JP2015027922A - Hydration-cured body - Google Patents
Hydration-cured body Download PDFInfo
- Publication number
- JP2015027922A JP2015027922A JP2013157599A JP2013157599A JP2015027922A JP 2015027922 A JP2015027922 A JP 2015027922A JP 2013157599 A JP2013157599 A JP 2013157599A JP 2013157599 A JP2013157599 A JP 2013157599A JP 2015027922 A JP2015027922 A JP 2015027922A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- slag
- silica
- parts
- finely pulverized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002893 slag Substances 0.000 claims abstract description 142
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 75
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 37
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 29
- 239000010959 steel Substances 0.000 claims abstract description 29
- 239000011230 binding agent Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000126 substance Substances 0.000 claims abstract description 23
- 238000004898 kneading Methods 0.000 claims abstract description 8
- 238000001723 curing Methods 0.000 claims abstract description 6
- 238000000465 moulding Methods 0.000 claims abstract description 5
- 238000009628 steelmaking Methods 0.000 claims description 66
- 239000000463 material Substances 0.000 claims description 24
- 230000009257 reactivity Effects 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 17
- 238000006703 hydration reaction Methods 0.000 claims description 16
- 230000036571 hydration Effects 0.000 claims description 13
- 238000010298 pulverizing process Methods 0.000 claims description 9
- 239000010881 fly ash Substances 0.000 claims description 6
- 229910021487 silica fume Inorganic materials 0.000 claims description 3
- 239000004615 ingredient Substances 0.000 abstract 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 34
- 239000000292 calcium oxide Substances 0.000 description 31
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 29
- 239000000047 product Substances 0.000 description 18
- 239000006227 byproduct Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000002994 raw material Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 239000004567 concrete Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000004575 stone Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000005261 decarburization Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910001576 calcium mineral Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、コンクリートやモルタルのような水和硬化体に係り、とくに製鉄所等産業副産物の一つである製鋼スラグを有効に利用した水和硬化体に関する。 The present invention relates to a hydrated hardened body such as concrete and mortar, and more particularly to a hydrated hardened body that effectively uses steelmaking slag, which is one of industrial by-products such as steelworks.
製鉄所の副産物の一つである製鋼スラグは、鉄分を多く含み高比重で硬質な物質であるが、精錬時に使用した酸化カルシウム(CaO)の一部が未反応の状態(遊離CaO)で残存しており、この遊離CaOが雨水や海水等の水分と接触すると、水和反応を起こしてCa(OH)2を形成する。この反応に伴い、著しい体積膨張が生じるため、それを利用した構造物などが破壊するという問題があり、製鋼スラグの有効利用が著しく阻害されていた。 Steelmaking slag, one of the by-products of steelworks, is a hard substance with a high iron content and high specific gravity, but some of the calcium oxide (CaO) used during refining remains unreacted (free CaO). When this free CaO comes into contact with moisture such as rainwater or seawater, it causes a hydration reaction to form Ca (OH) 2 . Along with this reaction, significant volume expansion occurs, and there is a problem that a structure using the volume is destroyed, and the effective use of steelmaking slag is significantly hindered.
このような問題に対し、例えば特許文献1には、骨材として風砕処理の施されていない製鋼スラグを含有し、結合材として潜在水硬性を有するシリカ含有物質とポゾラン反応性を有するシリカ含有物質のうち1種又は2種を50重量%以上含有してなる水和硬化体が記載されている。特許文献1に記載された技術によれば、製鋼スラグに含まれるCaOの水和反応が抑制されるため、使用中にCaOの水和反応による破壊が生じない水和硬化体となり、製鋼スラグの有効利用を促進できるとしている。 For such a problem, for example, Patent Document 1 contains steelmaking slag that has not been subjected to air crushing treatment as an aggregate, and contains silica-containing material having latent hydraulic properties and silica containing pozzolanic reactivity as a binder. A hydrated cured product containing at least 50% by weight of one or two of the substances is described. According to the technique described in Patent Document 1, since the hydration reaction of CaO contained in the steelmaking slag is suppressed, a hydrated hardened body that does not break due to the hydration reaction of CaO during use is obtained. It is said that it can promote effective use.
また、特許文献2には、粉粒状の製鋼スラグとSiO2含有物質とを水で混練してスラグ硬化体を製造するスラグ硬化体の製造方法が記載されている。特許文献2に記載された技術では、製鋼スラグとして溶銑予備処理スラグを、SiO2含有物質として高炉スラグ微粉末を使用し、水を除く全配合物のうち、粒径1.18mm以下の溶銑予備処理スラグの含有率を15〜55mass%、高炉スラグ微粉末を5〜40mass%含有させるとしている。特許文献2に記載された技術では、硬化を促進させるために、アルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫化塩、塩化物から選ばれた1種又は2種以上を含有することが好ましいとしている。特許文献2に記載された技術によれば、製鋼スラグを用いても、膨張破壊は起こらず、高強度でかつ表面層にひび割れの発生もほとんどないスラグ硬化体が得られるとしている。
これらの技術をもとに、非特許文献1が発行され、鉄鋼スラグ水和硬化体を製造する際のマニュアルとして利用されている。
これとは別に、特許文献3には、細骨材、粗骨材として所定の大きさに粉砕整粒された鉄鋼スラグと、結合材として微粉砕された高炉スラグと製鋼スラグとを配合した鉄鋼スラグを混練水で混練し、成形して得られるスラグブロックが記載されている。特許文献3に記載された技術によれば、セメントを結合材とするコンクリートブロックと比較しても圧縮強度、嵩比重が変わらない高品質の製品となるとしている。また、特許文献3に記載された技術では、原料すべてを製鉄所の副産物として発生する鉄鋼スラグを使用しており、鉄鋼スラグの有効利用という観点では優れている。
Based on these technologies, Non-Patent Document 1 is issued and used as a manual for producing a steel slag hydrated hardened body.
Separately, in Patent Document 3, steel slag that is pulverized and sized to a predetermined size as fine aggregate and coarse aggregate, and blast furnace slag and steelmaking slag that are finely pulverized as a binder are mixed. A slag block obtained by kneading slag with kneaded water and molding is described. According to the technique described in Patent Document 3, the compression strength and bulk specific gravity are not changed even when compared with a concrete block using cement as a binder. Moreover, in the technique described in patent document 3, the steel slag which generate | occur | produces all raw materials as a by-product of a steel mill is used, and it is excellent in the viewpoint of effective utilization of steel slag.
しかしながら、特許文献1に記載された技術では、骨材として使用する製鋼スラグが特定されておらず、使用する製鋼スラグによっては、養生後、硬化体が崩壊する場合があるという問題を残していた。また、特許文献2に記載された技術では、原料すべてを製鉄所の副産物として発生する鉄鋼スラグを使用するまでに至っておらず、製鋼スラグの有効利用という点では課題を残していた。
However, in the technique described in Patent Document 1, steelmaking slag to be used as an aggregate is not specified, and depending on the steelmaking slag to be used, there is a problem that the cured body may collapse after curing. . Moreover, in the technique described in
また、特許文献3に記載された技術では、使用する製鋼スラグが特定されておらず、反応性が安定せず、安定した強度を確保できないという問題があった。
さらに、非特許文献1に記載されたマニュアルでは、鉄鋼スラグ水和固化体として、骨材に製鋼スラグを、主な結合材に高炉スラグ微粉末を使用したうえ、安定した反応性を確保するという観点から、アルカリ刺激材として、消石灰、普通ポルトランドセメントを添加することが推奨されている。これは、原料として製鉄所副産物のみを使用した水和硬化体が、工業的製品としてまだ十分に実用に耐えるまでに至っていないためである。
Moreover, in the technique described in patent document 3, there existed a problem that the steelmaking slag to be used was not specified, the reactivity was not stabilized, and the stable intensity | strength was not securable.
Furthermore, in the manual described in Non-Patent Document 1, as steel slag hydrated solidified body, steelmaking slag is used as an aggregate, blast furnace slag fine powder is used as a main binder, and stable reactivity is ensured. From the viewpoint, it is recommended to add slaked lime or ordinary Portland cement as an alkali stimulant. This is because the hydrated and cured product using only the ironworks by-product as a raw material has not yet been fully put into practical use as an industrial product.
本発明は、かかる従来技術に鑑みて成されたものであり、原料として製鉄等産業副産物のみを使用しても、作業性(ワーカビリティー)に問題がなく、安定して所望の強度を確保でき、しかも使用中に崩壊等の問題を生じない体積安定性に優れる、水和硬化体を提供することを目的とする。 The present invention has been made in view of such prior art, and even if only industrial byproducts such as iron making are used as raw materials, there is no problem in workability (workability), and a desired strength can be secured stably, And it aims at providing the hydration hardening body which is excellent in the volume stability which does not produce problems, such as disintegration, in use.
本発明者らは、上記した目的を達成するために、まず、原料すべてを製鉄等産業副産物である高炉スラグ、製鋼スラグ等とした場合に、水和硬化体の強度に影響する各種要因について鋭意研究した。その結果、水和硬化体の強度には、とくに結合材として微粉砕して使用する製鋼スラグ(微粉砕製鋼スラグ)中の遊離CaOが強く影響していることを知見した。 In order to achieve the above-mentioned object, the present inventors first eagerly consider various factors that affect the strength of the hydrated hardened body when all the raw materials are blast furnace slag and steelmaking slag as industrial by-products such as iron making. Studied. As a result, it was found that free CaO in steelmaking slag (finely pulverized steelmaking slag) used after being finely pulverized as a binder has a strong influence on the strength of the hydrated hardened body.
製鋼スラグには、溶銑予備処理時に発生する溶銑予備処理スラグ、転炉脱炭精錬時に発生する転炉スラグがあり、通常、製鋼プロセスの違いや、炭素、燐、硫黄等の含有量など溶鋼の要求品質によって、スラグ中に含有される、例えばCaOや鉱物相等の種類、含有量が大きく相違する。そこで、水和硬化体の強度変動は、製鋼スラグ中に含まれるCaO量のばらつきに起因して生じたものと推察し、本発明者らは、水和硬化体の強度を安定して確保するために、結合材として使用する製鋼スラグ(微粉砕製鋼スラグ)を、遊離CaO量が一定値以上の適正範囲に調整された製鋼スラグとすることが、とくに重要になることに思い至った。 Steelmaking slag includes hot metal pretreatment slag generated during hot metal pretreatment and converter slag generated during converter decarburization and refining. Usually, differences in steelmaking processes and the content of carbon, phosphorus, sulfur, etc. Depending on the required quality, the type and content of, for example, CaO and mineral phase contained in the slag vary greatly. Therefore, it is inferred that the strength fluctuation of the hydrated hardened body is caused by the variation in the amount of CaO contained in the steelmaking slag, and the present inventors stably secure the strength of the hydrated hardened body. Therefore, it has been thought that it is particularly important that the steelmaking slag (finely pulverized steelmaking slag) used as the binder is a steelmaking slag whose free CaO amount is adjusted to an appropriate range of a certain value or more.
潜在水硬性を有するシリコン含有物質は、アルカリ水溶液の下で反応(部分溶解)して、l・CaO−m・SiO2−n・H2Oゲル(水和物)を形成して硬化する。CaOを含有する製鋼スラグは、水とともに混練されると、高濃度のアルカリ水溶液を生成し、シリコン含有物質の水和硬化反応性(潜在水硬性)を刺激する。製鋼スラグ中に含まれるCaO量は、水溶液のアルカリの度合に強く影響を与えるため、その変動が、潜在水硬性を有するシリコン含有物質の水和硬化反応の進行に影響し、硬化の程度が変動して、水和硬化体強度が変化したものと推察した。 The silicon-containing substance having latent hydraulic properties reacts (partially dissolves) under an alkaline aqueous solution to form a l · CaO-m · SiO 2 -n · H 2 O gel (hydrate) and hardens. When steelmaking slag containing CaO is kneaded with water, it produces a highly concentrated aqueous alkaline solution and stimulates the hydration hardening reactivity (latent hydraulic properties) of the silicon-containing material. The amount of CaO contained in steelmaking slag has a strong effect on the alkalinity of the aqueous solution, so its fluctuation affects the progress of the hydration hardening reaction of silicon-containing materials with latent hydraulic properties, and the degree of hardening varies. Thus, it was inferred that the strength of the hydrated cured body was changed.
まず、本発明の基礎となった実験結果について説明する。
骨材としての粉化率:0.8%の製鋼スラグに、結合材として、高炉スラグ微粉末(ブレーン値:4000cm2/g)とともに、CaO量が40〜55質量%で、遊離CaO(f−CaO)が0.5〜5.2質量%の範囲に変化した各種転炉スラグを配合し、水を加えて混練したのち、モールド(100mmφ×200mmL)内に注入して、水和硬化体である試験材(円柱状)とした。なお、同時に、ポゾラン反応性を有するシリカ含有物質であるフライアッシュ(JIS A 6201相当品)も添加した。
First, the experimental results on which the present invention is based will be described.
Powdering rate as aggregate: 0.8% steelmaking slag, BF slag fine powder (Brain value: 4000cm 2 / g) as binder, CaO amount is 40-55 mass%, free CaO (f-CaO ) Is mixed with various converter slags that have been changed to the range of 0.5 to 5.2 mass%, and after adding water and kneading, it is injected into a mold (100mmφ × 200mmL), and a test material (circle) Columnar). At the same time, fly ash (equivalent to JIS A 6201), which is a silica-containing substance having pozzolanic reactivity, was also added.
得られた試験材を、水中で28日間養生したのち、JIS A 1108に準拠して一軸圧縮強度を評価した。なお、骨材として使用した製鋼スラグは、溶銑予備処理の脱燐処理時に発生した溶銑予備処理スラグとした。また、使用した転炉スラグは、粒子径が2mm以下で、粒子径:0.6mm以下の粒子の割合が87%であるものを使用し、高炉スラグ微粉末100質量部に対し21質量部配合した。なお、フライアッシュは、転炉スラグ100質量部に対し118質量部、配合した。また、全混合物中の骨材容積は60%とした。 The obtained test material was cured in water for 28 days, and the uniaxial compressive strength was evaluated in accordance with JIS A 1108. The steelmaking slag used as the aggregate was a hot metal pretreatment slag generated during the dephosphorization process of the hot metal pretreatment. In addition, the converter slag used was one having a particle size of 2 mm or less and a particle size: the ratio of particles of 0.6 mm or less being 87%, and 21 parts by mass per 100 parts by mass of blast furnace slag fine powder. . In addition, 118 mass parts of fly ash was mix | blended with respect to 100 mass parts of converter slag. The aggregate volume in the entire mixture was 60%.
得られた結果を、一軸圧縮強度と微粉砕した製鋼スラグ中の遊離CaO量との関係で図1に示す。
図1から、所望の強度である9.8N/m2(準硬石相当)以上を有する水和硬化体を得るためには、潜在水硬性を有するシリコン含有物質に組み合わせる製鋼スラグを、1.5質量%以上の遊離CaOを含有する微粉砕製鋼スラグとする必要があることがわかる。なお、工業的に安定した性能を確保するためには、上記した強度に20%程度上のせした強度を確保することが望ましく、そのためには3質量%以上とする必要があることがわかる。
The obtained results are shown in FIG. 1 in relation to the uniaxial compressive strength and the amount of free CaO in the pulverized steelmaking slag.
From FIG. 1, in order to obtain a hydrated hardened body having a desired strength of 9.8 N / m 2 (corresponding to semi-hard stone) or more, 1.5% by mass of steelmaking slag combined with a silicon-containing material having latent hydraulic properties is obtained. It turns out that it is necessary to set it as the fine grinding steelmaking slag containing the above free CaO. In addition, in order to ensure industrially stable performance, it is desirable to secure a strength that is about 20% higher than the above strength, and for that purpose, it is necessary to make it 3% by mass or more.
また、遊離CaO(f−CaO)が3.5質量%の転炉スラグの配合量を、高炉スラグ微粉末100質量部に対し10〜40質量部の範囲に変化して配合し、同様に、一軸圧縮強度を評価した。得られた結果を図2に示す。
図2から、所望の強度である9.8N/m2以上を有する水和硬化体を得るためには、転炉スラグの配合量を、高炉スラグ微粉末100質量部に対し20質量部以上とする必要があることがわかる。
In addition, the blending amount of converter slag with free CaO (f-CaO) of 3.5% by mass is blended in the range of 10 to 40 parts by mass with respect to 100 parts by mass of blast furnace slag fine powder. The strength was evaluated. The obtained results are shown in FIG.
From FIG. 2, in order to obtain a hydrated cured product having a desired strength of 9.8 N / m 2 or more, the blending amount of the converter slag is set to 20 parts by mass or more with respect to 100 parts by mass of the blast furnace slag fine powder. I understand that it is necessary.
さらに、製鋼スラグを微粉砕するに際し、経済的な粉砕方法で処理した場合には、製鋼スラグが硬質であることから粒状のものが若干残存し、余剰の遊離CaOとなる場合があり、水和硬化体内で、余剰遊離CaOの水和膨張反応による微視的破壊が発生する恐れがある。そこで、本発明者らは、このような余剰遊離CaOの水和膨張反応による微視的破壊を防止し、水和硬化体の強度のばらつきを小さくするために、ポゾラン反応性を有するシリカ含有物質をさらに含有させる必要があることに思い至った。 Furthermore, when the steelmaking slag is finely pulverized, if the steelmaking slag is processed by an economical pulverization method, the steelmaking slag is hard, so some of the granular material may remain, resulting in excess free CaO, and hydration In the cured body, there is a risk of microscopic destruction due to the hydration expansion reaction of excess free CaO. Therefore, the present inventors have disclosed a silica-containing substance having pozzolanic reactivity in order to prevent such microscopic destruction due to the hydration expansion reaction of excess free CaO and to reduce variation in strength of the hydrated cured body. I thought that it was necessary to further contain.
ポゾラン反応性を有するシリカ含有物質を含有させることにより、余剰遊離CaOが残存すると、ポゾラン反応によって、l・CaO−m・SiO2−n・H2Oゲル(水和物)を形成して、CaO(固体)の水和膨張反応を抑制するとともに、マトリックス組織の緻密化を図ることができる。
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
When surplus free CaO remains by including a silica-containing substance having pozzolanic reactivity, l · CaO-m · SiO 2 -n · H 2 O gel (hydrate) is formed by pozzolanic reaction, It can suppress the hydration expansion reaction of CaO (solid) and can make the matrix structure dense.
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1)骨材と結合材とを、水とともに混練し成形、硬化してなる水和硬化体であって、前記骨材を製鋼スラグを主とする骨材とし、前記結合材が、潜在水硬性を有するシリカ含有物質と、ポゾラン反応性を有するシリカ含有物質と、さらに1.5質量%以上の遊離CaOを含む微粉砕製鋼スラグとからなることを特徴とする水和硬化体。
(2)(1)において、前記微粉砕製鋼スラグが、粒子径0.6mm以下の粒子を85質量%以上含有することを特徴とする水和硬化体。
(1) A hydrated hardened body obtained by kneading, molding, and hardening an aggregate and a binder together with water, wherein the aggregate is an aggregate mainly made of steelmaking slag, and the binder is latent water. A hydrated and cured product comprising a silica-containing material having hardness, a silica-containing material having pozzolanic reactivity, and a finely pulverized steel slag containing 1.5% by mass or more of free CaO.
(2) The hydrated cured product according to (1), wherein the finely pulverized steel slag contains 85% by mass or more of particles having a particle size of 0.6 mm or less.
(3)(1)又は(2)において、前記微粉砕製鋼スラグを前記潜在水硬化性を有するシリカ含有物質100質量部に対し20質量部以上100質量部未満、前記ポゾラン反応性を有するシリカ含有物質を前記微粉砕製鋼スラグ100質量部に対し、10質量部以上120質量部未満含有することを特徴とする水和硬化体。
(4)(1)ないし(3)のいずれかにおいて、前記潜在水硬性を有するシリカ含有物質が高炉スラグ微粉末であり、前記ポゾラン反応性を有するシリカ含有物質がフライアッシュ及び/又はシリカフュームであることを特徴とする水和硬化体。
(3) In (1) or (2), the finely pulverized steelmaking slag contains 20 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of the silica-containing substance having latent water-curing property, and contains silica having the pozzolanic reactivity. A hydrated cured product comprising 10 parts by mass or more and less than 120 parts by mass of a substance with respect to 100 parts by mass of the finely pulverized steel slag.
(4) In any one of (1) to (3), the silica-containing material having latent hydraulic properties is blast furnace slag fine powder, and the silica-containing material having pozzolanic reactivity is fly ash and / or silica fume. A hydrated cured product characterized by that.
(5)(1)ないし(4)のいずれかにおいて、前記骨材としての前記製鋼スラグが、80℃の温水に10日間浸漬する条件で測定した粉化率が2.5%以下であることを特徴とする水和硬化体。 (5) In any one of (1) to (4), the steelmaking slag as the aggregate has a pulverization rate of 2.5% or less measured under the condition of being immersed in hot water at 80 ° C. for 10 days. Hydrated cured product.
本発明によれば、原料のすべてを鉄鋼スラグ等の製鉄等の産業副産物としても、作業性(ワーカビリティー)に問題がなく、所望の強度を有し、体積安定性に優れる水和硬化体を安定して提供でき、製鉄所等の産業副産物の有効利用を促進でき、産業上格段の効果を奏する。また、本発明によれば、コンクリートや石材の代替として、環境保全、省資源に貢献できるという効果もある。 According to the present invention, even if all raw materials are used as industrial by-products such as iron and steel slag, there is no problem in workability (workability), the desired strength, and the hydrated cured product with excellent volume stability can be stabilized. It can be provided and can promote the effective use of industrial by-products such as steelworks, and has a remarkable industrial effect. In addition, according to the present invention, there is an effect that it can contribute to environmental conservation and resource saving as an alternative to concrete and stone.
一般に、骨材と結合材とを原料として、原料と水とを混練したのち、モールドに装入し成形し、養生、硬化して、所望形状の水和硬化体となる。本発明水和硬化体では、原料のすべてを鉄鋼スラグ等の産業副産物を利用する。
本発明では、結合材は、潜在水硬性を有するシリカ含有物質と、ポゾラン反応性を有するシリカ含有物質と、さらに微粉砕された製鋼スラグ(微粉砕製鋼スラグともいう)とする。
In general, an aggregate and a binder are used as raw materials, and the raw materials and water are kneaded, then placed in a mold, molded, cured, and cured to obtain a hydrated cured body having a desired shape. In the hydrated and cured product of the present invention, industrial by-products such as steel slag are used for all raw materials.
In the present invention, the binder is a silica-containing material having latent hydraulic properties, a silica-containing material having pozzolanic reactivity, and a finely pulverized steelmaking slag (also referred to as finely pulverized steelmaking slag).
潜在水硬性を有するシリカ含有物質は、アルカリ水溶液の下で反応(部分溶解)して、l・CaO−m・SiO2−n・H2Oゲル(水和物)を形成して硬化し、主たる結合材として作用する。潜在水硬性を有するシリカ含有物質としては、高炉スラグ微粉末、高炉徐冷スラグ等が例示できるが、安定した反応性を確保するという観点から高炉スラグ微粉末とすることが好ましい。本発明で結合材として使用する高炉スラグ微粉末は、JIS A 6206に適合したものとすることが好ましい。なお、ここでいう「微粉末」とは、JIS A 6206に準拠してブレーン空気透過法で測定した比表面積(ブレーン値)が2750cm2/g以上の微粉末をいうものとする。 The silica-containing substance having latent hydraulic properties reacts (partially dissolves) under an alkaline aqueous solution to form l · CaO-m · SiO 2 -n · H 2 O gel (hydrate) and hardens, Acts as the main binder. Examples of the silica-containing substance having latent hydraulic properties include blast furnace slag fine powder, blast furnace slow-cooled slag, and the like, but it is preferable to use blast furnace slag fine powder from the viewpoint of ensuring stable reactivity. It is preferable that the blast furnace slag fine powder used as a binder in the present invention conforms to JIS A 6206. The term “fine powder” as used herein refers to a fine powder having a specific surface area (brane value) of 2750 cm 2 / g or more measured by the brane air permeation method in accordance with JIS A 6206.
また、微粉砕された製鋼スラグ(微粉砕製鋼スラグ)は、上記したシリカ含有物質の水硬性の発現に寄与し、アルカリ刺激剤として所定強度の水和硬化体を安定して得るために本発明では重要な添加物である。本発明で使用する製鋼スラグ(微粉砕製鋼スラグ)は、遊離CaOを1.5質量%以上含有するように選定した製鋼スラグ(微粉砕製鋼スラグ)とする。遊離CaO量が1.5質量%未満では、図1に示すように、所望の強度(9.8N/m2以上:準硬石相当)を安定して確保できない。このようなことから、添加する製鋼スラグは、製鋼スラグ全量に対する質量%で、遊離CaO量を1.5質量%以上含有する製鋼スラグに限定した。なお、安定した強度発現という観点から、好ましくは3質量%以上である。 In addition, the finely pulverized steelmaking slag (finely pulverized steelmaking slag) contributes to the development of the hydraulic properties of the silica-containing material described above, and the present invention is used in order to stably obtain a hydrated cured body having a predetermined strength as an alkali stimulant. Then it is an important additive. The steelmaking slag (finely pulverized steelmaking slag) used in the present invention is a steelmaking slag (finely pulverized steelmaking slag) selected so as to contain 1.5% by mass or more of free CaO. If the amount of free CaO is less than 1.5% by mass, the desired strength (9.8 N / m 2 or more: equivalent to semi-hard stone) cannot be secured stably as shown in FIG. For this reason, the steelmaking slag to be added was limited to steelmaking slag containing 1.5% by mass or more of free CaO in mass% with respect to the total amount of steelmaking slag. From the viewpoint of stable strength development, it is preferably 3% by mass or more.
また、使用する製鋼スラグ(微粉砕製鋼スラグ)は、アルカリ刺激剤として有効に作用するために、あるいは強度安定性の向上に有効に寄与するために、微粉砕しておく必要がある。ここでいう「微粉砕」とは、粒子径0.6mm以下の粒子が製鋼スラグ全量に対する質量%で85%程度以上となるように、粉砕する場合をいうものとする。
なお、微粉砕製鋼スラグの添加量(含有量)は、潜在水硬性を有するシリカ含有物質100質量部に対し、20質量部以上100質量部未満とすることが好ましい。添加量(含有量)が20質量部未満では、アルカリ刺激剤が十分でなかったり、均質性が不十分となり、所望の強度を安定して確保できなくなる。一方、100質量部以上となると、固化体のマトリックス部が製鋼スラグ主体となるため、得られる水和硬化体の強度が不足する。このため、微粉砕製鋼スラグの添加量(含有量)は、潜在水硬性を有するシリカ含有物質100質量部に対し、20質量部以上100質量部未満の範囲に限定することが好ましい。
Further, the steelmaking slag to be used (finely pulverized steelmaking slag) needs to be finely pulverized in order to effectively act as an alkali stimulant or to contribute to the improvement of strength stability. The term “fine pulverization” as used herein refers to a case where particles having a particle diameter of 0.6 mm or less are pulverized so that the mass% with respect to the total amount of steelmaking slag is about 85% or more.
The addition amount (content) of finely pulverized steel slag is preferably 20 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of the silica-containing substance having latent hydraulic properties. When the addition amount (content) is less than 20 parts by mass, the alkali stimulant is not sufficient or the homogeneity becomes insufficient, and the desired strength cannot be secured stably. On the other hand, when the amount is 100 parts by mass or more, the matrix portion of the solidified body is mainly composed of steelmaking slag, so that the strength of the obtained hydrated cured body is insufficient. For this reason, it is preferable to limit the addition amount (content) of finely pulverized steel slag to a range of 20 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of the silica-containing substance having latent hydraulic properties.
また、本発明では、得られる水和硬化体の品質をさらに安定化するために、ポゾラン反応性を有するシリカ含有物質を含有させる。ポゾラン反応性を有するシリカ含有物質は、余剰遊離CaOが残存した場合に、ポゾラン反応を発現して、CaOを消費し、CaO(固体)の水和膨張反応を抑制するとともに、マトリックス組織を緻密化する。これにより、水和硬化体の強度ばらつきが減少するという効果を奏する。 In the present invention, in order to further stabilize the quality of the obtained hydrated cured product, a silica-containing material having pozzolanic reactivity is included. A silica-containing material with pozzolanic reactivity, when surplus free CaO remains, develops a pozzolanic reaction, consumes CaO, suppresses the hydration expansion reaction of CaO (solid), and densifies the matrix structure To do. Thereby, there exists an effect that the intensity dispersion | variation of a hydration hardening body reduces.
ポゾラン反応性を有するシリカ含有物質としては、火力発電所から副産物(産業副産物)として発生するフライアッシュ、電気炉等で副産物(製鉄副産物)として発生するシリカフュームが例示でき、本発明では、これらを単独又は複合して含有できる。
なお、ポゾラン反応性を有するシリカ含有物質の添加量(含有量)は、微粉砕製鋼スラグ100質量部に対し、10質量部以上100質量部未満とすることが好ましい。10質量部未満では、スラグの種類にもよるが、水和硬化体の発現する強度が低下する場合が多くなる。一方、100質量部以上と過剰に含有すると、未凝固水和硬化体の作業性(ワーカビリティー)が低下するうえ、水和硬化体の発現する強度が低下する。このため、ポゾラン反応性を有するシリカ含有物質は、微粉砕製鋼スラグ100質量部に対し、10質量部以上100質量部未満に限定することが好ましい。
Examples of the silica-containing material having pozzolanic reactivity include fly ash generated as a by-product (industrial by-product) from a thermal power plant, and silica fume generated as a by-product (iron-making by-product) in an electric furnace or the like. Or it can contain in a composite.
The addition amount (content) of the silica-containing material having pozzolanic reactivity is preferably 10 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of the finely pulverized steel slag. If it is less than 10 parts by mass, it depends on the type of slag, but the strength of the hydrated cured product often decreases. On the other hand, when it contains excessively as 100 mass parts or more, workability | operativity (workability) of an unsolidified hydrated hardening body will fall, and the intensity | strength which a hydrated hardening body will express will fall. For this reason, the silica-containing substance having pozzolanic reactivity is preferably limited to 10 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of finely pulverized steel slag.
つぎに、結合材と組み合わせて配合する骨材は、本発明では製鋼スラグを主として用いる。ここでいう「主として」とは、当該物質が骨材全量に対して50質量%以上である場合をいうものとする。製鋼スラグには、溶銑予備処理時に発生する溶銑予備処理スラグ、転炉脱炭精錬時に発生する転炉スラグがあるが、骨材として使用する場合には、膨張安定性、体積安定性の高いものとする必要がある。そこで、本発明では、粉化率が2.5%以下、好ましくは遊離MgOが8.5%以下の製鋼スラグとすることが好ましい。なお、粉化率は、非特許文献1に提示された粉化試験(80℃で10日間保持)を実施して得られた値を用いるものとする。 Next, as the aggregate to be blended in combination with the binder, steelmaking slag is mainly used in the present invention. Here, “mainly” means that the substance is 50% by mass or more based on the total amount of aggregate. Steelmaking slag includes hot metal pretreatment slag generated during hot metal pretreatment and converter slag generated during converter decarburization refining, but when used as an aggregate, it has high expansion stability and volume stability. It is necessary to. Therefore, in the present invention, it is preferable to use a steelmaking slag having a powdering rate of 2.5% or less, preferably 8.5% or less of free MgO. In addition, the value obtained by implementing the pulverization test (held at 80 ° C. for 10 days) presented in Non-Patent Document 1 is used as the pulverization rate.
また、骨材として使用する製鋼スラグは、使用目的に応じて所定の大きさに粉砕整粒されたものとする。本発明水和硬化体では、骨材として100質量%製鋼スラグを使用することが望ましいが、製鋼スラグの一部に代えて、製鉄副産物である、高炉徐冷スラグ粗骨材、高炉水砕スラグ細骨材、風砕スラグ等とすることもできる。また、骨材の一部を天然砕石、山砂等としても、何ら問題のない水和硬化体が得られることは言うまでもない。 The steelmaking slag used as the aggregate is pulverized and sized to a predetermined size according to the purpose of use. In the hydrated cured product of the present invention, it is desirable to use 100% by mass steelmaking slag as an aggregate, but instead of a part of the steelmaking slag, a blast furnace slow-cooled slag coarse aggregate, blast furnace granulated slag, which is an iron by-product, is used. Fine aggregates, crushed slag, etc. can also be used. Moreover, it goes without saying that a hydrated hardened body having no problem can be obtained even if a part of the aggregate is made of natural crushed stone, mountain sand or the like.
また、未凝固の水和硬化体の作業性(ワーカビリティー)を向上させるために、さらに、上記した原料に加えて、通常、コンクリートで混和剤として使用されている減水剤を添加してもよく、減水剤はJIS A 6204に準拠したものを使用することが好ましい。
なお、本発明水和硬化体を製造するための、骨材と結合材と水の配合割合や、混練方法、打設方法、成形方法、養生等の施工方法は、用途に応じて、通常のコンクリート、モルタルの場合と同様としてよい。
Moreover, in order to improve the workability (workability) of the unsolidified hydrated cured body, in addition to the above-described raw materials, a water reducing agent that is usually used as an admixture in concrete may be added. It is preferable to use a water reducing agent that conforms to JIS A 6204.
The production ratio of the aggregate, the binder and water, the kneading method, the casting method, the molding method, the curing method, etc. for producing the hydrated cured product of the present invention are usually used depending on the application. It may be the same as in the case of concrete and mortar.
また、本発明水和硬化体を製造するに際しては、作業性(ワーカビリティー)の指標である、JIS A 1101の規定に準拠して測定されるスランプ値を通常では8〜20cm程度、二次製品であれば0〜5cm程度に調整することが好ましい。
なお、強度指標として結合材の合計量と混練水量との比(粉体水比)は、次式
強度指数={潜在水硬性を有するシリカ含有物質+0.35×(ポゾラン反応性を有するシリカ含有物質)+0.35×(微粉砕製鋼スラグ)}/(混練水量)
で算出するものとする。
Moreover, when producing the hydrated cured product of the present invention, the slump value measured in accordance with the JIS A 1101 standard, which is an index of workability (workability), is usually about 8 to 20 cm. If it exists, it is preferable to adjust to about 0-5 cm.
As a strength indicator, the ratio of the total amount of binder and the amount of kneaded water (powder water ratio) is the following formula: strength index = {silica-containing substance with latent hydraulic properties + 0.35 × (silica-containing with pozzolanic reactivity) Material) + 0.35 × (finely pulverized steelmaking slag)} / (mixing water amount)
It shall be calculated by
高炉から出銑した溶銑に、溶銑予備処理として脱珪処理を施したのち脱燐処理を施し、その際発生した溶銑予備処理スラグ(製鋼スラグ)を骨材として使用した。この製鋼スラグの粉化率は0.7%であった。なお、粉化率の測定は、非特許文献1に提示された粉化試験に準拠して行った。
溶銑予備処理として脱燐処理を施された溶銑に、さらに機械撹拌式脱硫処理を施したのち、転炉に装入し脱炭精錬を行った。その際発生した転炉スラグ(製鋼スラグ)を回収し、結合材の一つであるアルカリ刺激剤の原料とした。なお、回収した転炉スラグは、遊離CaO量が異なる3種を選択した。
The hot metal discharged from the blast furnace was dephosphorized as a hot metal pretreatment and then dephosphorized, and the hot metal pretreated slag (steel slag) generated at that time was used as an aggregate. The powdering rate of this steelmaking slag was 0.7%. In addition, the measurement of the pulverization rate was performed based on the pulverization test presented in Non-Patent Document 1.
The hot metal that had been subjected to dephosphorization treatment as a hot metal pretreatment was further subjected to mechanical stirring type desulfurization treatment, and then charged into a converter and subjected to decarburization refining. The converter slag (steel slag) generated at that time was recovered and used as a raw material for an alkaline stimulant that is one of the binders. The recovered converter slag was selected from three types having different free CaO amounts.
回収した転炉スラグ(製鋼スラグ)は含水量が高かったため、生石灰を投入し吸水乾燥させながら、転炉スラグをローラーミルで粉砕し、粒径分布で、全粒子が2mm以下、0.6mm以下の粒子の割合が91%、86%である、微粉砕された転炉スラグ(製鋼スラグ)A、Cを得た。
また、一部の転炉スラグでは、生石灰を投入せずに含水量が高いまま、回収した転炉スラグをローラーミルで粉砕し、0.6mm以下の粒子の割合が87%の粒径分布を有する微粉砕された転炉スラグ(製鋼スラグ)Bを得た。なお、同じ転炉スラグを用いて、粉砕条件を変化して、0.6mm以下の粒子の割合が40%である粒径分布を有する微粉砕された転炉スラグ(製鋼スラグ)B1を得た。
Because the recovered converter slag (steel slag) had a high water content, the converter slag was pulverized with a roller mill while adding quick lime and dried by absorbing water, and the particle size distribution showed that all particles were 2 mm or less and 0.6 mm or less. Finely pulverized converter slags (steel slags) A and C having a particle ratio of 91% and 86% were obtained.
Also, in some converter slag, the recovered converter slag is crushed with a roller mill with high water content without adding quick lime, and the ratio of particles of 0.6 mm or less has a particle size distribution of 87% Finely pulverized converter slag (steel slag) B was obtained. By using the same converter slag, the pulverization conditions were changed to obtain a finely pulverized converter slag (steel slag) B1 having a particle size distribution in which the proportion of particles of 0.6 mm or less was 40%.
結合材の一つであるアルカリ刺激剤として使用した製鋼スラグ(微粉砕製鋼スラグ)の組成、粒径分布を表1に示す。
また、結合材の一つである潜在水硬性を有するシリカ含有物質として、高炉スラグ微粉末(ブレーン値:4000cm2/g)を用いた。また、結合材の一つであるポゾラン反応を有するシリカ含有物質としてフライアッシュ(JIS II種相当品)を用いた。
Table 1 shows the composition and particle size distribution of steelmaking slag (finely pulverized steelmaking slag) used as an alkali stimulant, which is one of the binders.
In addition, blast furnace slag fine powder (Blaine value: 4000 cm 2 / g) was used as a silica-containing substance having latent hydraulic properties, which is one of the binders. Further, fly ash (JIS II type equivalent) was used as a silica-containing substance having a pozzolanic reaction, which is one of the binders.
表2に示す配合量で、骨材と結合材とを、水とともに混練したのち、モールド(100mmφ×200mmL)に注入して成形し、水中で28日間養生し、硬化させて水和硬化体(円柱試験体)とした。なお、混和剤は添加しなかった。
得られた円柱試験体について、JIS A 1108の規定に準拠して、一軸圧縮強度を測定した。なお、未凝固の水和硬化体の作業性(ワーカビリティー)の指標として、混練直後に、JIS A 1101の規定に準拠してスランプ値を測定した。得られた値を表2に併記した。
Aggregates and binders are kneaded with water in the blending amounts shown in Table 2, then poured into a mold (100mmφ × 200mmL), molded, cured for 28 days in water, cured and hydrated and cured ( Cylindrical specimen). The admixture was not added.
About the obtained cylindrical test body, the uniaxial compressive strength was measured based on the rule of JIS A 1108. In addition, as an index of workability (workability) of an unsolidified hydrated cured product, a slump value was measured immediately after kneading in accordance with the provisions of JIS A 1101. The obtained values are also shown in Table 2.
一部の円柱試験体について、非特許文献1の記載に基づき、混練から7日後に、80℃に保持した温水槽に移し、10日間浸漬して、体積安定性の評価を実施した。体積安定性は、浸漬後の試験体の状態を目視で観察し評価した。評価は、大きな破損や同方向に連結するような有害亀裂がある場合を×、5mmを超えるようなポップアウトがある場合を△、ほとんど変化がない場合を○とした。得られた結果を表2に併記して示す。 Based on the description of Non-Patent Document 1, some cylindrical specimens were transferred to a hot water tank maintained at 80 ° C. 7 days after kneading and immersed for 10 days to evaluate volume stability. The volume stability was evaluated by visually observing the state of the test specimen after immersion. In the evaluation, a case where there was a severe breakage or a harmful crack connecting in the same direction was evaluated as “X”, a case where there was a pop-out exceeding 5 mm, and a case where there was almost no change. The obtained results are shown together in Table 2.
本発明例はいずれも、未凝固状態でスランプ値5〜15cmの優れた作業性(ワーカビリティー)を有するとともに、9.8N/mm2以上(準硬石相当)の圧縮強度を有し、準硬石と同等以上の特性を有し、体積安定性に優れた水和硬化体となっている。一方、本発明の範囲を外れる比較例は、圧縮強度が低下し、体積安定性も低下している。 Each of the inventive examples has excellent workability (workability) with a slump value of 5 to 15 cm in an unsolidified state, and has a compressive strength of 9.8 N / mm 2 or more (equivalent to semi-hard stone). It is a hydrated and cured product having the same or better characteristics and excellent volume stability. On the other hand, the comparative example outside the scope of the present invention has a low compressive strength and a low volume stability.
Claims (5)
前記骨材を製鋼スラグを主とする骨材とし、
前記結合材が、潜在水硬性を有するシリカ含有物質と、ポゾラン反応性を有するシリカ含有物質と、さらに1.5質量%以上の遊離CaOを含む微粉砕製鋼スラグとからなることを特徴とする水和硬化体。 A hydrated and cured product obtained by kneading, molding and curing an aggregate and a binder together with water,
The aggregate is mainly composed of steel slag,
Hydration hardening characterized in that the binder comprises a silica-containing material having latent hydraulic properties, a silica-containing material having pozzolanic reactivity, and a finely pulverized steel slag containing 1.5% by mass or more of free CaO. body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013157599A JP6015585B2 (en) | 2013-07-30 | 2013-07-30 | Hydrated cured body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013157599A JP6015585B2 (en) | 2013-07-30 | 2013-07-30 | Hydrated cured body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015027922A true JP2015027922A (en) | 2015-02-12 |
JP6015585B2 JP6015585B2 (en) | 2016-10-26 |
Family
ID=52491928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013157599A Active JP6015585B2 (en) | 2013-07-30 | 2013-07-30 | Hydrated cured body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6015585B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021084845A (en) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | Manufacturing method of concrete |
JP2021084844A (en) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | Manufacturing method of aggregate, coarse aggregate and fine aggregate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10130042A (en) * | 1996-09-04 | 1998-05-19 | Nkk Corp | Expansion suppressing method of steelmaking based slag |
JP2001270746A (en) * | 2000-03-28 | 2001-10-02 | Kawasaki Steel Corp | Method for producing slag hardened body |
JP2003034562A (en) * | 2000-12-28 | 2003-02-07 | Nkk Corp | Hydraulic composition and hydrated hardened body |
JP2004292295A (en) * | 2003-03-28 | 2004-10-21 | Jfe Steel Kk | Hardened body of slag |
JP2010189219A (en) * | 2009-02-17 | 2010-09-02 | Utsunomiya Univ | Hydraulic composition and concrete using the hydraulic composition |
JP2013006743A (en) * | 2011-06-24 | 2013-01-10 | Nippon Steel & Sumitomo Metal Corp | Steel-making slag concrete |
-
2013
- 2013-07-30 JP JP2013157599A patent/JP6015585B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10130042A (en) * | 1996-09-04 | 1998-05-19 | Nkk Corp | Expansion suppressing method of steelmaking based slag |
JP2001270746A (en) * | 2000-03-28 | 2001-10-02 | Kawasaki Steel Corp | Method for producing slag hardened body |
JP2003034562A (en) * | 2000-12-28 | 2003-02-07 | Nkk Corp | Hydraulic composition and hydrated hardened body |
JP2004292295A (en) * | 2003-03-28 | 2004-10-21 | Jfe Steel Kk | Hardened body of slag |
JP2010189219A (en) * | 2009-02-17 | 2010-09-02 | Utsunomiya Univ | Hydraulic composition and concrete using the hydraulic composition |
JP2013006743A (en) * | 2011-06-24 | 2013-01-10 | Nippon Steel & Sumitomo Metal Corp | Steel-making slag concrete |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021084845A (en) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | Manufacturing method of concrete |
JP2021084844A (en) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | Manufacturing method of aggregate, coarse aggregate and fine aggregate |
JP7095674B2 (en) | 2019-11-29 | 2022-07-05 | Jfeスチール株式会社 | How to make concrete |
JP7131534B2 (en) | 2019-11-29 | 2022-09-06 | Jfeスチール株式会社 | Aggregate manufacturing method, coarse aggregate and fine aggregate |
Also Published As
Publication number | Publication date |
---|---|
JP6015585B2 (en) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101247707B1 (en) | Additive for cement, mortar and concrete comprising ferronickel slag | |
JP6080340B2 (en) | Steel slag hydrated solidified body | |
JP3654122B2 (en) | Method for producing hardened slag | |
JP5946107B2 (en) | Method for producing cement composition | |
JP5747407B2 (en) | High activity cement clinker, high activity cement and early strength cement composition | |
JP5818579B2 (en) | Neutralization suppression type early strong cement composition | |
JP2010189219A (en) | Hydraulic composition and concrete using the hydraulic composition | |
JP2013064052A (en) | Soil conditioner | |
CN110799472A (en) | Concrete composition and method for producing same | |
TWI543957B (en) | Method for manufacturing hydrated solidified body and hydrated solidified body | |
JP2008179504A (en) | Blast furnace slag cement | |
JP2002308662A (en) | Production process of slag hardened body | |
JP2003002726A (en) | Producing method of concrete like solid body using steel making slag | |
JP6015585B2 (en) | Hydrated cured body | |
JP6985177B2 (en) | Hydraulic composition and concrete | |
JP6292257B2 (en) | Hydrated solidified product using desulfurized slag | |
JP6131459B2 (en) | Mortar or concrete composition and molded product obtained by molding the same | |
JP2016216274A (en) | Artificial stone material | |
CN107235677B (en) | Steel slag concrete for comprehensively utilizing resources and preparation method thereof | |
JP2002179451A (en) | Concrete or mortar using slag aggregate | |
JP5195866B2 (en) | Method for producing hardened slag | |
CN115925286A (en) | Low-cost multi-source solid waste filling cementing material and preparation method and application thereof | |
JP6195460B2 (en) | Method for producing anti-bleeding agent for concrete and method for producing cement composition containing the anti-bleeding agent for concrete | |
KR20170079661A (en) | Composition of eco-friendly ready-mixed concrete using industrial wastes | |
KR20140052622A (en) | Exclusive eco-friendly binder for the recycling iron ore powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160912 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6015585 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |