電流無しと判断した場合にのみ、実施例1で述べたUtility線への電流供給を停止後、CECメッセージの応答有無を検知して待機電流は不要を再確認するようにしてもよい。   In the first embodiment, when the standby current is stopped, a control parameter such as a physical address held by the CEC communication unit of the source device 11 may be deleted, and the CEC communication may be stopped. In the present embodiment, since the current supply is continued while the current use is continued, the CEC communication can be continued without interruption. Further, for the purpose of improving the reliability, only when the current limiting circuit 215 determines that there is no current, after the current supply to the Utility line described in the first embodiment is stopped, the presence / absence of a CEC message response is detected and the standby current is detected. May be reconfirmed as unnecessary.

ケーブル31のUtility線305が細い線で抵抗が高い場合、例えば5Ωの場合、ソース機器11の電源回路119が200mAの電流を使用すると、Utility線305の両端で1Vの電圧降下が生じる。また、ソース機器やシンク機器のコネクタ部の接触抵抗があると、さらに電圧降下が大きくなり、ケーブルやコネクタ部の発熱の課題が考えられる。ソース機器11の電圧検出部115が、ソース機器11が受給する電圧を検出して制御部118へ伝え、所定の電圧、例えば4V以下にならないように、制御部118が電源回路119を制御して、受給電流を抑制または遮断する。これより、ケーブルの定格を超えた過電流を防止できる。   When the utility line 305 of the cable 31 is a thin line and has a high resistance, for example, 5Ω, when the power supply circuit 119 of the source device 11 uses a current of 200 mA, a voltage drop of 1V occurs at both ends of the utility line 305. Further, if there is a contact resistance of the connector part of the source device or sink device, the voltage drop further increases, and a problem of heat generation of the cable or connector part can be considered. The voltage detection unit 115 of the source device 11 detects the voltage received by the source device 11 and transmits it to the control unit 118. The control unit 118 controls the power supply circuit 119 so that it does not become a predetermined voltage, for example, 4 V or less. , Suppress or cut off the receiving current. As a result, overcurrent exceeding the cable rating can be prevented.

電圧検出部115が検出する前記所定の検出電圧は以下のように決定する。ソース機器が受信するCDCメッセージである<CDC Power Status>の引数が示す電圧Vtとする。電力供給部218の出力電圧設定許容範囲が5%であるとし、ケーブルでの電圧降下分を同様に5%許容し、電圧検出部115の検出精度を同様に5%とすると、前記所定の検出電圧はVtより15%低い0.85Vtとなる。電圧検出115の検出精度を5%としたので、最低検出電圧は20%低い0.8Vtであり、電力供給部218の最高電圧は1.05Vtであるので、Utility線305の両端電位差は0.25Vt(=1.05Vt−0.8Vt)となる。Utility線305の抵抗値をRとすると、電流は0.25Vt/R、電力損失は(0.25Vt)^2/Rで示される。   The predetermined detection voltage detected by the voltage detector 115 is determined as follows. A voltage Vt indicated by an argument of <CDC Power Status> which is a CDC message received by the source device. Assuming that the output voltage setting allowable range of the power supply unit 218 is 5%, the voltage drop in the cable is similarly allowed 5%, and the detection accuracy of the voltage detection unit 115 is also 5%, the predetermined detection The voltage is 0.85 Vt, 15% lower than Vt. Since the detection accuracy of the voltage detection 115 is 5%, the minimum detection voltage is 20%, which is 0.8 Vt, and the maximum voltage of the power supply unit 218 is 1.05 Vt. 25 Vt (= 1.05 Vt−0.8 Vt). When the resistance value of the utility line 305 is R, the current is represented by 0.25 Vt / R, and the power loss is represented by (0.25 Vt) ^ 2 / R.

電力供給電圧Vtが5V(±0.25V)、Utility線抵抗Rが10Ωである場合、前記所定の検出電圧は4.25V(±0.25V)、Utility線での最大電流は125mA、電力損失は156mWとなる。Utility線抵抗Rが1Ωである場合、最大電流は1.25A、電力損失は1.56Wとなる。   When the power supply voltage Vt is 5V (± 0.25V) and the utility line resistance R is 10Ω, the predetermined detection voltage is 4.25V (± 0.25V), the maximum current on the utility line is 125mA, and the power loss. Is 156 mW. When the utility line resistance R is 1Ω, the maximum current is 1.25 A and the power loss is 1.56 W.

上記設定における、供給電流の保証値について考察する。最高検出電圧は0.9Vtであり、電力供給部218の最低電圧は0.95Vtであるので、Utility線305の両端電位差は0.05Vt(=0.95Vt−0.9Vt)となる。電流は0.05Vt/R、電力損失は(0.05Vt)^2/Rで示される。   Consider the guaranteed value of the supply current in the above settings. Since the maximum detection voltage is 0.9 Vt and the minimum voltage of the power supply unit 218 is 0.95 Vt, the potential difference between the utility line 305 is 0.05 Vt (= 0.95 Vt−0.9 Vt). The current is indicated by 0.05 Vt / R, and the power loss is indicated by (0.05 Vt) ^ 2 / R.

電力供給電圧Vtが5V(±0.25V)、Utility線抵抗Rが10Ωである場合、前記所定の検出電圧は4.25V(±0.25V)、Utility線での供給電流保証値は25mA、損失は6mWとなる。Utility線抵抗Rが1Ωである場合、供給電流保証値は0.25A、損失は63mWとなる。   When the power supply voltage Vt is 5V (± 0.25V) and the utility line resistance R is 10Ω, the predetermined detection voltage is 4.25V (± 0.25V), the supply current guarantee value on the Utility line is 25mA, The loss is 6 mW. When the utility line resistance R is 1Ω, the guaranteed supply current value is 0.25 A, and the loss is 63 mW.

このように、Utility線を流れる最大電流と、供給電流保証値が大きく異なる課題がある。この差を小さくするには、次の2つの改善策がある。第一の改善策は、電源回路部119が電流を消費しないタイミングで電圧検出部115が電圧を検出し、その電圧に対して約5%低い電圧を検出電圧とする方法である。このやり方では、電力供給部218の電圧設定ばらつきや、電圧検出部115の電圧検出ばらつきを補償することができるので、Utility線305両端の最大電位差は常に0.05Vtとなる。従って、最大電流値と供給電流保証値は0.05Vt/Rと等しく、損失は(0.05Vt)^2/Rになる。   As described above, there is a problem that the maximum current flowing through the Utility line is greatly different from the supply current guaranteed value. In order to reduce this difference, there are the following two improvements. A first improvement measure is a method in which the voltage detection unit 115 detects a voltage at a timing when the power supply circuit unit 119 does not consume current, and uses a voltage about 5% lower than the detected voltage as the detection voltage. In this manner, the voltage setting variation of the power supply unit 218 and the voltage detection variation of the voltage detection unit 115 can be compensated, so that the maximum potential difference between both ends of the Utility line 305 is always 0.05 Vt. Therefore, the maximum current value and the guaranteed supply current value are equal to 0.05 Vt / R, and the loss is (0.05 Vt) ^ 2 / R.

第2の改善策は、電圧検出部115に加えて電流検出部も設け、直接電流を測定する方法である。上記第1の方法と同様に、最大電流値と供給電流保証値を等しくすることができる。電流検出部だけでは、受給電圧が極端に低くなる場合もあるので、所定の受給電圧以下では電力を受給しないように、電圧検出部115も必要である。   The second improvement measure is a method in which a current detection unit is provided in addition to the voltage detection unit 115 to directly measure the current. Similar to the first method, the maximum current value and the guaranteed supply current value can be made equal. Since the received voltage may become extremely low with only the current detection unit, the voltage detection unit 115 is also required so that power is not received below a predetermined reception voltage.

DDC+5V線306から電力を受給するシンク機器21が、DDC規格で決められている50mA以上の電流供給を受ける場合において、上記Utility線305からソース機器11が電力を受給する場合と同様に、電圧検出部を設けることによって、DDC+5V線306の抵抗値が高い場合のDDC+5V線306による電力損失の増大による発熱等の課題を回避できる。   When the sink device 21 that receives power from the DDC + 5V line 306 receives a current of 50 mA or more determined by the DDC standard, the voltage detection is performed in the same manner as when the source device 11 receives power from the utility line 305. By providing the portion, it is possible to avoid problems such as heat generation due to an increase in power loss due to the DDC + 5V line 306 when the resistance value of the DDC + 5V line 306 is high.

DDC+5V線306から供給される電力の電圧検出部として、図2記載の電圧検出部224を活用してもよい。電圧検出部224が検出する電圧はHPD線307の電圧であり、DDC+5V線306に印加される電圧を抵抗221と抵抗121で分割した電位である。通常、抵抗221の抵抗値は抵抗121の抵抗の1/10程度であり、DDC+5V線の電圧の90%程度として換算することが出来る。また、電圧検出部224の入力部にスイッチを設け、HPD線307とDDC+5V線306を切換えられるようにしてもよい。   As a voltage detection unit for the power supplied from the DDC + 5V line 306, the voltage detection unit 224 illustrated in FIG. The voltage detected by the voltage detection unit 224 is the voltage of the HPD line 307, which is a potential obtained by dividing the voltage applied to the DDC + 5V line 306 by the resistor 221 and the resistor 121. Usually, the resistance value of the resistor 221 is about 1/10 of the resistance of the resistor 121, and can be converted to about 90% of the voltage of the DDC + 5V line. In addition, a switch may be provided at the input unit of the voltage detection unit 224 so that the HPD line 307 and the DDC + 5V line 306 can be switched.

以上で述べてきたように、シンク機器とソース機器が接続されていても電流使用が検出されない場合に電力供給を停止することができる。このようにして省電力化を実現できる。さらに、電力受給側で受給した電圧検出部をもうけることによって、ケーブルによる電圧降下や発熱といった課題を解決できる。   As described above, even when the sink device and the source device are connected, the power supply can be stopped when the current use is not detected. In this way, power saving can be realized. Further, by providing a voltage detection unit received on the power receiving side, problems such as voltage drop and heat generation due to the cable can be solved.

ソース機器11とシンク機器21を光ケーブル接続させた場合のブロック図を図5に示す。図1と異なる点は、ソース機器11とシンク機器21を接続するケーブルが電気線束31から、電気を光に変換して光ファイバ伝送を行う光変換ケーブル32に変更した点である。   FIG. 5 shows a block diagram when the source device 11 and the sink device 21 are connected by an optical cable. The difference from FIG. 1 is that the cable connecting the source device 11 and the sink device 21 is changed from the electric wire bundle 31 to an optical conversion cable 32 that converts electricity into light and performs optical fiber transmission.

321は電気光変換部、322は光電気変換部、323はICバッファ、324はCECバッファ、326は電源回路である。これらの素子は、Utility線からの電力供給によって動作しているので、待機電力供給が止まると、CECメッセージの交換ができない。実施例1で示した手順によれば、待機電力有無におけるメッセージ交換機能の変化から、待機電力の要/不要を判別できる。このように、待機電力の要/不要検出することにより、必要最小限の待機電力を実現できるので、シンク機器の低電力化が実現できる利点がある。 Reference numeral 321 denotes an electro-optical conversion unit, 322 denotes a photoelectric conversion unit, 323 denotes an I 2 C buffer, 324 denotes a CEC buffer, and 326 denotes a power supply circuit. Since these elements are operated by power supply from the Utility line, when the standby power supply is stopped, CEC messages cannot be exchanged. According to the procedure shown in the first embodiment, the necessity / unnecessity of standby power can be determined from the change in the message exchange function with or without standby power. In this way, by detecting the necessity / unnecessity of standby power, the minimum necessary standby power can be realized, and there is an advantage that the power consumption of the sink device can be reduced.

光ケーブル32は、シンク機器21からUtility線335を介しての電力を受給するだけでなく、ソース機器11からDDC+5V線316を介しての電力受給を併用しても良い。ソース機器からの電力受給について以下に説明する。   The optical cable 32 may not only receive power from the sink device 21 through the utility line 335 but also use power from the source device 11 through the DDC + 5V line 316 together. The power reception from the source device will be described below.

HDMI規格において、ソース機器11はDDC+5V線へ5V 55mA以上の電流供給が義務付けられる一方、シンク機器21は待機時(または電源オフ時)に最大50mA、電源ON時には最大10mAの電流消費が認められている。従って、光ケーブル32はシンク機器21が待機時には5mA、動作時(電源ON時)は45mAを消費してもよい。   According to the HDMI standard, the source device 11 is obliged to supply a current of 5 V 55 mA or more to the DDC + 5 V line, while the sink device 21 is allowed to consume a maximum of 50 mA during standby (or when the power is off) and a maximum of 10 mA when the power is on. Yes. Accordingly, the optical cable 32 may consume 5 mA when the sink device 21 is on standby and 45 mA when it is in operation (when the power is turned on).

シンク機器21は、待機時には映像信号伝送が不要なので、電気光変換部321と光電気変換部322への電力供給は不要である。ソース機器11からDDC+5V線316へ電力供給されている間、ICバッファ323とCECバッファ324を動作させて、EDIDの読出しとCEC通信メッセージ交換ができるようにしておく必要がある。これらのICバッファ323とCECバッファ324は各2mA程度以下で動作させることができ、前記のシンク機器21待機時に使用可能な5mA以内で実現できる。 Since the sink device 21 does not need video signal transmission during standby, it is not necessary to supply power to the electro-optical conversion unit 321 and the photoelectric conversion unit 322. While power is being supplied from the source device 11 to the DDC + 5V line 316, it is necessary to operate the I 2 C buffer 323 and the CEC buffer 324 so that EDID reading and CEC communication message exchange can be performed. These I 2 C buffer 323 and CEC buffer 324 can be operated at about 2 mA or less, and can be realized within 5 mA that can be used when the sink device 21 is on standby.

電気光変換部321は、動作時にはソース機器11の映像送信部112へ終端電源としてチャネル当り3,3V 10mA、クロックチャネルと3個のデータチャネル合計で3.3V 40mAに加えて、光レーザ駆動電流とその制御回路電力の3〜10mA、合計3.3V 43〜50mAを使用する。DDC+5Vから変換効率90%のスイッチングレギュレータを使うとすると、5V 32〜37mAになる。ICバッファ323とCECバッファ324の動作電流各2mAと合計すると、5V 36〜41mAとなり、前記した、シンク機器21動作時に使用可能な45mA以内で実現できる。尚、光電気変換部322は、残りの4mAで動作させてもよいし、シンク機器212の映像受信部212から供給される終端電源を活用してもよい。 In operation, the electro-optical conversion unit 321 supplies the optical laser drive current to the video transmission unit 112 of the source device 11 as a termination power source in addition to 3.3 V and 40 mA per channel and 3.3 V and 40 mA in total for the clock channel and the three data channels And 3-10 mA of the control circuit power, a total of 3.3V 43-50 mA is used. If a switching regulator with a conversion efficiency of 90% is used from DDC + 5V, it will be 5V 32-37 mA. The sum of the operating currents of the I 2 C buffer 323 and the CEC buffer 324 of 2 mA is 5 V 36 to 41 mA, which can be realized within 45 mA that can be used when the sink device 21 operates. Note that the photoelectric conversion unit 322 may be operated at the remaining 4 mA, or may utilize a termination power source supplied from the video reception unit 212 of the sink device 212.

尚、シンク機器21が待機状態か電源ON状態かは、映像受信部212が光電気変換部322へ終端電源3.3Vを出力しているかどうかで判断すればよい。すなわち、光電気変換部322に電圧検出部または電流検出部を設け、電圧または電流を検出したら電源ON状態と判断する。その後、ソース機器11の映像送信部112へ終端電源を供給する手順とする。また、映像受信部312からの終端電源供給が停止したら、待機状態と判断して、直ちに映像送信部112への終端電源供給を停止する必要がある。但し、シンク機器21からUtility線335で電力供給されている場合は。映像送信部112への電源供給をしばらく継続して、シンク機器からの終端電源供給が復活した場合の復帰動作を早めるようにしてもよい。   Whether the sink device 21 is in the standby state or in the power-on state may be determined based on whether the video reception unit 212 is outputting the termination power supply 3.3V to the photoelectric conversion unit 322. That is, a voltage detection unit or a current detection unit is provided in the photoelectric conversion unit 322, and when the voltage or current is detected, it is determined that the power is on. Then, the procedure is to supply the termination power to the video transmission unit 112 of the source device 11. Further, when the termination power supply from the video reception unit 312 is stopped, it is determined that the terminal power supply is in a standby state, and it is necessary to immediately stop the termination power supply to the video transmission unit 112. However, when power is supplied from the sink device 21 via the Utility line 335. The power supply to the video transmission unit 112 may be continued for a while, and the return operation when the terminal power supply from the sink device is restored may be accelerated.

このように、光ケーブル32は、シンク機器21からの電力供給でも、ソース機器11からの電力供給でも動作させることができ、どちらの電力を使うか、または併用するかを電源回路326が、DDC+5V線316の電圧検出と、Utility線335の電圧検出によって決めるとよい。例えば、ソース機器が携帯電話などの電池駆動型のモバイル機器である場合を想定し、シンク機器21からの電力を優先して受給するようにしてもよい。   In this way, the optical cable 32 can be operated by either power supply from the sink device 21 or power supply from the source device 11, and the power supply circuit 326 determines which power is used or used in combination with the DDC + 5V line. It may be determined by voltage detection at 316 and voltage detection at the utility line 335. For example, assuming that the source device is a battery-powered mobile device such as a mobile phone, power from the sink device 21 may be preferentially received.

シンク機器21やソース機器11から電力を受給しない場合、光ケーブル32は他にACアダプタを用意し、常にAC電源と接続しておかねばならず、光ケーブルが接続されていない場合や映像信号を伝送していない場合であってもACアダプタの待機電力が無視できなくなる。本実施例によれば、光ケーブル32の待機電力を低減できる効果もある。   When power is not received from the sink device 21 or the source device 11, the optical cable 32 must be provided with an AC adapter and always connected to an AC power source. When the optical cable is not connected, the optical cable 32 transmits a video signal. Even if not, the standby power of the AC adapter cannot be ignored. According to the present embodiment, there is an effect that standby power of the optical cable 32 can be reduced.

11 ソース機器、
21 シンク機器、
31,32 ケーブル、
111 再生部、
112 映像送信部、
113 EDID読出部、
114,214 CEC通信部、
115 電圧検出部、
116 DDC+5V供給部、
117 HPD検出部、
118,217 制御部、
119,219 電源回路、
211 表示部、
212 映像受信部、
213 EDID記憶部、
215 電流制限部、
216 HPD出力部、
218 電力供給部、
321 電気光変換部、
322 光電気変換部、
327 光ファイバ、
122、224 電圧検出部
121、221、222 抵抗
223 スイッチ、
411 多重化部、
11 Source equipment,
21 Sink device,
31, 32 cables,
111 playback unit,
112 video transmission unit,
113 EDID reading unit,
114, 214 CEC communication section,
115 voltage detector,
116 DDC + 5V supply section,
117 HPD detector,
118, 217 control unit,
119, 219 power supply circuit,
211 display unit,
212 video receiver,
213 EDID storage unit,
215 current limiter,
216 HPD output section,
218 power supply unit,
321 electro-optic converter,
322 photoelectric conversion unit,
327 optical fiber,
122, 224 Voltage detection unit 121, 221, 222 Resistance 223 Switch,
411 multiplexing unit,

Claims (9)

ソース機器から映像信号を受信するシンク機器であって、
前記ソース機器から電力を受ける第1の端子と、
前記第1の端子で受けた電力で、第1の素子を介してプルアップする第2の端子と、
前記ソース機器へ電力を供給する第3の端子と、
前記第1の端子で受けた電力とは異なる電力で前記第2の端子をプルアップする第2の素子と、を有し、
前記第1の端子が所定の電圧よりも低く、前記ソース機器が電力供給を受けていない時に、前記第2の素子でプルアップされているにもかかわらず、前記第2の端子が所定の電圧以下であることを検出して、前記第2の端子を通して前記ソース機器へ電力供給を開始し、
前記電力供給の開始後に所定の時間内に電力要求メッセージを受信する場合は前記電力供給を継続し、該電力要求メッセージを受信しない場合は前記電力供給を停止することを特徴とするシンク機器。
A sink device that receives a video signal from a source device,
A first terminal for receiving power from the source device;
A second terminal that pulls up through the first element with the power received at the first terminal;
A third terminal for supplying power to the source device;
A second element that pulls up the second terminal with a power different from the power received at the first terminal;
When the first terminal is lower than a predetermined voltage and the source device is not supplied with power, the second terminal is at a predetermined voltage even though it is pulled up by the second element. Detecting the following, and start supplying power to the source device through the second terminal,
A sink device, wherein the power supply is continued when a power request message is received within a predetermined time after the power supply is started, and the power supply is stopped when the power request message is not received.
請求項1記載のシンク機器において、
前記ソース機器が前記第2の端子をプルダウンする素子の抵抗値に比べて、前記第1の素子の抵抗値が低く、前記第2の素子の抵抗値が高いことを特徴とするシンク機器。
The sink device according to claim 1,
A sink device, wherein a resistance value of the first element is lower and a resistance value of the second element is higher than a resistance value of an element for pulling down the second terminal by the source device.
請求項1または2に記載のシンク機器において、
前記第2の素子のプルアップ電圧は、前記第1の素子のプルアップ電圧である前記第1の端子が受ける電圧よりも低いことを特徴とするシンク機器。
The sink device according to claim 1 or 2,
The sink device according to claim 1, wherein a pull-up voltage of the second element is lower than a voltage received by the first terminal which is a pull-up voltage of the first element.
請求項1〜3のいずれか一項に記載のシンク機器において、
前記第2の素子によるプルアップは、前記第1の端子が前記ソース機器から電力供給を受けていない間に、所定の期間だけプルアップし、
前記所定の期間中に前記第2の端子が前記所定の電圧以上である場合は、所定の周期で前記第2の素子によるプルアップを繰り返すことを特徴とするシンク機器。
In the sink device as described in any one of Claims 1-3,
The pull-up by the second element is pulled up for a predetermined period while the first terminal is not receiving power from the source device,
When the second terminal is equal to or higher than the predetermined voltage during the predetermined period, the sink device repeats pull-up by the second element at a predetermined cycle.
請求項4記載のシンク機器において、
前記第2の素子によるプルアップの前記繰り返し周期は、前記シンク機器の使用状況に応じて変えることを特徴とするシンク機器。
The sink device according to claim 4,
The sink device according to claim 1, wherein the repetition cycle of the pull-up by the second element is changed in accordance with a use state of the sink device.
請求項5記載のシンク機器において、
前記繰り返し周期は、少なくとも、使用される確率が高い時間帯や、人を検知した場合、明るい環境にある場合のいずれかの使用条件下において、他の使用条件下よりも短くしたことを特徴とするシンク機器。
The sink device according to claim 5, wherein
The repetition period is at least shorter than other use conditions in any use condition in a bright environment when a person is detected or when a person is detected. Sink device to be used.
ソース機器から映像信号を受信するシンク機器における電力供給方法であって、
前記ソース機器から第1の端子が電力を受けていない時に、第2の素子が第2の電圧へプルアップした第2の端子の電圧を検出して、前記第2の素子よりも低いインピーダンスで前記第2の端子をプルダウンする前記ソース機器とのケーブル接続を判別するステップと、
前記ステップでケーブル接続と判断された際に第3の端子を通じて前記ソース機器へ第1の電力量を供給するステップと、
前記ソース機器から前記第1の端子が第1の電圧で電力を受けて、第1の素子や前記ソース機器の前記プルダウンするインピーダンスよりも低いインピーダンスの前記第1の素子が前記第1の電圧へ前記第2の端子をプルアップするステップと、
前記ソース機器が前記第1の電力量より大きな第2の電力量の要求を受けるステップと、
前記ソース機器が要求する前記第2の電力量を供給開始するステップと、
前記第2の電力量を供給開始したことを前記ソース機器へ伝えるステップと、
を有することを特徴とする電力供給方法。
A power supply method in a sink device that receives a video signal from a source device,
When the first terminal is not receiving power from the source device, the second element detects the voltage of the second terminal pulled up to the second voltage, and has a lower impedance than the second element. Determining a cable connection with the source device pulling down the second terminal;
Supplying a first amount of power to the source device through a third terminal when it is determined that the cable is connected in the step;
The first terminal receives power from the source device at a first voltage, and the first element or the first element having an impedance lower than the pull-down impedance of the source device is set to the first voltage. Pulling up the second terminal;
The source device receiving a request for a second power amount greater than the first power amount;
Starting to supply the second amount of power requested by the source device;
Telling the source device that the second amount of power has been started;
A power supply method characterized by comprising:
請求項7記載の電力供給方法において、
前記第2の電圧は前記第1の電圧よりも低いこと特徴とする電力供給方法。
The power supply method according to claim 7,
The method of supplying power, wherein the second voltage is lower than the first voltage.
請求項7記載の電力供給方法において、
前記第2の素子が前記第2の電圧へプルアップして前記ソース機器とのケーブル接続を判別するステップにおいて、
未接続と判断された場合に、前記第2の素子による前記第2の電圧へのプルアップを停止し、所定の期間経過後に再度前記第2の素子が前記第2の電圧へプルアップして前記ソース機器とのケーブル接続を判別するステップをさらに有し、
前記所定の期間は、前記シンク機器の使用状況に応じて変えることを特徴とする電力供給方法。
The power supply method according to claim 7,
In the step of determining the cable connection with the source device by the second element being pulled up to the second voltage,
When it is determined that it is not connected, the pull-up to the second voltage by the second element is stopped, and the second element is pulled up to the second voltage again after a predetermined period. Further comprising determining a cable connection with the source device;
The power supply method according to claim 1, wherein the predetermined period is changed according to a usage state of the sink device.
JP2015101360A 2015-05-18 2015-05-18 Sink device and power supply method Active JP5959692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101360A JP5959692B2 (en) 2015-05-18 2015-05-18 Sink device and power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101360A JP5959692B2 (en) 2015-05-18 2015-05-18 Sink device and power supply method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013548960A Division JP5750515B2 (en) 2011-12-16 2011-12-16 Sink device and power supply method

Publications (2)

Publication Number Publication Date
JP2015167396A true JP2015167396A (en) 2015-09-24
JP5959692B2 JP5959692B2 (en) 2016-08-02

Family

ID=54258047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101360A Active JP5959692B2 (en) 2015-05-18 2015-05-18 Sink device and power supply method

Country Status (1)

Country Link
JP (1) JP5959692B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074435A1 (en) 2016-10-20 2018-04-26 エイム電子株式会社 Hdmi optical cable and hdmi optical conversion apparatus
JP2020523832A (en) * 2017-06-05 2020-08-06 コムスコープ テクノロジーズ リミティド ライアビリティ カンパニー Rack controller with native support for intelligent patching equipment installed in multiple racks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048136A (en) * 2006-08-15 2008-02-28 Sony Corp Communication system and transmitting-receiving device
JP2008158595A (en) * 2006-12-20 2008-07-10 Sony Corp Information processor
JP2009044706A (en) * 2007-07-19 2009-02-26 Sony Corp Transmission device, power supply switching method of transmission device, reception device, and power supplying method of reception device
JP2010117789A (en) * 2008-11-11 2010-05-27 Sharp Corp Electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048136A (en) * 2006-08-15 2008-02-28 Sony Corp Communication system and transmitting-receiving device
JP2008158595A (en) * 2006-12-20 2008-07-10 Sony Corp Information processor
JP2009044706A (en) * 2007-07-19 2009-02-26 Sony Corp Transmission device, power supply switching method of transmission device, reception device, and power supplying method of reception device
JP2010117789A (en) * 2008-11-11 2010-05-27 Sharp Corp Electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074435A1 (en) 2016-10-20 2018-04-26 エイム電子株式会社 Hdmi optical cable and hdmi optical conversion apparatus
US10587341B2 (en) 2016-10-20 2020-03-10 Aim Electronics Co., Ltd. HDMI optical cable and HDMI optical conversion device
JP2020523832A (en) * 2017-06-05 2020-08-06 コムスコープ テクノロジーズ リミティド ライアビリティ カンパニー Rack controller with native support for intelligent patching equipment installed in multiple racks
US11567891B2 (en) 2017-06-05 2023-01-31 Commscope Technologies Llc Rack controller with native support for intelligent patching equipment installed in multiple racks

Also Published As

Publication number Publication date
JP5959692B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5750515B2 (en) Sink device and power supply method
US9270922B2 (en) Transmission system and relay device
KR101490895B1 (en) Discovery of electronic devices utilizing a control bus
EP2385517A1 (en) System and method for operating an electronic device having an HDMI port that is shared between an HDMI source function and an HDMI sink function of the electronic device
US9274992B2 (en) Cable with circuitry for communicating performance information
US20110068736A1 (en) Power charging of mobile devices
JP2009044706A (en) Transmission device, power supply switching method of transmission device, reception device, and power supplying method of reception device
US10963027B2 (en) Methods and apparatus for safe negotiation of high current for active cable assemblies
US20240040188A1 (en) Cable, method of controlling cable, connection device, electronic device, and method of controlling electronic device
WO2014049686A1 (en) Hdmi device, communication system, and hot-plug control method
JP4872408B2 (en) Video output device and video input device
JP4897073B2 (en) Power supply circuit
EP3531705B1 (en) Hdmi optical cable and hdmi optical conversion apparatus
JP5959692B2 (en) Sink device and power supply method
KR20130017335A (en) Sink device, source device and control method thereof
JP2012191283A (en) Repeating apparatus
JP2012109990A (en) Power supply circuit
WO2014061145A1 (en) Video device and electricity supply method
KR101236299B1 (en) A usb hub and hdmi adapter
JP5801458B2 (en) Transmission equipment
CN107113472B (en) Communication system and communication method
WO2015151779A1 (en) Electronic device and method for determining cable adaptability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160621

R150 Certificate of patent or registration of utility model

Ref document number: 5959692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250