JP2015151620A - Steel sheet for can and production method of steel sheet for can - Google Patents
Steel sheet for can and production method of steel sheet for can Download PDFInfo
- Publication number
- JP2015151620A JP2015151620A JP2014029548A JP2014029548A JP2015151620A JP 2015151620 A JP2015151620 A JP 2015151620A JP 2014029548 A JP2014029548 A JP 2014029548A JP 2014029548 A JP2014029548 A JP 2014029548A JP 2015151620 A JP2015151620 A JP 2015151620A
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- steel sheet
- cans
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 83
- 239000010959 steel Substances 0.000 title claims abstract description 83
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000005096 rolling process Methods 0.000 claims abstract description 50
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 238000005097 cold rolling Methods 0.000 claims description 38
- 238000000137 annealing Methods 0.000 claims description 19
- 238000005098 hot rolling Methods 0.000 claims description 16
- 230000009466 transformation Effects 0.000 claims description 13
- 238000003303 reheating Methods 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 8
- 238000009749 continuous casting Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 22
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 27
- 238000005336 cracking Methods 0.000 description 10
- 235000013361 beverage Nutrition 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、飲料品や食品の容器材料として用いられる缶用鋼板および缶用鋼板の製造方法に関し、特に、機械的性質の等方性に優れる高強度高加工性の缶用鋼板および缶用鋼板の製造方法に関する。 TECHNICAL FIELD The present invention relates to a steel plate for cans used as a container material for beverages and foods, and a method for producing a steel plate for cans. It relates to the manufacturing method.
DR(Double Reduced)材と呼ばれる鋼板は、焼鈍の後に再度冷間圧延が行われる鋼板であり、焼鈍の後に圧延率の小さい調質圧延のみを行うSR(Single Reduced)材に比べ、板厚を薄くすることが容易である。薄い鋼板を用いることにより製缶コストを低減することが可能となるため、飲料缶や食缶に用いられる鋼板のうち、蓋や底、3ピース缶の胴、絞り缶などに、DR材が用いられる場合がある。 A steel plate called a DR (Double Reduced) material is a steel plate that is cold-rolled again after annealing, and has a thickness that is smaller than that of an SR (Single Reduced) material that only undergoes temper rolling with a small rolling rate after annealing. It is easy to make it thinner. Because it is possible to reduce can manufacturing costs by using thin steel plates, DR materials are used for lids, bottoms, 3 piece can bodies, drawn cans, etc. among steel plates used for beverage cans and food cans. May be.
DR材を製造するDR法は、焼鈍後に再度冷間圧延を施すことで加工硬化が生じるため、薄く硬い鋼板を製造することができる。しかし、その反面、DR法により製造されたDR材は、延性に乏しいため、SR材に比べて加工性に劣る。また、DR材は、焼鈍後の冷間圧延に起因して、圧延方向に比べ幅方向の強度は大きく伸びは小さいという機械的性質の異方性を呈する。 In the DR method for manufacturing the DR material, work hardening occurs by performing cold rolling again after annealing, and thus a thin and hard steel plate can be manufactured. However, on the other hand, the DR material manufactured by the DR method is poor in workability compared to the SR material because it is poor in ductility. Further, the DR material exhibits anisotropy of mechanical properties that the strength in the width direction is large and the elongation is small compared to the rolling direction due to cold rolling after annealing.
3ピースで構成される食缶や飲料缶の胴材は、筒状に成形された後、蓋や底を巻き締めるために両端にフランジ加工が施される。そのため、缶の胴材の端部には良好な加工性が要求される。2ピースで構成される食缶や飲料缶の胴材は、絞り加工や絞りしごき加工によって成形される。加工性に乏しい鋼板を用いてこれらのような製缶を行うことは不可能である。 The body of food cans and beverage cans composed of three pieces is molded into a cylindrical shape, and then flanged at both ends in order to tighten the lid and the bottom. Therefore, good workability is required at the end of the can body. The body of food cans and beverage cans composed of two pieces is formed by drawing or ironing. It is impossible to make such cans using steel plates with poor workability.
ここで、3ピース缶の胴材の成形法には、鋼板の圧延方向に沿って溶接を行う成形法と、幅方向に沿って溶接を行う成形法とがある。製缶メーカーでは、缶形によってこれらの成形法が使い分けられる場合があるため、使用される鋼板は、圧延方向と幅方向の機械的性質の差が小さいもの、すなわち等方性が良好なものであることが好ましい。また、EOE(Easy Open End)の成形の際、張り出し加工によってリベットが成形される。鋼板の異方性が大きい場合には、張り出し加工時に割れや皺が発生し、リベット成形が困難になるため、機械的性質の等方性の良好な鋼板が求められる。 Here, the forming method of the body of the three-piece can includes a forming method in which welding is performed along the rolling direction of the steel sheet and a forming method in which welding is performed along the width direction. In a can maker, these forming methods may be used properly depending on the can shape, so the steel sheet used has a small difference in mechanical properties between the rolling direction and the width direction, that is, a good isotropic property. Preferably there is. Further, when forming EOE (Easy Open End), rivets are formed by overhanging. When the anisotropy of the steel sheet is large, cracks and wrinkles are generated during the overhanging process, and rivet forming becomes difficult. Therefore, a steel sheet with good isotropic mechanical properties is required.
しかし、DR材では上記のような加工性や機械的性質の等方性を実現することは困難であるため、食缶や飲料缶の胴材には主にSR材が用いられてきた。しかし、現在では、板厚を薄くしてコスト低減をはかるために、食缶や飲料缶の胴材に対してもDR材を適用する要求が高まっている。なお、以下に例示するように、板取り性(幅方向延性)に優れる鋼板(DR材)を製造する技術が多数開示されている。 However, since it is difficult to achieve the above processability and isotropic mechanical properties with DR material, SR material has mainly been used for the body of food cans and beverage cans. However, at present, in order to reduce the thickness by reducing the plate thickness, there is an increasing demand for applying the DR material to the body of food cans and beverage cans. In addition, as exemplified below, many techniques for manufacturing a steel plate (DR material) excellent in plate take-up property (width direction ductility) are disclosed.
特許文献1には、C:0.0060%超〜0.0290%を含有する鋼片を1050℃以上に再加熱し、仕上げ温度をAr3変態点以上、巻取り温度を680℃以下とする熱間圧延を行い、冷間圧延、焼鈍の後に圧下率2〜10%未満の二次冷間圧延を行う技術が開示されている。 In Patent Document 1, a steel slab containing C: more than 0.0060% to 0.0290% is reheated to 1050 ° C. or higher, and the finishing temperature is set to Ar 3 transformation point or higher and the coiling temperature is set to 680 ° C. or lower. A technique is disclosed in which hot rolling is performed, and cold rolling and annealing are followed by secondary cold rolling with a rolling reduction of less than 2 to 10%.
特許文献2には、C:0.0060%超〜0.0300%未満を含有した鋼片を1050℃以上に再加熱し、仕上げ温度をAr3変態点以上とする熱間圧延を行い、冷間圧延、焼鈍の後に圧下率10〜25%未満の二次冷間圧延を行う技術が開示されている。 In Patent Document 2, a steel slab containing C: more than 0.0060% to less than 0.0300% is reheated to 1050 ° C. or higher, and hot rolling is performed so that the finishing temperature is higher than the Ar 3 transformation point. A technique for performing secondary cold rolling with a rolling reduction of less than 10 to 25% after hot rolling and annealing is disclosed.
特許文献3には、Cr:0.005〜0.100%を含有した鋼片を1100℃以上に再加熱し、仕上げ温度をAr3変態点以上とする熱間圧延を行い、冷間圧延、焼鈍の後に圧下率10〜25%未満の二次冷間圧延を行う技術が開示されている。 In Patent Document 3, a steel slab containing Cr: 0.005 to 0.100% is reheated to 1100 ° C. or higher, hot-rolled with a finishing temperature of Ar 3 transformation point or higher, cold rolled, A technique of performing secondary cold rolling with a rolling reduction of less than 10 to 25% after annealing is disclosed.
特許文献4には、Cr:0.005〜0.100%を含有した鋼片を1100℃以上に再加熱し、仕上げ温度をAr3変態点以上、巻取り温度を680℃以下とする熱間圧延を行い、冷間圧延、焼鈍の後に圧下率2〜10%未満の二次冷間圧延を行う技術が開示されている。 In Patent Document 4, a steel slab containing Cr: 0.005 to 0.100% is reheated to 1100 ° C. or higher, and the finishing temperature is higher than the Ar 3 transformation point and the coiling temperature is 680 ° C. or lower. A technique for performing secondary cold rolling with a rolling reduction of less than 2 to 10% after rolling and cold rolling and annealing is disclosed.
特許文献5には、C:0.0060%以下、N:0.0060%超を含有した鋼片を1050℃以上に再加熱し、仕上げ温度をAr3変態点以上とする熱間圧延を行い、冷間圧延、焼鈍の後に圧下率10〜25%未満の二次冷間圧延を行う技術が開示されている。 In Patent Literature 5, a steel slab containing C: 0.0060% or less and N: more than 0.0060% is reheated to 1050 ° C. or more, and hot rolling is performed with the finishing temperature being the Ar 3 transformation point or more. A technique for performing secondary cold rolling with a reduction rate of less than 10 to 25% after cold rolling and annealing is disclosed.
しかしながら、特許文献1〜4に記載の技術により製造された鋼板(DR材)は、成分組成が適切ではないため、強度と伸びとのバランスが悪く、高加工性とはいえず、食缶や飲料缶の胴材には適用できない。また、特許文献5に記載の技術により製造された鋼板は、スラブ冷却時に析出したAlNの残存量が過剰であり、伸びに対して強度が不足するため、食缶や飲料缶の胴材には適用できない。 However, since the steel plate (DR material) manufactured by the techniques described in Patent Documents 1 to 4 has an inappropriate component composition, the balance between strength and elongation is poor, and it cannot be said that it is highly workable. Not applicable to beverage can body. Moreover, the steel plate manufactured by the technique described in Patent Document 5 has an excessive residual amount of AlN deposited during slab cooling, and lacks strength against elongation. Not applicable.
本発明は、かかる事情に鑑みてなされたものであって、3ピース缶胴やEOEなどの材料として好適な、機械的性質の等方性に優れる高強度高加工性の缶用鋼板および缶用鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is suitable for materials such as a three-piece can body and EOE, and has a high strength and high workability steel plate for cans and excellent for isotropic mechanical properties. It aims at providing the manufacturing method of a steel plate.
本発明者らは、上記課題を解決し、目的を達成するために、鋭意研究を行った結果、以下の知見を得た。すなわち、加工性と引張強度とを両立するためには、強度を確保するために、多量のNを添加すること、および、加工性を確保するために、Cの含有量を低くして炭化物を起因とする微細な割れの発生を抑えることが有効である。また、Cの含有量を低く抑えることは、機械的性質の等方性の向上にも効果的である。 In order to solve the above-described problems and achieve the object, the present inventors have conducted intensive research and obtained the following knowledge. That is, in order to achieve both workability and tensile strength, a large amount of N is added to ensure strength, and in order to ensure workability, the content of C is lowered to reduce carbide. It is effective to suppress the occurrence of fine cracks. Further, keeping the C content low is also effective in improving the isotropy of mechanical properties.
上記の知見に基づいてなされた本発明にかかる缶用鋼板は、質量%で、C:0.001%以上0.020%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0120%超0.0200%以下を含有し、残部はFeおよび不可避的不純物からなり、AlNとして存在するN量が0.0050%以下であり、引張強度が500MPa以上600MPa以下であり、圧延方向破断伸びを[EL−L]%、幅方向破断伸びを[EL−C]%としたときに、[EL−L]が8以上25以下、[EL−C]が8以上25以下、[EL−L]−[EL−C]の絶対値が5以下であることを特徴とする。 The steel plate for cans according to the present invention made based on the above findings is mass%, C: 0.001% or more and less than 0.020%, Si: 0.003% or more and 0.100% or less, Mn: 0 10% to 0.60%, P: 0.001% to 0.100%, S: 0.001% to 0.020%, Al: 0.005% to 0.100%, N : More than 0.0120% and 0.0200% or less, the balance is made of Fe and inevitable impurities, the amount of N present as AlN is 0.0050% or less, and the tensile strength is 500 MPa or more and 600 MPa or less, [EL-L] is 8 or more and 25 or less, and [EL-C] is 8 or more and 25 or less, when the rolling direction breaking elongation is [EL-L]% and the width direction breaking elongation is [EL-C]%. The absolute value of [EL-L]-[EL-C] is 5 or less And wherein the Rukoto.
また、本発明にかかる缶用鋼板の製造方法は、上記発明の缶用鋼板の製造方法であって、質量%で、C:0.001%以上0.020%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0120%超0.0200%以下を含有し、残部はFeおよび不可避的不純物からなる鋼を連続鋳造によりスラブとし、スラブ再加熱温度を1240℃超として熱間圧延を行った後、530℃以上740℃以下の温度で巻取り、85%以上95%以下の圧延率で一次冷間圧延を行い、引き続き、A1変態点未満の温度で焼鈍を行い、7%以上20%以下の圧延率で二次冷間圧延を行うことを特徴とする。なお、本明細書において、鋼の成分を示す%は、すべて質量%である。 Moreover, the manufacturing method of the steel plate for cans concerning this invention is a manufacturing method of the steel plate for cans of the said invention, Comprising: By mass%, C: 0.001% or more and less than 0.020%, Si: 0.003% Or more, 0.100% or less, Mn: 0.10% or more and 0.60% or less, P: 0.001% or more and 0.100% or less, S: 0.001% or more and 0.020% or less, Al: 0. 005% or more and 0.100% or less, N: 0.0120% or more and 0.0200% or less, and the balance is made of steel consisting of Fe and inevitable impurities into a slab by continuous casting, and the slab reheating temperature exceeds 1240 ° C as after hot rolling, 530 ° C. or higher 740 ° C. or less of the coiling temperature, subjected to primary cold rolling at a rolling reduction of 95% or less than 85%, subsequently annealed at a temperature lower than the a 1 transformation point Secondary cold rolling at a rolling rate of 7% to 20% It is characterized by performing. In addition, in this specification,% which shows the component of steel is mass% altogether.
本発明によれば、3ピース缶胴やEOEなどの材料として好適な、機械的性質の等方性に優れる高強度高加工性の缶用鋼板を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the steel plate for cans of the high intensity | strength and high workability excellent in the isotropy of a mechanical property suitable as materials, such as a 3 piece can barrel and EOE, can be obtained.
以下、本発明の一実施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, an embodiment of the present invention will be described in detail. In addition, this invention is not limited by this embodiment.
まず、本発明の缶用鋼板について説明する。鋼板の圧延方向破断伸びを[EL−L]%、幅方向破断伸びを[EL−C]%とする。このとき、本発明の缶用鋼板は、[EL−L]が8以上25以下、[EL−C]が8以上25以下、かつ、[EL−L]−[EL−C]の絶対値が5以下である、機械的性質の等方性に優れる高強度高加工性の缶用鋼板である。そして、このような鋼板は、C含有量が低く抑えられ、多量のNを含有した鋼に対して、圧延率を適切な範囲とする二次冷間圧延を行うことにより製造される。具体的には、このような鋼板は、スラブ再加熱温度を1240℃超として熱間圧延を行い、530℃以上740℃以下の温度で巻取り、次いで85%以上95%以下の圧延率で一次冷間圧延を行い、引き続きA1変態点未満の温度で焼鈍を行い、次いで7%以上20%以下の圧延率で二次冷間圧延を行うことで製造される。これらの要件は、本発明の最も重要な要件である。 First, the steel plate for cans of the present invention will be described. The rolling elongation at break of the steel sheet is [EL-L]%, and the elongation at break in the width direction is [EL-C]%. At this time, the steel plate for cans of the present invention has [EL-L] of 8 or more and 25 or less, [EL-C] of 8 or more and 25 or less, and an absolute value of [EL-L]-[EL-C]. It is a steel plate for cans having a strength and workability of 5 or less, which is excellent in isotropic mechanical properties. And such a steel plate is manufactured by performing secondary cold rolling which makes a rolling rate an appropriate range with respect to steel with C content restrained low and containing a lot of N. Specifically, such a steel sheet is hot-rolled with a slab reheating temperature exceeding 1240 ° C., wound at a temperature of 530 ° C. or higher and 740 ° C. or lower, and then primary at a rolling rate of 85% or higher and 95% or lower. perform cold rolling, it is subsequently produced by a 1 performs annealing at a temperature below the transformation point, and then performing the secondary cold rolling at a rolling ratio of 20% or less than 7% or more. These requirements are the most important requirements of the present invention.
次に、本発明の缶用鋼板の成分組成について説明する。 Next, the component composition of the steel plate for cans of this invention is demonstrated.
C:0.001%以上0.020%未満
本発明の特徴である機械的性質の良好な等方性は、Cの低い含有量によって実現可能となるものであり、C量が0.020%超では、機械的性質の等方性が低下する。このため、C量は0.020%未満とする。一方、C量を0.001%未満とするためには、脱Cコストが過大となる。従って、C量は0.001%以上0.020%未満とする。機械的性質の等方性の観点から、C量は0.001%以上0.010%未満であることがより好ましい。
C: 0.001% or more and less than 0.020% Good isotropy of mechanical properties, which is a feature of the present invention, can be realized by a low C content, and the C content is 0.020%. If it is too high, the isotropy of the mechanical properties decreases. For this reason, the C content is less than 0.020%. On the other hand, in order to make the amount of C less than 0.001%, the C-free cost becomes excessive. Therefore, the C content is 0.001% or more and less than 0.020%. From the viewpoint of isotropic mechanical properties, the C content is more preferably 0.001% or more and less than 0.010%.
Si:0.003%以上0.100%以下
Si量が0.100%を超えると、表面処理性の低下、耐食性の劣化等の問題が起きる。そのため、Si量の上限は0.100%とする。一方、Si量を0.003%未満とするためには、精錬コストが過大となる。そのため、Si量の下限は0.003%とする。
Si: 0.003% or more and 0.100% or less When the amount of Si exceeds 0.100%, problems such as deterioration of surface treatment property and deterioration of corrosion resistance occur. Therefore, the upper limit of Si content is 0.100%. On the other hand, in order to make Si amount less than 0.003%, the refining cost becomes excessive. Therefore, the lower limit of the Si amount is 0.003%.
Mn: 0.10%以上0.60%以下
Mnは結晶粒を微細化する作用を有し、望ましい材質を確保する上で必要な元素である。この効果を発揮するためには、少なくとも0.10%以上の添加が必要である。そのため、Mn量の下限は0.10%とする。一方、Mnを多量に添加すると耐食性が低下する。そのため、Mn量の上限は0.60%とする。
Mn: 0.10% or more and 0.60% or less Mn has an action of refining crystal grains and is an element necessary for securing a desirable material. In order to exert this effect, it is necessary to add at least 0.10% or more. Therefore, the lower limit of the amount of Mn is 0.10%. On the other hand, when Mn is added in a large amount, the corrosion resistance is lowered. Therefore, the upper limit of the Mn amount is 0.60%.
P:0.001%以上0.100%以下
Pは、鋼を硬質化させ、加工性を悪化させると同時に、耐食性をも悪化させる有害な元素である。そのため、P量の上限は0.100%とする。一方、P量を0.001%未満とするためには、脱Pコストが過大となる。よって、P量の下限は0.001%とする。
P: 0.001% or more and 0.100% or less P is a harmful element that hardens steel and deteriorates workability and at the same time deteriorates corrosion resistance. Therefore, the upper limit of the P amount is 0.100%. On the other hand, in order to make the P amount less than 0.001%, the de-P cost is excessive. Therefore, the lower limit of the P content is 0.001%.
S:0.001%以上0.020%以下
Sは、鋼中で介在物として存在し、延性の低下、耐食性の劣化をもたらす有害な元素である。そのため、S量の上限は0.020%とする。一方、S量を0.001%未満とするには、脱Sコストが過大となる。よって、S量の下限は0.001%とする。
S: 0.001% or more and 0.020% or less S is a harmful element that exists as an inclusion in steel and causes deterioration in ductility and deterioration in corrosion resistance. Therefore, the upper limit of the S amount is 0.020%. On the other hand, in order to make the amount of S less than 0.001%, the removal S cost becomes excessive. Therefore, the lower limit of the S amount is 0.001%.
Al:0.005%以上0.100%以下
Alは、製鋼時の脱酸材として必要な元素である。Alの含有量が0.005%未満では、脱酸が不十分となり、介在物が増加し、加工性が劣化する。一方、Alの含有量が0.100%を超えると、アルミナクラスターなどに起因する表面欠陥の発生頻度が増加する。よって、Al量は0.005%以上0.100%以下とする。
Al: 0.005% or more and 0.100% or less Al is an element necessary as a deoxidizer during steelmaking. When the Al content is less than 0.005%, deoxidation becomes insufficient, inclusions increase, and workability deteriorates. On the other hand, if the Al content exceeds 0.100%, the occurrence frequency of surface defects due to alumina clusters and the like increases. Therefore, the Al content is 0.005% or more and 0.100% or less.
N:0.0120%超0.0200%以下
本発明の鋼板は、Nを多量に含むことにより強度が確保される。N量が0.0120%以下であると、強度を担う固溶Nが過少となり、強度が不足する。一方、N量が0.0200%を超えると、固溶Nによる強化が過剰となり、延性が低下して十分なフランジ加工性が発揮されない。したがって、N量は0.0120%超0.0200%以下とする。好ましくは、N量は0.0130%超0.0160%以下とする。
N: More than 0.0120% and 0.0200% or less The steel sheet of the present invention is ensured in strength by containing a large amount of N. If the N amount is 0.0120% or less, the solid solution N that bears the strength becomes too small, and the strength is insufficient. On the other hand, if the N amount exceeds 0.0200%, the strengthening by the solute N becomes excessive, the ductility is lowered, and sufficient flange workability is not exhibited. Therefore, the N content is more than 0.0120% and 0.0200% or less. Preferably, the N amount is more than 0.0130% and not more than 0.0160%.
N as AlN:0.0050%以下
強度に寄与するNは主に固溶状態のNであり、本発明の鋼板において強度を確保するためにはある程度の固溶N量が必要となる。本発明の鋼板の組成では、鋼中でNが形成する化合物として主にAlNが考えられる。そこで、このAlNとして存在するN(N as AlN)量が0.0050%超であると固溶N量が少なくなり、強度不足となる。したがって、N as AlN量は0.0050%以下とする。より好ましくは、N as AlN量は0.0010%以下とする。
N as AlN: 0.0050% or less N contributing to the strength is mainly N in a solid solution state, and a certain amount of solid solution N is required to ensure the strength in the steel sheet of the present invention. In the composition of the steel sheet of the present invention, AlN is mainly considered as a compound that N forms in the steel. Therefore, if the amount of N (N as AlN) present as AlN is more than 0.0050%, the amount of solid solution N decreases and the strength becomes insufficient. Therefore, the amount of N as AlN is 0.0050% or less. More preferably, the amount of N as AlN is 0.0010% or less.
本発明の鋼板の残部はFeおよび不可避的不純物を含有する。本発明の鋼板は、公知の溶接缶用鋼板中に一般的に含有される成分元素を含有していても良い。例えば、以下に示す量の成分元素を目的に応じて鋼板に含有させることができる。具体的に、Cr:0.10%以下、Cu:0.20%以下、Ni:0.15%以下、Mo:0.05%以下、Ti:0.3%以下、Nb:0.3%以下、Zr:0.3%以下、V:0.3%以下、Ca:0.01%以下等の量の成分元素を含有しても良い。 The balance of the steel sheet of the present invention contains Fe and inevitable impurities. The steel plate of this invention may contain the component element generally contained in the well-known steel plate for welding cans. For example, the following amounts of component elements can be contained in the steel sheet depending on the purpose. Specifically, Cr: 0.10% or less, Cu: 0.20% or less, Ni: 0.15% or less, Mo: 0.05% or less, Ti: 0.3% or less, Nb: 0.3% Hereinafter, component elements such as Zr: 0.3% or less, V: 0.3% or less, and Ca: 0.01% or less may be contained.
次に、本発明の缶用鋼板の機械的性質について説明する。3ピース缶胴の成形において要求される加工性として、フランジ加工性が重要である。フランジ加工は鋼板端部を引き伸ばす加工であるから、フランジ加工性は引張試験における破断伸びによって評価できる。EOEの成形時には張り出し加工によってリベットが成形されるが、張り出し加工部は二軸の引張変形を受けるため、リベット成形性も引張試験における破断伸びによって評価できる。 Next, the mechanical properties of the steel plate for cans of the present invention will be described. Flange workability is important as workability required in forming a three-piece can body. Since the flange process is a process of stretching the end of the steel plate, the flange processability can be evaluated by breaking elongation in a tensile test. A rivet is formed by overhanging at the time of forming the EOE. However, since the overhanging portion is subjected to biaxial tensile deformation, the rivet formability can also be evaluated by breaking elongation in a tensile test.
[EL−L]:8以上25以下
[EL−C]:8以上25以下
[EL−L]−[EL−C]の絶対値:5以下
鋼板の圧延方向の破断伸びを[EL−L]%、幅方向の破断伸びを[EL−C]%とする。このとき、[EL−L]および[EL−C]が8未満であると延性に乏しく、フランジ加工やリベット成形に対応できない。一方、[EL−L]および[EL−C]が25を超えてもさらなる利点は無く、製造が困難になる。[EL−L]−[EL−C]の絶対値が5を超えると機械的性質の異方性が過大であり、鋼板の方向によって3ピース缶胴の成形の条件を変えざるを得なくなる。また、[EL−L]−[EL−C]の絶対値が5を超えると、EOEのリベット成形において割れや皺が発生する。したがって、[EL−L]−[EL−C]の絶対値は5以下とする。より好ましくは、[EL−L]−[EL−C]の絶対値は3以下とする。
[EL-L]: 8 to 25 [EL-C]: 8 to 25 [EL-L]-[EL-C] absolute value: 5 or less [EL-L] %, And the elongation at break in the width direction is [EL-C]%. At this time, if [EL-L] and [EL-C] are less than 8, the ductility is poor and it is not possible to cope with flange processing or rivet molding. On the other hand, even if [EL-L] and [EL-C] exceed 25, there is no further advantage, and production becomes difficult. If the absolute value of [EL-L]-[EL-C] exceeds 5, the anisotropy of mechanical properties is excessive, and the conditions for forming the three-piece can body must be changed depending on the direction of the steel sheet. Further, when the absolute value of [EL-L]-[EL-C] exceeds 5, cracks and wrinkles occur in rivet molding of EOE. Therefore, the absolute value of [EL-L]-[EL-C] is 5 or less. More preferably, the absolute value of [EL-L]-[EL-C] is 3 or less.
引張強度:500MPa以上600MPa以下
鋼板の引張強度が500MPa未満であると、製缶素材としての強度を確保するために、顕著な経済効果が得られるほどに鋼板を薄くすることができない。一方、鋼板の引張強度が600MPaを超えると、ロールフォーム等の加工性が悪化する。よって、引張強度は500MPa以上600MPa以下とする。なお、破断伸び、引張強度は「JIS Z 2241」に示される金属材料引張試験方法により測定できる。
Tensile strength: 500 MPa or more and 600 MPa or less When the tensile strength of the steel sheet is less than 500 MPa, the steel sheet cannot be made thin enough to obtain a remarkable economic effect in order to secure the strength as a can-making material. On the other hand, when the tensile strength of the steel sheet exceeds 600 MPa, the workability of a roll foam or the like deteriorates. Therefore, the tensile strength is 500 MPa or more and 600 MPa or less. The elongation at break and the tensile strength can be measured by a metallic material tensile test method shown in “JIS Z 2241”.
次に、本発明の缶用鋼板の製造方法について説明する。本発明の缶用鋼板は、上記組成からなる鋼を連続鋳造によりスラブとし、スラブ再加熱温度を1240℃超として熱間圧延を行った後、530℃以上740℃以下の温度で巻取り、85%以上95%以下の圧延率で一次冷間圧延を行い、引き続き、A1変態点未満の温度で焼鈍を行い、7%以上20%以下の圧延率で二次冷間圧延を行うことで製造される。 Next, the manufacturing method of the steel plate for cans of this invention is demonstrated. The steel plate for cans of the present invention is made by continuously casting steel having the above composition into a slab by continuous casting, performing hot rolling with a slab reheating temperature exceeding 1240 ° C., and then winding the steel at a temperature of 530 ° C. or higher and 740 ° C. or lower. perform rolling primary cold at% to 95% or less rolling ratio, subsequently, subjected to annealing at a temperature lower than the a 1 transformation point, prepared by performing secondary cold rolling at a rolling ratio of 20% or less than 7% or more Is done.
なお、鋼は、転炉等を用いた通常公知の溶製方法により溶製され、連続鋳造法によりスラブ(圧延素材)とされる。 Steel is melted by a generally known melting method using a converter or the like, and is made into a slab (rolled material) by a continuous casting method.
スラブ再加熱温度:1240℃超
熱間圧延前のスラブ再加熱温度は、鋳造後のスラブ冷却時に析出したAlNの再溶解量に影響を及ぼす。スラブ再加熱温度が1240℃以下であると、AlNの再溶解が不十分となり、AlN量が過大となる。したがって、スラブ再加熱温度は1240℃超とする。より好ましくは、スラブ再加熱温度は1250℃以上とする。
Slab reheating temperature: over 1240 ° C. The slab reheating temperature before hot rolling affects the remelting amount of AlN deposited during slab cooling after casting. When the slab reheating temperature is 1240 ° C. or lower, the remelting of AlN becomes insufficient, and the amount of AlN becomes excessive. Therefore, the slab reheating temperature is over 1240 ° C. More preferably, the slab reheating temperature is 1250 ° C. or higher.
スラブは、熱間圧延により、熱延板となる。熱間仕上圧延温度は、熱延鋼板の結晶粒粗大化防止や析出物分布の均一性の観点から、Ar3変態点以上とすることが好ましい。 The slab becomes a hot-rolled sheet by hot rolling. The hot finish rolling temperature is preferably not less than the Ar 3 transformation point from the viewpoint of preventing grain coarsening of the hot-rolled steel sheet and uniformity of precipitate distribution.
巻取り温度:530℃以上740℃以下
巻取り温度が740℃超であると、巻取り後に析出するAlN量が過大となる。巻取り温度を530℃未満とするには、熱間圧延設備に過大な冷却能力が必要となる。従って、熱間圧延後の巻取り温度は530℃以上740℃以下とする。より好ましくは、巻取り温度は560℃以上710℃以下とする。
Winding temperature: 530 ° C. or higher and 740 ° C. or lower If the winding temperature is higher than 740 ° C., the amount of AlN precipitated after winding becomes excessive. In order to set the coiling temperature to less than 530 ° C., an excessive cooling capacity is required for the hot rolling equipment. Therefore, the coiling temperature after hot rolling is set to 530 ° C. or higher and 740 ° C. or lower. More preferably, the coiling temperature is 560 ° C. or higher and 710 ° C. or lower.
次に、必要に応じて、酸洗が行われる。酸洗は、表層スケールが除去できればよく、特に条件は規定しない。 Next, pickling is performed as necessary. The pickling is not particularly limited as long as the surface scale can be removed.
一次冷間圧延の圧延率:85%以上95%以下
前述したように、SR材を製造するSR法に比べて、DR法では板厚を薄くすることが容易であり、強度に優れた鋼板を製造することが可能であるため、本発明においてはDR法を採用する。一次冷間圧延の圧延率が小さい場合、極薄の鋼板を製造するためには熱間圧延の仕上げ厚を薄くするか、二次冷間圧延の圧延率を大きくすることが必要となる。熱間圧延の仕上げ厚が薄くなると所定の仕上げ圧延温度を確保することが困難となる。また、二次冷間圧延の圧延率を大きくすることは、後述の理由から好ましくない。一次冷間圧延の圧延率が85%以上であれば、熱間圧延の仕上げ厚を薄くしたり、二次冷間圧延の圧延率を大きくしたりする必要は無く、極薄の鋼板を製造することが可能である。一方、一次冷間圧延の圧延率を95%超とするには圧延機への負担が過大となる。したがって、一次冷間圧延の圧延率は85%以上95%以下とする。より好ましくは、一次冷間圧延の圧延率は88%以上91.5%未満とする。
Rolling ratio of primary cold rolling: 85% or more and 95% or less As described above, it is easy to reduce the plate thickness in the DR method compared with the SR method in which the SR material is manufactured. Since it can be manufactured, the DR method is adopted in the present invention. When the rolling ratio of the primary cold rolling is small, it is necessary to reduce the finishing thickness of the hot rolling or increase the rolling ratio of the secondary cold rolling in order to produce an extremely thin steel sheet. When the finish thickness of hot rolling becomes thin, it becomes difficult to ensure a predetermined finish rolling temperature. Moreover, it is not preferable to increase the rolling ratio of the secondary cold rolling for the reasons described later. If the rolling rate of primary cold rolling is 85% or more, it is not necessary to reduce the hot rolling finish thickness or increase the rolling rate of secondary cold rolling, and produce an extremely thin steel plate. It is possible. On the other hand, the burden on the rolling mill is excessive to increase the rolling ratio of primary cold rolling to over 95%. Therefore, the rolling ratio of primary cold rolling is 85% or more and 95% or less. More preferably, the rolling rate of primary cold rolling is 88% or more and less than 91.5%.
焼鈍温度:A1変態点未満
焼鈍温度をA1変態点以上とすると、連続焼鈍においてヒートバックルなどの通板トラブルが発生しやすくなり、好ましくない。したがって、焼鈍温度はA1変態点未満とする。操業効率を考慮すると、より好ましくは、焼鈍温度は630〜700℃とする。
Annealing Temperature: If the A 1 transformation point lower than the annealing temperature and A 1 transformation point or higher, the sheet passing troubles such as heat buckle is likely to occur in the continuous annealing, which is not preferable. Therefore, the annealing temperature is less than the A 1 transformation point. Considering operation efficiency, more preferably, the annealing temperature is set to 630 to 700 ° C.
二次冷間圧延の圧延率:7%以上20%以下
二次冷間圧延の圧延率が20%を超えると、二次冷間圧延による加工硬化が過大となり、良好な加工性が得られなくなる。また、二次冷間圧延の圧延率が7%未満であると、強度が不足する。したがって、二次冷間圧延の圧延率は7%以上20%以下とする。より好ましくは、二次冷間圧延の圧延率は9%以上18%以下とする。
Rolling ratio of secondary cold rolling: 7% or more and 20% or less If the rolling ratio of secondary cold rolling exceeds 20%, work hardening by secondary cold rolling becomes excessive and good workability cannot be obtained. . On the other hand, if the rolling ratio of secondary cold rolling is less than 7%, the strength is insufficient. Therefore, the rolling rate of secondary cold rolling is 7% or more and 20% or less. More preferably, the rolling ratio of secondary cold rolling is 9% or more and 18% or less.
なお、二次冷間圧延以降は、めっき処理等の工程を常法通り行い、缶用鋼板として仕上げることができる。 In addition, after secondary cold rolling, processes, such as a plating process, can be performed as usual, and it can finish as a steel plate for cans.
以上、説明したように、本実施の形態によれば、鋼板の加工性と機械的性質の等方性とが向上することにより、板厚の薄いDR材による製缶が容易となり、薄肉化が必要な広範囲の缶用鋼板に適用できる。 As described above, according to the present embodiment, the workability of the steel sheet and the isotropy of the mechanical properties are improved, so that it is easy to make a can with a thin DR material, and the thinning is possible. Applicable to a wide range of necessary steel plates for cans.
本実施例において、まず、表1に示す成分組成を含有し、残部はFeおよび不可避的不純物からなる鋼を実機転炉で溶製し、連続鋳造することにより鋼スラブを得た。ここで得られた鋼スラブに対して、表2に示す温度に再加熱した後、圧延開始温度1150℃で熱間圧延を行い、表2に示す巻取り温度で巻取った。熱間圧延の仕上げ圧延温度は880℃とし、熱間圧延後には酸洗を施した。次いで、表2に示す圧延率で一次冷間圧延を行い、焼鈍温度690℃で連続焼鈍し、引き続き、表2に示す圧延率で二次冷間圧延を施した。
以上により得られた鋼板にSnめっきを両面に連続的に施して、片面Sn付着量2.8g/m2のめっき鋼板(缶用鋼板)を得た。
In this example, first, a steel slab was obtained by containing the component composition shown in Table 1, with the remainder being made of Fe and unavoidable impurities in an actual converter and continuously cast. The steel slab obtained here was reheated to the temperature shown in Table 2, then hot rolled at a rolling start temperature of 1150 ° C., and wound at the winding temperature shown in Table 2. The finish rolling temperature of hot rolling was 880 ° C., and pickling was performed after hot rolling. Next, primary cold rolling was performed at the rolling rates shown in Table 2, and continuous annealing was performed at an annealing temperature of 690 ° C., followed by secondary cold rolling at the rolling rates shown in Table 2.
The steel plate obtained as described above was continuously subjected to Sn plating on both surfaces to obtain a plated steel plate (can steel plate) having a single-side Sn adhesion amount of 2.8 g / m 2 .
以上により得られためっき鋼板(ぶりき)に対して、210℃、15分の塗装焼付け相当の熱処理を行った後、引張試験を行った。引張試験は、JIS5号サイズの引張試験片を用いて、JIS Z 2241に従い、圧延方向および幅方向の引張強度および破断伸びを測定した。 A tensile test was performed on the plated steel sheet (blink) obtained as described above after a heat treatment equivalent to a coating baking at 210 ° C. for 15 minutes. In the tensile test, tensile strength and elongation at break in the rolling direction and the width direction were measured according to JIS Z 2241 using a JIS No. 5 size tensile test piece.
また、塗装焼付け相当の熱処理を施しためっき鋼板を用いて、シーム溶接によって外径52.8mmの缶胴成形を行い、端部を外径50.4mmまでネックイン加工した後に、外径55.4mmまでフランジ加工を行って、フランジ割れの発生の有無を評価した。缶胴成形は190g飲料缶サイズとし、鋼板の圧延方向に沿って溶接を行った。ネックイン加工はダイネック方式により、フランジ加工はスピンフランジ方式により行われた。フランジ割れが発生した場合は×、割れに至る前段階の厚さ方向くびれが発生した場合は○、割れや厚さ方向くびれが発生しない場合は◎と評価した。 Further, a can body having an outer diameter of 52.8 mm is formed by seam welding using a plated steel sheet that has been subjected to heat treatment equivalent to paint baking, and the end portion is neck-in processed to an outer diameter of 50.4 mm. Flange processing was performed up to 4 mm, and the presence or absence of occurrence of flange cracking was evaluated. The can body was formed into a 190 g beverage can size and welded along the rolling direction of the steel sheet. Neck-in processing was performed by the die neck method, and flange processing was performed by the spin flange method. When flange cracking occurred, it was evaluated as x, when cracking in the thickness direction before cracking occurred, ○, and when cracking or thickness direction constriction did not occur, evaluated as ◎.
また、得られためっき鋼板を用いてEOEタブ取り付け用リベットを成形し、リベット加工性を評価した。リベット成形は3段階のプレス加工により行われ、張り出し加工の後に縮径加工を実施し、直径4.0mm、高さ2.5mmの球頭状リベットが成形された。リベット表面で割れが発生した場合は×、割れに至る前段階の厚さ方向くびれが発生した場合は○、割れや厚さ方向くびれが発生しない場合は◎と評価した。 Moreover, the rivet for EOE tab attachment was shape | molded using the obtained plated steel plate, and rivet workability was evaluated. Rivet forming was performed by three stages of press working. After the overhang processing, diameter reduction processing was performed, and a spherical head rivet having a diameter of 4.0 mm and a height of 2.5 mm was formed. The case where cracks occurred on the rivet surface was evaluated as x, the case where the necking in the thickness direction before the cracking occurred was evaluated as ◯, and the case where cracking or thickness direction necking did not occur was evaluated as ◎.
表3は、以上により得られた結果を示す。 Table 3 shows the results obtained above.
表3より、本発明例(No.1〜11)の缶用鋼板は、強度に優れており、極薄の缶用鋼板として必要な引張強度500MPa以上を達成している。また、[EL−L]−[EL−C]の絶対値が5以下で加工性にも優れており、3ピース缶胴のフランジ加工やEOEのリベット成形も可能であることが確認された。 From Table 3, the steel plate for cans of the present invention examples (Nos. 1 to 11) is excellent in strength, and has achieved a tensile strength of 500 MPa or more necessary as an ultra-thin steel plate for cans. Moreover, it was confirmed that the absolute value of [EL-L]-[EL-C] was 5 or less and excellent in workability, and that the flange processing of the three-piece can body and the rivet molding of EOE were possible.
一方、比較例のNo.12は、Cの含有量が多すぎるため、機械的性質の等方性に劣り、フランジ加工やリベット成形で割れが生じている。比較例のNo.13は、Nの含有量が少なすぎるため、引張強度が不足している。比較例のNo.14は、Nの含有量が多すぎるため、二次冷間圧延により延性が損なわれ、破断伸びが不足し、フランジ加工やリベット成形で割れが生じている。比較例のNo.15は、スラブ再加熱温度が低すぎるため、AlN量が多くなり、引張強度が不足している。比較例のNo.16は、巻取り温度が高すぎるため、AlN量が多くなり、引張強度が不足している。比較例のNo.17は、二次冷間圧延の圧延率が小さすぎるため、引張強度が不足している。比較例のNo.18は、二次冷間圧延の圧延率が大きすぎるため、延性が損なわれ、破断伸びが不足し、フランジ加工やリベット成形で割れが生じている。 On the other hand, no. No. 12 has too much C content, so isotropic mechanical properties are inferior, and cracking occurs in flange processing and rivet molding. Comparative Example No. No. 13 has insufficient tensile strength because the N content is too small. Comparative Example No. In No. 14, since the N content is too large, ductility is impaired by secondary cold rolling, the elongation at break is insufficient, and cracking occurs in flange processing and rivet forming. Comparative Example No. No. 15, because the slab reheating temperature is too low, the amount of AlN increases, and the tensile strength is insufficient. Comparative Example No. No. 16 has a winding temperature that is too high, so the amount of AlN increases and the tensile strength is insufficient. Comparative Example No. No. 17 has insufficient tensile strength because the rolling ratio of secondary cold rolling is too small. Comparative Example No. In No. 18, since the rolling ratio of the secondary cold rolling is too large, the ductility is impaired, the elongation at break is insufficient, and cracking occurs in flange processing and rivet forming.
本発明にかかる缶用鋼板は、3ピース缶胴等を低コストにて製造するための材料として最適であり、EOE等の材料としても好適に使用できる。 The steel plate for cans according to the present invention is optimal as a material for producing a three-piece can body and the like at a low cost, and can be suitably used as a material such as EOE.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014029548A JP2015151620A (en) | 2014-02-19 | 2014-02-19 | Steel sheet for can and production method of steel sheet for can |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014029548A JP2015151620A (en) | 2014-02-19 | 2014-02-19 | Steel sheet for can and production method of steel sheet for can |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015151620A true JP2015151620A (en) | 2015-08-24 |
Family
ID=53894198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014029548A Pending JP2015151620A (en) | 2014-02-19 | 2014-02-19 | Steel sheet for can and production method of steel sheet for can |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015151620A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181449A1 (en) * | 2017-03-31 | 2018-10-04 | Jfeスチール株式会社 | Steel sheet, production method therefor, bottle cap, and drd can |
EP3663428A4 (en) * | 2017-07-31 | 2020-06-10 | JFE Steel Corporation | STEEL SHEET FOR CROWN CORKS, CROWN CORKS AND METHOD FOR PRODUCING A STEEL SHEET FOR CROWN CORKS |
CN113748220A (en) * | 2019-03-29 | 2021-12-03 | 杰富意钢铁株式会社 | Steel sheet for tank and method for producing the same |
-
2014
- 2014-02-19 JP JP2014029548A patent/JP2015151620A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181449A1 (en) * | 2017-03-31 | 2018-10-04 | Jfeスチール株式会社 | Steel sheet, production method therefor, bottle cap, and drd can |
JP6468406B1 (en) * | 2017-03-31 | 2019-02-13 | Jfeスチール株式会社 | Steel plate and manufacturing method thereof, crown and DRD can |
US10837078B2 (en) | 2017-03-31 | 2020-11-17 | Jfe Steel Corporation | Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing (DRD) can |
EP3663428A4 (en) * | 2017-07-31 | 2020-06-10 | JFE Steel Corporation | STEEL SHEET FOR CROWN CORKS, CROWN CORKS AND METHOD FOR PRODUCING A STEEL SHEET FOR CROWN CORKS |
AU2018309964B2 (en) * | 2017-07-31 | 2021-03-25 | Jfe Steel Corporation | Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap |
US11459149B2 (en) * | 2017-07-31 | 2022-10-04 | Jfe Steel Corporation | Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap |
CN113748220A (en) * | 2019-03-29 | 2021-12-03 | 杰富意钢铁株式会社 | Steel sheet for tank and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5794004B2 (en) | Steel sheet for high strength can excellent in flange workability and manufacturing method thereof | |
CN103717770B (en) | High-strength high-processability steel plate for tanks and manufacture method thereof | |
TWI390054B (en) | Steel plate for high strength container and method for manufacturing the same | |
JP5858208B1 (en) | Steel plate for high-strength container and manufacturing method thereof | |
JP6195012B2 (en) | Crown steel plate, method for producing the same, and crown | |
TW201632636A (en) | Steel sheet for two-piece can and manufacturing method therefor | |
JP5018843B2 (en) | Steel plate for high workability 3-piece welded can and manufacturing method thereof | |
TWI493053B (en) | Three-piece can body and method of manufacturing same | |
JP2011137223A (en) | Steel sheet for can and method for producing the same | |
CN104245985B (en) | High-strength high-processability steel plate and its manufacture method | |
JP2015151620A (en) | Steel sheet for can and production method of steel sheet for can | |
JP5672907B2 (en) | Steel sheet for high strength and high workability can and method for producing | |
JP5803660B2 (en) | High-strength, high-formability steel plate for cans and method for producing the same | |
JP6019719B2 (en) | Manufacturing method of high strength and high ductility steel sheet | |
JP5540580B2 (en) | Steel sheet for high strength and high workability can and method for producing | |
JP6060603B2 (en) | High strength steel plate for cans with excellent flange workability and manufacturing method thereof | |
JP5803510B2 (en) | High-strength, high-formability steel plate for cans and method for producing the same | |
JP5849666B2 (en) | High-strength, high-formability steel plate for cans and method for producing the same | |
KR20220004196A (en) | Steel plate for cans and manufacturing method thereof | |
JP6838685B1 (en) | Box-type annealed DR steel sheet and its manufacturing method | |
JP2015193885A (en) | Steel sheet for can lid and manufacturing method therefor |