JP2015155810A - Adjustment method of physical quantity detection device - Google Patents
Adjustment method of physical quantity detection device Download PDFInfo
- Publication number
- JP2015155810A JP2015155810A JP2014030169A JP2014030169A JP2015155810A JP 2015155810 A JP2015155810 A JP 2015155810A JP 2014030169 A JP2014030169 A JP 2014030169A JP 2014030169 A JP2014030169 A JP 2014030169A JP 2015155810 A JP2015155810 A JP 2015155810A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- physical quantity
- quantity detection
- semiconductor substrate
- analog signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Volume Flow (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、物理量検出装置の調整方法に関する。 The present invention relates to a method for adjusting a physical quantity detection device.
内燃機関における燃焼制御では燃料供給制御と内燃機関の吸気流量の把握が必要であり、吸気流量の把握のために流量測定装置が設置されている。 Combustion control in an internal combustion engine requires fuel supply control and grasping the intake flow rate of the internal combustion engine, and a flow rate measuring device is installed for grasping the intake flow rate.
流量測定装置の背景技術として、吸気流路に設置した発熱抵抗体( ホットワイヤあるいは熱線などとも呼ばれる) と気体温度測定抵抗体( コールドワイヤあるいは冷線などとも呼ばれる) と2つの固定抵抗体によってブリッジ回路を構成し、前記発熱抵抗体の温度を常に一定に保ってブリッジ回路の抵抗バランスを維持するように給電制御する構成である。 As a background technology of the flow measurement device, it is bridged by a heating resistor (also called hot wire or hot wire) installed in the intake passage, a gas temperature measuring resistor (also called cold wire or cold wire) and two fixed resistors. A circuit is configured to control power feeding so that the temperature of the heating resistor is always kept constant and the resistance balance of the bridge circuit is maintained.
このように構成することにより、吸気流路内の吸気流量の増加に応じて前記発熱抵抗体の放熱量が増加し、前記発熱抵抗体の温度を一定に保つために前記発熱抵抗体に供給する電流が増加するので、前記発熱抵抗体と直列接続関係にある固定抵抗体に現れる電圧に基づいて電気的に空気流量を測定することができる。 With this configuration, the heat dissipation amount of the heating resistor increases as the intake flow rate in the intake flow path increases, and is supplied to the heating resistor in order to keep the temperature of the heating resistor constant. Since the current increases, the air flow rate can be measured electrically based on the voltage appearing on the fixed resistor in series connection with the heating resistor.
また、吸気流量の測定方法として、温度差を利用した方式もあり、吸気流路に流量検出素子を設置し、前記流量検出素子の発熱抵抗体の温度を所定の温度に制御し、吸気流により、前記発熱抵抗体の吸気流の流れ方向の上流側と下流側において温度差が生じる。前記温度差を感温抵抗体あるいは熱電対により検出し電気的に吸気流量を測定する方式がある。 In addition, as a method of measuring the intake flow rate, there is also a method using a temperature difference. A flow rate detection element is installed in the intake flow path, and the temperature of the heating resistor of the flow rate detection element is controlled to a predetermined temperature. A temperature difference occurs between the upstream side and the downstream side in the flow direction of the intake air flow of the heating resistor. There is a system in which the temperature difference is detected by a temperature sensitive resistor or a thermocouple and the intake air flow rate is electrically measured.
電気的に測定された吸気流量を要求される空気流量対出力信号特性となるように、所定の入出力特性をもった調整演算回路で処理することにより、前記調整演算回路から吸気流量と所定の関係にある吸気流量信号として出力することができる。更に、流量測定装置として半導体技術を利用して発熱抵抗体と感温抵抗体を形成することで高速応答を可能とした流量測定装置も利用されている。 By processing the intake flow rate measured electrically by an adjustment calculation circuit having a predetermined input / output characteristic so as to obtain a required air flow rate vs. output signal characteristic, the intake flow rate and the predetermined flow rate are determined from the adjustment calculation circuit. It can be output as a related intake flow rate signal. Furthermore, a flow rate measuring device that enables high-speed response by forming a heating resistor and a temperature sensitive resistor using semiconductor technology is also used as a flow rate measuring device.
流量測定装置の調整演算回路は、現在、デジタル信号処理回路化することにより高精度な調整を実現している。特許文献1には、デジタル信号処理回路を使用して調整を行う調整演算回路が記載されている。調整演算回路は、アナログ信号形態の流量信号をアナログ・デジタル変換回路によってデジタル信号形態に変換した後に、デジタル演算回路による計算処理によってゼロ点, スパン調整を行い、デジタル・アナログ変換回路によってアナログ信号形態の流量信号に変換して、所望の気体流量に対するアナログ信号形態の流量信号を出力する構成である。このデジタル演算回路において調整演算を実行するために必要な調整係数は、PROMなどの記憶装置に保存している。また、デジタル演算回路は、非線形な演算が容易であるために、出力の調整において、ゼロ点, スパン調整のみならず、非線形調整を容易に行うことが可能である。この非線形調整により、調整精度は± 2 % 以下となる。 The adjustment calculation circuit of the flow rate measuring device is currently made into a digital signal processing circuit, thereby realizing high-precision adjustment. Patent Document 1 describes an adjustment arithmetic circuit that performs adjustment using a digital signal processing circuit. The adjustment calculation circuit converts the flow signal in the analog signal form into a digital signal form by the analog-to-digital conversion circuit, then performs zero point and span adjustment by calculation processing by the digital operation circuit, and the analog-to-signal form by the digital-to-analog conversion circuit The flow rate signal in the form of an analog signal corresponding to the desired gas flow rate is output. The adjustment coefficient necessary for executing the adjustment operation in the digital operation circuit is stored in a storage device such as a PROM. In addition, since the digital arithmetic circuit is easy to perform non-linear calculations, not only zero point and span adjustment but also non-linear adjustment can be easily performed in the output adjustment. By this non-linear adjustment, the adjustment accuracy becomes ± 2% or less.
気体流量測定装置の出力特性は温度が変化しても誤差が小さい、すなわち、温度依存誤差が小さいことが望ましい。デジタル信号形態での調整方式において温度依存誤差を低減する補正として特許文献2がある。この公報には、デジタル信号形態での調整方式において、出力特性調整のための信号処理系と該信号処理系の温度依存誤差を補正する温度情報を得る温度センサ回路を1つの半導体チップに集積回路化して実装し、信号処理系において温度依存誤差を低減する補正演算を含めた調整演算を行って温度依存誤差の少ない流量信号出力特性調整について記載されている。 It is desirable that the output characteristics of the gas flow rate measuring device have a small error even when the temperature changes, that is, a temperature-dependent error is small. Japanese Patent Application Laid-Open No. H10-228688 discloses a correction for reducing a temperature-dependent error in an adjustment method in the form of a digital signal. In this publication, in an adjustment method in the form of a digital signal, a signal processing system for adjusting output characteristics and a temperature sensor circuit for obtaining temperature information for correcting a temperature dependent error of the signal processing system are integrated on one semiconductor chip. The flow signal output characteristic adjustment with a small temperature dependent error is described by performing an adjustment calculation including a correction calculation for reducing the temperature dependent error in the signal processing system.
次数の大きな温度特性を有するアナログ回路を高精度に温度補正を行うためには、温度を安定させた特性測定領域を多数必要としている。そのため、高精度に調整を行おうとすると製造タクトが長くなってしまい、量産性と計測精度との両立が困難である課題があった。特許文献1と特許文献2に記載の発明については、量産性と計測精度の両立について改良の余地が残されている。 In order to perform temperature correction with high accuracy for an analog circuit having a large-order temperature characteristic, a large number of characteristic measurement regions in which the temperature is stabilized are required. For this reason, if adjustment is performed with high accuracy, the manufacturing tact time becomes long, and there is a problem that it is difficult to achieve both mass productivity and measurement accuracy. About invention of patent document 1 and patent document 2, the room for improvement is left about coexistence of mass-productivity and measurement accuracy.
本発明の目的は、高精度な調整を可能としつつ製造タクトを低減可能な物理量検出装置を提供することである。 An object of the present invention is to provide a physical quantity detection device capable of reducing a manufacturing tact while enabling a highly accurate adjustment.
上記目的を達成するために、本発明の物理量検出装置は、半導体基板と、前記半導体基板上に設けられ、n次の多項式の温度特性を有するアナログ回路と、前記半導体基板上に設けられる温度センサと、前記アナログ回路のアナログ信号を校正する校正手段を有するデジタル調整回路と、半導体プロセスにより作成された物理量検出素子と、を備え、前記校正手段は、前記デジタル調整回路に保存されたn+1点以上の温度測定データに基づいて前記アナログ信号を調整し、前記測定データは、昇温速度が0[℃/s]よりも大きくかつ前記半導体基板の温度時定数よりも小さい測定領域を有する温度プロファイル条件下で測定されることを特徴とする。 In order to achieve the above object, a physical quantity detection device according to the present invention includes a semiconductor substrate, an analog circuit provided on the semiconductor substrate and having an nth-order polynomial temperature characteristic, and a temperature sensor provided on the semiconductor substrate. And a digital adjustment circuit having a calibration means for calibrating an analog signal of the analog circuit, and a physical quantity detection element created by a semiconductor process, wherein the calibration means is at least n + 1 points stored in the digital adjustment circuit The analog signal is adjusted based on the temperature measurement data, and the measurement data has a temperature profile condition having a measurement region in which the temperature rising rate is larger than 0 [° C./s] and smaller than the temperature time constant of the semiconductor substrate. It is measured below.
本発明によれば、高精度な調整を可能としつつ製造タクトを低減可能な物理量検出装置を提供することが可能である。そのため、計測精度の向上と量産性の向上の両立を図ることができる。 ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the physical quantity detection apparatus which can reduce a manufacturing tact, enabling a highly accurate adjustment. Therefore, it is possible to achieve both improvement in measurement accuracy and improvement in mass productivity.
本発明の第一実施例について、図1から図3を用いて説明する。 A first embodiment of the present invention will be described with reference to FIGS.
第一実施例で示される物理量検出装置は、測定の対象となる物理量を検出するものである。測定対象として、例えば、流量、流速、温度、加速度等の物理量が検出され、検出された物理量は例えば内燃機関の制御等に用いられる。物理量検出装置として熱式気体流量測定装置を例に説明する。 The physical quantity detection device shown in the first embodiment detects a physical quantity to be measured. For example, physical quantities such as a flow rate, a flow velocity, a temperature, and an acceleration are detected as a measurement target, and the detected physical quantities are used for controlling an internal combustion engine, for example. A thermal gas flow measuring device will be described as an example of the physical quantity detection device.
図1に示すように、本発明の第一実施例における物理量検出装置19は、樹脂モジュールと副通路と吸気温度センサ22と物理量検出素子18と半導体プロセスにより作成されたLSI17とターミナルを備える。物理量検出装置19は、内燃機関の吸気流路に取り付けられ、樹脂モジュールの一部が吸気流路を流れる気体に曝されるようにしている。吸気通路を流れる気体の一部は副通路内に取り込まれ、副通路内に設けられている物理量検出素子18により、吸気流路に流れる気体の流量を測定している。物理量検出素子18は直接吸気流路内に流れる気体に曝される構成としていないことから、耐汚損性が向上する。 As shown in FIG. 1, the physical quantity detection device 19 in the first embodiment of the present invention includes a resin module, a sub-passage, an intake air temperature sensor 22, a physical quantity detection element 18, an LSI 17 created by a semiconductor process, and a terminal. The physical quantity detection device 19 is attached to the intake passage of the internal combustion engine, and a part of the resin module is exposed to the gas flowing through the intake passage. Part of the gas flowing through the intake passage is taken into the sub passage, and the flow rate of the gas flowing through the intake passage is measured by the physical quantity detection element 18 provided in the sub passage. Since the physical quantity detection element 18 is not configured to be directly exposed to the gas flowing in the intake flow path, the fouling resistance is improved.
物理量検出素子18にはヒータ制御駆動回路11と物理量検出回路9が配置される。ヒータ制御駆動回路11はヒータとなる発熱抵抗体と発熱抵抗体へ供給する電流を制御するヒータ駆動回路と発熱抵抗体の温度を検出する感温抵抗体又は熱電対により構成される。物理量検出回路9は、気体流量の流れ方向の上流側と下流側の温度差を検出するよう発熱抵抗体の上下流側に設けられた感温抵抗体により構成されたブリッジ回路であり、ブリッジ回路のバランス状態により気体流量を検出する。物理量検出回路9の感温抵抗体のかわりに熱電対を用いて温度差を検出する構成でも良い。 The physical quantity detection element 18 is provided with a heater control drive circuit 11 and a physical quantity detection circuit 9. The heater control drive circuit 11 includes a heating resistor serving as a heater, a heater driving circuit that controls a current supplied to the heating resistor, and a temperature-sensitive resistor or a thermocouple that detects the temperature of the heating resistor. The physical quantity detection circuit 9 is a bridge circuit composed of temperature sensitive resistors provided on the upstream and downstream sides of the heating resistor so as to detect the temperature difference between the upstream side and the downstream side in the gas flow direction. The gas flow rate is detected according to the balance state. A configuration in which a temperature difference is detected using a thermocouple instead of the temperature sensitive resistor of the physical quantity detection circuit 9 may be used.
気体流量は前記ブリッジ回路の両端に電圧が印加されているため、気体流量Q に対応した大きさの電圧(アナログ信号形態の流量信号)Vdとして測定される。また、前記ヒータ駆動回路はLSI17上に構成しても良い。 Since the voltage is applied to both ends of the bridge circuit, the gas flow rate is measured as a voltage (flow signal in the form of an analog signal) Vd having a magnitude corresponding to the gas flow rate Q 1. The heater driving circuit may be configured on the LSI 17.
内燃機関の吸気流路は環境温度の変化が大きく、吸気流路に設置される物理量検出装置19は温度による特性変動が生じ易い。 The intake air flow path of the internal combustion engine has a large environmental temperature change, and the physical quantity detection device 19 installed in the intake air flow path is susceptible to characteristic fluctuation due to temperature.
この特性変動を調整する好適な回路構成を図1a,bに示す。 A preferred circuit configuration for adjusting this characteristic variation is shown in FIGS.
アナログ信号回路と温度センサ1とを同一の半導体基板に構成することで温度特性を高精度に調整する。 By configuring the analog signal circuit and the temperature sensor 1 on the same semiconductor substrate, the temperature characteristics are adjusted with high accuracy.
同一の半導体基板上に構成されるアナログ信号回路12として、物理量検出回路9のアナログ信号をデジタル信号に変換するためのアナログ・デジタル変換回路3、ヒータ制御駆動回路のアナログ信号をデジタル信号に変換するためのアナログ・デジタル変換回路4、温度センサ1のアナログ信号をデジタル信号に変換するためのアナログ・デジタル変換回路5、温度特性を調整したデジタル信号をアナログ信号に変換するデジタル・アナログ変換回路6、基準電源2が同一の半導体基板上に構成される。 As an analog signal circuit 12 configured on the same semiconductor substrate, an analog / digital conversion circuit 3 for converting an analog signal of the physical quantity detection circuit 9 into a digital signal, an analog signal of the heater control drive circuit is converted into a digital signal. An analog / digital conversion circuit 4 for converting the analog signal of the temperature sensor 1 into a digital signal, a digital / analog conversion circuit 6 for converting the digital signal adjusted for temperature characteristics into an analog signal, The reference power supply 2 is configured on the same semiconductor substrate.
温度特性を調整したデジタル信号を周波数情報に変調したデジタル信号を出力する形式の物理量検出装置19においては図1bに示すように、発振回路7を温度センサ1と同一の半導体基板上に構成する。 In a physical quantity detection device 19 that outputs a digital signal obtained by modulating a digital signal with adjusted temperature characteristics into frequency information, the oscillation circuit 7 is configured on the same semiconductor substrate as the temperature sensor 1 as shown in FIG.
温度センサ1の温度を基準として、同一の半導体基板上に構成されるアナログ信号回路12の個々のアナログ信号回路との温度差をΔTとしたときに、半導体基板に温度勾配がある状態の温度差ΔT0が熱平衡状態となり熱平衡状態の温度差ΔTaと変化したときにΔT0がΔTaの90%に到達するまでの時間を温度センサ1と前記個々のアナログ信号回路の温度時定数とする。 Temperature difference in a state where there is a temperature gradient in the semiconductor substrate, where ΔT is the temperature difference between each analog signal circuit of the analog signal circuit 12 configured on the same semiconductor substrate with reference to the temperature of the temperature sensor 1 The time until ΔT0 reaches 90% of ΔTa when ΔT0 is in a thermal equilibrium state and changes to a temperature difference ΔTa in the thermal equilibrium state is defined as the temperature time constant of the temperature sensor 1 and the individual analog signal circuits.
温度センサ1と同一の半導体基板に構成されたアナログ信号回路12の温度時定数の中で最も大きい温度時定数を半導体基板の温度時定数とする。半導体基板上に発熱源となる回路が構成されている場合には発熱源により温度分布が生じるため、より好適な温度時定数は物理量検出装置19が動作状態と等価な条件化にて評価されたものである。好適な構成として前記アナログ信号回路と温度センサ1は熱伝導の優れた基板上に実装され、温度センサ1と前記アナログ信号回路の温度時定数が小さく、温度センサ1とアナログ信号回路の温度特性の測定あるいは温度特性調整が容易になる。 The largest temperature time constant among the temperature time constants of the analog signal circuit 12 configured on the same semiconductor substrate as that of the temperature sensor 1 is defined as the temperature time constant of the semiconductor substrate. When a circuit serving as a heat generation source is configured on the semiconductor substrate, a temperature distribution is generated by the heat generation source. Therefore, a more preferable temperature time constant was evaluated under conditions equivalent to the operation state of the physical quantity detection device 19. Is. As a preferred configuration, the analog signal circuit and the temperature sensor 1 are mounted on a substrate having excellent heat conduction, the temperature time constant of the temperature sensor 1 and the analog signal circuit is small, and the temperature characteristics of the temperature sensor 1 and the analog signal circuit are low. Measurement or temperature characteristic adjustment is easy.
保護回路10はサージや過電圧や高周波ノイズが信号処理系内に侵入するのを抑制する。基準電源2は電源の電圧を回路内で使われる電源(主に3.3V)を生成する。ヒータ制御駆動回路11はヒータの温度を所定の温度となるようにデジタル演算回路8によってフィードバック制御される。デジタル演算回路8はCPUのようなデジタル信号処理回路と読み書き自在なメモリ(RAM)、読み出し専用メモリ(ROM)書込み可能なメモリ(EPROMやEEPROMなど)からなるメモリ13とメモリ13に調整係数を読み書きする読み書き回路を備え流量信号のデジタル信号形態で出力特性調整および温度特性調整演算を実行し調整した流量信号をデジタル信号形態で出力する。 The protection circuit 10 prevents surges, overvoltages, and high frequency noise from entering the signal processing system. The reference power supply 2 generates a power supply (mainly 3.3 V) that is used in the circuit. The heater control drive circuit 11 is feedback-controlled by the digital arithmetic circuit 8 so that the heater temperature becomes a predetermined temperature. The digital arithmetic circuit 8 reads and writes adjustment coefficients to and from the memory 13 including a digital signal processing circuit such as a CPU, a readable / writable memory (RAM), a read-only memory (ROM), and a writable memory (EPROM, EEPROM, etc.). A read / write circuit that performs output characteristic adjustment and temperature characteristic adjustment calculation in the form of a digital signal of the flow rate signal, and outputs the adjusted flow rate signal in the form of a digital signal.
N次の多項式をN−1点の測定データ、N点の測定データ、N+1点の測定データにより温度に対してアナログ信号回路の出力が一定となるように温度特性調整した場合の結果例を図2aのプロット図に示す。測定データの数がN−1点からN+1点に増加するにつれて前記アナログ信号回路の出力は温度に対する変化量を小さく抑えられる。測定データには測定誤差が含まれるため、N+1点よりも測定点数を増やすことにより測定誤差の影響を小さく抑えることができる。 FIG. 6 is a diagram showing an example of a result of adjusting the temperature characteristics of an Nth order polynomial so that the output of the analog signal circuit is constant with respect to the temperature by measuring data of N−1 points, measuring data of N points, and measuring data of N + 1 points. This is shown in the plot of 2a. As the number of measurement data increases from N-1 point to N + 1 point, the output of the analog signal circuit can keep the variation with respect to temperature small. Since measurement data includes measurement errors, the influence of measurement errors can be reduced by increasing the number of measurement points over N + 1 points.
図3a,bはN+1点以上の測定データを取得することで温特調整の精度を向上させ、昇温速度を半導体基板の温度時定数よりも小さくし、連続的に温度を変化させることで、生産性を向上し生産性と精度を両立するのに好適なプロファイルの例である。 FIGS. 3a and 3b improve the accuracy of temperature characteristic adjustment by acquiring measurement data of N + 1 points or more, make the temperature increase rate smaller than the temperature time constant of the semiconductor substrate, and continuously change the temperature. This is an example of a profile suitable for improving productivity and achieving both productivity and accuracy.
昇温速度を半導体基板の温度時定数よりも小さくすることで、連続的に温度を変化させても、前記アナログ信号回路の温度と温度センサ1の温度差を小さく抑えることができる。 By making the temperature rising rate smaller than the temperature time constant of the semiconductor substrate, the temperature difference between the analog signal circuit and the temperature sensor 1 can be kept small even if the temperature is continuously changed.
図3aに示すプロファイルは温調装置の出力を一定にした場合のプロファイルである。このように温調装置を制御した場合、一般的に高温になるにつれて昇温速度が低下する。昇温速度を低下させず生産性を向上するプロファイルとしては、図3bに示すように昇温速度が一定となるように温調装置の出力を制御する方式により生産性の向上を図ることが可能である。図3a,bのプロファイルでは環境温度を昇温する方向について示しているが、降温する方向に環境温度を変化させても良く、その場合、降温速度は半導体基板の温度時定数よりも小さくする必要がある。 The profile shown in FIG. 3a is a profile when the output of the temperature control device is constant. When the temperature control device is controlled in this way, the temperature rising rate generally decreases as the temperature increases. As a profile for improving productivity without reducing the temperature rise rate, it is possible to improve productivity by controlling the output of the temperature controller so that the temperature rise rate is constant as shown in FIG. 3b. It is. 3A and 3B show the direction in which the environmental temperature is raised, the environmental temperature may be changed in the temperature lowering direction, and in that case, the temperature lowering rate needs to be smaller than the temperature time constant of the semiconductor substrate. There is.
本発明の第二実施例について図2bを用いて説明する。なお、第一実施例と同様の構成については説明を省略する。本発明の第二実施例におけるアナログ信号回路は、指数関数の温度特性を有する。図2bに指数関数をN次の多項式で近似した場合の近似精度についてプロット図を示す。N次の多項式の次数を大きくすることで誤差が小さくなり近似精度が良くなっている。 A second embodiment of the present invention will be described with reference to FIG. The description of the same configuration as that of the first embodiment is omitted. The analog signal circuit in the second embodiment of the present invention has an exponential temperature characteristic. FIG. 2b shows a plot of the approximation accuracy when the exponential function is approximated by an Nth order polynomial. Increasing the order of the Nth order polynomial reduces the error and improves the approximation accuracy.
特にN>2次の多項式について近似精度が良くなっている。つまり、指数関数の温度特性を有するアナログ信号回路の温度調整では前記プロファイルにおける測定データ点数を3点よりも大きくすることで、つまり3<N+1点以上の測定データを取得することにより温度特性調整を精度良く行うことが可能である。 In particular, the approximation accuracy is improved for N> second order polynomials. In other words, in the temperature adjustment of the analog signal circuit having the temperature characteristic of the exponential function, the temperature characteristic adjustment is performed by making the number of measurement data points in the profile larger than 3, that is, by obtaining the measurement data of 3 <N + 1 points or more. It is possible to carry out with high accuracy.
本発明の第三実施例について図4a及び図4bを用いて説明する。なお、第一実施例或いは第二実施例と同様の構成については説明を省略する。 A third embodiment of the present invention will be described with reference to FIGS. 4a and 4b. The description of the same configuration as that of the first embodiment or the second embodiment is omitted.
半導体基板上に主に抵抗体により構成される温度センサ1は半導体プロセスによる抵抗ばらつきを持っており、高精度に温度特性を調整するためには温度センサ1の温度校正が必要となる。アナログ信号回路の温度特性調整と温度センサ1の温度校正を行うための温度特性測定データ35を生産性、精度を両立可能な、図4a,bに示すプロファイル32により測定する。 A temperature sensor 1 mainly composed of a resistor on a semiconductor substrate has resistance variation due to a semiconductor process, and temperature calibration of the temperature sensor 1 is necessary to adjust temperature characteristics with high accuracy. The temperature characteristic measurement data 35 for adjusting the temperature characteristic of the analog signal circuit and the temperature calibration of the temperature sensor 1 is measured by the profile 32 shown in FIGS.
抵抗体の温度特性は1次関数として近似することができ、抵抗体により構成される温度センサ1の校正には温度特性測定データが2点必要である。本発明の第一実施例或いは第二実施例に示した測定領域の前後に、温度センサ1の出力を校正するためのデータを測定する温度安定領域33,34を設けることで、アナログ信号回路の温度特性調整と温度センサ1の温度校正を行うことが可能である。図4aには温調装置の出力を一定にした場合のプロファイルを示し、図4bには温調装置の出力を昇温速度が一定となるように制御した場合のプロファイルを示す。温調装置の出力を一定とする場合、装置の構成が簡便となりコストアップすることなく温度特性の調整を行うことが可能となる。温調装置の出力を昇温速度が一定となるように制御する場合、精度よくデータを取ることができるため、より高精度に温度特性の調整を行うことが可能となる。 The temperature characteristic of the resistor can be approximated as a linear function, and two points of temperature characteristic measurement data are required for calibration of the temperature sensor 1 constituted by the resistor. By providing temperature stabilization regions 33 and 34 for measuring data for calibrating the output of the temperature sensor 1 before and after the measurement region shown in the first embodiment or the second embodiment of the present invention, the analog signal circuit It is possible to perform temperature characteristic adjustment and temperature calibration of the temperature sensor 1. FIG. 4a shows a profile when the output of the temperature control device is constant, and FIG. 4b shows a profile when the output of the temperature control device is controlled so that the temperature increase rate is constant. When the output of the temperature control device is constant, the configuration of the device is simple, and the temperature characteristics can be adjusted without increasing the cost. When controlling the output of the temperature control device so that the rate of temperature increase is constant, it is possible to obtain data with high accuracy, and thus it is possible to adjust temperature characteristics with higher accuracy.
本発明の第四実施例について図5a及び図5bを用いて説明する。図5aには温調装置の出力を一定にした場合のプロファイルを示し、図5bには温調装置の出力を昇温速度が一定となるように制御した場合のプロファイルを示す。なお、第三実施例と同様の構成については説明を省略する。 A fourth embodiment of the present invention will be described with reference to FIGS. 5a and 5b. FIG. 5a shows a profile when the output of the temperature control device is constant, and FIG. 5b shows a profile when the output of the temperature control device is controlled so that the temperature increase rate is constant. The description of the same configuration as that of the third embodiment is omitted.
より好適に温度センサ1の温度特性を校正するために、本発明の第四実施例では実施例3に加えてさらに温度安定領域36を設け、合計3点の温度特性測定データを得る構成としている。すなわち、温度プロファイルは、第一の測定領域37と第二の測定領域38を有していて、第一の測定領域37の前に温度安定領域33を設け、第二の測定領域38の後に温度安定領域34を設け、第一の測定領域37と第二の測定領域38の間に温度安定領域36を設けている。第四実施例の温度プロファイルによれば、アナログ信号回路の温度特性調整と温度センサ1の温度校正を行うことが可能である。本発明の第四実施例によれば温度センサ1の温度特性を2次関数で校正することが可能となり、さらなる温度特性調整精度の向上が可能である。 In order to calibrate the temperature characteristics of the temperature sensor 1 more suitably, in the fourth embodiment of the present invention, in addition to the third embodiment, a temperature stable region 36 is further provided to obtain a total of three temperature characteristic measurement data. . That is, the temperature profile has a first measurement region 37 and a second measurement region 38, a temperature stable region 33 is provided in front of the first measurement region 37, and a temperature is provided after the second measurement region 38. A stable region 34 is provided, and a temperature stable region 36 is provided between the first measurement region 37 and the second measurement region 38. According to the temperature profile of the fourth embodiment, the temperature characteristics of the analog signal circuit and the temperature calibration of the temperature sensor 1 can be performed. According to the fourth embodiment of the present invention, the temperature characteristic of the temperature sensor 1 can be calibrated with a quadratic function, and the temperature characteristic adjustment accuracy can be further improved.
本発明の第五実施例について図6a及び図6bを用いて説明する。なお、第一実施例或いは第二実施例と同様の構成については説明を省略する。 A fifth embodiment of the present invention will be described with reference to FIGS. 6a and 6b. The description of the same configuration as that of the first embodiment or the second embodiment is omitted.
アナログ信号回路の隣接する位置又はアナログ信号回路内に熱電対39を備え、温度センサ1とアナログ信号回路の温度差を検出しアナログ信号回路の温度特性調整に用いる。同一の半導体基板上に温度センサ1とアナログ信号回路を構成しても、半導体基板上に発熱源が存在した場合、温度分布が生じてしまう。更に、温度センサとアナログ信号回路が離れて構成されている場合温度分布が大きくなり温度特性調整の誤差となる。本発明の第五実施例によれば、温度センサ1とアナログ信号回路の温度差を検出して温度特性の調整に用いていることから、上述した温度分布による誤差の影響を低減でき、より高精度な温度特性調整を可能とする
本発明の第六実施例について図7を用いて説明する。なお、第一実施例或いは第二実施例と同様の構成については説明を省略する。
A thermocouple 39 is provided at a position adjacent to the analog signal circuit or in the analog signal circuit, and a temperature difference between the temperature sensor 1 and the analog signal circuit is detected and used for temperature characteristic adjustment of the analog signal circuit. Even if the temperature sensor 1 and the analog signal circuit are configured on the same semiconductor substrate, if a heat source is present on the semiconductor substrate, a temperature distribution is generated. Further, when the temperature sensor and the analog signal circuit are separated from each other, the temperature distribution becomes large, resulting in an error in temperature characteristic adjustment. According to the fifth embodiment of the present invention, since the temperature difference between the temperature sensor 1 and the analog signal circuit is detected and used for adjusting the temperature characteristics, the influence of the error due to the temperature distribution described above can be reduced, and the higher A sixth embodiment of the present invention that enables accurate temperature characteristic adjustment will be described with reference to FIG. The description of the same configuration as that of the first embodiment or the second embodiment is omitted.
図7に示す、物理量検出素子18と前記アナログ信号回路と前記デジタル演算回路8と前記温度センサ1とを同一の半導体基板上に構成した物理量検出装置19について説明する。物理量検出素子18を前記温度センサ1と同一の半導体基板上に構成することで、前記物理量検出素子18の温度特性も調整することが可能となる。物理量検出素子18と温度センサ1の温度時定数を含めた、温度センサと同一の半導体基板に構成されたアナログ信号回路の温度時定数の中で最も大きい温度時定数が半導体基板の温度時定数となり前記半導体基板の温度時定数よりも昇温速度を小さくすることで温度特性調整を可能とする。 A physical quantity detection device 19 in which the physical quantity detection element 18, the analog signal circuit, the digital arithmetic circuit 8, and the temperature sensor 1 shown in FIG. 7 are configured on the same semiconductor substrate will be described. By configuring the physical quantity detection element 18 on the same semiconductor substrate as the temperature sensor 1, the temperature characteristic of the physical quantity detection element 18 can be adjusted. The temperature time constant of the semiconductor substrate is the largest temperature time constant of the analog signal circuit configured on the same semiconductor substrate as the temperature sensor, including the temperature time constants of the physical quantity detection element 18 and the temperature sensor 1. Temperature characteristics can be adjusted by making the temperature rising rate smaller than the temperature time constant of the semiconductor substrate.
実施例1〜7に記載の構成の物理量検出装置19は、上述した温度プロファイルとなるように、図8aに示される熱伝達を利用した温度制御装置、又は、図8bに示される熱伝導を利用した温度制御装置、又は、図8cに示される熱放射を利用した温度制御装置、又は、これらが組み合わされた温度制御装置により温特特性が測定される。測定された測定データに基づいて物理量検出装置の温度特性を調整する。 The physical quantity detection device 19 having the configuration described in the first to seventh embodiments uses the temperature control device using the heat transfer shown in FIG. 8a or the heat conduction shown in FIG. 8b so as to have the temperature profile described above. The temperature characteristic is measured by the temperature control device, the temperature control device using the heat radiation shown in FIG. 8c, or the temperature control device in which these are combined. The temperature characteristic of the physical quantity detection device is adjusted based on the measured measurement data.
1 温度センサ
2 基準電源
3 アナログ・デジタル変換回路
4 アナログ・デジタル変換回路
5 アナログ・デジタル変換回路
6 特性調整後のデジタル信号のデジタル・アナログ変換回路
7 発振回路
8 デジタル演算回路
9 物理量検出回路
10 保護回路
11 ヒータ制御駆動回路
12 同一の半導体基板上に構成されるアナログ信号回路
13 メモリ(ROM、RAM、PROM)
14 物理量検出装置の電源VCC
15 物理量検出装置の出力Vout
16 物理量検出装置の回路
17 LSI
18 物理量検出素子
19 物理量検出装置
25 N次の多項式をN−1点の温度特性データから補正した結果
26 N次の多項式をN点の温度特性データから補正した結果
27 N次の多項式をN+1点の温度特性データから補正した結果
28 指数関数の底が2.5の関数をN次の多項式で近似した近似誤差
29 指数関数の底が3の関数をN次の多項式で近似した近似誤差
30 指数関数の底が4の関数をN次の多項式で近似した近似誤差
31 N+1点の温度特性測定データ
32 温度特性測定プロファイル
33 温度センサの温度特性校正のためのプロファイルの前に設けた温度安定領域
34 温度センサの温度特性校正のためのプロファイルの後に設けた温度安定領域
35 温度センサの温度特性校正のための温度特性測定データ
36 温度センサの温度特性校正のためのプロファイルの中に設けた温度安定領域
37 温度プロファイルの第一の温度特性測定領域
38 温度プロファイルの第二の温度特性測定領域
39 アナログ信号回路に隣接又はアナログ信号回路内に構成される熱電対
40 温度調整設備
41 加熱用温調器
42 冷却用温調器
43 物理量検出装置(チップ)
44 温度調整設備の温度センサ
45 温度調整プレート
46 熱放射装置
47 熱放射
48 熱放射吸収プレート
DESCRIPTION OF SYMBOLS 1 Temperature sensor 2 Reference power supply 3 Analog / digital conversion circuit 4 Analog / digital conversion circuit 5 Analog / digital conversion circuit 6 Digital / analog conversion circuit of digital signal after characteristic adjustment 7 Oscillation circuit 8 Digital arithmetic circuit 9 Physical quantity detection circuit 10 Protection Circuit 11 Heater control drive circuit 12 Analog signal circuit configured on the same semiconductor substrate 13 Memory (ROM, RAM, PROM)
14 Power supply VCC of physical quantity detection device
15 Output Vout of physical quantity detection device
16 Circuit of Physical Quantity Detection Device 17 LSI
18 Physical quantity detection element 19 Physical quantity detection device 25 Result of correcting Nth order polynomial from temperature characteristic data of N-1 point 26 Result of correcting Nth order polynomial from temperature characteristic data of N point 27 Nth order polynomial of N + 1 point 28: Approximation error obtained by approximating a function whose exponential base is 2.5 with an Nth order polynomial 29 Approximation error obtained by approximating a function whose base 3 is an exponential function with an Nth order polynomial 30 Exponential Approximate error obtained by approximating a function whose base of the function is 4 with an Nth order polynomial 31 Temperature characteristic measurement data at N + 1 points 32 Temperature characteristic measurement profile 33 Temperature stability region provided before a profile for temperature characteristic calibration of a temperature sensor 34 Temperature stability region provided after profile for temperature characteristic calibration of temperature sensor 35 Temperature characteristic measurement data for temperature characteristic calibration of temperature sensor 36 Temperature Temperature stable region provided in profile for temperature characteristic calibration of sensor 37 First temperature characteristic measurement region of temperature profile 38 Second temperature characteristic measurement region of temperature profile 39 Adjacent to analog signal circuit or in analog signal circuit 40 Thermoregulatory equipment 41 Temperature controller for heating 42 Temperature controller for cooling 43 Physical quantity detection device (chip)
44 Temperature Sensor for Temperature Control Equipment 45 Temperature Control Plate 46 Thermal Radiation Device 47 Thermal Radiation 48 Thermal Radiation Absorption Plate
Claims (9)
前記半導体基板上に設けられる温度センサと、
前記半導体基板上に設けられ、前記アナログ信号回路のアナログ信号を校正する校正手段を有するデジタル演算回路と、
物理量検出素子と、を備え、
前記校正手段は、前記デジタル演算回路に保存されたn+1点以上の温度測定データに基づいて前記アナログ信号を調整し、
前記測定データは、昇温速度が0[℃/s]よりも大きくかつ前記半導体基板の温度時定数よりも小さい測定領域を有する温度プロファイル条件下で測定されることを特徴とする物理量検出装置。 An analog signal circuit provided on a semiconductor substrate and having an nth-order polynomial temperature characteristic;
A temperature sensor provided on the semiconductor substrate;
A digital arithmetic circuit provided on the semiconductor substrate and having a calibration means for calibrating an analog signal of the analog signal circuit;
A physical quantity detection element,
The calibration means adjusts the analog signal based on temperature measurement data of n + 1 points or more stored in the digital arithmetic circuit,
The physical quantity detection device according to claim 1, wherein the measurement data is measured under a temperature profile condition having a measurement region in which a temperature rising rate is larger than 0 [° C./s] and smaller than a temperature time constant of the semiconductor substrate.
前記半導体基板上に設けられる温度センサと、
前記アナログ信号回路のアナログ信号を校正する校正手段を有するデジタル演算回路と、
物理量検出素子と、を備え、
前記校正手段は、前記デジタル演算回路に保存された4点以上の温度測定データに基づいて前記アナログ信号を調整し、
前記測定データは、昇温速度が0よりも大きくかつ前記半導体基板の温度時定数よりも小さい測定領域を有する温度プロファイル条件下で測定されることを特徴とする物理量検出装置。 An analog signal circuit provided on the semiconductor substrate and having an exponential temperature characteristic;
A temperature sensor provided on the semiconductor substrate;
A digital arithmetic circuit having calibration means for calibrating the analog signal of the analog signal circuit;
A physical quantity detection element,
The calibration means adjusts the analog signal based on four or more temperature measurement data stored in the digital arithmetic circuit,
The physical quantity detection device according to claim 1, wherein the measurement data is measured under a temperature profile condition having a measurement region in which a temperature rising rate is larger than 0 and smaller than a temperature time constant of the semiconductor substrate.
前記温度プロファイルは、前記測定領域の前後に前記温度センサの出力を校正するためのデータを測定する温度安定領域を有することを特徴とする物理量検出装置。 The physical quantity detection device according to claim 1 or 2,
The physical quantity detection device, wherein the temperature profile has a temperature stable region for measuring data for calibrating the output of the temperature sensor before and after the measurement region.
前記測定領域は第一の測定領域と第二の測定領域を有していて、
前記温度プロファイルは前記第一の測定領域の前と前記第二の測定領域の後と前記第一の測定領域と第二の測定領域の間に前記温度センサの出力を校正するためのデータを測定する温度安定領域を有することを特徴とする物理量検出装置。 The physical quantity detection device according to claim 1 or 2,
The measurement area has a first measurement area and a second measurement area,
The temperature profile measures data for calibrating the output of the temperature sensor before the first measurement region, after the second measurement region, and between the first measurement region and the second measurement region. A physical quantity detecting device having a temperature stable region.
前記温度プロファイルの昇温速度は温度センサと物理量検出素子の温度時定数よりも小さく設定さていることを特徴とする物理量検出装置。 5. The physical quantity detection device according to claim 1, wherein the analog signal circuit, the digital arithmetic circuit, and the temperature sensor are configured on the same semiconductor substrate, and the physical quantity detection element is different from the semiconductor substrate. Separately configured,
The physical quantity detection device according to claim 1, wherein a temperature rise rate of the temperature profile is set smaller than a temperature time constant of the temperature sensor and the physical quantity detection element.
昇温速度が0[℃/s]よりも大きくかつ前記半導体基板の温度時定数よりも小さい測定領域を有する温度プロファイル条件下で測定されたn+1点以上の温度測定データに基づいて前記アナログ信号回路の出力信号を調整することを特徴とする物理量検出装置の調整方法。 In a method for adjusting a physical quantity detection device, comprising an analog signal circuit provided on a semiconductor substrate and having an nth-order polynomial temperature characteristic, and a temperature sensor provided on the semiconductor substrate,
The analog signal circuit based on temperature measurement data at n + 1 points or more measured under a temperature profile condition having a measurement region having a temperature rising rate larger than 0 [° C./s] and smaller than a temperature time constant of the semiconductor substrate. A method for adjusting a physical quantity detection device, characterized in that an output signal of the physical quantity is adjusted.
昇温速度が0[℃/s]よりも大きくかつ前記半導体基板の温度時定数よりも小さい測定領域を有する温度プロファイル条件下で測定された4点以上の温度測定データに基づいて前記アナログ信号回路の出力信号を調整することを特徴とする物理量検出装置の調整方法。 In an adjustment method of a physical quantity detection device provided on the semiconductor substrate, the analog signal circuit having an exponential temperature characteristic, and a temperature sensor provided on the semiconductor substrate,
The analog signal circuit based on temperature measurement data of four or more points measured under a temperature profile condition having a measurement region having a temperature rising rate larger than 0 [° C./s] and smaller than a temperature time constant of the semiconductor substrate. A method for adjusting a physical quantity detection device, characterized in that an output signal of the physical quantity is adjusted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014030169A JP2015155810A (en) | 2014-02-20 | 2014-02-20 | Adjustment method of physical quantity detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014030169A JP2015155810A (en) | 2014-02-20 | 2014-02-20 | Adjustment method of physical quantity detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015155810A true JP2015155810A (en) | 2015-08-27 |
Family
ID=54775206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014030169A Pending JP2015155810A (en) | 2014-02-20 | 2014-02-20 | Adjustment method of physical quantity detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015155810A (en) |
-
2014
- 2014-02-20 JP JP2014030169A patent/JP2015155810A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3753057B2 (en) | Gas flow measuring device | |
US7565258B2 (en) | Thermal sensor and method | |
EP2924405B1 (en) | Intake air temperature sensor and flow measurement device | |
EP2280251A2 (en) | Thermal flow meter | |
US20090299657A1 (en) | Air flow measurement device and air flow correction method | |
CN103528714A (en) | Temperature calibration device and method of integrated CMOS (Complementary Metal Oxide Semiconductor) temperature sensor | |
JP2003240620A (en) | Gas flow measuring device | |
AU2014202006B2 (en) | Flow sensor with improved linear output | |
JP2015155810A (en) | Adjustment method of physical quantity detection device | |
JP2007333430A (en) | Temperature compensation circuit compensation method | |
JP5814884B2 (en) | Thermal flow measurement device and control device using the same | |
JP2010216906A (en) | Automobile-use flowmeter | |
JPH03172717A (en) | Flowmeter | |
JP6549235B2 (en) | Air flow meter | |
JP5178261B2 (en) | Thermal flow meter | |
JP3681468B2 (en) | Temperature coefficient correction type temperature detector | |
JP2012134910A5 (en) | ||
JP2019066253A (en) | Flow rate measuring device | |
KR100899390B1 (en) | Temperature sensor circuit and method thereof | |
JP2010281758A (en) | Thermal air flowmeter | |
JP2012177702A (en) | Thermal humidity sensor | |
JP2009229092A (en) | Thermal flowmeter and method for initial adjustment thereof | |
JP2001228004A (en) | Thermal flowmeter | |
JP2024104826A (en) | Gas sensor | |
JP2024112766A (en) | Gas sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170116 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170123 |