JP2015025162A - Ferrite pearlite type non-heat treated steel - Google Patents
Ferrite pearlite type non-heat treated steel Download PDFInfo
- Publication number
- JP2015025162A JP2015025162A JP2013154733A JP2013154733A JP2015025162A JP 2015025162 A JP2015025162 A JP 2015025162A JP 2013154733 A JP2013154733 A JP 2013154733A JP 2013154733 A JP2013154733 A JP 2013154733A JP 2015025162 A JP2015025162 A JP 2015025162A
- Authority
- JP
- Japan
- Prior art keywords
- bainite
- mass
- heat treated
- type non
- treated steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、機械部品用のフェライト・パーライト型の非調質鋼に関し、特に、高い機械強度と被削性とを兼ね備えつつ製造性にも優れるフェライト・パーライト型非調質鋼に関する。 The present invention relates to a ferrite-pearlite type non-heat treated steel for machine parts, and more particularly to a ferrite-pearlite type non-heat treated steel having both high mechanical strength and machinability and excellent manufacturability.
調質のための熱処理を行わずに使用される非調質鋼において、機械部品用のフェライト・パーライト型の非調質鋼では、フェライト+パーライト金属組織中にベイナイトが含まれると、その機械強度及び被削性を劣化させてしまう。そこで、ベイナイトの生成を抑制する成分組成の鋼種が開発されている。これについて、例えば、特許文献1〜3では、ベイナイトの生成を促進するCr及びMn量の上限を規定することを開示している。 In non-heat treated steel used without heat treatment for tempering, in ferrite-pearlite type non-heat treated steel for machine parts, if bainite is included in the ferrite + pearlite metal structure, its mechanical strength And the machinability is deteriorated. Thus, steel types having a component composition that suppress the formation of bainite have been developed. In this regard, for example, Patent Documents 1 to 3 disclose that the upper limits of the Cr and Mn amounts that promote the formation of bainite are specified.
特許文献1では、質量%で、C:0.15〜0.25%、Si:0.1〜1.5%、Mn:0.5〜1.8%、S:0.03〜0.15%、P:0.03〜0.15%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Cr:0.01〜1%、V:0.1〜0.4%、s−Al:0.001〜0.01%、N:0.005〜0.035%、Ca:0.0001〜0.01%、O:0.001〜0.01%の範囲内であって、C,Si,Mn,P,Cu,Ni,Cr,Vの炭素等量の式とともに、C,Si,Mn,Cu,Ni,Crの関係式を所定範囲とした非調質鋼を開示している。Cr及びMn量の上限を規定してベイナイトの生成を抑制しつつ、Vを多くする一方でCを少なくし、Sを多くするとともにPも積極的に添加し、MnS形成のためのMnを加えてCa,Oを添加することで、疲労強度や耐力を向上させ、被削性をも高め得るとしている。 In patent document 1, C: 0.15-0.25%, Si: 0.1-1.5%, Mn: 0.5-1.8%, S: 0.03-0. 15%, P: 0.03-0.15%, Cu: 0.01-0.5%, Ni: 0.01-0.5%, Cr: 0.01-1%, V: 0.1 -0.4%, s-Al: 0.001-0.01%, N: 0.005-0.035%, Ca: 0.0001-0.01%, O: 0.001-0.01 %, And the C, Si, Mn, Cu, Ni, Cr relational expressions together with C, Si, Mn, P, Cu, Ni, Cr, and V carbon equivalent formulas are within a predetermined range. Non-tempered steel is disclosed. While limiting the amount of Cr and Mn to suppress the formation of bainite, while increasing V, decreasing C, increasing S, adding P actively, adding Mn for MnS formation By adding Ca and O, fatigue strength and proof stress can be improved and machinability can also be improved.
また、特許文献2では、質量%で、C:0.15〜0.35%、Si:0.5〜2.0%、Mn:0.5〜1.5%、P:0.03〜0.15%、S:0.01〜0.15%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Cr:0.01〜1.0%、s−Al:0.001〜0.01%、N:0.005〜0.035%、Ca:0.0001〜0.01%及びO:0.001〜0.01%の範囲内であって、且つ、特許文献1と同様に炭素等量の式、C,Si,Mn,P,Cr,Cu,Ni,Crの成分組成の関係式を所定範囲とした非調質鋼を開示している。ここでも、特許文献1と同様に、Cr及びMn量の上限を規定してベイナイトの生成を抑制するとしている。 Moreover, in patent document 2, by mass%, C: 0.15-0.35%, Si: 0.5-2.0%, Mn: 0.5-1.5%, P: 0.03- 0.15%, S: 0.01 to 0.15%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.01 to 1.0%, s -Al: 0.001 to 0.01%, N: 0.005 to 0.035%, Ca: 0.0001 to 0.01%, and O: 0.001 to 0.01%. And similarly to Patent Document 1, a non-heat treated steel is disclosed in which the carbon equivalence formula, the relational expressions of the component compositions of C, Si, Mn, P, Cr, Cu, Ni, and Cr are in a predetermined range. . Here, similarly to Patent Document 1, the upper limits of the Cr and Mn amounts are defined to suppress the formation of bainite.
更に、特許文献3では、質量%で、C:0.3〜0.8%、Si:0.1〜2.0%、Mn:0.5〜1.5%、P:0.01〜0.15%、Cr:1.0%、V:0.4%以下、Al:0.05%以下、N:0.005〜0.03%の範囲内であって、且つ、P量、硬さ、C,Si,Mn,Cr,Vの炭素等量の式の関係式を所定範囲とした非調質鋼を開示している。ここでも、特許文献1及び2と同様に、Cr及びMn量の上限を規定してベイナイトの生成を抑制するとしている。 Furthermore, in patent document 3, by mass%, C: 0.3-0.8%, Si: 0.1-2.0%, Mn: 0.5-1.5%, P: 0.01- 0.15%, Cr: 1.0%, V: 0.4% or less, Al: 0.05% or less, N: within a range of 0.005 to 0.03%, and P amount, Disclosed is a non-heat treated steel having a relational expression of hardness, C, Si, Mn, Cr, and V carbon equivalent formulas within a predetermined range. Here, as in Patent Documents 1 and 2, the upper limits of the Cr and Mn amounts are defined to suppress the formation of bainite.
ところで、ベイナイトはパーライトやマルテンサイトと同様に、オーステナイトからの冷却過程において生成し、冷却速度によってもその生成を制御できる。例えば、特許文献4及び5では、鋼の成分組成とともに冷却過程を制御してベイナイトの生成を抑制することを開示している。 By the way, bainite is generated in the cooling process from austenite, like pearlite and martensite, and its generation can be controlled by the cooling rate. For example, Patent Documents 4 and 5 disclose that the formation of bainite is suppressed by controlling the cooling process together with the component composition of steel.
特許文献4では、質量%で、C:0.15〜0.45%、Si:0.1〜1.5%、Mn:0.5〜1.5%、P:0.03〜0.15%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Cr:0.01〜1%、V:0.1〜0.4%、N:0.005〜0.035%を含む非調質鋼において、鍛造後の冷却過程でV系析出物の数密度を上昇させるように冷却速度を大きくする一方、その上限をベイナイト発生臨界冷却速度以下とすることを開示している。かかるベイナイト発生臨界冷却速度は、C,Si,Mn,Cu,Ni,Crの含有率の関係から実験的に定まるとしている。 In patent document 4, in mass%, C: 0.15-0.45%, Si: 0.1-1.5%, Mn: 0.5-1.5%, P: 0.03-0. 15%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.01 to 1%, V: 0.1 to 0.4%, N: 0.005 In non-tempered steel containing ˜0.035%, it is disclosed that the cooling rate is increased so as to increase the number density of V-based precipitates in the cooling process after forging, while the upper limit is set below the bainite generation critical cooling rate. doing. Such a bainite generation critical cooling rate is experimentally determined from the relationship among the contents of C, Si, Mn, Cu, Ni, and Cr.
また、特許文献5では、質量%で、C:0.16〜0.35%、Si:0.10〜1.00%、Mn:0.30〜1.00%、P:0.040〜0.070%、S:0.08〜0.13%、V:0.10〜0.35%、Ti:0.08〜0.15%、s−Al:0.010〜0.045%、N:0.005〜0.025%以下を含む非調質鋼において、V,Tiの鍛造に関する指標、及び、S,Ti,Nの硫化物生成に関する指標とともに、C,Si,Mn,Cu,Ni,Cr,Moのベイナイト発生臨界冷却速度に関する実験的に求まる式についてそれぞれ所定範囲にすることを述べている。 Moreover, in patent document 5, by mass%, C: 0.16-0.35%, Si: 0.10-1.00%, Mn: 0.30-1.00%, P: 0.040- 0.070%, S: 0.08 to 0.13%, V: 0.10 to 0.35%, Ti: 0.08 to 0.15%, s-Al: 0.010 to 0.045% N: In non-heat treated steel containing 0.005 to 0.025% or less, C, Si, Mn, Cu together with an index for forging V and Ti and an index for sulfide formation of S, Ti, and N , Ni, Cr, and Mo bainite generation critical cooling rates are described in terms of experimentally obtained equations, respectively.
上記したように、自動車用のコンロッドやコモンレールなどの非調質鋼による機械部品では、熱間加工後の空冷時におけるフェライト+パーライト金属組織中へのベイナイトの生成を抑制して、機械強度及び被削性を確保している。近年、かかる比較的小型の機械部品では、より一層の小型化が進み、熱間加工後の空冷時の冷却速度が上がってしまうとともに、製造性を高めるべく冷却速度を上げることも求められ、かかる場合であっても、ベイナイトを生成しないことが望まれる。つまり、冷却速度に大きく依存することなく、ベイナイトの生成を抑制できる鋼種が求められている。 As described above, in machine parts made of non-heat-treated steel such as connecting rods and common rails for automobiles, the formation of bainite in the ferrite + pearlite metal structure during air cooling after hot working is suppressed, and the mechanical strength and coverage are reduced. Ensures machinability. In recent years, with such relatively small machine parts, further downsizing has progressed, and the cooling rate during air cooling after hot working has increased, and it is also required to increase the cooling rate in order to increase manufacturability. Even in that case, it is desirable not to produce bainite. That is, a steel type that can suppress the formation of bainite without greatly depending on the cooling rate is demanded.
本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、高い機械強度と被削性とを兼ね備えつつ製造性にも優れたフェライト・パーライト型の非調質鋼を提供することにある。 The present invention has been made in view of the above-described situation, and the object of the present invention is to provide a ferrite-pearlite type non-adjustment that combines high mechanical strength and machinability while also being excellent in manufacturability. To provide quality steel.
本発明によるフェライト・パーライト型非調質鋼は、質量%で、必須添加元素として、C:0.20〜0.60%、Si:0.20〜2.00%、Mn:≦1.00%、S:0.001〜0.200%、Cr:0.40〜2.00%、s−Al:0.010〜0.050%を含有し、任意添加元素として、P:≦0.200%、Cu:≦0.50%、Ni:≦0.50%、Mo:≦0.20%、V:≦0.50%、Ti:≦0.15%、N:≦0.030%、を含有し得て、残部Fe及び不純物からなるとともに、
元素Mの質量%を[M]で表すと、
(1)[V]+[Ti]≧0.03、
(2)F1=(836.2×Ceq+239.8)×F2≧500、
ここで、
Ceq=[C]+0.03×[Si]+0.31×[Mn]+0.26×[P]+0.08×[Cu]+0.07×[Ni]+0.24×[Cr]+0.17×[Mo]+1.2×[V]+0.51×([Ti]−3.43×[N])−0.7×[S]
F2=−0.18×[C]+0.061×[Mn]−0.178×[S]+0.502×[V]+0.354×[Ti]+0.629
であり、
(3)F3=F4/F5≧1.00、
ここで、
[s−Mn]=[Mn]−1.713×[S]+0.574×[Ti]−1.963×[N]とし、
F4=429.86−310×[C]+25×[Si]−130.86[s−Mn]−14.5×[Cu]−41.55×[Ni]+9.46×[Cr]−49.04×[Mo]−51.09×[V]+(218.97×[C]+25.256)×[Ti]
F5=10^(0.018×[Si]+0.774×[s−Mn]+0.261×[Cu]+0.177×[Ni]+0.608×[Cr]+4.823×[Mo]−0.948×[C]+1.196×[V]+5.257×[Ti]+1.41)
であることを特徴とする。
The ferritic pearlite type non-heat treated steel according to the present invention is mass%, and C: 0.20-0.60%, Si: 0.20-2.00%, Mn: ≦ 1.00 as essential additive elements. %, S: 0.001 to 0.200%, Cr: 0.40 to 2.00%, s-Al: 0.010 to 0.050%, and P: ≦ 0. 200%, Cu: ≦ 0.50%, Ni: ≦ 0.50%, Mo: ≦ 0.20%, V: ≦ 0.50%, Ti: ≦ 0.15%, N: ≦ 0.030% And comprising the balance Fe and impurities,
When the mass% of the element M is represented by [M],
(1) [V] + [Ti] ≧ 0.03,
(2) F1 = (836.2 × Ceq + 239.8) × F2 ≧ 500,
here,
Ceq = [C] + 0.03 × [Si] + 0.31 × [Mn] + 0.26 × [P] + 0.08 × [Cu] + 0.07 × [Ni] + 0.24 × [Cr] +0.17 * [Mo] + 1.2 * [V] +0.51 * ([Ti] -3.43 * [N])-0.7 * [S]
F2 = −0.18 × [C] + 0.061 × [Mn] −0.178 × [S] + 0.502 × [V] + 0.354 × [Ti] +0.629
And
(3) F3 = F4 / F5 ≧ 1.00,
here,
[S−Mn] = [Mn] −1.713 × [S] + 0.574 × [Ti] −1.963 × [N]
F4 = 429.86-310 × [C] + 25 × [Si] −130.86 [s-Mn] −14.5 × [Cu] −41.55 × [Ni] + 9.46 × [Cr] −49 .04 × [Mo] −51.09 × [V] + (218.97 × [C] +25.256) × [Ti]
F5 = 10 ^ (0.018 × [Si] + 0.774 × [s-Mn] + 0.261 × [Cu] + 0.177 × [Ni] + 0.608 × [Cr] + 4.823 × [Mo] − 0.948 × [C] + 1.196 × [V] + 5.257 × [Ti] +1.41)
It is characterized by being.
かかる発明によれば、熱間加工後の冷却速度を早めてもベイナイトの生成を抑制できて機械強度と被削性とを損ねることが無く、故に、高い機械強度と被削性とを兼ね備えながら製造性にも優れるフェライト・パーライト型の非調質鋼となるのである。 According to such an invention, even if the cooling rate after hot working is increased, the generation of bainite can be suppressed without impairing the mechanical strength and machinability, and thus has both high mechanical strength and machinability. This is a ferritic / pearlite type non-tempered steel with excellent manufacturability.
上記した発明において、質量%で、前記必須添加元素として、Pb:0.001〜0.3%、Bi:0.001〜0.3%、Te:0.001〜0.3%、Ca:0.001〜0.01%のうち1種以上をさらに含有することを特徴としてもよい。かかる発明によれば、熱間加工後の冷却速度を早めてもベイナイトの生成を抑制できて機械強度を損ねることなく被削性を向上させ得て、故に、より高い機械強度と被削性とを兼ね備えながら製造性にも優れるフェライト・パーライト型の非調質鋼となるのである。 In the above-mentioned invention, as the essential additive element in mass%, Pb: 0.001 to 0.3%, Bi: 0.001 to 0.3%, Te: 0.001 to 0.3%, Ca: It may be characterized by further containing one or more of 0.001 to 0.01%. According to this invention, even if the cooling rate after hot working is increased, the formation of bainite can be suppressed and the machinability can be improved without impairing the mechanical strength. Therefore, higher mechanical strength and machinability can be achieved. Therefore, it becomes a ferritic / pearlite type non-heat treated steel with excellent manufacturability.
上記した発明において、700〜400℃の温度範囲における平均冷却速度のうちベイナイトを生成しない最も速い平均冷却速度が1.0℃/s以上であることを特徴としてもよい。かかる発明によれば、熱間加工後の冷却速度を早めることが要求される比較的小型の機械部品であっても、ベイナイトの生成を抑制できて、高い機械強度と被削性とを兼ね備えながら製造性にも優れるフェライト・パーライト型の非調質鋼となるのである。 In the above-described invention, the fastest average cooling rate that does not generate bainite among the average cooling rates in the temperature range of 700 to 400 ° C. may be 1.0 ° C./s or more. According to this invention, even a relatively small machine part that is required to increase the cooling rate after hot working can suppress the generation of bainite, while having high mechanical strength and machinability. This is a ferritic / pearlite type non-tempered steel with excellent manufacturability.
上記した発明において、0.2%耐力で500MPa以上であることを特徴としてもよい。かかる発明によれば、高い被削性を有しながら製造性にも優れるフェライト・パーライト型の非調質鋼において、高い機械強度を与えるのである。 In the above-described invention, the 0.2% proof stress may be 500 MPa or more. According to this invention, high mechanical strength is imparted to the ferrite-pearlite type non-heat treated steel having high machinability and excellent manufacturability.
図1には、本発明の実施例としてのフェライト・パーライト型非調質鋼の成分組成を示した。また、図2には、かかる実施例の非調質鋼における加工フォーマスタ試験、組織観察、硬さ試験、引張試験の試験結果を示した。同様に、比較例として、図1にその成分組成を、図2に試験結果を示している。以下に、試験片の作成方法及び各試験方法について説明する。 In FIG. 1, the component composition of the ferrite pearlite type non-heat treated steel as an example of the present invention is shown. Moreover, in FIG. 2, the test result of the processing for master test, structure | tissue observation, the hardness test, and the tension test in the non-heat treated steel of this Example was shown. Similarly, as a comparative example, the component composition is shown in FIG. 1, and the test result is shown in FIG. Below, the preparation method of a test piece and each test method are demonstrated.
まず、各種の試験片を切り出すための試験素材を作成した。すなわち、図1に示す成分組成の50Dの丸棒鍛造材を1150℃にて22Dの丸棒に鍛造し、700℃から400℃までを1.0℃/秒の冷却速度で冷却して試験素材を得た。 First, test materials for cutting out various test pieces were prepared. That is, a 50D round bar forging material having the composition shown in FIG. 1 is forged into a 22D round bar at 1150 ° C., and cooled from 700 ° C. to 400 ° C. at a cooling rate of 1.0 ° C./sec. Got.
加工フォーマスタ試験では、試験片を圧縮加工後、冷却速度を変えて冷却し、700℃から400℃までの温度範囲における平均冷却速度のうちベイナイトを生成しない最も速い平均冷却速度、すなわちベイナイト生成臨界速度(B生成臨界速度)を求めた。詳細には、試験素材からφ8mm×12mmの試験片を切り出し、1150℃で高さ6mmとなるまで圧縮加工した。その後、700℃から400℃までを冷却速度を変えて冷却し、さらに室温まで冷却した。断面を切り出して組織観察を行って、ベイナイトの生成の有無を確認した。図2には、このベイナイト生成臨界速度(B生成臨界速度)を示した。 In the processing for master test, the test piece is compressed and then cooled by changing the cooling rate, and among the average cooling rates in the temperature range from 700 ° C. to 400 ° C., the fastest average cooling rate that does not generate bainite, that is, the bainite formation criticality. The speed (B production critical speed) was determined. Specifically, a test piece of φ8 mm × 12 mm was cut out from the test material and compressed at 1150 ° C. to a height of 6 mm. Then, it cooled by changing a cooling rate from 700 degreeC to 400 degreeC, and also cooled to room temperature. The cross section was cut out and the structure was observed to confirm the presence or absence of bainite. FIG. 2 shows this critical bainite production rate (B production critical rate).
硬さ試験では、試験素材から切り出した試験片について、ロックウェル硬さを測定した。図2には、その結果を示した。 In the hardness test, Rockwell hardness was measured for a test piece cut out from a test material. FIG. 2 shows the result.
組織観察では、試験片の断面について、光学顕微鏡を用いてミクロ組織観察した。図2には、フェライト・パーライト組織の場合に「F+P」、フェライト・パーライト組織にベイナイトを併せて観察された場合に「F+P+B」として示した。 In the structure observation, the microstructure of the cross section of the test piece was observed using an optical microscope. FIG. 2 shows “F + P” in the case of the ferrite / pearlite structure, and “F + P + B” when the ferrite / pearlite structure is observed together with bainite.
引張試験では、試験素材からJIS 14A号試験片(平行部φ5mm、掴み部M8の丸棒形状の比例試験片)を切り出し、室温にて引張試験を行って、0.2%耐力を求めた。図2には、その結果を示した。 In the tensile test, a JIS No. 14A test piece (a proportional test piece having a parallel bar diameter of 5 mm and a gripping part M8) was cut out from the test material, and a tensile test was performed at room temperature to obtain 0.2% yield strength. FIG. 2 shows the result.
次に、試験結果について説明する。 Next, test results will be described.
図2に示すように、実施例1乃至17では、ベイナイト生成臨界速度は1.0〜3.5℃/秒と1.0℃/秒以上であった。また、組織観察では、ベイナイトは観察されなかった。更に、0.2%耐力は、531〜788MPaであり、いずれも500MPa以上であった。このとき、硬さは21.6〜44.3HRCであった。 As shown in FIG. 2, in Examples 1 to 17, the bainite formation critical rates were 1.0 to 3.5 ° C./second and 1.0 ° C./second or more. Moreover, bainite was not observed in the structure observation. Further, the 0.2% proof stress was 531 to 788 MPa, and all were 500 MPa or more. At this time, the hardness was 21.6-44.3 HRC.
以上のように、実施例1乃至17の鋼によれば、少なくとも1.0℃/秒程度の空冷(放冷)ではベイナイトの生成を抑制できる。また、従来の非調質鋼と同等以上である500MPa以上の0.2%耐力を得られ、十分な被削性を与える硬さであった。つまり、高い機械強度と被削性とを兼ね備えつつ製造性にも優れるのである。 As described above, according to the steels of Examples 1 to 17, the formation of bainite can be suppressed by air cooling (cooling) of at least about 1.0 ° C./second. Moreover, it was the hardness which can obtain 0.2% yield strength of 500 MPa or more which is equal to or higher than that of conventional non-tempered steel, and provides sufficient machinability. That is, it is excellent in manufacturability while having high mechanical strength and machinability.
ところで、実施例1乃至17を含む一連について、C、Si、Mn、P、Cu、Ni、Cr、Mo、V、Ti、N、Sの含有量と0.2%耐力について回帰計算を行った。この0.2%耐力を推定する式F1は、
F1=(836.2×Ceq+239.8)×F2
である。ここで、元素Mの質量%を[M]とすると、炭素当量Ceq及びF2は、
Ceq=[C]+0.03×[Si]+0.31×[Mn]+0.26×[P]+0.08×[Cu]+0.07×[Ni]+0.24×[Cr]+0.17×[Mo]+1.2×[V]+0.51×([Ti]−3.43×[N])−0.7×[S]
F2=−0.18×[C]+0.061×[Mn]−0.178×[S]+0.502×[V]+0.354×[Ti]+0.629
である。
By the way, for the series including Examples 1 to 17, regression calculation was performed for the contents of C, Si, Mn, P, Cu, Ni, Cr, Mo, V, Ti, N, and S and 0.2% proof stress. . Formula F1 for estimating this 0.2% proof stress is
F1 = (836.2 × Ceq + 239.8) × F2
It is. Here, when the mass% of the element M is [M], the carbon equivalents Ceq and F2 are
Ceq = [C] + 0.03 × [Si] + 0.31 × [Mn] + 0.26 × [P] + 0.08 × [Cu] + 0.07 × [Ni] + 0.24 × [Cr] +0.17 * [Mo] + 1.2 * [V] +0.51 * ([Ti] -3.43 * [N])-0.7 * [S]
F2 = −0.18 × [C] + 0.061 × [Mn] −0.178 × [S] + 0.502 × [V] + 0.354 × [Ti] +0.629
It is.
すると、500MPa以上の0.2%耐力を得られるのは、
F1=(836.2×Ceq+239.8)×F2≧500 (式1)
を満たす場合である。
Then, 0.2% proof stress of 500 MPa or more can be obtained.
F1 = (836.2 × Ceq + 239.8) × F2 ≧ 500 (Formula 1)
This is the case.
また、実施例1乃至17を含む一連について、C、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、N、Sの含有量とベイナイト生成臨界速度について回帰計算を行った。このベイナイトを生成しないような700℃から400℃の温度範囲での最も速い冷却速度を推定する式F3は、
F3=F4/F5
である。ここで、元素Mの質量%を[M]とすると、F4及びF5は、
F4=429.86−310×[C]+25×[Si]−130.86[s−Mn]−14.5×[Cu]−41.55×[Ni]+9.46×[Cr]−49.04×[Mo]−51.09×[V]+(218.97×[C]+25.256)×[Ti]
F5=10^(0.018×[Si]+0.774×[s−Mn]+0.261×[Cu]+0.177×[Ni]+0.608×[Cr]+4.823×[Mo]−0.948×[C]+1.196×[V]+5.257×[Ti]+1.41)
である。但し、
[s−Mn]=[Mn]−1.713×[S]+0.574×[Ti]−1.963×[N]
である。
In addition, for the series including Examples 1 to 17, regression calculation was performed on the content of C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, N, and S and the critical rate of bainite formation. Formula F3, which estimates the fastest cooling rate in the temperature range of 700 ° C. to 400 ° C. so as not to form this bainite,
F3 = F4 / F5
It is. Here, when the mass% of the element M is [M], F4 and F5 are
F4 = 429.86-310 × [C] + 25 × [Si] −130.86 [s-Mn] −14.5 × [Cu] −41.55 × [Ni] + 9.46 × [Cr] −49 .04 × [Mo] −51.09 × [V] + (218.97 × [C] +25.256) × [Ti]
F5 = 10 ^ (0.018 × [Si] + 0.774 × [s-Mn] + 0.261 × [Cu] + 0.177 × [Ni] + 0.608 × [Cr] + 4.823 × [Mo] − 0.948 × [C] + 1.196 × [V] + 5.257 × [Ti] +1.41)
It is. However,
[S-Mn] = [Mn] -1.713 × [S] + 0.574 × [Ti] −1.963 × [N]
It is.
すると、1.0℃/秒以上のベイナイト生成臨界速度を得られるのは、
F3=F4/F5≧1.0 (式2)
を満たす場合である。
Then, it is possible to obtain a bainite formation critical rate of 1.0 ° C./second or more.
F3 = F4 / F5 ≧ 1.0 (Formula 2)
This is the case.
続いて、比較例1乃至14における試験結果についても説明する。 Subsequently, test results in Comparative Examples 1 to 14 will also be described.
比較例1では、0.2%耐力が421MPaであり、ベイナイト生成臨界速度が0.9℃/秒であって、組織観察でベイナイトが観察された。Cが実施例よりも少なかったためと考えられる。なお、F1は498であり式1を満たさず、F3についても0.92で式2を満たしていなかった。 In Comparative Example 1, the 0.2% proof stress was 421 MPa, the bainite formation critical rate was 0.9 ° C./second, and bainite was observed by microstructure observation. This is probably because C was less than in the examples. In addition, F1 was 498 and did not satisfy Formula 1, and F3 was also 0.92 and did not satisfy Formula 2.
比較例2では、0.2%耐力が478MPaであり、ベイナイト生成臨界速度は1.6℃/秒であって、組織観察でベイナイトは観察されなかった。Siが実施例よりも少なかったためと考えられる。なお、F1は489であり式1を満たさず、F3については1.61で式2を満たしていた。 In Comparative Example 2, the 0.2% yield strength was 478 MPa, the critical rate of bainite formation was 1.6 ° C./second, and no bainite was observed in the structure observation. This is probably because Si was less than in the examples. In addition, F1 was 489 and did not satisfy Formula 1, and F3 satisfied Formula 2 with 1.61.
比較例3では、0.2%耐力は463MPaであり、ベイナイト生成臨界速度は0.9℃/秒であって、組織観察でベイナイトが観察された。Mnが実施例より多かったためと考えられる。なお、F1は561であって式1を満たしており、F3については0.94であり式2を満たしていなかった。 In Comparative Example 3, the 0.2% proof stress was 463 MPa, the critical rate of bainite formation was 0.9 ° C./second, and bainite was observed by microstructure observation. This is probably because Mn was greater than in the examples. Note that F1 is 561 and satisfies Expression 1, and F3 is 0.94 and does not satisfy Expression 2.
比較例4では、0.2%耐力は482MPaであり、ベイナイト生成臨界速度は0.9℃/秒であって、組織観察でベイナイトが観察された。Cuが実施例よりも多かったためと考えられる。なお、F1は545であって式1を満たしており、F3については0.95であり式2を満たしていなかった。 In Comparative Example 4, the 0.2% yield strength was 482 MPa, the critical rate of bainite formation was 0.9 ° C./second, and bainite was observed by microstructure observation. It is thought that there was more Cu than the Example. Note that F1 was 545 and satisfied Expression 1, and F3 was 0.95 and did not satisfy Expression 2.
比較例5では、0.2%耐力は484MPaであり、ベイナイト生成臨界速度は0.9℃/秒であって、組織観察でベイナイトが観察された。Niが実施例よりも多かったためと考えられる。なお、F1は548であって式1を満たしており、F3については0.94であり式2を満たしていなかった。 In Comparative Example 5, the 0.2% proof stress was 484 MPa, the bainite formation critical rate was 0.9 ° C./second, and bainite was observed by microstructure observation. This is probably because Ni was more than in the examples. Note that F1 is 548 and satisfies Expression 1, and F3 is 0.94 and does not satisfy Expression 2.
比較例6では、0.2%耐力は491MPaであり、ベイナイト生成臨界速度は2.2℃/秒であって、組織観察でベイナイトは観察されなかった。Crが実施例よりも少なかったためと考えられる。なお、F1は482であり式1を満たさず、F3については2.15で式2を満たしていた。 In Comparative Example 6, the 0.2% yield strength was 491 MPa, the bainite formation critical rate was 2.2 ° C./sec, and no bainite was observed in the structure observation. This is probably because Cr was less than in the examples. In addition, F1 was 482 and did not satisfy Formula 1, and F3 satisfied Formula 2 with 2.15.
比較例7では、0.2%耐力は492MPaであり、ベイナイト生成臨界速度は0.8℃/秒であって、組織観察でベイナイトが観察された。Crが実施例よりも多かったためと考えられる。なお、F1は595であって式1を満たしており、F3については0.87で式2を満たしていなかった。 In Comparative Example 7, the 0.2% proof stress was 492 MPa, the bainite formation critical rate was 0.8 ° C./sec, and bainite was observed by microstructure observation. This is probably because there was more Cr than in the examples. Note that F1 was 595 and satisfied Expression 1, and F3 was 0.87 and did not satisfy Expression 2.
比較例8では、0.2%耐力は467MPaであり、ベイナイト生成臨界速度は0.8℃/秒であって、組織観察でベイナイトが観察された。Moが実施例よりも多かったためと考えられる。なお、F1は576であって式1を満たしており、F3については0.78で式2を満たしていなかった。 In Comparative Example 8, the 0.2% proof stress was 467 MPa, the bainite formation critical rate was 0.8 ° C./second, and bainite was observed by microstructure observation. This is probably because Mo was more than in the examples. Note that F1 was 576 and satisfied Expression 1, and F3 was 0.78 and did not satisfy Expression 2.
比較例9では、0.2%耐力は426MPaであり、ベイナイト生成臨界速度は0.9℃/秒であり、組織観察でベイナイトが観察された。Tiが実施例よりも多かったためと考えられる。なお、F1は532であって式1を満たしており、F3については0.93で式2を満たしていなかった。 In Comparative Example 9, the 0.2% proof stress was 426 MPa, the bainite formation critical rate was 0.9 ° C./second, and bainite was observed by microstructure observation. This is probably because Ti was more than in the examples. Note that F1 is 532 and satisfies Expression 1, and F3 is 0.93 and does not satisfy Expression 2.
比較例10及び11では、0.2%耐力はそれぞれ488MPa及び497MPaであり、ベイナイト生成臨界速度はそれぞれ2.0℃/秒及び3.5℃/秒であって、組織観察で両者ともベイナイトは観察されなかった。個々の組成成分は実施例と同等の範囲内であったものの、F1がそれぞれ494及び490であって式1を満たしていなかったためと考えられる。なお、F3はそれぞれ1.90及び3.68であり式2を満たしていた。 In Comparative Examples 10 and 11, the 0.2% proof stress was 488 MPa and 497 MPa, respectively, and the bainite formation critical rates were 2.0 ° C./sec and 3.5 ° C./sec, respectively. Not observed. Although each composition component was in the same range as in the examples, it is considered that F1 was 494 and 490, respectively, and did not satisfy Formula 1. Note that F3 was 1.90 and 3.68, respectively, which satisfied the formula 2.
比較例12及び13では、0.2%耐力はそれぞれ497MPa及び446MPaであり、ベイナイト生成臨界速度はそれぞれ0.8℃/秒及び0.6℃/秒であって、組織観察において両者ともベイナイトが観察された。個々の組成成分は実施例と同等の範囲内であったものの、F3がそれぞれ0.84及び0.68であり、式2を満たしていなかったためと考えられる。なお、F1はそれぞれ646及び539であり式1を満たしていた。 In Comparative Examples 12 and 13, the 0.2% proof stress was 497 MPa and 446 MPa, respectively, and the bainite formation critical rates were 0.8 ° C./sec and 0.6 ° C./sec, respectively. Observed. Although the individual composition components were within the same range as in the examples, F3 was 0.84 and 0.68, respectively, which is considered to be because Equation 2 was not satisfied. In addition, F1 was 646 and 539, respectively, and satisfied Formula 1.
比較例14では、鍛造割れが発生し試験片を作製できなかった。Pbが実施例よりも多かったためと考えられる。 In Comparative Example 14, forging cracks occurred and a test piece could not be produced. This is probably because Pb was larger than in the example.
以上、述べてきたように、本実施例によれば、従来の非調質鋼と同等以上の機械強度、特に0.2%耐力を有しつつ、鍛造後の空冷において冷却速度に大きく依存することなくベイナイトの生成を抑制できるフェライト・パーライト型非調質鋼を得ることができる。 As described above, according to the present example, the mechanical strength equal to or higher than that of the conventional non-tempered steel, particularly 0.2% proof stress, is greatly dependent on the cooling rate in air cooling after forging. Thus, it is possible to obtain a ferritic / pearlite type non-heat treated steel that can suppress the formation of bainite.
ところで、ここまで述べてきたフェライト・パーライト型非調質鋼として考慮される成分組成の範囲は、以下のような指針で定められる。 By the way, the range of the component composition considered as the ferrite-pearlite type non-heat treated steel described so far is determined by the following guidelines.
Cは、得られる機械部品としての機械強度、特に、耐力を確保するために必要である。また、ベイナイトの生成を抑制し得る。一方、過剰に含まれると、フェライト・パーライト組織中のパーライト分率を増加させて得られる機械部品の被削性を悪化させる。そこで、Cの含有量は、質量%で、0.20〜0.60%の範囲内、好ましくは0.20〜0.50%の範囲内である。 C is necessary to ensure mechanical strength as a machine part to be obtained, in particular, yield strength. Moreover, the production | generation of a bainite can be suppressed. On the other hand, if contained excessively, the machinability of machine parts obtained by increasing the pearlite fraction in the ferrite-pearlite structure is deteriorated. Therefore, the content of C is mass% and is in the range of 0.20 to 0.60%, preferably in the range of 0.20 to 0.50%.
Siは、得られる機械部品としての耐力を確保するために必要である。また、ベイナイトの生成を抑制し得る。一方、過剰に含まれると、熱間での変形抵抗を過度に高めて、熱間鍛造における金型の寿命を低下させてしまう。そこで、Siの含有量は、質量%で、0.20〜2.00%の範囲内、好ましくは0.20〜1.00%の範囲内である。 Si is necessary for securing the yield strength as a machine part to be obtained. Moreover, the production | generation of a bainite can be suppressed. On the other hand, if excessively contained, the hot deformation resistance is excessively increased, and the life of the mold in the hot forging is reduced. Therefore, the Si content is in mass% and is in the range of 0.20 to 2.00%, preferably in the range of 0.20 to 1.00%.
Mnは、得られる機械部品の耐力を向上させるために添加される。一方、過剰に含まれると、ベイナイトの生成を著しく促進させて得られる機械部品の0.2%耐力や被削性を悪化させる。そこで、Mnの含有量は、質量%で、1.00%以下の範囲内、好ましくは0.10〜0.90%の範囲内である。 Mn is added in order to improve the yield strength of the resulting machine part. On the other hand, if contained excessively, the 0.2% yield strength and machinability of machine parts obtained by remarkably accelerating the formation of bainite are deteriorated. Therefore, the content of Mn is mass% and is in the range of 1.00% or less, preferably in the range of 0.10 to 0.90%.
Pは、得られる機械部品の耐力を向上させるために添加される。一方、過剰に含まれると鋳造性を低下させる。そこで、Pの含有量は、質量%で、0.200%以下の範囲内、好ましくは0.100%以下の範囲内である。 P is added in order to improve the yield strength of the resulting machine part. On the other hand, if it is excessively contained, castability is lowered. Therefore, the content of P is, by mass%, in the range of 0.200% or less, preferably in the range of 0.100% or less.
Sは、硫化物を形成し、得られる機械部品の被削性を高める。一方、過剰に含まれると、製造性を低下させる。そこで、Sの含有量は、質量%で、0.001〜0.200%の範囲内、好ましくは0.010〜0.120%の範囲内である。 S forms sulfides and enhances the machinability of the resulting machine parts. On the other hand, if it is excessively contained, the productivity is lowered. Therefore, the content of S is mass% and is in the range of 0.001 to 0.200%, preferably in the range of 0.010 to 0.120%.
Cu及びNiは、不純物として鋼に含まれ得る。これらの元素は過剰に含まれると、ベイナイトの生成を促進させ、得られる機械部品の0.2%耐力や被削性を悪化させる。そこで、Cu及びNiの含有量は、各々、質量%で0.50%以下の範囲内、好ましくは0.30%以下の範囲内である。 Cu and Ni can be included in the steel as impurities. When these elements are contained excessively, the formation of bainite is promoted, and the 0.2% yield strength and machinability of the resulting machine part are deteriorated. Therefore, the contents of Cu and Ni are each in the range of 0.50% or less, preferably 0.30% or less, in terms of mass%.
Crは、得られる機械部品の耐力を確保するために必要である。一方、過剰に含まれると、ベイナイトの生成を促進させ、得られる機械部品の0.2%耐力や被削性を悪化させる。そこで、Crの含有量は、質量%で、0.40〜2.00%の範囲内、好ましくは0.40〜1.20%の範囲内である。 Cr is necessary in order to ensure the proof stress of the machine part obtained. On the other hand, if contained excessively, the formation of bainite is promoted, and the 0.2% proof stress and machinability of the resulting machine part are deteriorated. Therefore, the Cr content is, in mass%, in the range of 0.40 to 2.00%, preferably in the range of 0.40 to 1.20%.
Moは、不純物として鋼に含まれ得る。一方、過剰に含まれると、ベイナイトの生成を著しく促進させて得られる機械部品の0.2%耐力や被削性を悪化させる。そこで、Moの含有量は、質量%で、0.20%以下の範囲内、好ましくは0.05%以下の範囲内である。 Mo can be contained in steel as an impurity. On the other hand, if contained excessively, the 0.2% yield strength and machinability of machine parts obtained by remarkably accelerating the formation of bainite are deteriorated. Therefore, the Mo content is, by mass%, in the range of 0.20% or less, preferably in the range of 0.05% or less.
Vは、得られる機械部品の耐力を向上させ得る。一方、過度に添加するとコストを増大させ得る。そこで、Vの含有量は、質量%で、0.50%以下の範囲内、好ましくは0.30%以下の範囲内である。 V can improve the yield strength of the resulting machine part. On the other hand, when it adds excessively, cost can be increased. Therefore, the content of V is, in mass%, in the range of 0.50% or less, preferably in the range of 0.30% or less.
Tiは、得られる機械部品の耐力を向上させ得る。一方、過剰に含まれると、ベイナイトの生成を著しく促進させて得られる機械部品の0.2%耐力や被削性を悪化させる。そこで、Tiの含有量は、質量%で、0.15%以下の範囲内である。 Ti can improve the yield strength of the resulting machine part. On the other hand, if contained excessively, the 0.2% yield strength and machinability of machine parts obtained by remarkably accelerating the formation of bainite are deteriorated. Therefore, the Ti content is in mass% and is in the range of 0.15% or less.
なお、V及びTiは、ほぼ等価に鋼の耐力を向上させ得るため、V及びTiの含有量の合計を質量%で0.03%以上の範囲内とする。すなわち、元素Mの質量%を[M]とすると、[V]+[Ti]≧0.03である。 In addition, since V and Ti can improve the yield strength of steel substantially equivalently, the total content of V and Ti is within a range of 0.03% or more by mass%. That is, when the mass% of the element M is [M], [V] + [Ti] ≧ 0.03.
Nは、不純物として鋼に含まれ得る。一方、一定の範囲を越えて過度に低減又は増大させることは精錬コストを増大させ得る。そこで、Nの含有量は、質量%で、0.030%以下の範囲内である。 N may be included in the steel as an impurity. On the other hand, excessively reducing or increasing beyond a certain range can increase refining costs. Therefore, the N content is in mass% and is in the range of 0.030% or less.
s−Alは、溶鋼の脱酸作用を有する。また、Nと結合して結晶粒を微細化させるAlNを形成し、得られる機械部品の靭性を向上させ得るとともに、特にベイナイトの生成を抑制するために必要とされる。一方、過剰に含まれると、機械部品の被削性を低下させてしまう。そこで、s−Alの含有量は、質量%で、0.010〜0.050%の範囲内である。 s-Al has a deoxidizing action of molten steel. Further, it is necessary to form AlN that combines with N to refine crystal grains, improve the toughness of the resulting machine part, and particularly to suppress the formation of bainite. On the other hand, if it is contained excessively, the machinability of the machine part is lowered. Then, content of s-Al is a mass%, and exists in the range of 0.010-0.050%.
Pb、Bi、Te及びCaは、得られる機械部品の被削性を向上させる。一方、過剰に含まれると耐力や熱間加工性を低下させる。そこで、Pb、Bi、Te及びCaの1種以上を添加する場合において、その含有量は、それぞれ質量%で、0.001〜0.3%、0.001〜0.3%、0.001〜0.3%及び0.001〜0.01%の範囲内である。 Pb, Bi, Te and Ca improve the machinability of the resulting machine part. On the other hand, if contained excessively, the proof stress and hot workability are lowered. Therefore, in the case where one or more of Pb, Bi, Te and Ca are added, their contents are in mass%, 0.001-0.3%, 0.001-0.3%, 0.001 respectively. It is in the range of ˜0.3% and 0.001 to 0.01%.
ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるだろう。 So far, representative examples and modified examples based on the examples have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments without departing from the scope of the appended claims.
Claims (4)
任意添加元素として、Mn:≦1.00%、P:≦0.200%、Cu:≦0.50%、Ni:≦0.50%、Mo:≦0.20%、V:≦0.50%、Ti:≦0.15%、N:≦0.030%、を含有し得て、残部Fe及び不純物からなるとともに、
元素Mの質量%を[M]で表すと、
(1)[V]+[Ti]≧0.03、
(2)F1=(836.2×Ceq+239.8)×F2≧500、
ここで、
Ceq=[C]+0.03×[Si]+0.31×[Mn]+0.26×[P]+0.08×[Cu]+0.07×[Ni]+0.24×[Cr]+0.17×[Mo]+1.2×[V]+0.51×([Ti]−3.43×[N])−0.7×[S]
F2=−0.18×[C]+0.061×[Mn]−0.178×[S]+0.502×[V]+0.354×[Ti]+0.629
であり、
(3)F3=F4/F5≧1.00、
ここで、
[s−Mn]=[Mn]−1.713×[S]+0.574×[Ti]−1.963×[N]とし、
F4=429.86−310×[C]+25×[Si]−130.86[s−Mn]−14.5×[Cu]−41.55×[Ni]+9.46×[Cr]−49.04×[Mo]−51.09×[V]+(218.97×[C]+25.256)×[Ti]
F5=10^(0.018×[Si]+0.774×[s−Mn]+0.261×[Cu]+0.177×[Ni]+0.608×[Cr]+4.823×[Mo]−0.948×[C]+1.196×[V]+5.257×[Ti]+1.41)
であることを特徴とするフェライト・パーライト型非調質鋼。 As an essential additive element by mass%, C: 0.20 to 0.60%, Si: 0.20 to 2.00%, S: 0.001 to 0.200%, Cr: 0.40 to 2. 00%, s-Al: 0.010 to 0.050%,
As optional additional elements, Mn: ≦ 1.00%, P: ≦ 0.200%, Cu: ≦ 0.50%, Ni: ≦ 0.50%, Mo: ≦ 0.20%, V: ≦ 0.0. 50%, Ti: ≦ 0.15%, N: ≦ 0.030%, which consists of the balance Fe and impurities,
When the mass% of the element M is represented by [M],
(1) [V] + [Ti] ≧ 0.03,
(2) F1 = (836.2 × Ceq + 239.8) × F2 ≧ 500,
here,
Ceq = [C] + 0.03 × [Si] + 0.31 × [Mn] + 0.26 × [P] + 0.08 × [Cu] + 0.07 × [Ni] + 0.24 × [Cr] +0.17 * [Mo] + 1.2 * [V] +0.51 * ([Ti] -3.43 * [N])-0.7 * [S]
F2 = −0.18 × [C] + 0.061 × [Mn] −0.178 × [S] + 0.502 × [V] + 0.354 × [Ti] +0.629
And
(3) F3 = F4 / F5 ≧ 1.00,
here,
[S−Mn] = [Mn] −1.713 × [S] + 0.574 × [Ti] −1.963 × [N]
F4 = 429.86-310 × [C] + 25 × [Si] −130.86 [s-Mn] −14.5 × [Cu] −41.55 × [Ni] + 9.46 × [Cr] −49 .04 × [Mo] −51.09 × [V] + (218.97 × [C] +25.256) × [Ti]
F5 = 10 ^ (0.018 × [Si] + 0.774 × [s-Mn] + 0.261 × [Cu] + 0.177 × [Ni] + 0.608 × [Cr] + 4.823 × [Mo] − 0.948 × [C] + 1.196 × [V] + 5.257 × [Ti] +1.41)
Ferritic pearlite type non-tempered steel characterized by
The ferritic pearlite type non-heat treated steel according to any one of claims 1 to 3, wherein 0.2% proof stress is 500 MPa or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013154733A JP2015025162A (en) | 2013-07-25 | 2013-07-25 | Ferrite pearlite type non-heat treated steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013154733A JP2015025162A (en) | 2013-07-25 | 2013-07-25 | Ferrite pearlite type non-heat treated steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015025162A true JP2015025162A (en) | 2015-02-05 |
Family
ID=52490059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013154733A Pending JP2015025162A (en) | 2013-07-25 | 2013-07-25 | Ferrite pearlite type non-heat treated steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015025162A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106834959A (en) * | 2016-12-28 | 2017-06-13 | 内蒙古包钢钢联股份有限公司 | High hardness wear-resisting ball material steel and its production method |
WO2017213166A1 (en) * | 2016-06-07 | 2017-12-14 | 新日鐵住金株式会社 | Rolled steel bar for hot forging |
CN107574373A (en) * | 2017-08-24 | 2018-01-12 | 昆明理工大学 | The preparation method of reaction induced impregnated porcelain enhancing base steel composite material liner plate |
CN107587043A (en) * | 2017-08-24 | 2018-01-16 | 昆明理工大学 | The preparation method of reaction induced impregnated porcelain particle reinforced steel-base composite material tup |
JP2018035409A (en) * | 2016-09-01 | 2018-03-08 | 新日鐵住金株式会社 | High-strength hot-forged non-heat-treated steel component |
WO2018155604A1 (en) * | 2017-02-24 | 2018-08-30 | 新日鐵住金株式会社 | Untempered steel bar |
CN113106345A (en) * | 2021-04-07 | 2021-07-13 | 宝武集团鄂城钢铁有限公司 | High-plasticity dual-phase steel and production method thereof |
CN116200681A (en) * | 2023-02-28 | 2023-06-02 | 鞍钢股份有限公司 | High-strength atmospheric corrosion-resistant steel plate for nuclear power support and manufacturing method thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01168849A (en) * | 1987-10-15 | 1989-07-04 | Aichi Steel Works Ltd | Free cutting steel having high fatigue strength |
JPH09143610A (en) * | 1995-11-15 | 1997-06-03 | Kobe Steel Ltd | Hot forged non-heat treated steel having high fatigue strength and its production |
JPH10265891A (en) * | 1997-03-24 | 1998-10-06 | Sumitomo Metal Ind Ltd | Ferrite/pearlite type non-heat treated steel |
JPH11152542A (en) * | 1997-09-18 | 1999-06-08 | Kobe Steel Ltd | Non-heattreated steel for hot forging, having high fatigue limit ratio, and its production |
JPH11269599A (en) * | 1998-03-24 | 1999-10-05 | Sumitomo Metal Ind Ltd | High strength non-refining steel |
JP2000282172A (en) * | 1999-01-28 | 2000-10-10 | Sumitomo Metal Ind Ltd | Steel for machine structure excellent in machinability and toughness, and machine structural parts |
JP2001214241A (en) * | 1999-11-24 | 2001-08-07 | Sumitomo Metal Ind Ltd | Steel for machine structural use and machine structural part excellent in machinability |
JP2001262267A (en) * | 2000-03-17 | 2001-09-26 | Sumitomo Metal Ind Ltd | Non-heat treated steel |
JP2005054228A (en) * | 2003-08-04 | 2005-03-03 | Aichi Steel Works Ltd | Easily rupture-separating ultrahigh-temperature hot-forged non-heat-treated component for connecting rod, and manufacturing method therefor |
JP2006206934A (en) * | 2005-01-25 | 2006-08-10 | Daido Steel Co Ltd | High proof stress ratio non-heat-treated steel |
WO2011016676A2 (en) * | 2009-08-04 | 2011-02-10 | Posco | Non-heat treated rolled steel and drawn wire rod with excellent toughness, and method for manufacturing the same |
-
2013
- 2013-07-25 JP JP2013154733A patent/JP2015025162A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01168849A (en) * | 1987-10-15 | 1989-07-04 | Aichi Steel Works Ltd | Free cutting steel having high fatigue strength |
JPH09143610A (en) * | 1995-11-15 | 1997-06-03 | Kobe Steel Ltd | Hot forged non-heat treated steel having high fatigue strength and its production |
JPH10265891A (en) * | 1997-03-24 | 1998-10-06 | Sumitomo Metal Ind Ltd | Ferrite/pearlite type non-heat treated steel |
JPH11152542A (en) * | 1997-09-18 | 1999-06-08 | Kobe Steel Ltd | Non-heattreated steel for hot forging, having high fatigue limit ratio, and its production |
JPH11269599A (en) * | 1998-03-24 | 1999-10-05 | Sumitomo Metal Ind Ltd | High strength non-refining steel |
JP2000282172A (en) * | 1999-01-28 | 2000-10-10 | Sumitomo Metal Ind Ltd | Steel for machine structure excellent in machinability and toughness, and machine structural parts |
JP2001214241A (en) * | 1999-11-24 | 2001-08-07 | Sumitomo Metal Ind Ltd | Steel for machine structural use and machine structural part excellent in machinability |
JP2001262267A (en) * | 2000-03-17 | 2001-09-26 | Sumitomo Metal Ind Ltd | Non-heat treated steel |
JP2005054228A (en) * | 2003-08-04 | 2005-03-03 | Aichi Steel Works Ltd | Easily rupture-separating ultrahigh-temperature hot-forged non-heat-treated component for connecting rod, and manufacturing method therefor |
JP2006206934A (en) * | 2005-01-25 | 2006-08-10 | Daido Steel Co Ltd | High proof stress ratio non-heat-treated steel |
WO2011016676A2 (en) * | 2009-08-04 | 2011-02-10 | Posco | Non-heat treated rolled steel and drawn wire rod with excellent toughness, and method for manufacturing the same |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109312434B (en) * | 2016-06-07 | 2021-05-11 | 日本制铁株式会社 | Rolled steel bar for hot forging |
WO2017213166A1 (en) * | 2016-06-07 | 2017-12-14 | 新日鐵住金株式会社 | Rolled steel bar for hot forging |
CN109312434A (en) * | 2016-06-07 | 2019-02-05 | 新日铁住金株式会社 | Hot forging rolling bar steel |
JP2018035409A (en) * | 2016-09-01 | 2018-03-08 | 新日鐵住金株式会社 | High-strength hot-forged non-heat-treated steel component |
CN106834959A (en) * | 2016-12-28 | 2017-06-13 | 内蒙古包钢钢联股份有限公司 | High hardness wear-resisting ball material steel and its production method |
CN110325658B (en) * | 2017-02-24 | 2021-08-13 | 日本制铁株式会社 | Non-quenched and tempered bar steel |
WO2018155604A1 (en) * | 2017-02-24 | 2018-08-30 | 新日鐵住金株式会社 | Untempered steel bar |
CN110325658A (en) * | 2017-02-24 | 2019-10-11 | 日本制铁株式会社 | Micro Alloying bar steel |
CN107587043A (en) * | 2017-08-24 | 2018-01-16 | 昆明理工大学 | The preparation method of reaction induced impregnated porcelain particle reinforced steel-base composite material tup |
CN107574373A (en) * | 2017-08-24 | 2018-01-12 | 昆明理工大学 | The preparation method of reaction induced impregnated porcelain enhancing base steel composite material liner plate |
CN113106345A (en) * | 2021-04-07 | 2021-07-13 | 宝武集团鄂城钢铁有限公司 | High-plasticity dual-phase steel and production method thereof |
CN116200681A (en) * | 2023-02-28 | 2023-06-02 | 鞍钢股份有限公司 | High-strength atmospheric corrosion-resistant steel plate for nuclear power support and manufacturing method thereof |
CN116200681B (en) * | 2023-02-28 | 2023-12-15 | 鞍钢股份有限公司 | High-strength atmospheric corrosion-resistant steel plate for nuclear power support and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015025162A (en) | Ferrite pearlite type non-heat treated steel | |
AU2009355404B2 (en) | High-toughness abrasion-resistant steel and manufacturing method therefor | |
JP4728883B2 (en) | Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties | |
JP5655366B2 (en) | Bainite steel | |
US10066281B2 (en) | Age-hardenable steel | |
JP6794012B2 (en) | Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance | |
JP7252761B2 (en) | Precipitation hardening steel and its manufacture | |
JP5974623B2 (en) | Age-hardening bainite non-tempered steel | |
JP6680142B2 (en) | High-strength seamless oil country tubular good and method for manufacturing the same | |
JP2012188727A (en) | High-strength high-corrosion resistance stainless steel bolt excellent in stress corrosion crack resistance, and its manufacturing method | |
JP5505263B2 (en) | Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties | |
CN106560522B (en) | Component using age-hardening bainite non-heat-treated steel and method for producing same | |
JP4415219B2 (en) | Age hardened steel | |
JP2014218683A (en) | Soft-nitrided crankshaft and method of manufacturing the same | |
US10745772B2 (en) | Age hardening non-heat treated bainitic steel | |
KR20150074697A (en) | Low-nickel containing stainless steels | |
JP4728884B2 (en) | Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics | |
JP2009228051A (en) | Method for producing non-heattreated steel material | |
JP2016027204A (en) | Age-hardening bainite untempered steel | |
JP7223997B2 (en) | Steel with high hardness and excellent toughness | |
JPWO2016194938A1 (en) | Steel for hot forging | |
JP2012077371A (en) | Rolled steel for hot forging, and method for production thereof | |
JP4645307B2 (en) | Wear-resistant steel with excellent low-temperature toughness and method for producing the same | |
JP2017014556A (en) | Martensitic stainless steel excellent in precipitation hardening performance | |
JP5505264B2 (en) | Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170803 |