JP2015156405A - Anisotropic bond magnet and manufacturing method thereof and a motor using the same - Google Patents
Anisotropic bond magnet and manufacturing method thereof and a motor using the same Download PDFInfo
- Publication number
- JP2015156405A JP2015156405A JP2012118178A JP2012118178A JP2015156405A JP 2015156405 A JP2015156405 A JP 2015156405A JP 2012118178 A JP2012118178 A JP 2012118178A JP 2012118178 A JP2012118178 A JP 2012118178A JP 2015156405 A JP2015156405 A JP 2015156405A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- molded body
- anisotropic
- bonded magnet
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、異方性ボンド磁石とその製造方法およびそれらを用いたモータに関する。 The present invention relates to an anisotropic bonded magnet, a manufacturing method thereof, and a motor using the same.
近年、モータの小型化・高性能化に対応するために、モータの固定子(ステータ)に装着される磁石の小型・高性能化が要望されている。それを実現するために、配向方向を制御した異方性ボンド磁石が用いられている。 In recent years, in order to cope with miniaturization and high performance of motors, there has been a demand for miniaturization and high performance of magnets attached to the stator (stator) of the motor. In order to realize this, an anisotropic bonded magnet having a controlled orientation direction is used.
一般に、モータの固定子に用いられる異方性ボンド磁石の配向方向は、配向磁場中で金型で成形し、極中心方向に磁界が集中するように制御されている。例えば、一軸方向の磁場中で磁場配向させた後、一軸方向に配向した異方性ボンド磁石を機械的に変形させて、所望の方向に配向させて異方性ボンド磁石を形成する方法がある。これにより、異方性ボンド磁石の配向方向を制御して、異方性ボンド磁石が発生する磁界を所望の強さに制御している。 In general, the orientation direction of an anisotropic bonded magnet used for a stator of a motor is controlled so that the magnetic field is concentrated in the direction of the pole center by molding with a mold in an orientation magnetic field. For example, there is a method of forming an anisotropic bonded magnet by orienting an anisotropic bonded magnet oriented in a uniaxial direction by mechanically deforming the anisotropic bonded magnet oriented in a uniaxial magnetic field and then orienting it in a desired direction. . Thereby, the orientation direction of the anisotropic bonded magnet is controlled, and the magnetic field generated by the anisotropic bonded magnet is controlled to a desired strength.
以下に、従来の機械的に変形させて形成される異方性ボンド磁石の製造方法について、図5(a)〜(e)を用いて説明する。図5(a)〜(e)は、従来の異方性ボンド磁石の製造方法の主なステップを説明する模式図である。なお、以下では、例えば10極からなるロータの1極分に相当する異方性ボンド磁石の製造方法を例に説明する。 Below, the manufacturing method of the conventional anisotropic bonded magnet formed by making it deform | transform mechanically is demonstrated using Fig.5 (a)-(e). 5A to 5E are schematic views for explaining main steps of a conventional method for manufacturing an anisotropic bonded magnet. In the following, a method for manufacturing an anisotropic bonded magnet corresponding to one pole of a rotor having 10 poles will be described as an example.
まず、従来の異方性ボンド磁石は、コの字形状のキャビティを有する金型を用いて、所定量で混合した薄片形状の磁粉24の配向方向を同一方向に揃えてコの字形状の成形体23に成形する。
First, a conventional anisotropic bonded magnet uses a mold having a U-shaped cavity to form a U-shaped shape by aligning the orientation directions of the flaky
つぎに、図5(a)に示すように、成形体23を、下金型22上の凸状円弧部22bの中央部近傍に載置し、上金型21の凹状円弧部21aを成形体23と対向して配置する。
Next, as shown in FIG. 5A, the molded
つぎに、図5(b)に示すように、上金型21と下金型22を上下方向から、変形荷重を加えて、成形体23を機械的に変形させる。このとき、成形体23のコの字形状の両端部は、下金型22の凸状円弧部22bに沿って変形する。こにより、図5(a)に示すコの字形状の成形体23では同一方向に配向している磁粉24は、変形によりコの字形状の両端部において、磁粉24の長軸が凸状円弧部22bの径方向に揃って配向する。一方、成形体23のコの字形状の中央部では、磁粉24の配向方向はほとんど変化せず、凸状円弧部22bの径方向に磁粉24の磁化容易軸が揃って形成される。
Next, as shown in FIG. 5B, a deformation load is applied to the
つぎに、図5(c)に示すように、さらにコの字形状の成形体23を、下金型22の凸状円弧部22bに沿って変形させる。
Next, as shown in FIG. 5C, the U-shaped molded
そして、図5(d)に示すように、所定の厚みまで、コの字形状の成形体23を機械的に変形することにより、図5(e)に示す円弧形状の磁石成形体25が形成される。
Then, as shown in FIG. 5D, the arc-shaped magnet molded
これにより、磁粉を一軸方向に磁場中で成形した後に、機械的に変形させて、磁粉の配向方向を制御して、異方性ボンド磁石が形成されている。 Thereby, after forming magnetic powder in a uniaxial direction in a magnetic field, it is mechanically deformed to control the orientation direction of the magnetic powder, thereby forming an anisotropic bonded magnet.
また、異方性磁石の配向方向を制御する別の方法としては、例えば径方向(ラジアル方向)に配向方向を固定して形成し、磁石厚さを変えて磁石形状により表面磁束を制御する方法がある(例えば、特許文献1、特許文献2、特許文献3参照)。
Another method for controlling the orientation direction of the anisotropic magnet is, for example, a method in which the orientation direction is fixed in the radial direction (radial direction) and the surface magnetic flux is controlled by changing the magnet thickness to change the magnet shape. (For example, refer to Patent Document 1,
まず、特許文献1の従来の異方性ボンド磁石では、径方向(ラジアル方向)に配向を有するラジアル異方性の筒状磁石が開示されている。そして、磁石が形成する磁界は、電機子(ロータ)と対向する側の磁石の形状を波型にして、隣接する磁極面の厚みを薄くすることにより、磁界を制御している。 First, the conventional anisotropic bonded magnet of Patent Document 1 discloses a radially anisotropic cylindrical magnet having an orientation in a radial direction (radial direction). The magnetic field formed by the magnet is controlled by making the shape of the magnet facing the armature (rotor) corrugated and reducing the thickness of the adjacent magnetic pole surface.
また、特許文献2の従来の異方性ボンド磁石では、フェライトもしくは軟磁性鉄を含む1次ボンド磁石成形体と、異方性希土類磁性体を含む2次ボンド磁石磁性体を複合した複合ボンド磁石を開示している。そして、複合ボンド磁石の2次ボンド磁石磁性体層の厚みを、極間部と極部で異なる寸法にすることにより、表面磁束密度の分布波形を任意に制御している。ここで、2次ボンド磁石磁性体である異方性希土類磁性体の配向は、磁場中で成形する際に制御され、1次ボンド磁石成形体の厚みを含めて磁場配向されることにより、形成される。
Moreover, in the conventional anisotropic bonded magnet of
また、特許文献3の従来の異方性ボンド磁石は、固定子に対する面に配置する極異方性磁石を磁場中で一体成型した構成を開示している。そして、異方性ボンド磁石の磁極端部の肉厚を径方向の肉厚に対して規定して、磁束分布密度を正弦波分布に近づけることにより、コギングトルクなどの発生を防止している。 Moreover, the conventional anisotropic bond magnet of patent document 3 is disclosing the structure which integrally molded the polar anisotropic magnet arrange | positioned in the surface with respect to a stator in a magnetic field. And the thickness of the magnetic pole end part of an anisotropic bonded magnet is prescribed | regulated with respect to the thickness of radial direction, and generation | occurrence | production of cogging torque etc. is prevented by making magnetic flux distribution density close to sine wave distribution.
つまり、上記で説明したように、従来の異方性ボンド磁石は、異方性の方向を磁場中で一体成型する、または、磁石の肉厚を適正量に制御して、モータ特性の向上を図っている。 In other words, as described above, the conventional anisotropic bonded magnet is formed by integrally molding the direction of anisotropy in a magnetic field, or by controlling the magnet thickness to an appropriate amount to improve motor characteristics. I am trying.
しかしながら、従来の機械的な変形により配向方向を制御する薄片形状の磁粉を主成分とする異方性ボンド磁石を構成する磁石成形体は、薄片形状の磁粉の柔軟性が乏しいため、機械的に変形させにくいという課題がある。これは、磁粉の形状が薄片形状であるため、圧縮成型時に、磁粉が変形しにくいことに起因している。そのため、磁石成形体は、大きく機械的に変形させる部分(例えば、成形体のコの字形状の付け根など)で磁粉の変形が非連続に起こる。これにより、磁粉を再接合する時に、図5(e)に示すように、非連続な部分で磁粉24の配向方向25a1が乱れて不均一(特に、磁石成形体25の中央部25a)になる。その結果、極中心方向への磁力が低減し、磁気特性の低下や表面磁束密度波形の対称性が劣化するなどの問題があった。
However, the magnet compact that constitutes the anisotropic bonded magnet mainly composed of the flake-shaped magnetic powder whose orientation direction is controlled by mechanical deformation is not mechanically flexible because the flake-shaped magnetic powder is poor in flexibility. There is a problem that it is difficult to deform. This is due to the fact that the magnetic powder is difficult to deform during compression molding because the shape of the magnetic powder is a flake shape. For this reason, in the magnet molded body, the deformation of the magnetic powder occurs discontinuously at a portion that is largely mechanically deformed (for example, a U-shaped root of the molded body). Thereby, when re-joining the magnetic particles, as shown in FIG. 5E, the orientation direction 25a1 of the
本発明は、上記課題を解決するために、電機子の極中心方向に、配向方向を揃えた異方性ボンド磁石と、機械的に変形させる工程において配向方向を制御して成形する異方性ボンド磁石の製造方法およびそれを備えたモータの提供を目的とする。 In order to solve the above problems, the present invention provides an anisotropic bonded magnet in which the orientation direction is aligned in the pole center direction of the armature, and an anisotropy formed by controlling the orientation direction in the mechanical deformation process. An object of the present invention is to provide a method of manufacturing a bonded magnet and a motor including the same.
上記目的を達成するために、本発明の異方性ボンド磁石は、薄片形状の磁粉を主成分とする異方性磁石コンパウンドから成形した円弧形状の磁石成形体を備え、円弧形状の磁石成形体は、内径側に凹部を有し、凹部を境界に磁粉の配向方向が異なる構成を有する。 In order to achieve the above object, the anisotropic bonded magnet of the present invention comprises an arc-shaped magnet molded body formed from an anisotropic magnet compound mainly composed of a thin-piece magnetic powder, and the arc-shaped magnet molded body. Has a concave portion on the inner diameter side, and has a configuration in which the orientation direction of the magnetic particles is different with the concave portion as a boundary.
これにより、機械的に変形量の大きい部分の配向方向の乱れを抑制した異方性ボンド磁石を実現できる。その結果、極中心方向への磁力を向上できる。 Thereby, the anisotropic bonded magnet which suppressed the disorder of the orientation direction of the part with a large deformation amount mechanically is realizable. As a result, the magnetic force toward the pole center can be improved.
また、本発明の異方性ボンド磁石の製造方法は、薄片形状の異方性磁粉を混錬して異方性磁石コンパウンドを形成するステップと、異方性磁石コンパウンドを成形してコ字形状の成形体を形成するステップと、成形体を、円弧形状の凹部を有する上金型と、少なくとも一部に凸部を有する円弧形状の下金型との間に挟んで、円弧形状の磁石成形体を形成するステップと、磁石成形体を着磁するステップと、を含む。 In addition, the anisotropic bonded magnet manufacturing method of the present invention includes a step of kneading thin-shaped anisotropic magnetic powder to form an anisotropic magnet compound, and forming the anisotropic magnet compound to form a U-shape. Forming a molded body of the present invention, and sandwiching the molded body between an upper mold having an arc-shaped concave portion and an arc-shaped lower mold having a convex portion at least in part, thereby forming an arc-shaped magnet Forming a body and magnetizing the magnet compact.
これにより、磁石成形体を円弧形状に機械的に変形させる時に、磁石成形体の円弧形状の内径側に配向した磁粉の変形量(変位量)を最小限にして、配向方向の乱れを抑制できる。その結果、極中心方向とは異なった方向に磁粉が配向する領域を減少させて、ほぼ極中心方向に配向した異方性ボンド磁石を容易に作製できる。 As a result, when the magnet molded body is mechanically deformed into an arc shape, the deformation amount (displacement amount) of the magnetic powder oriented on the inner diameter side of the arc shape of the magnet molded body can be minimized, and disturbance in the orientation direction can be suppressed. . As a result, it is possible to easily produce an anisotropic bonded magnet oriented substantially in the polar center direction by reducing the region where the magnetic particles are oriented in a direction different from the polar center direction.
また、本発明のモータは、上記異方性ボンド磁石を有するロータと、ステータと、を備えて構成される。これにより、小型で、磁力の強い高性能なモータを実現できる。 Moreover, the motor of this invention is provided with the rotor which has the said anisotropic bonded magnet, and a stator. As a result, a small, high-performance motor with strong magnetic force can be realized.
本発明によれば、機械的な変形時に発生する磁粉の配向方向の乱れを抑制して、磁気特性の低下や表面磁束密度波形の対称性の低下を抑制した異方性ボンド磁石とその製造方法およびそれを備えたモータを実現できる。 According to the present invention, an anisotropic bonded magnet that suppresses disturbance in the orientation direction of magnetic particles generated during mechanical deformation, and suppresses deterioration in magnetic properties and symmetry in the surface magnetic flux density waveform, and a method for manufacturing the same And a motor equipped with the same.
以下、本発明の実施の形態の異方性ボンド磁石とその製造方法およびそれを備えたモータについて、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, an anisotropic bonded magnet according to an embodiment of the present invention, a manufacturing method thereof, and a motor including the same will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.
(実施の形態)
以下に、本発明の実施の形態における異方性ボンド磁石の構成について説明する。
(Embodiment)
Below, the structure of the anisotropic bonded magnet in embodiment of this invention is demonstrated.
図1(a)は、本発明の実施の形態における異方性ボンド磁石の構造を説明する断面図である。図1(b)は、同実施の形態の異方性ボンド磁石を構成する磁粉の構造を説明する図である。なお、本実施の形態では、例えば10極からなるロータの1極分に相当する円弧形状の異方性ボンド磁石を例に説明する。なお、以下では、異方性ボンド磁石を磁石成形体と称して説明する場合がある。 Fig.1 (a) is sectional drawing explaining the structure of the anisotropic bonded magnet in embodiment of this invention. FIG.1 (b) is a figure explaining the structure of the magnetic powder which comprises the anisotropic bonded magnet of the embodiment. In this embodiment, for example, an arc-shaped anisotropic bonded magnet corresponding to one pole of a rotor having 10 poles will be described as an example. In the following description, the anisotropic bonded magnet may be referred to as a magnet molded body.
図1(a)に示すように、本実施の形態の異方性ボンド磁石15は、内径15a側に、例えば少なくとも2つの、断面が半円形状の凹部16が形成された円弧形状を有し、複数の磁粉14を内包して構成されている。また、図1(b)に示すように、磁粉14は、例えば薄片形状のNdFeB粒子などからなり、磁粉14の長軸14aに対して鉛直方向に磁化容易軸Bを有している。そして、凹部16は、異方性ボンド磁石15の径方向の肉厚に対して、例えば0.01%から40%の範囲で設けられている。
As shown in FIG. 1A, the anisotropic bonded
このとき、本実施の形態の異方性ボンド磁石15は、凹部16を境界として、磁粉14が、例えば配向方向が異なる3つの領域17a、17b、17cを有して形成されている。凹部16間に相当する領域17aは、磁粉14の磁化容易軸Bが、異方性ボンド磁石15の半径方向(極中心方向)に形成されるように、図1(a)に示す配向方向17a1に沿って、磁粉14の配向方向が揃えられている。領域17bでは、領域17bの端部から領域17aに向かって、図1(a)に示す配向方向17b1に沿って磁粉14の磁化容易軸Bが揃えられている。同様に、領域17cでは、領域17cの端部から領域17aに向かって、図1(a)に示す配向方向17c1に沿って磁粉14の磁化容易軸Bが揃えられている。
At this time, the anisotropic bonded
これにより、機械的な変形量の大きい部分の配向方向の乱れが抑制され、極中心方向への磁力が向上させている。 Thereby, the disorder of the orientation direction of the part with a large mechanical deformation amount is suppressed, and the magnetic force toward the pole center direction is improved.
本実施の形態によれば、機械的な変形量の大きい部分の配向方向の乱れを、凹部16により抑制し、極中心方向への磁力が向上した異方性ボンド磁石を実現できる。
According to the present embodiment, it is possible to realize an anisotropic bonded magnet in which a disturbance in the orientation direction of a portion with a large mechanical deformation amount is suppressed by the
なお、本実施の形態では、磁粉14として、NdFeB粒子を例に説明したが、これに限られない。例えば、NdFeB材料と微粒子状のSmFeN材料を混合した複合体を用いてもよい。このとき、一般に、NdFeB材料には、例えば平均粒子径(長軸)が100μm程度で、厚み(磁化容易軸方向)が20μmから40μmからなる薄片形状の磁粉14が用いられる。
In the present embodiment, NdFeB particles are described as an example of the
以下に、本発明の実施の形態における異方性ボンド磁石の製造方法の一例について、図2と図3(a)〜(d)を用いて説明する。 Below, an example of the manufacturing method of the anisotropic bonded magnet in embodiment of this invention is demonstrated using FIG. 2 and FIG. 3 (a)-(d).
図2は、同実施の形態における異方性ボンド磁石の製造方法を説明するフローチャートである。 FIG. 2 is a flowchart for explaining a method of manufacturing an anisotropic bonded magnet in the same embodiment.
図2に示すように、はじめに、異方性ボンド磁石コンパウンドを、以下の方法により形成する(ステップS10)。 As shown in FIG. 2, first, an anisotropic bonded magnet compound is formed by the following method (step S10).
まず、異方化されたNdFeB磁粉と、アセトンに溶解した、例えば軟化温度が80℃のノボラック型エポキシ樹脂とをニーダで十分に混合する。その後、アセトンを気化・蒸発させて、NdFeB磁粉の表面にエポキシ樹脂の皮膜を形成する。 First, the anisotropic NdFeB magnetic powder and a novolac type epoxy resin having a softening temperature of 80 ° C. dissolved in acetone are sufficiently mixed with a kneader. Thereafter, acetone is vaporized and evaporated to form an epoxy resin film on the surface of the NdFeB magnetic powder.
同様に、SmFeN微粉末と、アセトンに溶解した、例えば軟化温度が80℃のノボラック型エポキシ樹脂とをニーダで混合する。その後、アセトンを気化・蒸発させて、SmFeN微粉末の表面にエポキシ樹脂の皮膜を形成する。 Similarly, SmFeN fine powder and a novolak type epoxy resin having a softening temperature of 80 ° C. dissolved in acetone are mixed with a kneader. Thereafter, acetone is vaporized and evaporated to form an epoxy resin film on the surface of the SmFeN fine powder.
そして、エポキシ樹脂で被覆された、NdFeB磁粉およびSmFeN微粉末と、柔軟性と接着性を付与させるためのポリアミド樹脂と潤滑剤とを、ミキサーなどで混合して混合物を作製する。このとき、NdFeB磁粉とSmFeN微粒子の混合比率は、3:2とした。また、エポキシ樹脂の樹脂量は、全体に対する重量比(wt%)で1.1wt%で、他の樹脂の量としてポリアミド樹脂と潤滑剤の樹脂量は、合わせて重量比(wt%)で2.8wt%である。 Then, NdFeB magnetic powder and SmFeN fine powder coated with epoxy resin, polyamide resin for imparting flexibility and adhesiveness, and lubricant are mixed with a mixer or the like to prepare a mixture. At this time, the mixing ratio of the NdFeB magnetic powder and the SmFeN fine particles was 3: 2. Further, the resin amount of the epoxy resin is 1.1 wt% in terms of the weight ratio (wt%) with respect to the whole, and the amount of the polyamide resin and the lubricant as the amount of other resins is 2 in weight ratio (wt%) in total. 0.8 wt%.
なお、上記混合比率や重量比などは、上記値に限定されるものではなく、要求される特性に応じて、変更できることはいうまでもない。 Needless to say, the mixing ratio, weight ratio, and the like are not limited to the above values, and can be changed according to required characteristics.
そして、上記混合物を、例えば混錬装置である、加熱したロールの隙間に連続的に投入し混錬して混錬物を作製する。これにより、ポリアミド樹脂が軟化して、混合物に練りこまれる。このとき、ポリアミド樹脂が溶融する温度までロールを加熱する必要がないので、混錬時のロールの温度を、例えば140℃に加熱する。なお、混錬装置としては、上記ロールによる方法のほかに、エクストルーダなどを用いることができる。 Then, the mixture is continuously charged into a gap between heated rolls, which is a kneading apparatus, for example, and kneaded to produce a kneaded product. Thereby, the polyamide resin is softened and kneaded into the mixture. At this time, since it is not necessary to heat the roll to a temperature at which the polyamide resin melts, the roll temperature during kneading is heated to, for example, 140 ° C. In addition, as a kneading apparatus, an extruder etc. can be used besides the method by the said roll.
そして、上記磁粉材料とポリアミド樹脂を混錬した混錬物を、室温まで冷却した後、粉砕もしくは解砕して、例えば粒度350μm以下の顆粒状粉末に調整する。このとき、硬化開始温度が170℃の、例えばイミダゾール系の微粉末状の硬化剤を、顆粒状粉末に添加・混合して、異方性ボンド磁石コンパウンドを作製する。 Then, the kneaded material obtained by kneading the magnetic powder material and the polyamide resin is cooled to room temperature, and then pulverized or crushed to prepare, for example, a granular powder having a particle size of 350 μm or less. At this time, for example, an imidazole fine powder curing agent having a curing start temperature of 170 ° C. is added to and mixed with the granular powder to prepare an anisotropic bonded magnet compound.
つぎに、図2に示すように、上記異方性ボンド磁石コンパウンドを用いて、以下の方法により成形体を形成する(ステップS20)。 Next, as shown in FIG. 2, a molded body is formed by the following method using the anisotropic bonded magnet compound (step S20).
まず、例えばコの字形状のキャビティを有する金型を準備する。上記異方性ボンド磁石コンパウンドを金型のキャビティ内に充填する。 First, for example, a mold having a U-shaped cavity is prepared. The anisotropic bonded magnet compound is filled in the cavity of the mold.
そして、異方性ボンド磁石コンパウンドを充填した金型を、充填した異方性ボンド磁石コンパウンドの磁粉を任意の方向に配向させる磁場を発生させる磁場発生装置の磁極間に配置する。その後、異方性ボンド磁石コンパウンドの磁粉を、所定の方向に配向させるために磁場発生装置の磁極間に磁界を発生させる。 And the metal mold | die filled with the anisotropic bond magnet compound is arrange | positioned between the magnetic poles of the magnetic field generator which generate | occur | produces the magnetic field which orientates the magnetic powder of the filled anisotropic bond magnet compound in arbitrary directions. Thereafter, a magnetic field is generated between the magnetic poles of the magnetic field generator to orient the magnetic particles of the anisotropic bonded magnet compound in a predetermined direction.
そして、配向磁界を金型に充填された異方性ボンド磁石コンパウンドの磁粉に加えた状態で、例えば両側パンチを用いて圧縮成型を行う。これにより、異方性ボンド磁石コンパウンドの磁粉の配向方向が一定の方向に揃った(例えば、図3(a)参照)、コの字形状の成形体が形成される。このとき、圧縮成型は、例えば金型の温度160℃、成形圧力150MPa、配向磁場1.3MA/m、成形時間は30秒の条件で行う。また、磁場配向成形は、例えば直交磁場成形で行う。なお、例えばΦ50mmで10極構成のロータを作製する場合、コの字形状の成形体として、幅14mm、高さ13mmの形状で形成される。しかし、ロータの大きさや極数に応じて、コの字形状の成形体の寸法が変化することはいうまでもない。 Then, compression molding is performed using, for example, a double-sided punch in a state where an orientation magnetic field is added to the magnetic powder of the anisotropic bonded magnet compound filled in the mold. As a result, a U-shaped molded body in which the orientation direction of the magnetic particles of the anisotropic bonded magnet compound is aligned in a certain direction (see, for example, FIG. 3A) is formed. At this time, the compression molding is performed, for example, under the conditions of a mold temperature of 160 ° C., a molding pressure of 150 MPa, an orientation magnetic field of 1.3 MA / m, and a molding time of 30 seconds. The magnetic field orientation molding is performed by, for example, orthogonal magnetic field molding. For example, when a rotor having a 10-pole configuration with Φ50 mm is formed, a U-shaped molded body is formed in a shape having a width of 14 mm and a height of 13 mm. However, it goes without saying that the dimensions of the U-shaped molded body change according to the size and the number of poles of the rotor.
そして、圧縮成型後、上記状態で、例えば交番磁界を印加して磁界強度を徐々に減衰させる脱磁方法で、少なくとも金型の脱磁を行う。これは、以後のステップで、磁粉の金型への付着を防止するためである。なお、脱磁は、交番磁界の印加のほかに、圧縮成型時とは逆方向に直流磁界を印加することにより行ってもよい。 Then, after compression molding, at least the mold is demagnetized in the above state by, for example, a demagnetizing method in which an alternating magnetic field is applied to gradually attenuate the magnetic field strength. This is for preventing adhesion of the magnetic powder to the mold in the subsequent steps. Note that demagnetization may be performed by applying a DC magnetic field in the opposite direction to that during compression molding, in addition to applying an alternating magnetic field.
つぎに、図2に示すように、上記成形体を用いて、以下の方法により磁石成形体を形成する(ステップS30)。ここで、磁石成形体の詳細な形成方法は、図3(a)〜(d)を用いて説明する。図3(a)〜(d)は、同実施の形態の異方性ボンド磁石の製造方法の主なステップを説明する模式図である。 Next, as shown in FIG. 2, a magnet molded body is formed by the following method using the molded body (step S30). Here, the detailed formation method of a magnet molded object is demonstrated using Fig.3 (a)-(d). 3A to 3D are schematic views for explaining main steps of the anisotropic bonded magnet manufacturing method according to the embodiment.
まず、コの字形状の成形体の未硬化体および、上金型11と下金型12と図示しないダイスの少なくとも3つの部品からなる変形金型を、恒温槽に置き、成形体中に含有されている硬化剤の硬化開始温度以下の、例えば160℃に加熱する。このとき、図3(a)に示すように、上金型11は、所望のロータの外径15b(図1参照)形状を形成する凹状円弧部11aを有している。下金型12は、所望のロータの内径15a(図1参照)形状を形成する凸状円弧部12bを有し、凸状円弧部12b上には、所定の間隔で、少なくとも2つの、例えば半円形状の凸部12aが設けられている。なお、コの字形状の成形体を磁場中で変形させないので、上金型11や下金型12の材質は、非磁性材料で形成する必要はなく、例えばS45Cの焼入れ品や、例えば炭化タングステン(WC)などの超硬材料を用いることが好ましい。また、凸部12aの形状は、凸状円弧部12bの曲率より大きい形状であれば任意である。また、凸部12aの高さは、以下で述べる異方性ボンド磁石15の径方向の肉厚に対して、例えば0.01%から40%の範囲で設けられている。具体的には、異方性ボンド磁石15の肉厚が1.5mmの場合、凸部12aの高さは10μm(0.6%程度)以上で500μm(35%程度)で、好ましくは50μm以上で150μmである。また、凸部12aの周方向の幅は、50μmから1500μm程度で、好ましくは500μm以上で1000μmである。
First, an uncured body of a U-shaped molded body and a deformed mold composed of at least three parts of an
そして、図3(a)に示すように、160℃に保持した成形体20を、下金型12上の中央部近傍で、成形体20のコの字形状の両端部が凸部12aを内包するように配置して載置する。その後、上金型11の凹状円弧部11aを成形体20と対向して配置する。このとき、コの字形状の成形体20を、下金型12の中央部近傍に配置するために、例えば位置決め用の冶具を用いて配置することが好ましい。
Then, as shown in FIG. 3A, the molded
そして、図3(b)に示すように、上金型11と下金型12を上下方向から、例えば変形時間30秒で、変形荷重20MPaを加えて、成形体20を機械的に変形させる。このとき、成形体20のコの字形状の両端部は、下金型12の凸状円弧部12bに沿って変形する。これにより、図3(a)に示すコの字形状の成形体20では同一方向(鉛直方向)に磁化容易軸が配向している磁粉14は、変形によりコの字形状の両端部において、磁粉14の長軸が凸状円弧部12bの径方向に揃って配向する。一方、成形体20のコの字形状の中央部では、磁粉14の配向方向がほとんど変形せず、凸状円弧部12bの径方向に磁粉14の磁化容易軸が揃って形成される。
Then, as shown in FIG. 3B, the molded
そして、図3(c)に示すように、さらにコの字形状の成形体20を変形すると、下金型12の凸部12aにより、成形体20は、コの字形状の中央部の磁粉14の変形が制限されながら変形する。つまり、凸部12aにより、下金型12の凸状円弧部12bに沿って、磁粉14がランダムに変形することを防止して、成形体20のコの字形状の中央部の磁粉14の配向方向を均一にできる。
Then, as shown in FIG. 3C, when the U-shaped molded
そして、図3(d)に示すような、所定の厚みを有する円弧形状の磁石成形体15が形成される。ここで、磁石成形体の厚さ(肉厚)は、例えば1.5mmになるように、上金型11と下金型12との加圧後の位置を規制することにより設定される。このとき、磁石成形体15には、下金型12の凸部12aが転写されて、図1(a)で示す凹部16を有する円弧形状の磁石成形体15が形成される。なお、図3(d)では、図示していないが、円弧形状の磁石成形体15のテーパ状の側面を形成する冶具が設けられていることは、いうまでもない。
Then, an arc-shaped magnet molded
そして、磁石成形体15に混合された硬化剤の硬化温度以上の温度で加熱することにより、磁石成形体15を硬化する。
Then, the magnet molded
つぎに、図2に示すように、上記磁石成形体15を、以下の方法により着磁して異方性ボンド磁石を形成する(ステップS40)。なお、磁石成形体15の着磁は、磁石成形体15単独で行ってもよいが、通常、複数の磁石成形体15を、例えばロータコアに接着して着磁が行われる。そこで、以下では、磁石成形体15をロータ形状に形成した後に、着磁する場合を例に説明する。
Next, as shown in FIG. 2, the magnet molded
まず、上記の方法で形成された、例えば10極中の1極分に相当する円弧形状の磁石成形体15を10個、例えば電磁鋼板を積層して形成されたロータコアに接着してロータを形成する。このとき、磁石成形体15の凹部16を、ロータ形成時の位置決めに利用してもよい。これにより、極中心方向と対向した位置に、精度よく磁石成形体15を配置することができる。
First, a rotor is formed by adhering 10 arc-shaped magnet molded
そして、ロータを、所定の方向に着磁できる専用の着磁ヨークに装着して、着磁する。このとき、着磁ヨークは、各円弧形状の磁石成形体15の磁粉の配向方向に、ほぼ着磁方向を合わせ、十分な着磁量が得られるよう設計して作製されている。なお、円弧形状の磁石成形体15は、配向方向に磁化容易軸を有しているので、必ずしも、着磁ヨークの着磁方向と円弧形状の磁石成形体15の磁粉の配向方向を一致させなくともよい。
Then, the rotor is attached to a dedicated magnetizing yoke that can be magnetized in a predetermined direction and magnetized. At this time, the magnetizing yoke is designed and manufactured so that a sufficient magnetization amount can be obtained by substantially aligning the magnetizing direction with the orientation direction of the magnetic powder of each arc-shaped magnet molded
上記本実施の形態の製造方法により、図4に示す所定の配向方向に着磁されたロータ(ロータコアは図示せず)が作製される。ここで、図4は、同実施の形態の異方性ボンド磁石を用いて作製したロータの構成を説明する平面図である。 By the manufacturing method of the present embodiment, a rotor (rotor core not shown) magnetized in a predetermined orientation shown in FIG. 4 is produced. Here, FIG. 4 is a plan view illustrating a configuration of a rotor manufactured using the anisotropic bonded magnet of the same embodiment.
また、上記により得られた異方性ボンド磁石で構成されたロータと、ステータと組み合わせてモータを作製できる。 Moreover, a motor can be produced by combining a rotor composed of the anisotropic bonded magnet obtained as described above and a stator.
以上で説明したように、本実施の形態によれば、機械的な変形量の大きい部分の磁粉14の配向方向の乱れを、凹部16により抑制し、極中心方向への磁力が向上した異方性ボンド磁石を容易に作製できる。
As described above, according to the present embodiment, the disorder in which the orientation direction of the
また、本実施の形態によれば、磁石成形体15の凹部16を、ロータ形成時の位置決めに利用することが可能である。異方性磁石の配向方向に合わせて専用に設計された着磁ヨークの極中心位置に対して、精度よく磁石成形体15を配置してロータを作製することができる。
Moreover, according to this Embodiment, it is possible to utilize the recessed
また、本実施の形態によれば、極中心方向への磁力が向上した異方性ボンド磁石を用いることにより、小型で、磁力の強い高性能なモータを実現できる。 In addition, according to the present embodiment, by using an anisotropic bonded magnet whose magnetic force in the direction of the pole center is improved, a small and high-performance motor with strong magnetic force can be realized.
なお、本実施の形態では、下金型の凸部の断面形状が、半円形状を例に説明したが、これに限られない。例えば、断面形状が台形形状、三角形状などの多角形や、卵形状でもよい。つまり、成形体を機械的に変形させる時に、コの字形状の成形体の中央部の磁粉の配向方向を乱さないように変形できる形状であれば、任意である。このとき、異方性ボンド磁石の内径側に形成される凹部16の形状も、下金型の凸部の形状に応じて形成されることはいうまでもない。
In the present embodiment, the cross-sectional shape of the convex portion of the lower mold is described as an example of a semicircular shape, but the present invention is not limited to this. For example, the cross-sectional shape may be a trapezoidal shape, a polygonal shape such as a triangular shape, or an egg shape. That is, any shape can be used as long as it can be deformed so as not to disturb the orientation direction of the magnetic powder at the center of the U-shaped shaped body when the shaped body is mechanically deformed. At this time, it goes without saying that the shape of the
また、本実施の形態では、コの字形状の成形体を例に説明したが、これに限られない。例えば、成形体の両端部が、ハの字形状に開いた形状でも、R状の曲線であってもよい。 In the present embodiment, a U-shaped molded body has been described as an example, but the present invention is not limited thereto. For example, both ends of the molded body may be a shape that opens in a square shape or an R-shaped curve.
また、本実施の形態では、具体的な数値を例に説明したが、示した数値に限定されず、形成する異方性ボンド磁石の形状、組成、特性などに応じて、好ましい条件の値で行われることはいうまでもない。特に、成形体を機械的に変形させる際の荷重の範囲は、例えば5〜40Mpaで、変形時の温度や磁石材料に含まれる樹脂量により、条件にあった荷重に調整することが好ましい。 In the present embodiment, specific numerical values have been described as examples. However, the present invention is not limited to the numerical values shown, and values of preferable conditions are set according to the shape, composition, characteristics, etc. of the anisotropic bonded magnet to be formed. It goes without saying that it is done. In particular, the range of the load when the molded body is mechanically deformed is, for example, 5 to 40 MPa, and it is preferable to adjust the load according to the conditions depending on the temperature at the time of deformation and the amount of resin contained in the magnet material.
また、本実施の形態では、磁石成形体を形成した後に、硬化剤が硬化する例で説明したがこれに限られない。例えば、ロータ形状に形成した後に、硬化させてもよい。 Moreover, although this Embodiment demonstrated by the example in which a hardening | curing agent hardens | cures after forming a magnet molded object, it is not restricted to this. For example, you may make it harden | cure after forming in a rotor shape.
以下、本発明の実施例について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を変更しない限りにおいて、用いる材料などを変更して実施することが可能である。 Examples of the present invention will be described below. In addition, this invention is not limited to a following example, Unless it changes the summary of this invention, it can change and use the material etc. to be used.
(実施例)
(1)異方性ボンド磁石コンパウンドの作製
まず、実施の形態で説明したように、異方化されたNdFeB磁粉とSmFeN微粉末とを、アセトンに溶解した、例えば軟化温度が80℃のノボラック型エポキシ樹脂とをニーダで十分に混合する。その後、アセトンを気化・蒸発させて、NdFeB磁粉とSmFeN微粉末の表面にエポキシ樹脂の皮膜を形成した。
(Example)
(1) Production of anisotropic bonded magnet compound First, as described in the embodiment, an anisotropic NdFeB magnetic powder and SmFeN fine powder are dissolved in acetone, for example, a novolac type having a softening temperature of 80 ° C. Thoroughly mix the epoxy resin with a kneader. Thereafter, acetone was vaporized and evaporated to form an epoxy resin film on the surfaces of the NdFeB magnetic powder and the SmFeN fine powder.
そして、NdFeB磁粉およびSmFeN微粉末と、柔軟性と接着性を付与させるためのポリアミド樹脂と潤滑剤とを、ミキサーなどで混合して混合物を作製した。このとき、NdFeB磁粉とSmFeN微粒子の混合比率は、3:2とした。また、エポキシ樹脂の樹脂量は、全重量に対する重量比(wt%)で1.1wt%で、ポリアミド樹脂と潤滑剤の樹脂量は、合わせて重量比(wt%)で2.8wt%である。 Then, NdFeB magnetic powder and SmFeN fine powder, a polyamide resin for imparting flexibility and adhesiveness, and a lubricant were mixed with a mixer or the like to prepare a mixture. At this time, the mixing ratio of the NdFeB magnetic powder and the SmFeN fine particles was 3: 2. The resin amount of the epoxy resin is 1.1 wt% in terms of the weight ratio (wt%) with respect to the total weight, and the resin amount of the polyamide resin and the lubricant is 2.8 wt% in terms of the weight ratio (wt%). .
上記混合物を、例えば140℃に加熱したロールの隙間に連続的に投入し混錬して混錬物を作製した。これにより、ポリアミド樹脂が軟化して、混合物に練りこんだ。 The above mixture was continuously put into a gap between rolls heated to 140 ° C., for example, and kneaded to prepare a kneaded product. This softened the polyamide resin and kneaded it into the mixture.
上記混錬物を、室温まで冷却した後、粉砕もしくは解砕して、例えば粒度350μm以下の顆粒状粉末に調整した。このとき、硬化開始温度が170℃のイミダゾール系の微粉末状の硬化剤を、顆粒状粉末に添加・混合して、異方性ボンド磁石コンパウンドを作製した。 The kneaded product was cooled to room temperature and then pulverized or crushed to prepare, for example, a granular powder having a particle size of 350 μm or less. At this time, an imidazole fine powdery curing agent having a curing start temperature of 170 ° C. was added to and mixed with the granular powder to prepare an anisotropic bonded magnet compound.
(2)成形体の作製
つぎに、異方性ボンド磁石コンパウンドを用いて、成形体を形成した。
(2) Production of molded body Next, a molded body was formed using an anisotropic bonded magnet compound.
まず、例えばコの字形状のキャビティを有する金型に異方性ボンド磁石コンパウンドを充填した。 First, for example, a die having a U-shaped cavity was filled with an anisotropic bonded magnet compound.
そして、異方性ボンド磁石コンパウンドを充填した金型を、磁場発生装置の磁極間に配置して、磁場を印加することにより、異方性ボンド磁石コンパウンドの磁粉を、所定の方向に配向させた。 A mold filled with the anisotropic bonded magnet compound is arranged between the magnetic poles of the magnetic field generator, and the magnetic powder of the anisotropic bonded magnet compound is oriented in a predetermined direction by applying a magnetic field. .
そして、配向磁界を金型に充填された異方性ボンド磁石コンパウンドの磁粉に加えた状態で、例えば両側パンチを用いて圧縮成型を行い、幅14mm、高さ13mmのコの字形状の成形体を形成した。このとき、圧縮成型は、例えば金型の温度160℃、成形圧力150MPa、配向磁場1.3MA/m、成形時間は30秒の条件で行った。 Then, with the orientation magnetic field applied to the magnetic powder of the anisotropic bonded magnet compound filled in the mold, for example, compression molding is performed using a both-side punch, and a U-shaped molded body having a width of 14 mm and a height of 13 mm. Formed. At this time, the compression molding was performed, for example, under the conditions of a mold temperature of 160 ° C., a molding pressure of 150 MPa, an orientation magnetic field of 1.3 MA / m, and a molding time of 30 seconds.
(3)磁石成形体の作製
つぎに、上記成形体を用いて、磁石成形体を作製した。
(3) Production of Magnet Molded Body Next, a magnet molded body was produced using the above molded body.
まず、コの字形状の磁石成形体の未硬化体および上金型11と下金型12と図示しないダイスの少なくとも3つの部品からなる変形金型を、160℃の恒温槽に放置して加熱した。
First, an uncured body of a U-shaped magnet molded body and a deformed mold comprising at least three parts of an
そして、160℃に保持した磁石成形体を下金型上の中央部に配置し、上金型を配置し、下金型と上金型を上下から、変形時間30秒で変形荷重20MPaを加えて磁石成形体を変形させ、磁石成形体の厚さが1.5mmになるように変形させた。このとき、変形前のコの字形状の成形体は、縦13mm、横14mmの大きさであった。これは、変形後の大きさが、ロータの外径がΦ50mmで10極中の1極分に相当する大きさである。 Then, the magnet molded body maintained at 160 ° C. is arranged at the center part on the lower mold, the upper mold is arranged, and the lower mold and the upper mold are applied from above and below with a deformation load of 20 MPa in a deformation time of 30 seconds. The magnet molded body was deformed so that the thickness of the magnet molded body was 1.5 mm. At this time, the U-shaped molded body before deformation was 13 mm long and 14 mm wide. This is a size corresponding to one pole out of 10 poles when the outer diameter of the rotor is Φ50 mm.
そして、変形後の円弧形状の10極分の磁石成形体を、ロータコアに接着してロータを作製した。 Then, the deformed arc-shaped magnet molded body for 10 poles was bonded to the rotor core to produce a rotor.
(4)ロータの着磁
上記で作製したロータを、所定の方向に着磁できる専用の着磁ヨークに装着して、着磁した。この時の着磁条件は、例えば着磁電流で10kAとした。
(4) Magnetization of rotor The rotor produced as described above was attached to a dedicated magnetizing yoke that can be magnetized in a predetermined direction, and magnetized. The magnetization condition at this time was set to 10 kA, for example, as a magnetization current.
(5)特性比較
上記で作製された磁石成形体の単体でフラックス値を、従来の成形体と比較した。その結果、本実施の形態で作製した磁石成形体は、従来の成形体のフラックス値に対して、4〜5%向上することがわかった。
(5) Characteristic comparison The flux value was compared with the conventional molded object with the single magnet molded object produced above. As a result, it was found that the magnet molded body produced in the present embodiment was improved by 4 to 5% with respect to the flux value of the conventional molded body.
本発明の磁石成形体を用いてロータを作製し、着磁後の表面磁束密度波形を、従来のロータと比較した。その結果、表面磁束密度波形のピーク値が3%程度の向上することがわかった。 A rotor was produced using the magnet compact of the present invention, and the surface magnetic flux density waveform after magnetization was compared with that of a conventional rotor. As a result, it was found that the peak value of the surface magnetic flux density waveform was improved by about 3%.
また、モータ特性を評価した結果、従来のモータに比べて、誘起電圧波形の歪率が改善し、表面磁束密度波形の対称性も改善することがわかった。 As a result of evaluating the motor characteristics, it was found that the distortion rate of the induced voltage waveform was improved and the symmetry of the surface magnetic flux density waveform was improved as compared with the conventional motor.
上記実施例を用いて説明したように、形成時に金型に凸部を設けて本発明の異方性ボンド磁石を形成することにより、磁粉の配向方向の均一性を向上させ、磁石特性に優れた異方性ボンド磁石と、モータを実現できることが確認された。 As explained using the above examples, by forming a convex portion on the mold at the time of formation to form the anisotropic bonded magnet of the present invention, the uniformity of the magnetic powder orientation direction is improved and the magnet characteristics are excellent. It was confirmed that an anisotropic bonded magnet and a motor could be realized.
本発明の異方性ボンド磁石は、磁粉の容易軸方向を極中心部に集中して配向させることにより磁気特性や表面磁束密度波形の対称性を向上できる、そのため、振動や騒音を低減したモータなどの回転機の技術分野に有用である。 The anisotropic bonded magnet of the present invention can improve the symmetry of magnetic properties and surface magnetic flux density waveform by concentrating the orientation of the easy axis direction of the magnetic powder at the pole center, so that the motor with reduced vibration and noise This is useful in the technical field of rotating machines.
11,21 上金型
11a,21a 凹状円弧部
12,22 下金型
12a 凸部
12b,22b 凸状円弧部
14,24 磁粉
14a 長軸
15,25 磁石成形体(異方性ボンド磁石)
15a 内径
15b 外径
16 凹部
17a,17b,17c 領域
17a1,17b1,17c1,25a1 配向方向
20,23 成形体
25a 中央部
11, 21
15a Inner diameter
Claims (7)
前記円弧形状の磁石成形体は、内径側に凹部を有し、
前記凹部を境界に磁粉の配向方向が異なる異方性ボンド磁石。 An arc-shaped magnet molded body formed from an anisotropic magnet compound mainly composed of flake-shaped magnetic powder,
The arc-shaped magnet molded body has a recess on the inner diameter side,
An anisotropic bonded magnet in which the orientation direction of magnetic powder is different with the recess as a boundary.
前記異方性磁石コンパウンドを成形してコ字形状の成形体を形成するステップと、前記成形体を、凹状円弧部を有する上金型と、少なくとも一部に凸部が形成された凸状円弧部を有する下金型との間に挟んで、円弧形状の磁石成形体を形成するステップと、
前記磁石成形体を着磁するステップと、
を含む異方性ボンド磁石の製造方法。 Kneading the flaky magnetic powder to form an anisotropic magnet compound;
Forming the U-shaped molded body by molding the anisotropic magnet compound; and forming the molded body with an upper mold having a concave arc portion, and a convex arc formed with at least a convex portion. Sandwiching between a lower mold having a portion and forming an arc-shaped magnet molded body;
Magnetizing the magnet compact;
The manufacturing method of the anisotropic bonded magnet containing this.
ステータと、
を備えたモータ。 A rotor having the anisotropic bonded magnet according to claim 1;
A stator,
With motor.
ステータと、
を備えたモータ。 A rotor having an anisotropic bonded magnet formed by the manufacturing method according to any one of claims 2 to 5,
A stator,
With motor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012118178A JP2015156405A (en) | 2012-05-24 | 2012-05-24 | Anisotropic bond magnet and manufacturing method thereof and a motor using the same |
PCT/JP2013/003066 WO2013175730A1 (en) | 2012-05-24 | 2013-05-14 | Anisotropic bonded magnet, method for manufacturing same, and motor using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012118178A JP2015156405A (en) | 2012-05-24 | 2012-05-24 | Anisotropic bond magnet and manufacturing method thereof and a motor using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015156405A true JP2015156405A (en) | 2015-08-27 |
Family
ID=49623443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012118178A Pending JP2015156405A (en) | 2012-05-24 | 2012-05-24 | Anisotropic bond magnet and manufacturing method thereof and a motor using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015156405A (en) |
WO (1) | WO2013175730A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7557283B2 (en) | 2020-05-27 | 2024-09-27 | 株式会社ブリヂストン | Aircraft pneumatic radial tires |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016042531A (en) * | 2014-08-18 | 2016-03-31 | 日東電工株式会社 | Permanent magnet and manufacturing method thereof, and rotary electric machine and manufacturing method thereof |
TWI682409B (en) * | 2015-03-24 | 2020-01-11 | 日商日東電工股份有限公司 | Rare earth magnet and linear motor using the magnet |
TWI679658B (en) | 2015-03-24 | 2019-12-11 | 日商日東電工股份有限公司 | Rare earth permanent magnet and rotating machine with rare earth permanent magnet |
CN111276310A (en) * | 2015-03-24 | 2020-06-12 | 日东电工株式会社 | Sintered body for forming rare earth magnet and rare earth sintered magnet |
TWI751968B (en) | 2015-03-24 | 2022-01-11 | 日商日東電工股份有限公司 | Sintered body for forming rare earth permanent magnet and rotating electrical machine with rare earth permanent magnet |
US10867729B2 (en) | 2015-03-24 | 2020-12-15 | Nitto Denko Corporation | Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation |
TWI683007B (en) * | 2015-07-31 | 2020-01-21 | 日商日東電工股份有限公司 | Sintered body for forming rare earth magnet and rare earth sintered magnet |
JP6706487B2 (en) * | 2015-11-19 | 2020-06-10 | 日東電工株式会社 | Rotating electric machine equipped with a rotor having a rare earth permanent magnet |
CN110637349B (en) * | 2017-05-18 | 2022-12-06 | 株式会社村田制作所 | Method for manufacturing ferrite core fixing structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3884140B2 (en) * | 1997-09-22 | 2007-02-21 | インターメタリックス株式会社 | Powder compression molding equipment |
JP4265056B2 (en) * | 1999-11-12 | 2009-05-20 | パナソニック株式会社 | Recovery and reuse of magnetic powder from rare earth bonded magnets |
JP4888757B2 (en) * | 2005-10-14 | 2012-02-29 | Tdk株式会社 | Manufacturing method of magnet roll |
JP2008053332A (en) * | 2006-08-23 | 2008-03-06 | Bridgestone Corp | Double-color molded rubber sheet and method for manufacturing the same |
JP2008144207A (en) * | 2006-12-07 | 2008-06-26 | Kyushu Univ | Carbon nanotube composite and method for manufacturing the same |
-
2012
- 2012-05-24 JP JP2012118178A patent/JP2015156405A/en active Pending
-
2013
- 2013-05-14 WO PCT/JP2013/003066 patent/WO2013175730A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7557283B2 (en) | 2020-05-27 | 2024-09-27 | 株式会社ブリヂストン | Aircraft pneumatic radial tires |
Also Published As
Publication number | Publication date |
---|---|
WO2013175730A1 (en) | 2013-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013175730A1 (en) | Anisotropic bonded magnet, method for manufacturing same, and motor using same | |
US8039998B2 (en) | Rotor for motor and method for producing the same | |
JP2013247721A (en) | Anisotropic magnet rotor, manufacturing method thereof and motor using the same | |
US10186360B2 (en) | Arcuate magnet piece, permanent magnet piece, permanent magnet assembly, permanent magnet application device, and motor | |
WO2012105226A1 (en) | Method for manufacturing anisotropic bonded magnet, and motor | |
JP2007236113A (en) | Yoke integrated bond magnet and magnet rotor for motor therewith | |
US8371021B2 (en) | Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy | |
US10566859B2 (en) | Rotor | |
WO2006064589A1 (en) | Rotor for motor and manufacturing method of the same | |
WO2016043295A1 (en) | Magnetic core and method for manufacturing same | |
JP4525678B2 (en) | Manufacturing method of self-assembled rare earth-iron bond magnet and motor using the same | |
JP2005064448A (en) | Method of manufacturing laminated polar anisotropic hybrid magnet | |
JP4900775B2 (en) | Rotor for motor and manufacturing method thereof | |
KR100981218B1 (en) | Permanent magnet rotor and motor using the same | |
US9225212B2 (en) | Method of manufacturing bonded-magnet rotor | |
JP5766134B2 (en) | Shaft type linear motor mover, permanent magnet, linear motor | |
JP6384543B2 (en) | Polar anisotropic ring magnet and rotor using the same | |
TWI602204B (en) | A method for producing a cylindrical magnetic circuit | |
JP2017070031A (en) | Rotor | |
JP2006180677A (en) | Integrated skew magnetic rotor with core, and its manufacturing method | |
JP4300525B2 (en) | Magnetic pole face spherical bonded magnet and manufacturing method thereof | |
JP2015032805A (en) | Method of manufacturing anisotropic bond magnet | |
WO2024181326A1 (en) | Production method for field element | |
WO2012124283A1 (en) | Bonded magnet rotor, production method for same, and motor comprising said rotor | |
WO2021200517A1 (en) | Compressed bonded magnet, manufacturing method therefor, and field coil |