JP2015022956A - Slurry for power storage device, power storage device electrode, separator and power storage device - Google Patents
Slurry for power storage device, power storage device electrode, separator and power storage device Download PDFInfo
- Publication number
- JP2015022956A JP2015022956A JP2013151464A JP2013151464A JP2015022956A JP 2015022956 A JP2015022956 A JP 2015022956A JP 2013151464 A JP2013151464 A JP 2013151464A JP 2013151464 A JP2013151464 A JP 2013151464A JP 2015022956 A JP2015022956 A JP 2015022956A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- storage device
- water
- mass
- electricity storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 141
- 239000002002 slurry Substances 0.000 title claims abstract description 122
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 85
- 239000011149 active material Substances 0.000 claims abstract description 79
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims abstract description 26
- 230000005611 electricity Effects 0.000 claims description 96
- -1 nitrile compound Chemical class 0.000 claims description 39
- 238000001035 drying Methods 0.000 claims description 31
- 239000000945 filler Substances 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 11
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 6
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229920003176 water-insoluble polymer Polymers 0.000 claims description 4
- 125000003262 carboxylic acid ester group Chemical class [H]C([H])([*:2])OC(=O)C([H])([H])[*:1] 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 17
- 230000001681 protective effect Effects 0.000 description 83
- 239000010410 layer Substances 0.000 description 52
- 239000011230 binding agent Substances 0.000 description 36
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 30
- 238000000034 method Methods 0.000 description 28
- 239000000203 mixture Substances 0.000 description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 25
- 229920000642 polymer Polymers 0.000 description 25
- 210000004027 cell Anatomy 0.000 description 24
- 229910001416 lithium ion Inorganic materials 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 21
- 239000011267 electrode slurry Substances 0.000 description 21
- 238000011156 evaluation Methods 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 239000008151 electrolyte solution Substances 0.000 description 18
- 239000007788 liquid Substances 0.000 description 15
- 239000000178 monomer Substances 0.000 description 15
- 238000003756 stirring Methods 0.000 description 15
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 13
- 239000012736 aqueous medium Substances 0.000 description 13
- 239000011572 manganese Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 12
- 229910052759 nickel Inorganic materials 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 239000003999 initiator Substances 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 150000001733 carboxylic acid esters Chemical class 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000002562 thickening agent Substances 0.000 description 8
- 238000007599 discharging Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 6
- 229910000676 Si alloy Inorganic materials 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 238000007606 doctor blade method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000002210 silicon-based material Substances 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 150000003624 transition metals Chemical class 0.000 description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000003002 pH adjusting agent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 3
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 229910052987 metal hydride Inorganic materials 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- PAJMKGZZBBTTOY-UHFFFAOYSA-N 2-[[2-hydroxy-1-(3-hydroxyoctyl)-2,3,3a,4,9,9a-hexahydro-1h-cyclopenta[g]naphthalen-5-yl]oxy]acetic acid Chemical compound C1=CC=C(OCC(O)=O)C2=C1CC1C(CCC(O)CCCCC)C(O)CC1C2 PAJMKGZZBBTTOY-UHFFFAOYSA-N 0.000 description 2
- XCJGLBWDZKLQCY-UHFFFAOYSA-N 2-methylpropane-2-sulfonic acid Chemical compound CC(C)(C)S(O)(=O)=O XCJGLBWDZKLQCY-UHFFFAOYSA-N 0.000 description 2
- JJYPMNFTHPTTDI-UHFFFAOYSA-N 3-methylaniline Chemical compound CC1=CC=CC(N)=C1 JJYPMNFTHPTTDI-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 2
- 239000013530 defoamer Substances 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000011883 electrode binding agent Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- PQLMXFQTAMDXIZ-UHFFFAOYSA-N isoamyl butyrate Chemical compound CCCC(=O)OCCC(C)C PQLMXFQTAMDXIZ-UHFFFAOYSA-N 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- OYUNTGBISCIYPW-UHFFFAOYSA-N 2-chloroprop-2-enenitrile Chemical compound ClC(=C)C#N OYUNTGBISCIYPW-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- JNDVNJWCRZQGFQ-UHFFFAOYSA-N 2-methyl-N,N-bis(methylamino)hex-2-enamide Chemical compound CCCC=C(C)C(=O)N(NC)NC JNDVNJWCRZQGFQ-UHFFFAOYSA-N 0.000 description 1
- TVONJMOVBKMLOM-UHFFFAOYSA-N 2-methylidenebutanenitrile Chemical compound CCC(=C)C#N TVONJMOVBKMLOM-UHFFFAOYSA-N 0.000 description 1
- FCYVWWWTHPPJII-UHFFFAOYSA-N 2-methylidenepropanedinitrile Chemical compound N#CC(=C)C#N FCYVWWWTHPPJII-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- XRUKRHLZDVJJSX-UHFFFAOYSA-N 4-cyanopentanoic acid Chemical compound N#CC(C)CCC(O)=O XRUKRHLZDVJJSX-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 229920006369 KF polymer Polymers 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015013 LiAsF Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methyl-N-phenylamine Natural products CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- 150000001495 arsenic compounds Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000001191 butyl (2R)-2-hydroxypropanoate Substances 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000002593 electrical impedance tomography Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 125000005290 ethynyloxy group Chemical group C(#C)O* 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229940093920 gynecological arsenic compound Drugs 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- GJIDOLBZYSCZRX-UHFFFAOYSA-N hydroxymethyl prop-2-enoate Chemical compound OCOC(=O)C=C GJIDOLBZYSCZRX-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002641 lithium Chemical group 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000011777 magnesium Chemical class 0.000 description 1
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- QRWZCJXEAOZAAW-UHFFFAOYSA-N n,n,2-trimethylprop-2-enamide Chemical compound CN(C)C(=O)C(C)=C QRWZCJXEAOZAAW-UHFFFAOYSA-N 0.000 description 1
- DFENKTCEEGOWLB-UHFFFAOYSA-N n,n-bis(methylamino)-2-methylidenepentanamide Chemical compound CCCC(=C)C(=O)N(NC)NC DFENKTCEEGOWLB-UHFFFAOYSA-N 0.000 description 1
- OVHHHVAVHBHXAK-UHFFFAOYSA-N n,n-diethylprop-2-enamide Chemical compound CCN(CC)C(=O)C=C OVHHHVAVHBHXAK-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940094933 n-dodecane Drugs 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- MTZWHHIREPJPTG-UHFFFAOYSA-N phorone Chemical compound CC(C)=CC(=O)C=C(C)C MTZWHHIREPJPTG-UHFFFAOYSA-N 0.000 description 1
- 229930193351 phorone Natural products 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cell Separators (AREA)
Abstract
Description
本発明は、蓄電デバイス用スラリー、該スラリーを塗布および乾燥して作製された層を備える蓄電デバイス電極、該スラリーを塗布および乾燥して作製された層を表面に備えるセパレーター、ならびに該電極および該セパレーターの少なくとも一方を備える蓄電デバイスに関する。 The present invention relates to a slurry for an electricity storage device, an electricity storage device electrode comprising a layer produced by applying and drying the slurry, a separator comprising a layer produced by applying and drying the slurry, and the electrode and the electrode The present invention relates to an electricity storage device including at least one of separators.
蓄電デバイスに使用される正極や負極(以下、「電極」ともいう。)は、活物質とバインダーとの混合物を集電体表面へ塗布および乾燥させ、集電体表面に活物質層を形成することにより作製される(例えば、特許文献1参照)。また、近年では、セパレーター表面にフィラーとバインダーとの混合物を塗布および乾燥させ、デンドライトに耐え得る保護膜をセパレーターの表面に形成する技術も提案されている。このように、蓄電デバイスの分野では、電極やセパレーターの表面に活物質やフィラーを含有する層を備えることが一般的である(例えば、特許文献2参照)。 A positive electrode and a negative electrode (hereinafter, also referred to as “electrode”) used in an electricity storage device are formed by applying a mixture of an active material and a binder to a surface of a current collector and drying the active material layer on the surface of the current collector. (See, for example, Patent Document 1). In recent years, a technique has also been proposed in which a mixture of a filler and a binder is applied to the separator surface and dried to form a protective film that can withstand dendrites on the separator surface. Thus, in the field of power storage devices, it is common to provide a layer containing an active material or filler on the surface of an electrode or a separator (see, for example, Patent Document 2).
このようなバインダーに要求される特性としては、活物質粒子やフィラー同士の結合および、活物質粒子を含む電極用組成物層(以下、「活物質層」ともいう。)と集電体との接着能力や、フィラーを含む保護膜とセパレーターや活物質層との接着能力や、これらの層を備える電極やセパレーターを巻き取る工程における耐擦性、その後の裁断等で塗布された活物質層や保護膜から微粉等が発生しない粉落ち耐性等がある。なお、上記の活物質粒子やフィラー同士の結合能力および活物質粒子と集電体との結着能力、フィラーを含む保護膜とセパレーターや活物質層との接着能力、ならびにこれらの粉落ち耐性については、性能の良否がほぼ比例関係にあることが経験上明らかになっている。したがって本明細書では、以下これらを包括して「密着性」という用語を用いて表す場合がある。 Properties required for such a binder include bonding between active material particles and fillers, and a composition layer for an electrode containing active material particles (hereinafter also referred to as “active material layer”) and a current collector. Adhesive ability, adhesive ability between a protective film containing a filler and a separator or an active material layer, abrasion resistance in a process of winding an electrode or separator provided with these layers, an active material layer applied by subsequent cutting, etc. There is a powder fall resistance that does not generate fine powder from the protective film. In addition, about the binding ability of the above active material particles and fillers, the binding ability between the active material particles and the current collector, the adhesion ability between the protective film containing the filler and the separator and the active material layer, and the resistance to dusting of these From experience, it is clear that the performance is almost proportional. Therefore, in the present specification, these may be collectively expressed below using the term “adhesion”.
電極用バインダーとしては、例えば特許文献3や特許文献4には、ゴム系重合体と他の重合体を併用することにより、電極用バインダーの耐酸化性と密着性とを両立させようとする技術が提案されている。特許文献5には、ポリフッ化ビニリデンを特定の有機溶媒へ溶解し、これを集電体表面上に塗布した後、低温で溶媒を除去する工程を経ることによって密着性を向上させようとする技術が提案されている。 As an electrode binder, for example, Patent Document 3 and Patent Document 4 disclose a technique for achieving both oxidation resistance and adhesion of an electrode binder by using a rubber polymer and another polymer in combination. Has been proposed. Patent Document 5 discloses a technique for improving adhesion by dissolving polyvinylidene fluoride in a specific organic solvent, applying it onto the current collector surface, and then removing the solvent at a low temperature. Has been proposed.
保護膜用バインダーとしては、例えば特許文献6では、ポリアミド、ポリイミド、ポリアミドイミドを含有する樹脂バインダーを含む多孔質層を多孔質セパレーター基材上に形成することで、電池特性を改良する技術が検討されている。また、特許文献7では、フッ素系樹脂とゴム系樹脂を含有する結着剤を含む多孔性保護膜を正極および負極の少なくとも一方の表面に形成することで、電池特性を改良する技術が検討されている。 As a protective film binder, for example, Patent Document 6 examines a technique for improving battery characteristics by forming a porous layer containing a resin binder containing polyamide, polyimide, and polyamideimide on a porous separator substrate. Has been. Patent Document 7 discusses a technique for improving battery characteristics by forming a porous protective film containing a binder containing a fluorine resin and a rubber resin on at least one surface of a positive electrode and a negative electrode. ing.
しかしながら、ゴム系重合体と他の重合体を併用する特許文献3や特許文献4に記載されている技術によると、密着性は向上するものの、有機重合体の耐酸化性が大きく損なわれるため、これを用いて製造される蓄電デバイスは充放電の繰り返しによって充放電特性が不可逆的に劣化してしまうという問題があった。また、特許文献4に記載されている技術では、水に分散しているアクリル系共重合体をバインダー成分としているため、アクリル系共重合体の分散状態によっては塗膜においてバインダー成分が不均一となる場合があり、密着性は向上するものの局所的に不十分となる場合があった。一方、バインダー成分として含フッ素系有機重合体のみを使用する特許文献5に記載されている技術によると、密着性は未だ不十分であった。 However, according to the techniques described in Patent Document 3 and Patent Document 4 in which a rubber-based polymer and another polymer are used in combination, although the adhesion is improved, the oxidation resistance of the organic polymer is greatly impaired. An electricity storage device manufactured using this has a problem that charge and discharge characteristics are irreversibly deteriorated by repeated charge and discharge. Moreover, in the technique described in Patent Document 4, since the acrylic copolymer dispersed in water is used as a binder component, the binder component is not uniform in the coating film depending on the dispersion state of the acrylic copolymer. In some cases, the adhesion is improved but locally insufficient. On the other hand, according to the technique described in Patent Document 5 that uses only a fluorine-containing organic polymer as a binder component, the adhesion is still insufficient.
一方、特許文献6や特許文献7に記載されているような材料によれば、セパレーターや電極表面に保護膜を形成することにより充放電に伴って発生するデンドライトに起因する短絡を抑制できるものの、電解液の浸透性や保液性が低下してしまうためリチウムイオンが活物質へ吸脱着することを妨げてしまう。その結果、蓄電デバイスの内部抵抗が上昇し、充放電特性が劣化してしまうという問題があった。 On the other hand, according to the materials as described in Patent Document 6 and Patent Document 7, although a short circuit caused by dendrite generated along with charge / discharge can be suppressed by forming a protective film on the separator or electrode surface, Since the permeability and liquid retention of the electrolytic solution are lowered, lithium ions are prevented from adsorbing and desorbing to the active material. As a result, there is a problem that the internal resistance of the electricity storage device increases and the charge / discharge characteristics are deteriorated.
このように、従来技術においては、水にバインダー成分となる重合体を分散させたエマルジョンを使用することで、密着性を改善して充放電特性を向上させようとする技術が提案されているが、バインダー成分として水溶性重合体のみを使用した技術はあまり検討されていない。バインダー成分として水溶性重合体のみを使用することができれば、塗膜におけるバインダー成分の不均一性が解消し、さらなる密着性の向上が期待できる。 Thus, in the prior art, a technique for improving the charge / discharge characteristics by improving the adhesion by using an emulsion in which a polymer as a binder component is dispersed in water has been proposed. However, a technique using only a water-soluble polymer as a binder component has not been studied much. If only a water-soluble polymer can be used as the binder component, non-uniformity of the binder component in the coating film is eliminated, and further improvement in adhesion can be expected.
そこで、本発明に係る幾つかの態様は、前記課題の少なくとも一部を解決することで、集電体やセパレーターとの密着性に優れた層を形成できると共に、充放電特性に優れた蓄電デバイスを製造可能な蓄電デバイス用スラリーを提供するものである。 Accordingly, some embodiments according to the present invention can form a layer having excellent adhesion to a current collector or a separator by solving at least a part of the above-described problem, and also have an electric storage device having excellent charge / discharge characteristics. The slurry for electrical storage devices which can manufacture is provided.
本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following aspects or application examples.
[適用例1]
本発明に係る蓄電デバイス用スラリーの一態様は、
活物質100質量部に対して、水溶性重合体(A)を1〜10質量部含有する蓄電デバイス用スラリーであって、
前記水溶性重合体(A)100質量部中に含有される(メタ)アクリルアミドに由来する繰り返し単位の割合が40〜100質量部であることを特徴とする。
[Application Example 1]
One aspect of the slurry for an electricity storage device according to the present invention is:
A slurry for an electricity storage device containing 1 to 10 parts by mass of a water-soluble polymer (A) with respect to 100 parts by mass of an active material,
The ratio of the repeating unit derived from (meth) acrylamide contained in 100 parts by mass of the water-soluble polymer (A) is 40 to 100 parts by mass.
[適用例2]
本発明に係る蓄電デバイス用スラリーの一態様は、
フィラー100質量部に対して、(メタ)アクリルアミドに由来する繰り返し単位を有する水溶性重合体(A)を1〜10質量部含有することを特徴とする。
[Application Example 2]
One aspect of the slurry for an electricity storage device according to the present invention is:
1-10 mass parts of water-soluble polymers (A) which have a repeating unit derived from (meth) acrylamide are contained with respect to 100 mass parts of fillers.
[適用例3]
適用例2の蓄電デバイス用スラリーにおいて、
前記水溶性重合体(A)100質量部中に含有される(メタ)アクリルアミドに由来する繰り返し単位の割合が40〜100質量部であることができる。
[Application Example 3]
In the slurry for the electricity storage device of Application Example 2,
The ratio of the repeating unit derived from (meth) acrylamide contained in 100 parts by mass of the water-soluble polymer (A) may be 40 to 100 parts by mass.
[適用例4]
適用例2または適用例3の蓄電デバイス用スラリーにおいて、
前記フィラーが、シリカ、酸化チタン、酸化アルミニウム、酸化ジルコニウムおよび酸化マグネシウムよりなる群から選択される少なくとも1種の粒子であることができる。
[Application Example 4]
In the slurry for electricity storage device of Application Example 2 or Application Example 3,
The filler may be at least one particle selected from the group consisting of silica, titanium oxide, aluminum oxide, zirconium oxide, and magnesium oxide.
[適用例5]
適用例1ないし適用例4のいずれか一例の蓄電デバイス用スラリーにおいて、
水不溶性重合体を含有しないことができる。
[Application Example 5]
In the slurry for an electricity storage device according to any one of Application Examples 1 to 4,
It can contain no water-insoluble polymer.
[適用例6]
適用例1ないし適用例5のいずれか一例の蓄電デバイス用スラリーにおいて、
前記水溶性重合体(A)が、重合性不飽和二重結合を有する酸、不飽和カルボン酸エステルおよびα,β−不飽和ニトリル化合物よりなる群から選択される少なくとも1種に由来する繰り返し単位をさらに含むことができる。
[Application Example 6]
In the slurry for an electricity storage device of any one of Application Examples 1 to 5,
The water-soluble polymer (A) is a repeating unit derived from at least one selected from the group consisting of an acid having a polymerizable unsaturated double bond, an unsaturated carboxylic acid ester, and an α, β-unsaturated nitrile compound. Can further be included.
[適用例7]
適用例1ないし適用例6のいずれか一例の蓄電デバイス用スラリーにおいて、
前記水溶性重合体(A)の重量平均分子量(Mw)が30万〜600万であることができる。
[Application Example 7]
In the slurry for an electricity storage device of any one of Application Examples 1 to 6,
The water-soluble polymer (A) may have a weight average molecular weight (Mw) of 300,000 to 6 million.
[適用例8]
適用例1ないし適用例7のいずれか一例の蓄電デバイス用スラリーにおいて、
前記水溶性重合体(A)の重量平均分子量(Mw)/数平均分子量(Mn)が3〜30であることができる。
[Application Example 8]
In the slurry for an electricity storage device of any one of Application Examples 1 to 7,
The water-soluble polymer (A) may have a weight average molecular weight (Mw) / number average molecular weight (Mn) of 3 to 30.
[適用例9]
本発明に係る蓄電デバイス電極の一態様は、
集電体と、前記集電体の表面上に適用例1の蓄電デバイス用スラリーが塗布および乾燥されて形成された層と、を備えることを特徴とする。
[Application Example 9]
One aspect of the electricity storage device electrode according to the present invention is:
It is characterized by comprising: a current collector; and a layer formed by applying and drying the power storage device slurry of Application Example 1 on the surface of the current collector.
[適用例10]
本発明に係る蓄電デバイス電極の一態様は、
集電体と、前記集電体の表面に形成された活物質層と、備え、
さらに、前記活物質層の表面に適用例2ないし適用例4のいずれか一例の蓄電デバイス用スラリーを塗布および乾燥させて形成された層を備えることを特徴とする。
[Application Example 10]
One aspect of the electricity storage device electrode according to the present invention is:
A current collector, and an active material layer formed on the surface of the current collector,
Furthermore, the active material layer is provided with a layer formed by applying and drying the electricity storage device slurry of any one of Application Examples 2 to 4 on the surface of the active material layer.
[適用例11]
本発明に係るセパレーターの一態様は、
適用例2ないし適用例4のいずれか一例の蓄電デバイス用スラリーを塗布および乾燥させて形成された層を表面に備えることを特徴とする。
[Application Example 11]
One aspect of the separator according to the present invention is:
A layer formed by applying and drying the slurry for an electricity storage device according to any one of Application Example 2 to Application Example 4 is provided on the surface.
[適用例12]
本発明に係る蓄電デバイスの一態様は、
適用例9または適用例10の蓄電デバイス電極および適用例11のセパレーターの少なくとも一方を備えることを特徴とする。
[Application Example 12]
One aspect of the electricity storage device according to the present invention is:
At least one of the electricity storage device electrode of Application Example 9 or Application Example 10 and the separator of Application Example 11 is provided.
本発明に係る蓄電デバイス用スラリーによれば、活物質粒子同士の結合能力および活物質粒子と集電体との結着能力ならびに粉落ち耐性、いわゆる密着性に優れた蓄電デバイス電極を製造することができる。また、本発明に係る蓄電デバイス用スラリーを用いて製造
された蓄電デバイス電極を備える蓄電デバイスによれば、電気的特性の一つである放電レート特性が極めて良好となる。
According to the slurry for an electricity storage device according to the present invention, an electricity storage device electrode excellent in binding ability between active material particles and binding ability between the active material particles and the current collector and powder fall resistance, so-called adhesion is manufactured. Can do. Moreover, according to the electrical storage device including the electrical storage device electrode manufactured using the electrical storage device slurry according to the present invention, the discharge rate characteristic which is one of the electrical characteristics is extremely good.
本発明に係る蓄電デバイス用スラリーを用いて作製された保護膜を備える蓄電デバイスによれば、電解液の浸透性および保液性に優れると共に、内部抵抗の上昇を抑制することができる。すなわち、本発明に係る蓄電デバイスは、充放電の繰り返しまたは過充電によっても蓄電デバイスの内部抵抗が上昇する程度が少ないため、充放電特性に優れる。なお、前記保護膜は、正極と負極との間に配置することで、充放電に伴って発生するデンドライドに起因する短絡を抑制することもできる。本発明に係る蓄電デバイス用スラリーは、さらに耐酸化性にも優れるから、蓄電デバイスの正極に相対する保護膜を形成するために特に好適に用いることができる。 According to the electricity storage device provided with the protective film produced using the slurry for electricity storage device according to the present invention, it is excellent in electrolyte permeability and liquid retention, and it is possible to suppress an increase in internal resistance. That is, the power storage device according to the present invention has excellent charge / discharge characteristics because the degree of increase in the internal resistance of the power storage device is small even after repeated charge / discharge or overcharge. In addition, the said protective film can also suppress the short circuit resulting from the dendride which generate | occur | produces with charging / discharging by arrange | positioning between a positive electrode and a negative electrode. Since the slurry for an electricity storage device according to the present invention is further excellent in oxidation resistance, it can be particularly suitably used for forming a protective film facing the positive electrode of the electricity storage device.
以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、以下に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。なお、本明細書における「(メタ)アクリル酸〜」とは、「アクリル酸〜」および「メタクリル酸〜」の双方を包括する概念である。 Hereinafter, preferred embodiments according to the present invention will be described in detail. It should be understood that the present invention is not limited to only the embodiments described below, and includes various modifications that are implemented without departing from the scope of the present invention. In the present specification, “(meth) acrylic acid” is a concept encompassing both “acrylic acid” and “methacrylic acid”.
1.蓄電デバイス用スラリー
本実施の形態に係る蓄電デバイス用スラリーは、二つの用途に大別することができる。一つ目の用途としては、蓄電デバイス電極を作製するための用途があり、具体的には集電体表面に形成される活物質層を作製するためのスラリーとして使用することができる。二つ目の用途としては、充放電に伴って発生するデンドライドに起因する短絡を抑制するための保護膜を電極やセパレーターの表面に作製するための用途がある。
1. Power storage device slurry The power storage device slurry according to the present embodiment can be broadly classified into two applications. As the first use, there is an application for producing an electricity storage device electrode. Specifically, it can be used as a slurry for producing an active material layer formed on a current collector surface. As a second application, there is an application for producing a protective film on the surface of an electrode or a separator for suppressing a short circuit caused by dendrid generated along with charge / discharge.
本実施の形態に係る蓄電デバイス用スラリーに含有される水溶性重合体(A)は、従来のカルボキシメチルセルロースに代表される増粘剤としての機能だけでなく、活物質粒子同士の結合能力および活物質粒子と集電体との結着能力ならびに粉落ち耐性を向上させるバインダーとしての機能も兼ね備えている。したがって、本実施の形態に係る蓄電デバイス用スラリーでは、特開2012−151108号公報に記載されているようなバインダーとしての機能を有する水不溶性重合体(有機粒子)を併用する必要がない点で優れている。 The water-soluble polymer (A) contained in the electricity storage device slurry according to the present embodiment has not only a function as a thickener typified by conventional carboxymethyl cellulose but also a binding ability and activity between active material particles. It also has a function as a binder for improving the binding ability between the substance particles and the current collector and the resistance to powder falling. Therefore, in the slurry for an electricity storage device according to the present embodiment, it is not necessary to use a water-insoluble polymer (organic particles) having a function as a binder as described in JP2012-151108A. Are better.
本発明における「水溶性重合体」とは、1気圧、23℃における水1gへの溶解度が0.01g以上である重合体のことをいう。本発明における「水不溶性重合体」とは、1気圧、23℃における水1gへの溶解度が0.01g未満である重合体のことをいう。 The “water-soluble polymer” in the present invention refers to a polymer having a solubility in 1 g of water at 1 atm and 23 ° C. of 0.01 g or more. The “water-insoluble polymer” in the present invention refers to a polymer having a solubility in 1 g of water at 1 atm and 23 ° C. of less than 0.01 g.
以下、蓄電デバイス電極を作製する用途に用いられる蓄電デバイス用スラリーを「蓄電デバイス電極用スラリー」と、保護膜を作製する用途に用いられる蓄電デバイス用スラリーを「保護膜用スラリー」と呼称し、それぞれのスラリーについて詳細に説明する。 Hereinafter, the slurry for the electricity storage device used for the application for producing the electricity storage device electrode is referred to as “slurry for the electricity storage device electrode”, and the slurry for the electricity storage device used for the application for producing the protective film is referred to as “the slurry for the protection film” Each slurry will be described in detail.
1.1.蓄電デバイス電極用スラリー
本実施の形態に係る蓄電デバイス電極用スラリーは、活物質100質量部に対して、水溶性重合体(A)を1〜10質量部含有し、前記水溶性重合体(A)100質量部中に含有される(メタ)アクリルアミドに由来する繰り返し単位の割合が40〜100質量部であることを特徴とする。以下、本実施の形態に係る蓄電デバイス電極用スラリーに含まれる各成分について詳細に説明する。
1.1. Storage Device Electrode Slurry The storage device electrode slurry according to the present embodiment contains 1 to 10 parts by mass of the water-soluble polymer (A) with respect to 100 parts by mass of the active material, and the water-soluble polymer (A) ) The ratio of the repeating unit derived from (meth) acrylamide contained in 100 parts by mass is 40 to 100 parts by mass. Hereafter, each component contained in the slurry for electrical storage device electrodes which concerns on this Embodiment is demonstrated in detail.
1.1.1.水溶性重合体(A)
本実施の形態に係る蓄電デバイス電極用スラリーは、(メタ)アクリルアミドに由来する繰り返し単位を含有する水溶性重合体(A)を含む。水溶性重合体(A)は、(メタ)アクリルアミドに由来する繰り返し単位の他に、それと共重合可能な他の単量体に由来する繰り返し単位を含有してもよい。他の単量体としては、例えば、重合性不飽和二重結合を有する酸、不飽和カルボン酸エステル、α,β−不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物等が挙げられる。
1.1.1. Water-soluble polymer (A)
The slurry for an electricity storage device electrode according to the present embodiment includes a water-soluble polymer (A) containing a repeating unit derived from (meth) acrylamide. In addition to the repeating unit derived from (meth) acrylamide, the water-soluble polymer (A) may contain a repeating unit derived from another monomer copolymerizable therewith. Examples of the other monomer include an acid having a polymerizable unsaturated double bond, an unsaturated carboxylic acid ester, an α, β-unsaturated nitrile compound, a conjugated diene compound, and an aromatic vinyl compound.
以下、水溶性重合体(A)を構成する繰り返し単位、水溶性重合体(A)の分子量、物性、製造方法の順に説明する。 Hereinafter, the repeating unit constituting the water-soluble polymer (A), the molecular weight of the water-soluble polymer (A), the physical properties, and the production method will be described in this order.
1.1.1.1.(メタ)アクリルアミドに由来する繰り返し単位
水溶性重合体(A)は、水溶性重合体(A)100質量部中に含有される(メタ)アクリルアミドに由来する繰り返し単位の割合が40〜100質量部であり、45〜95質量部であることがより好ましく、50〜85質量部であることが特に好ましい。(メタ)アクリルアミドに由来する繰り返し単位を前記範囲で含有することにより、活物質やフィラーの分散性が良好となり、均一な活物質層や保護膜の作製が可能となるため構造欠陥がなくなり、良好な充放電特性を示す。さらに(メタ)アクリルアミドに由来する繰り返し単位を前記範囲で含有することにより、ポリマーの耐酸化性が良好となるため、高電圧時の劣化が抑制され良好な充放電耐久特性を示す。
1.1.1.1. The repeating unit derived from (meth) acrylamide The water-soluble polymer (A) is 40 to 100 parts by mass of the repeating unit derived from (meth) acrylamide contained in 100 parts by mass of the water-soluble polymer (A). It is more preferable that it is 45-95 mass parts, and it is especially preferable that it is 50-85 mass parts. By containing the repeating unit derived from (meth) acrylamide in the above range, the dispersibility of the active material and filler becomes good, and it becomes possible to produce a uniform active material layer and a protective film. Shows excellent charge / discharge characteristics. Furthermore, by containing a repeating unit derived from (meth) acrylamide in the above range, the oxidation resistance of the polymer becomes good, and therefore, deterioration at high voltage is suppressed, and good charge / discharge durability characteristics are exhibited.
本発明における(メタ)アクリルアミドとは、下記一般式(1)で示される(メタ)アクリルアミド骨格を有する化合物の総称のこという。
このような(メタ)アクリルアミドとしては、例えば、アクリルアミド、メタクリルアミド、N−イソプロピルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジメチルメタクリルアミド、N,N−ジエチルアクリルアミド、N,N−ジエチルメタクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジメチルアミノプロピルメタアクリルアミド、N−メチロールメタクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、マレイン酸アミド、アクリルアミドt−ブチルスルホン酸等が挙げられる。これらの(メタ)アクリルアミドは、1種単独で用いてもよく、2種以上を併用して用いてもよい。 Examples of such (meth) acrylamide include acrylamide, methacrylamide, N-isopropylacrylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N, N-diethylacrylamide, and N, N-diethylmethacrylate. Examples include amide, N, N-dimethylaminopropyl acrylamide, N, N-dimethylaminopropyl methacrylamide, N-methylol methacrylamide, N-methylol acrylamide, diacetone acrylamide, maleic acid amide, and acrylamide t-butyl sulfonic acid. . These (meth) acrylamides may be used alone or in combination of two or more.
1.1.1.2.重合性不飽和二重結合を有する酸に由来する繰り返し単位
水溶性重合体(A)は、さらに重合性不飽和二重結合を有する酸(上記(メタ)アクリルアミドに該当するものを除く。)に由来する繰り返し単位を有してもよい。水溶性重合体(A)が重合性不飽和二重結合を有する酸に由来する繰り返し単位を有する場合、水溶性重合体(A)100質量部中に含有される重合性不飽和二重結合を有する酸に由来する繰り返し単位の割合は、0〜30質量部であることが好ましく、5〜25質量部であることがより好ましい。水溶性重合体(A)が重合性不飽和二重結合を有する酸に由来する繰り返し単位を前記範囲で含有することにより、本実施の形態に係る蓄電デバイス電極用スラリーの安定性が向上する。
1.1.1.2. Repeating unit derived from an acid having a polymerizable unsaturated double bond The water-soluble polymer (A) is an acid having a polymerizable unsaturated double bond (excluding those corresponding to the above (meth) acrylamide). It may have repeating units derived from it. When the water-soluble polymer (A) has a repeating unit derived from an acid having a polymerizable unsaturated double bond, the polymerizable unsaturated double bond contained in 100 parts by mass of the water-soluble polymer (A) The ratio of the repeating unit derived from the acid it has is preferably 0 to 30 parts by mass, and more preferably 5 to 25 parts by mass. When the water-soluble polymer (A) contains a repeating unit derived from an acid having a polymerizable unsaturated double bond within the above range, the stability of the slurry for an electricity storage device electrode according to the present embodiment is improved.
重合性不飽和二重結合を有する酸としては、不飽和カルボン酸、不飽和スルホン酸を好適に使用することができる。重合性不飽和二重結合を有する酸の具体例としては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸;ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸等の不飽和スルホン酸を挙げることができ、これらの中から選択される1種以上であることができる。これらの中でも、アクリル酸、メタクリル酸、イタコン酸、ビニルスルホン酸、アリルスルホン酸およびメタリルスルホン酸よりなる群から選択される少なくとも1種であることが好ましい。 As the acid having a polymerizable unsaturated double bond, an unsaturated carboxylic acid or an unsaturated sulfonic acid can be preferably used. Specific examples of the acid having a polymerizable unsaturated double bond include, for example, acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid and other unsaturated carboxylic acids; vinyl sulfonic acid, allyl sulfonic acid, An unsaturated sulfonic acid such as methallylsulfonic acid can be mentioned, and one or more selected from these can be used. Among these, at least one selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, vinyl sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid is preferable.
1.1.1.3.不飽和カルボン酸エステルに由来する繰り返し単位
水溶性重合体(A)は、さらに不飽和カルボン酸エステルに由来する繰り返し単位を有してもよい。水溶性重合体(A)が不飽和カルボン酸エステルに由来する繰り返し単位を有する場合、水溶性重合体(A)100質量部中に含有される不飽和カルボン酸エステルに由来する繰り返し単位の割合は、0〜30質量部であることが好ましく、1〜10質量部であることがより好ましい。不飽和カルボン酸エステルに由来する繰り返し単位を前記範囲で含有することにより、得られる水溶性重合体(A)は、電解液との親和性がより好適なものとなり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制すると共に、電解液を過大に吸収することによる密着性の低下を防ぐことができる。
1.1.1.3. Repeating unit derived from unsaturated carboxylic acid ester The water-soluble polymer (A) may further have a repeating unit derived from an unsaturated carboxylic acid ester. When the water-soluble polymer (A) has a repeating unit derived from an unsaturated carboxylic acid ester, the ratio of the repeating unit derived from the unsaturated carboxylic acid ester contained in 100 parts by mass of the water-soluble polymer (A) is 0-30 parts by mass is preferable, and 1-10 parts by mass is more preferable. By containing the repeating unit derived from the unsaturated carboxylic acid ester in the above range, the obtained water-soluble polymer (A) has a more favorable affinity for the electrolytic solution, and the binder is electrically used in the electricity storage device. While suppressing an increase in internal resistance due to becoming a resistance component, it is possible to prevent a decrease in adhesion due to excessive absorption of the electrolytic solution.
不飽和カルボン酸エステルとしては、(メタ)アクリル酸エステルであることが好ましい。このような(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル等の単官能(メタ)アクリル酸エステル;(メタ)アクリル酸グリシジル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレン等の多官能(メタ)アクリル酸エステル;下記一般式(1)で表される化合物、(メタ)アクリル酸3[4〔1−トリフルオロメチル−2,2−ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2−ヒドロキシプロピル等の含フッ素(メタ)アクリル酸エステルを挙げることができ、これらのうちから選択される1種以上であることができる。 The unsaturated carboxylic acid ester is preferably a (meth) acrylic acid ester. Specific examples of such (meth) acrylic acid esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth ) N-butyl acrylate, i-butyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth ) Monofunctional (meth) acrylate esters such as 2-ethylhexyl acrylate, n-octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate; glycidyl (meth) acrylate, (meth) Hydroxymethyl acrylate, hydroxyethyl (meth) acrylate, ethylene glycol (meth) acrylate, di (meth) Ethylene glycol acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, allyl (meth) acrylate, Polyfunctional (meth) acrylic acid esters such as ethylene di (meth) acrylate; compounds represented by the following general formula (1), (meth) acrylic acid 3 [4 [1-trifluoromethyl-2,2-bis Fluorine-containing (meth) acrylic acid esters such as [bis (trifluoromethyl) fluoromethyl] ethynyloxy] benzooxy] 2-hydroxypropyl can be mentioned, and can be one or more selected from these. .
なお、本発明における「多官能(メタ)アクリル酸エステル」とは、(メタ)アクリル酸エステルが有する1つの重合性の二重結合以外に、さらに他の重合性の二重結合、エポキシ基、ヒドロキシ基よりなる群から選ばれる少なくとも1種の官能基を有することをいう。 In addition, the “polyfunctional (meth) acrylic acid ester” in the present invention means other polymerizable double bond, epoxy group, in addition to one polymerizable double bond possessed by (meth) acrylic acid ester, It means having at least one functional group selected from the group consisting of hydroxy groups.
上記例示した単官能(メタ)アクリル酸エステルの中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ヒドロキシメチルおよび(メタ)アクリル酸ヒドロキシエチルよりなる群から選択される少なくとも1種であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。 Among the monofunctional (meth) acrylates exemplified above, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic It is preferably at least one selected from the group consisting of hydroxymethyl acid and hydroxyethyl (meth) acrylate, and particularly preferably methyl (meth) acrylate.
上記例示した多官能(メタ)アクリル酸エステルの中でも、(メタ)アクリル酸グリシジルおよび(メタ)アクリル酸ヒドロキシエチルよりなる群から選択される少なくとも1種であることが好ましく、(メタ)アクリル酸グリシジルであることが特に好ましい。 Among the polyfunctional (meth) acrylic esters exemplified above, it is preferably at least one selected from the group consisting of glycidyl (meth) acrylate and hydroxyethyl (meth) acrylate, and glycidyl (meth) acrylate It is particularly preferred that
1.1.1.4.α,β−不飽和ニトリル化合物に由来する繰り返し単位
水溶性重合体(A)は、さらにα,β−不飽和ニトリル化合物に由来する繰り返し単位を有してもよい。重合体(A)がα,β−不飽和ニトリル化合物に由来する繰り返し単位を有する場合、水溶性重合体(A)100質量部中に含有されるα,β−不飽和ニトリル化合物に由来する繰り返し単位の割合は、0〜30質量部であることが好ましく、1〜10質量部であることがより好ましい。α,β−不飽和ニトリル化合物に由来する繰り返し単位を前記範囲で含有することにより、水溶性重合体(A)の電解液に対する親和性が良好となるため、電解液吸収能が向上する。すなわち、ニトリル基の存在によって電極中に形成された重合体鎖からなる網目構造に溶媒が均一に拡散し易くなるため、溶媒和したリチウムイオンがこの網目構造をすり抜けて移動し易くなる。これにより、リチウムイオンの拡散性が向上すると考えられ、その結果、電極抵抗が低下してより良好な充放電特性を実現することができると考えられる。
1.1.1.4. Repeating unit derived from α, β-unsaturated nitrile compound The water-soluble polymer (A) may further have a repeating unit derived from the α, β-unsaturated nitrile compound. When the polymer (A) has a repeating unit derived from an α, β-unsaturated nitrile compound, the repeating derived from the α, β-unsaturated nitrile compound contained in 100 parts by mass of the water-soluble polymer (A) The ratio of the unit is preferably 0 to 30 parts by mass, and more preferably 1 to 10 parts by mass. By containing the repeating unit derived from the α, β-unsaturated nitrile compound in the above range, the affinity of the water-soluble polymer (A) for the electrolytic solution is improved, so that the electrolytic solution absorption ability is improved. That is, the presence of the nitrile group makes it easy for the solvent to uniformly diffuse into the network structure formed of polymer chains formed in the electrode, so that the solvated lithium ions can easily move through the network structure. Thereby, it is thought that the diffusibility of lithium ion improves, As a result, electrode resistance falls and it is thought that a more favorable charge / discharge characteristic can be implement | achieved.
α,β−不飽和ニトリル化合物の具体例としては、例えばアクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリル、シアン化ビニリデン等を挙げることができ、これらから選択される1種以上であることができる。これらのうち、アクリロニトリルおよびメタクリロニトリルから選択される1種以上であることが好ましく、特にアクリロニトリルであることが好ましい。 Specific examples of the α, β-unsaturated nitrile compound include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile, vinylidene cyanide and the like. Can be. Among these, at least one selected from acrylonitrile and methacrylonitrile is preferable, and acrylonitrile is particularly preferable.
1.1.1.5.その他の単量体に由来する繰り返し単位
水溶性重合体(A)は、さらに共役ジエン化合物や芳香族ビニル化合物に由来する繰り返し単位を含有してもよい。
1.1.1.5. Repeating unit derived from other monomer The water-soluble polymer (A) may further contain a repeating unit derived from a conjugated diene compound or an aromatic vinyl compound.
共役ジエン化合物としては、例えば1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエンなどを挙げることができ、これらのうちから選択される1種以上であることができる。 Examples of the conjugated diene compound include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene and the like. , One or more selected from these.
芳香族ビニル化合物の具体例としては、例えばスチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼンなどを挙げることができ、これらのうちから選択される1種以上であることができる。 Specific examples of the aromatic vinyl compound include styrene, α-methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene, and the like, and one or more selected from these can be used. be able to.
なお、水溶性重合体(A)は、高電圧に晒される環境中で使用する場合には酸化電位が低いため、共役ジエン化合物に由来する繰り返し単位および芳香族ビニル化合物に由来する繰り返し単位を実質的に含まないことが好ましい。高電圧に晒される環境とは、例えば
リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタなどの正極や正極電極表面とセパレーター間に形成される保護膜などが挙げられる。
In addition, since the water-soluble polymer (A) has a low oxidation potential when used in an environment exposed to a high voltage, the repeating unit derived from the conjugated diene compound and the repeating unit derived from the aromatic vinyl compound are substantially included. It is preferably not included. Examples of the environment exposed to high voltage include positive electrodes such as lithium ion batteries, lithium ion capacitors, and electric double layer capacitors, and protective films formed between the positive electrode surface and the separator.
1.1.1.6.水溶性重合体(A)の特性
1.1.1.6.1.水溶性重合体(A)の分子量
水溶性重合体(A)の重量平均分子量(Mw)は、30万〜600万の範囲内にあることが好ましく、55万〜450万であることがより好ましく、60万〜300万であることが特に好ましい。本実施の形態に係る蓄電デバイス電極用スラリーが、上述の分子量範囲を有する水溶性重合体(A)を含有することにより、良好な充放電特性が発現する理由は必ずしも明確ではない。しかしながら、以下のように推測される。
1.1.1.6. Characteristics of water-soluble polymer (A) 1.1.1.1.6.1. Molecular weight of water-soluble polymer (A) The weight average molecular weight (Mw) of the water-soluble polymer (A) is preferably in the range of 300,000 to 6 million, more preferably 550,000 to 4.5 million. , 600,000 to 3,000,000 is particularly preferable. The reason why the charge / discharge characteristics are manifested when the slurry for an electricity storage device electrode according to the present embodiment contains the water-soluble polymer (A) having the above-described molecular weight range is not necessarily clear. However, it is estimated as follows.
すなわち、重合体の分子量が30万未満の場合には、重合体が電解液に溶出する可能性が高い。そうすると、密着性を低下させるばかりでなく、電解液に溶出した低分子量の重合体成分が充放電の際に電気分解されてしまうなど、充放電特性に悪影響を与える危険性がある。一方、分子量が600万を超える場合には、電解液によってはバインダーが十分に膨潤しない危険性がある。本実施の形態に係る水溶性重合体(A)は、前記範囲のような十分に大きな分子量を有することにより、充放電特性をさらに向上させていると考えられる。 That is, when the molecular weight of the polymer is less than 300,000, there is a high possibility that the polymer will elute into the electrolyte solution. In this case, not only the adhesiveness is lowered, but also there is a risk that the low molecular weight polymer component eluted in the electrolytic solution is adversely affected on the charge / discharge characteristics such as being electrolyzed during the charge / discharge. On the other hand, when the molecular weight exceeds 6 million, there is a risk that the binder does not swell sufficiently depending on the electrolyte. The water-soluble polymer (A) according to the present embodiment is considered to have further improved charge / discharge characteristics by having a sufficiently large molecular weight as described above.
水溶性重合体(A)の重量平均分子量(Mw)/数平均分子量(Mn)、いわゆる分散比は、3〜30であることが好ましく、7〜30であることが好ましく、10〜30であることがより好ましい。一般的に、分散比の値は、分子量分布の広がりを意味すると考えられており、この値が1に近いほど分子量分布が狭いことを示す。本実施の形態に係る蓄電デバイス電極用スラリーが、上述の範囲で特定の広がりを有する水溶性重合体(A)を含有することにより、良好な充放電特性が発現する理由は必ずしも明確ではない。しかしながら、以下のように推測される。 The weight average molecular weight (Mw) / number average molecular weight (Mn) of the water-soluble polymer (A), the so-called dispersion ratio, is preferably 3-30, preferably 7-30, and 10-30. It is more preferable. Generally, the value of the dispersion ratio is considered to mean the spread of the molecular weight distribution, and the closer this value is to 1, the narrower the molecular weight distribution is. The reason why the charge / discharge characteristics are manifested when the slurry for the electricity storage device electrode according to the present embodiment contains the water-soluble polymer (A) having a specific spread in the above range is not necessarily clear. However, it is estimated as follows.
一般的に、分子量分布が狭い、すなわち分子量が揃った重合体の場合には、分子量が大きいと強度が高くなるが、脆くなりやすい傾向があり、分子量が小さいと柔軟になる傾向にあるが、強度が低くなるというトレードオフの関係にある。逆に、分子量分布が広い、すなわち高分子量から低分子量まで幅広く混在している場合には、超高分子量重合体が過剰に含まれるため、溶液としたときに粘度とチキソ性が極端に大きくなる傾向がある。これを本願発明の用途に当てはめてみると、特定の分子量分布を有する重合体を使用することにより、まず分散性・流動性が良好なスラリーを作製することが可能となる。分散性・流動性が良好なスラリーから形成された電極や保護膜は均一で構造欠陥が少ないという特性を有するため出力および耐久性に優れると考えられる。また特定の分子量分布を有することで、柔軟性を保ちながら強度が高い電極を形成することができるため、構造の均一性が崩れにくく、初期の良好な特性を維持することができ耐久性に優れた電極や保護膜となると考えられる。 In general, in the case of a polymer having a narrow molecular weight distribution, i.e., a uniform molecular weight, the strength is increased when the molecular weight is large, but it tends to be brittle, and the polymer tends to be flexible when the molecular weight is small. There is a trade-off relationship that the strength decreases. On the contrary, when the molecular weight distribution is wide, that is, when a wide range from high molecular weight to low molecular weight is mixed, the ultra-high molecular weight polymer is excessively contained, so that the viscosity and thixotropy become extremely large when made into a solution. Tend. When this is applied to the application of the present invention, a slurry having good dispersibility and fluidity can be prepared by using a polymer having a specific molecular weight distribution. An electrode or a protective film formed from a slurry having good dispersibility and fluidity has characteristics that it is uniform and has few structural defects. In addition, by having a specific molecular weight distribution, it is possible to form a high-strength electrode while maintaining flexibility, so that the uniformity of the structure is unlikely to be lost and the initial good characteristics can be maintained, and the durability is excellent. This is considered to be an electrode and a protective film.
なお、水溶性重合体(A)の重量平均分子量(Mw)および数平均分子量(Mn)は、例えば、GPC(ゲルパーミエーションクロマトグラフィー)法による測定値を標準ポリエチレンオキシド換算することにより求めることができる。 In addition, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer (A) can be obtained, for example, by converting a measured value by a GPC (gel permeation chromatography) method into standard polyethylene oxide. it can.
1.1.1.6.2.水溶性重合体(A)の中和度
水溶性重合体(A)が酸基を有する場合には、用途に応じて適宜中和度を調整して使用できる。活物質やフィラーを分散させるときの中和度は特に限定されないが、電極または保護膜などの形成後には0.7〜1.0であることが好ましく、0.85〜1.0であることがより好ましい。電極作製後の中和度を上記範囲とすることで、酸の大半が中和された状態となり、電池内でLiイオンなどと結合して、容量低下を起こすことがなくなるた
め好ましい。中和塩としては、Li塩、Na塩、K塩、アンモニウム塩、Mg塩、Ca塩、Zn塩、Al塩などが挙げられる。
1.1.1.1.2. Degree of neutralization of water-soluble polymer (A) When the water-soluble polymer (A) has an acid group, the degree of neutralization can be appropriately adjusted according to the use. The degree of neutralization when the active material or filler is dispersed is not particularly limited, but is preferably 0.7 to 1.0 and preferably 0.85 to 1.0 after the formation of the electrode or the protective film. Is more preferable. By setting the degree of neutralization after electrode preparation within the above range, most of the acid is in a neutralized state, and it is preferable to combine with Li ions or the like in the battery without causing a decrease in capacity. Examples of the neutralized salt include Li salt, Na salt, K salt, ammonium salt, Mg salt, Ca salt, Zn salt, Al salt and the like.
1.1.1.7.水溶性重合体(A)の製造方法
水溶性重合体(A)の合成方法は特に制限されないが、水を主成分とした溶媒中で行う重合が好ましい。特に好ましい重合形態は水溶液重合である。水溶性重合体(A)の合成時に用いる重合開始剤は、水溶性ラジカル開始剤が好ましく、過硫酸リチウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩や4,4’−アゾビス(4−シアノ吉草酸)等の水溶性アゾ系開始剤が特に好ましい。重合開始剤の使用量は、上述の重量平均分子量(30万〜600万)を有する水溶性重合体(A)を得る観点から、重合させる単量体の全質量100質量部に対して、0.1〜1.0質量部であることが好ましい。
1.1.1.7. Production Method of Water-Soluble Polymer (A) The method for synthesizing the water-soluble polymer (A) is not particularly limited, but polymerization performed in a solvent containing water as a main component is preferable. A particularly preferred polymerization form is aqueous solution polymerization. The polymerization initiator used in the synthesis of the water-soluble polymer (A) is preferably a water-soluble radical initiator, and is a persulfate such as lithium persulfate, potassium persulfate, sodium persulfate, ammonium persulfate or 4,4′-azobis. Water-soluble azo initiators such as (4-cyanovaleric acid) are particularly preferred. From the viewpoint of obtaining a water-soluble polymer (A) having the above-mentioned weight average molecular weight (300,000 to 6,000,000), the amount of the polymerization initiator used is 0 with respect to 100 parts by mass of the total mass of monomers to be polymerized. It is preferable that it is 0.1-1.0 mass part.
水溶性重合体(A)合成時の重合温度は特に制限されないが、製造時間や単量体の共重合体への転化率(反応率)などを考慮に入れると30〜95℃の範囲で合成することが好ましく、50〜85℃が特に好ましい。ただし、目的とする分子量や分子量分布を有する水溶性重合体(A)を得るためには、一旦設定した重合時の設定温度を±3℃以内にコントロールする必要がある。また、重合時には製造安定性を向上する目的でpH調製剤や金属イオン封止剤であるEDTAもしくはその塩などを使用することも可能である。 The polymerization temperature during the synthesis of the water-soluble polymer (A) is not particularly limited, but the synthesis is carried out in the range of 30 to 95 ° C. in consideration of the production time and the conversion rate (reaction rate) of the monomer to the copolymer. It is preferable to carry out, and 50-85 degreeC is especially preferable. However, in order to obtain a water-soluble polymer (A) having a target molecular weight or molecular weight distribution, it is necessary to control the set temperature during polymerization once within ± 3 ° C. Further, at the time of polymerization, it is possible to use a pH adjusting agent, EDTA which is a metal ion sealing agent or a salt thereof for the purpose of improving production stability.
また、重合前もしくは重合体を水溶化する際に、アンモニアや有機アミン、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等の一般的な中和剤でpH調整を行ってもよく、その場合にはpHを5〜11の範囲に調整することが好ましい。金属イオン封止剤であるEDTAもしくはその塩などを使用することも可能である。 In addition, pH may be adjusted with a general neutralizing agent such as ammonia, organic amine, potassium hydroxide, sodium hydroxide, lithium hydroxide before the polymerization or when water-solubilizing the polymer. It is preferable to adjust the pH to the range of 5-11. It is also possible to use EDTA which is a metal ion sealing agent or a salt thereof.
特に水溶性重合体(A)の分子量や分子量分布を制御するためには、開始剤の種類やその量、重合中の温度管理、単量体全量添加までの時間、単量体の全量添加後の温度管理や温度保持時間が重要である。例えば、特開2012−151108号公報に記載されている重合体は、単量体100質量部に対して2質量部程度の開始剤(過硫酸アンモニウム)を使用している。一般的に、単量体の量に対して開始剤の量が多くなると、分子量は低下するが、このような合成方法では上述の重量平均分子量には到達できないと考えられる。また、水溶性重合体(A)は、水を主成分とした溶媒中でラジカル重合により得られるため、目的とする分子量の重合体を合成するためには、厳密に温度管理や反応時間を管理する必要がある。このような時間や温度の管理は、使用する単量体の種類により適時調整する必要がある。たとえば、全繰り返し単位100質量部に対して(メタ)アクリルアミドに由来する繰り返し単位を40〜100質量部含有する水溶性重合体(A)の分子量や分子量分布をコントロールする場合、重合中の温度管理は設定温度に対して±3℃程度で行う必要があり、また単量体全量添加までの時間は設定時間に対して±5分程度で行う必要があり、単量体の全量添加後の温度管理は±3℃程度で行う必要があり、単量体の全量添加後の温度保持時間に厳密に制御しなければならない。 In particular, in order to control the molecular weight and molecular weight distribution of the water-soluble polymer (A), the type and amount of the initiator, the temperature control during the polymerization, the time until the total amount of monomer is added, after the total amount of monomer is added Temperature management and temperature holding time are important. For example, the polymer described in JP2012-151108A uses about 2 parts by mass of an initiator (ammonium persulfate) with respect to 100 parts by mass of the monomer. Generally, when the amount of the initiator increases with respect to the amount of the monomer, the molecular weight decreases, but it is considered that the above-described weight average molecular weight cannot be reached by such a synthesis method. In addition, since the water-soluble polymer (A) is obtained by radical polymerization in a solvent containing water as a main component, temperature control and reaction time are strictly controlled in order to synthesize a polymer having a desired molecular weight. There is a need to. Such time and temperature management needs to be adjusted in a timely manner according to the type of monomer used. For example, when controlling the molecular weight and molecular weight distribution of a water-soluble polymer (A) containing 40 to 100 parts by mass of repeating units derived from (meth) acrylamide with respect to 100 parts by mass of all repeating units, temperature control during polymerization It is necessary to carry out at about ± 3 ° C. with respect to the set temperature, and the time until addition of the whole amount of monomer needs to be carried out within about ± 5 minutes with respect to the set time. The control must be performed at about ± 3 ° C., and must be strictly controlled to the temperature holding time after addition of the entire amount of monomer.
1.1.2.活物質
本実施の形態に係る蓄電デバイス電極用スラリーに含まれる活物質を構成する材料としては特に制限はなく、目的とする蓄電デバイスの種類により適宜適当な材料を選択することができる。活物質としては、例えば炭素材料、ケイ素材料、リチウム原子を含む酸化物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、アルミニウム化合物等を挙げることができる。
1.1.2. Active material There is no restriction | limiting in particular as a material which comprises the active material contained in the slurry for electrical storage device electrodes which concerns on this Embodiment, According to the kind of target electrical storage device, a suitable material can be selected suitably. Examples of the active material include carbon materials, silicon materials, oxides containing lithium atoms, lead compounds, tin compounds, arsenic compounds, antimony compounds, aluminum compounds, and the like.
上記炭素材料としては、例えばアモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などが挙げられる。 Examples of the carbon material include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers.
上記ケイ素材料としては、例えばケイ素単体、ケイ素酸化物、ケイ素合金などを挙げることができるほか、例えばSiC、SiOxCy(0<x≦3、0<y≦5)、Si3N4、Si2N2O、SiOx(0<x≦2)で表記されるSi酸化物複合体(例えば特開2004−185810号公報や特開2005−259697号公報に記載されている材料など)、特開2004−185810号公報に記載されたケイ素材料を使用することができる。上記ケイ素酸化物としては、組成式SiOx(0<x<2、好ましくは0.1≦x≦1)で表されるケイ素酸化物が好ましい。上記ケイ素合金としては、ケイ素と、チタン、ジルコニウム、ニッケル、銅、鉄およびモリブデンよりなる群から選ばれる少なくとも1種の遷移金属との合金が好ましい。これらの遷移金属のケイ素合金は、高い電子伝導度を有し、かつ高い強度を有することから好ましく用いられる。また、活物質がこれらの遷移金属を含むことにより、活物質の表面に存在する遷移金属が酸化されて表面に水酸基を有する酸化物となるから、バインダーとの結着力がより良好になる点でも好ましい。ケイ素合金としては、ケイ素−ニッケル合金またはケイ素−チタン合金を使用することがより好ましく、ケイ素−チタン合金を使用することが特に好ましい。ケイ素合金におけるケイ素の含有割合は、該合金中の金属元素の全部に対して10モル%以上とすることが好ましく、20〜70モル%とすることがより好ましい。なお、ケイ素材料は、単結晶、多結晶および非晶質のいずれであってもよい。 Examples of the silicon material include silicon simple substance, silicon oxide, and silicon alloy. For example, SiC, SiO x C y (0 <x ≦ 3, 0 <y ≦ 5), Si 3 N 4 , Si oxide complex represented by Si 2 N 2 O, SiO x (0 <x ≦ 2) (for example, materials described in JP-A Nos. 2004-185810 and 2005-259697), A silicon material described in JP-A No. 2004-185810 can be used. The silicon oxide is preferably a silicon oxide represented by the composition formula SiO x (0 <x <2, preferably 0.1 ≦ x ≦ 1). The silicon alloy is preferably an alloy of silicon and at least one transition metal selected from the group consisting of titanium, zirconium, nickel, copper, iron and molybdenum. These transition metal silicon alloys are preferably used because they have high electronic conductivity and high strength. Moreover, since the transition metal existing on the surface of the active material is oxidized and becomes an oxide having a hydroxyl group on the surface when the active material contains these transition metals, the binding force with the binder is also improved. preferable. As the silicon alloy, it is more preferable to use a silicon-nickel alloy or a silicon-titanium alloy, and it is particularly preferable to use a silicon-titanium alloy. The silicon content in the silicon alloy is preferably 10 mol% or more, and more preferably 20 to 70 mol%, based on all the metal elements in the alloy. Note that the silicon material may be single crystal, polycrystalline, or amorphous.
また、活物質としてケイ素材料を用いる場合には、ケイ素材料以外の活物質を併用してもよい。このような活物質としては、例えば上記の炭素材料;ポリアセン等の導電性高分子;AXBYOZ(但し、Aはアルカリ金属または遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、YおよびZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が例示される。これらの中でも、リチウムの吸蔵および放出に伴う体積変化が小さいことから、炭素材料を併用することが好ましい。 Moreover, when using a silicon material as an active material, you may use together active materials other than a silicon material. Examples of such active materials include the above carbon materials; conductive polymers such as polyacene; A X B Y O Z (where A is an alkali metal or transition metal, B is cobalt, nickel, aluminum, tin, manganese) At least one selected from transition metals such as O represents an oxygen atom, and X, Y and Z are 1.10>X> 0.05, 4.00>Y> 0.85, 5.00>, respectively. Z> 1.5 is a number in the range.) And other metal oxides. Among these, it is preferable to use a carbon material in combination because the volume change associated with insertion and extraction of lithium is small.
上記リチウム原子を含む酸化物としては、例えばコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、三元系ニッケルコバルトマンガン酸リチウム、LiFePO4、LiCoPO4、LiMnPO4、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30PO4などが挙げられる。 Examples of the oxide containing a lithium atom include lithium cobaltate, lithium nickelate, lithium manganate, ternary nickel cobalt lithium manganate, LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 0.90 Ti 0.05 Nb. 0.05 Fe 0.30 Co 0.30 Mn 0.30 PO 4 and the like.
活物質の形状としては、粒状であることが好ましい。活物質の平均粒子径としては、0.1〜100μmであることが好ましく、0.5〜20μmであることがより好ましい。 The shape of the active material is preferably granular. The average particle size of the active material is preferably 0.1 to 100 μm, and more preferably 0.5 to 20 μm.
活物質の使用割合は、活物質100質量部に対して前記水溶性重合体(A)の含有割合が、1〜10質量部となるような割合で使用する必要があり、1〜5質量部となるような割合で使用することが好ましく、1〜3質量部となるような割合で使用することがより好ましい。このような含有割合とすることにより、密着性により優れ、しかも電極抵抗が小さく充放電特性により優れた電極を製造することができる。水溶性重合体(A)の含有割合が前記範囲未満であると、バインダーとしての機能が不十分となるため、活物質層にクラックが発生しやすくなり、充放電耐久特性に優れない電極となり易い。一方、水溶性重合体(A)の含有割合が前記範囲を超えると、スラリーを塗布する際、レベリング性が不足するため、塗膜の厚みの均一性が損なわれる場合がある。厚みが不均一な電極を使用すると、充放電反応の面内分布が発生するため、安定した電池性能の発現が困難となる。 The use ratio of the active material needs to be used in such a ratio that the content of the water-soluble polymer (A) is 1 to 10 parts by mass with respect to 100 parts by mass of the active material. It is preferable to use in such a ratio that it becomes, and it is more preferable to use it in a ratio that becomes 1 to 3 parts by mass. By setting it as such a content rate, it is excellent in adhesiveness, and also the electrode with small electrode resistance and the charge / discharge characteristic can be manufactured. When the content of the water-soluble polymer (A) is less than the above range, the function as a binder becomes insufficient, so that the active material layer is likely to crack, and the electrode is not excellent in charge / discharge durability characteristics. . On the other hand, when the content ratio of the water-soluble polymer (A) exceeds the above range, the leveling property is insufficient when applying the slurry, so that the uniformity of the thickness of the coating film may be impaired. When an electrode having a non-uniform thickness is used, an in-plane distribution of charge / discharge reaction occurs, making it difficult to achieve stable battery performance.
1.1.3.液状媒体
本実施の形態に係る蓄電デバイス電極用スラリーは、液状媒体を含有する。液状媒体としては、水を含有する水系媒体であることが好ましい。この水系媒体には、その塗布性を
改善する観点から、80〜350℃の標準沸点を有する非水系媒体を含有することができる。このような非水系媒体の具体例としては、例えば、N−メチルピロリドン、ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド化合物;トルエン、キシレン、n−ドデカン、テトラリンなどの炭化水素;2−エチル−1−ヘキサノール、1−ノナノール、ラウリルアルコールなどのアルコール;メチルエチルケトン、シクロヘキサノン、ホロン、アセトフェノン、イソホロンなどのケトン;酢酸ベンジル、酪酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル;o−トルイジン、m−トルイジン、p−トルイジンなどのアミン化合物;γ−ブチロラクトン、δ−ブチロラクトンなどのラクトン;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。これらの中でも、蓄電デバイス電極用スラリーを塗布する際の作業性などの点から、N−メチルピロリドンを使用することが好ましい。液状媒体が水系媒体である場合、液状媒体の全量100質量%中、90質量%以上が水であることが好ましく、98質量%以上が水であることがより好ましい。本実施の形態に係る蓄電デバイス用スラリーは、液状媒体として水系媒体を使用することにより、環境に対して悪影響を及ぼす程度が低くなり、取扱作業者に対する安全性も高くなる。
1.1.3. Liquid medium The slurry for an electricity storage device electrode according to the present embodiment contains a liquid medium. The liquid medium is preferably an aqueous medium containing water. The aqueous medium can contain a non-aqueous medium having a standard boiling point of 80 to 350 ° C. from the viewpoint of improving the coating property. Specific examples of such a non-aqueous medium include, for example, amide compounds such as N-methylpyrrolidone, dimethylformamide, and N, N-dimethylacetamide; hydrocarbons such as toluene, xylene, n-dodecane, and tetralin; 2-ethyl Alcohols such as -1-hexanol, 1-nonanol, and lauryl alcohol; ketones such as methyl ethyl ketone, cyclohexanone, phorone, acetophenone, and isophorone; esters such as benzyl acetate, isopentyl butyrate, methyl lactate, ethyl lactate, and butyl lactate; o-toluidine, Examples include amine compounds such as m-toluidine and p-toluidine; lactones such as γ-butyrolactone and δ-butyrolactone; sulfoxide and sulfone compounds such as dimethyl sulfoxide and sulfolane, and the like. One or more selected from the above can be used. Among these, it is preferable to use N-methylpyrrolidone from the viewpoint of workability when applying the slurry for the electricity storage device electrode. When the liquid medium is an aqueous medium, 90% by mass or more is preferably water and more preferably 98% by mass or more is water in the total amount of 100% by mass of the liquid medium. The slurry for an electricity storage device according to the present embodiment uses an aqueous medium as a liquid medium, thereby reducing the degree of adverse effects on the environment and increasing the safety for handling workers.
水系媒体中に含まれる非水系媒体の含有割合は、水系媒体100質量%中、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、実質的に含有しないことが特に好ましい。ここで、「実質的に含有しない」とは、液状媒体として非水系媒体を意図的に添加しないという程度の意味であり、蓄電デバイス電極用スラリーを調製する際に不可避的に混入する非水系媒体を含んでもよい。 The content ratio of the non-aqueous medium contained in the aqueous medium is preferably 10% by mass or less, more preferably 5% by mass or less, particularly not substantially contained in 100% by mass of the aqueous medium. preferable. Here, “substantially does not contain” means that a non-aqueous medium is not intentionally added as a liquid medium, and is inevitably mixed when preparing a slurry for an electricity storage device electrode. May be included.
1.1.4.その他の添加剤
本実施の形態に係る蓄電デバイス電極用スラリーには、必要に応じて導電助剤、増粘剤、pH調整剤、腐食防止剤等を添加することができる。
1.1.4. Other Additives A conductive additive, a thickener, a pH adjuster, a corrosion inhibitor, and the like can be added to the electricity storage device electrode slurry according to the present embodiment as necessary.
1.1.4.1.導電助剤
導電助剤の具体例としては、リチウムイオン二次電池においてはカーボンなどが;ニッケル水素二次電池においては、正極では酸化コバルトが:負極ではニッケル粉末、酸化コバルト、酸化チタン、カーボンなどが、それぞれ用いられる。上記両電池において、カーボンとしては、グラファイト、活性炭、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレンなどを挙げることができる。これらの中でも、アセチレンブラックまたはファーネスブラックを好ましく使用することができる。導電助剤の使用割合は、活物質100質量部に対して、好ましくは20質量部以下であり、より好ましくは1〜15質量部であり、特に好ましくは2〜10質量部である。
1.1.4.1. Conductive aids Specific examples of conductive aids include carbon in lithium ion secondary batteries; in nickel metal hydride secondary batteries, cobalt oxide at the positive electrode: nickel powder, cobalt oxide, titanium oxide, carbon at the negative electrode, etc. Are used respectively. In both the batteries, examples of carbon include graphite, activated carbon, acetylene black, furnace black, graphite, carbon fiber, and fullerene. Among these, acetylene black or furnace black can be preferably used. The use ratio of the conductive assistant is preferably 20 parts by mass or less, more preferably 1 to 15 parts by mass, and particularly preferably 2 to 10 parts by mass with respect to 100 parts by mass of the active material.
1.1.4.2.増粘剤
本実施の形態に係る蓄電デバイス電極用スラリーは、その流動性や安定性を調整する観点から、増粘剤を含有することができる。このような増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース化合物;上記セルロース化合物のアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸、変性ポリ(メタ)アクリル酸などのポリカルボン酸;上記ポリカルボン酸のアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン−ビニルアルコール共重合体などのポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸およびフマル酸などの不飽和カルボン酸とビニルエステルとの共重合体の鹸化物などの水溶性ポリマーなどを挙げることができる。これらの中でも特に好ましい増粘剤としては、カルボキシメチルセルロースのアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩などである。
1.1.4.2. Thickener The slurry for an electricity storage device electrode according to the present embodiment can contain a thickener from the viewpoint of adjusting its fluidity and stability. Examples of such thickeners include cellulose compounds such as carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose; ammonium salts or alkali metal salts of the above cellulose compounds; poly (meth) acrylic acid, modified poly (meth) acrylic acid, and the like. Polycarboxylic acids of the above; alkali metal salts of the above polycarboxylic acids; polyvinyl alcohol (co) polymers such as polyvinyl alcohol, modified polyvinyl alcohol, ethylene-vinyl alcohol copolymers; (meth) acrylic acid, maleic acid and fumaric acid And water-soluble polymers such as saponified products of copolymers of unsaturated carboxylic acids and vinyl esters. Among these, particularly preferred thickeners include alkali metal salts of carboxymethyl cellulose and alkali metal salts of poly (meth) acrylic acid.
なお、カルボキシメチルセルロースおよびその塩は、高電圧に晒される環境中で使用する場合は、酸化電位が低いため含まない方が好ましい。カルボキシメチルセルロースおよびその塩を添加することにより、電極の柔軟性を低下させて捲回性が損なわれたり、活物質層の密着性が不十分となる場合がある。高電圧に晒される環境とは、例えばリチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタなどの正極や正極電極表面とセパレーター間に形成される保護膜などがあげられる。 In addition, when using in the environment exposed to a high voltage, it is preferable not to contain carboxymethylcellulose and its salt since oxidation potential is low. By adding carboxymethyl cellulose and its salt, the flexibility of the electrode may be reduced, and the winding property may be impaired, or the adhesion of the active material layer may be insufficient. Examples of the environment exposed to high voltage include positive electrodes such as lithium ion batteries, lithium ion capacitors, and electric double layer capacitors, and protective films formed between the positive electrode surface and the separator.
本実施の形態に係る蓄電デバイス電極用スラリーが増粘剤を含有する場合、増粘剤の使用割合としては、蓄電デバイス電極用スラリーの全固形分量に対して、好ましくは20質量%以下であり、より好ましくは0.1〜15質量%であり、特に好ましくは0.5〜10質量%である。 When the electricity storage device electrode slurry according to the present embodiment contains a thickener, the use ratio of the thickener is preferably 20% by mass or less with respect to the total solid content of the electricity storage device electrode slurry. More preferably, it is 0.1-15 mass%, Most preferably, it is 0.5-10 mass%.
1.1.4.3.pH調整剤、腐食防止剤
本実施の形態に係る蓄電デバイス電極用スラリーは、活物質の種類に応じて塗布する集電体の腐食を抑制することを目的として、pH調整剤または腐食防止剤を含有することができる。
1.1.4.3. pH adjusting agent, corrosion inhibitor The slurry for an electricity storage device electrode according to the present embodiment contains a pH adjusting agent or a corrosion inhibitor for the purpose of suppressing the corrosion of the current collector applied according to the type of the active material. Can be contained.
pH調整剤としては、例えば、塩酸、リン酸、硫酸、酢酸、ギ酸、リン酸アンモニウム、硫酸アンモニウム、酢酸アンモニウム、ギ酸アンモニウム、塩化アンモニウムなどを挙げることでき、硫酸および硫酸アンモニウムが好ましい。 Examples of the pH adjuster include hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, formic acid, ammonium phosphate, ammonium sulfate, ammonium acetate, ammonium formate, and ammonium chloride, and sulfuric acid and ammonium sulfate are preferable.
腐食防止剤としては、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、メタタングステン酸アンモニウム、メタタングステン酸ナトリウム、メタタングステン酸カリウム、パラタングステン酸アンモニウム、パラタングステン酸ナトリウム、パラタングステン酸カリウム、モリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウムなどが挙げられ、パラタングステン酸アンモニウム、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、モリブデン酸アンモニウムが好ましい。 Corrosion inhibitors include ammonium metavanadate, sodium metavanadate, potassium metavanadate, ammonium metatungstate, sodium metatungstate, potassium metatungstate, ammonium paratungstate, sodium paratungstate, potassium paratungstate, and molybdic acid. Ammonium, sodium molybdate, potassium molybdate and the like can be mentioned, and ammonium paratungstate, ammonium metavanadate, sodium metavanadate, potassium metavanadate and ammonium molybdate are preferable.
1.1.5.蓄電デバイス電極用スラリーの製造方法
本実施の形態に係る蓄電デバイス電極用スラリーは、水溶性重合体(A)(もしくは水溶性重合体(A)を含む水溶液)と、活物質と、水と、必要に応じて用いられる添加剤と、を混合することにより製造することができる。これらの混合は公知の手法による攪拌によって行うことができ、例えば攪拌機、脱泡機、ビーズミル、高圧ホモジナイザーなどを利用することができる。
1.1.5. Method for producing power storage device electrode slurry The power storage device electrode slurry according to the present embodiment includes a water-soluble polymer (A) (or an aqueous solution containing the water-soluble polymer (A)), an active material, water, It can manufacture by mixing the additive used as needed. These mixing can be performed by stirring by a known method, and for example, a stirrer, a defoamer, a bead mill, a high-pressure homogenizer, or the like can be used.
本実施の形態に係る蓄電デバイス電極用スラリーを製造するための混合撹拌としては、スラリー中に活物質の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。 As the mixing and stirring for producing the slurry for the electricity storage device electrode according to the present embodiment, a mixer capable of stirring to such an extent that no agglomerates of the active material remain in the slurry, and a sufficient dispersion condition as necessary. Must be selected. The degree of dispersion can be measured by a particle gauge, but it is preferable to mix and disperse so that aggregates larger than at least 100 μm are eliminated. Examples of the mixer that meets such conditions include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer.
1.2.保護膜用スラリー
保護膜用スラリーとは、これを電極またはセパレーターの表面もしくはその両方に塗布した後、乾燥させて、電極またはセパレーターの表面もしくはその両方に保護膜を形成するために用いられる分散液のことをいう。本実施の形態に係る保護膜用スラリーは、フィラー100質量部に対して、(メタ)アクリルアミドに由来する繰り返し単位を有する水溶性重合体(A)を1〜10質量部含有することを特徴とする。なお、本実施の形態に係
る保護膜用スラリーは、上述した蓄電デバイス電極用スラリーにおいて活物質の代わりにフィラーを添加した点で主に相違する。よって、上述した蓄電デバイス電極用スラリーとの相違点について以下に説明する。
1.2. Protective film slurry Protective film slurry is a dispersion used to form a protective film on the surface of an electrode or separator or both by applying it to the surface of the electrode or separator or both. I mean. The slurry for a protective film according to the present embodiment contains 1 to 10 parts by mass of the water-soluble polymer (A) having a repeating unit derived from (meth) acrylamide with respect to 100 parts by mass of the filler. To do. The protective film slurry according to the present embodiment is mainly different in that a filler is added instead of the active material in the above-described slurry for an electricity storage device electrode. Therefore, a difference from the above-described slurry for an electricity storage device electrode will be described below.
1.2.1.フィラー
本実施の形態に係る保護膜用スラリーは、フィラーを含有することにより、形成される保護膜のタフネスを向上させることができる。フィラーとしては、シリカ、酸化チタン(チタニア)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化マグネシウム(マグネシア)等を用いることができる。これらの中でも、保護膜のタフネスをより向上させる観点から、酸化チタン、酸化アルミニウムが好ましい。また、酸化チタンとしてはルチル型の酸化チタンがより好ましい。
1.2.1. Filler The slurry for a protective film according to the present embodiment can improve the toughness of the formed protective film by containing a filler. As the filler, silica, titanium oxide (titania), aluminum oxide (alumina), zirconium oxide (zirconia), magnesium oxide (magnesia), or the like can be used. Among these, titanium oxide and aluminum oxide are preferable from the viewpoint of further improving the toughness of the protective film. Further, as the titanium oxide, rutile type titanium oxide is more preferable.
フィラーの平均粒子径は、1μm以下であることが好ましく、0.1〜0.8μmの範囲内であることがより好ましい。なお、フィラーの平均粒子径は、多孔質膜であるセパレーターの平均孔径よりも大きいことが好ましい。これにより、セパレーターへのダメージを軽減し、フィラーがセパレーターの微多孔に詰まることを防ぐことができる。 The average particle size of the filler is preferably 1 μm or less, and more preferably in the range of 0.1 to 0.8 μm. In addition, it is preferable that the average particle diameter of a filler is larger than the average hole diameter of the separator which is a porous film. Thereby, the damage to a separator can be reduced and a filler can be prevented from being clogged with the micropore of a separator.
本実施の形態に係る保護膜用スラリーは、フィラー100質量部に対して、水溶性重合体(A)が1〜10質量部含有されている必要がある。水溶性重合体(A)の含有割合が1〜10質量部であることにより、形成される保護膜のタフネスとリチウムイオンの透過性とのバランスが良好となり、その結果、得られる蓄電デバイスの抵抗上昇率をより低くすることができる。 The slurry for protective film which concerns on this Embodiment needs to contain 1-10 mass parts of water-soluble polymers (A) with respect to 100 mass parts of fillers. When the content ratio of the water-soluble polymer (A) is 1 to 10 parts by mass, the balance between the toughness of the protective film to be formed and the lithium ion permeability is improved, and as a result, the resistance of the obtained electricity storage device The rate of increase can be made lower.
1.2.2.その他の添加剤
本実施の形態に係る保護膜用スラリーは、必要に応じて、前述の蓄電デバイス電極用スラリー「1.1.4.その他の添加剤」に記載されている材料、添加量を必要に応じて用いることができる。
1.2.2. Other Additives The slurry for the protective film according to the present embodiment may contain the materials and addition amounts described in the above-mentioned slurry “1.1.4. Other Additives” for the electricity storage device electrode as necessary. It can be used as needed.
1.2.3.保護膜用スラリーの製造方法
本実施の形態に係る保護膜用スラリーは、水溶性重合体(A)(もしくは水溶性重合体(A)を含む水溶液)と、フィラーと、必要に応じて用いられる添加剤と、を混合することにより調製される。これらを混合するための手段としては、例えばボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサー等の公知の混合装置を利用することができる。
1.2.3. Method for Producing Slurry for Protective Film A slurry for protective film according to the present embodiment is used as necessary, with a water-soluble polymer (A) (or an aqueous solution containing a water-soluble polymer (A)), a filler, and the like. It is prepared by mixing the additive. As a means for mixing them, for example, a known mixing device such as a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer can be used.
本実施の形態に係る保護膜用スラリーを製造するための混合撹拌は、スラリー中にフィラーの凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。 For mixing and stirring for producing the protective film slurry according to the present embodiment, it is necessary to select a mixer that can stir to such an extent that filler aggregates do not remain in the slurry and, if necessary, sufficient dispersion conditions. There is. The degree of dispersion can be measured by a particle gauge, but it is preferable to mix and disperse so that aggregates larger than at least 100 μm are eliminated. Examples of the mixer that meets such conditions include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer.
1.3.スラリー特性
本実施の形態に係る蓄電デバイス用スラリーは、その曳糸性が30〜80%であることが好ましく、33〜79%であることがより好ましく、35〜78%であることが特に好ましい。曳糸性が前記範囲未満であると、スラリーを塗布する際、レベリング性が不足するため、塗膜の厚みの均一性が損なわれる場合がある。厚みが不均一な電極や保護膜を使用すると、充放電反応の面内分布が発生するため、安定した電池性能の発現が困難となる。一方、曳糸性が前記範囲を超えると、スラリーを塗布する際、液ダレが起き易くなり、
安定した品質の電極や保護膜が得られにくい。そこで、曳糸性が前記範囲にあれば、これらの問題の発生を抑制することができ、良好な電気的特性と密着性とを両立させた蓄電デバイスを製造することが容易となるのである。
1.3. Slurry characteristics The slurry for an electricity storage device according to the present embodiment preferably has a spinnability of 30 to 80%, more preferably 33 to 79%, and particularly preferably 35 to 78%. . When the spinnability is less than the above range, the leveling property is insufficient when applying the slurry, and thus the uniformity of the thickness of the coating film may be impaired. If an electrode or a protective film having a non-uniform thickness is used, an in-plane distribution of charge / discharge reaction occurs, making it difficult to achieve stable battery performance. On the other hand, if the spinnability exceeds the above range, dripping easily occurs when applying the slurry,
It is difficult to obtain stable quality electrodes and protective films. Therefore, if the spinnability is within the above range, the occurrence of these problems can be suppressed, and it becomes easy to manufacture an electricity storage device having both good electrical characteristics and adhesion.
本明細書における「曳糸性」とは、以下のようにして測定される物性である。まず、底部に直径5.2mmの開口部を有するザーンカップ(太佑機材株式会社製、ザーンビスコシティーカップNo.5)を準備する。この開口部を閉じた状態で、ザーンカップにスラリー40gを流し込む。その後、開口部を開放すると、開口部からスラリーが流れ出す。ここで、開口部を開放した時をT0、スラリーの曳糸が終了した時をTA、スラリーの流出が終了した時をTBとした場合に、下記式(3)から求めることができる。
曳糸性(%)=((TA−T0)/(TB−T0))×100 ・・・・・(3)
The “threadability” in the present specification is a physical property measured as follows. First, a Zaan cup (made by Dazai Equipment Co., Ltd., Zaan Bisco City Cup No. 5) having an opening with a diameter of 5.2 mm at the bottom is prepared. With this opening closed, 40 g of slurry is poured into the Zahn cup. Thereafter, when the opening is opened, the slurry flows out from the opening. Here, it is possible to obtain T 0 when opening the opening, the T A when the slurry of the thread is finished, when the outflow of the slurry is completed when the T B, the following equation (3) .
Spinnability (%) = ((T A −T 0 ) / (T B −T 0 )) × 100 (3)
2.蓄電デバイス電極
本実施の形態に係る蓄電デバイス電極は、集電体と、前記集電体の表面上に前述の蓄電デバイス電極用スラリーが塗布および乾燥されて形成された層と、を備えるものである。かかる蓄電デバイス電極は、金属箔などの適宜の集電体の表面に、前述の蓄電デバイス電極用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥して活物質層を形成することにより製造することができる。このようにして製造された蓄電デバイス電極は、集電体上に、前述の水溶性重合体(A)、活物質、さらに必要に応じて添加した任意成分を含有する活物質層が結着されてなるものである。かかる蓄電デバイス電極は、集電体と活物質層との密着性に優れるため、電気的特性の一つである充放電レート特性が良好となる。
2. The electricity storage device electrode according to the present embodiment includes a current collector and a layer formed by applying and drying the above-mentioned slurry for an electricity storage device electrode on the surface of the current collector. is there. Such an electricity storage device electrode is formed by applying the aforementioned slurry for an electricity storage device electrode on the surface of an appropriate current collector such as a metal foil to form a coating film, and then drying the coating film to form an active material layer. Can be manufactured. In the electricity storage device electrode thus manufactured, an active material layer containing the water-soluble polymer (A), the active material, and an optional component added as necessary is bound on the current collector. It will be. Such an electricity storage device electrode has excellent adhesion between the current collector and the active material layer, and therefore has good charge / discharge rate characteristics, which is one of the electrical characteristics.
集電体は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池においては、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製の集電体が使用されるが、特に正極にアルミニウムを、負極に銅を用いた場合、前述の蓄電デバイス電極用スラリーの効果が最もよく現れる。ニッケル水素二次電池における集電体としては、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などが使用される。集電体の形状および厚さは特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものとすることが好ましい。 The current collector is not particularly limited as long as it is made of a conductive material. In a lithium ion secondary battery, a current collector made of metal such as iron, copper, aluminum, nickel, and stainless steel is used. In particular, when aluminum is used for the positive electrode and copper is used for the negative electrode, the above-mentioned storage device electrode The effect of the slurry is most apparent. As the current collector in the nickel metal hydride secondary battery, a punching metal, an expanded metal, a wire mesh, a foam metal, a mesh metal fiber sintered body, a metal plated resin plate, or the like is used. The shape and thickness of the current collector are not particularly limited, but it is preferable that the current collector has a sheet shape with a thickness of about 0.001 to 0.5 mm.
蓄電デバイス電極用スラリーの集電体への塗布方法についても特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。蓄電デバイス電極用スラリーの塗布量も特に制限されないが、液状媒体(水および任意的に使用される非水系媒体の双方を包含する概念である)を除去した後に形成される活物質層の厚さが、0.005〜5mmとなる量とすることが好ましく、0.01〜2mmとなる量とすることがより好ましい。活物質層の厚さが上記範囲内にあることによって、活物質層に効果的に電解液を染み込ませることができる。その結果、活物質層中の活物質と電解液との充放電に伴う金属イオンの授受が容易に行われるため、電極抵抗をより低下させることができるため好ましい。また、活物質層の厚さが上記範囲内にあることで、電極を折り畳んだり、捲回するなどして成形加工する場合においても、活物質層が集電体から剥離することなく密着性が良好で、柔軟性に富む蓄電デバイス電極が得られる点で好ましい。 There is no particular limitation on the method for applying the slurry for the electricity storage device electrode to the current collector. The coating can be performed by an appropriate method such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, or a brush coating method. The coating amount of the power storage device electrode slurry is not particularly limited, but the thickness of the active material layer formed after removing the liquid medium (which is a concept including both water and a non-aqueous medium that is optionally used). However, it is preferable to set it as the quantity used as 0.005-5 mm, and it is more preferable to set it as the quantity used as 0.01-2 mm. When the thickness of the active material layer is within the above range, the active material layer can be effectively infiltrated with the electrolytic solution. As a result, it is preferable because the metal ions can be easily transferred between the active material and the electrolytic solution in the active material layer, so that the electrode resistance can be further reduced. In addition, since the thickness of the active material layer is within the above range, even when the electrode is folded or wound, the active material layer is not peeled off from the current collector. It is preferable at the point from which the electrical storage device electrode which is favorable and is rich in flexibility is obtained.
塗布後の塗膜からの乾燥方法(水および任意的に使用される非水系媒体の除去方法)についても特に制限されず、例えば温風、熱風、低湿風による乾燥;真空乾燥;(遠)赤外線、電子線などの照射による乾燥などによることができる。乾燥速度としては、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ速く液状媒体が除去できるように適宜に設定することができる。 There is no particular limitation on the drying method from the coated film after coating (method for removing water and optionally used non-aqueous medium); for example, drying with warm air, hot air, low humidity air; vacuum drying; (far) infrared , Drying by irradiation with an electron beam or the like. The drying speed is appropriately set so that the liquid medium can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not peel from the current collector. be able to.
さらに、乾燥後の集電体をプレスすることにより、活物質層の密度を高め、空孔率を以下に示す範囲に調整することが好ましい。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。プレスの条件は、使用するプレス機器の種類および活物質層の空孔率および密度の所望値によって適宜に設定されるべきである。この条件は、当業者による少しの予備実験により、容易に設定することができるが、例えばロールプレスの場合、ロールプレス機の線圧力は0.1〜10(t/cm)、好ましくは0.5〜5(t/cm)の圧力において、例えばロール温度が20〜100℃において、乾燥後の集電体の送り速度(ロールの回転速度)が1〜80m/min、好ましくは5〜50m/minで行うことができる。 Furthermore, it is preferable to increase the density of the active material layer by pressing the dried current collector and to adjust the porosity to the range shown below. Examples of the pressing method include a die press and a roll press. The press conditions should be set appropriately depending on the type of press equipment used and the desired values of the porosity and density of the active material layer. This condition can be easily set by a few preliminary experiments by those skilled in the art. For example, in the case of a roll press, the linear pressure of the roll press machine is 0.1 to 10 (t / cm), preferably 0. At a pressure of 5 to 5 (t / cm), for example, at a roll temperature of 20 to 100 ° C., the current collector feed speed (roll rotation speed) after drying is 1 to 80 m / min, preferably 5 to 50 m / min. It can be performed in min.
プレス後の活物質層の密度は、1.5〜5.0g/cm3とすることが好ましく、1.5〜4.0g/cm3とすることがより好ましく、1.6〜3.8g/cm3とすることが特に好ましい。 The density of the active material layer after pressing, preferably in the 1.5~5.0g / cm 3, more preferably to 1.5~4.0g / cm 3, 1.6~3.8g / Cm 3 is particularly preferable.
3.保護膜
正極、負極またはセパレーターの表面に、前述した保護膜用スラリーを塗布して乾燥させることにより保護膜を形成することができる。保護膜の具体的態様としては、以下に示す3態様が挙げられる。
3. Protective film A protective film can be formed by applying the above-mentioned slurry for protective film on the surface of the positive electrode, negative electrode or separator and drying it. Specific embodiments of the protective film include the following three embodiments.
(1)第1の態様としては、正極および/または負極の活物質層表面に前述の保護膜用スラリーを塗布して乾燥させることにより、活物質層表面に保護膜を形成することができる。
(2)第2の態様としては、セパレーター表面に、前述の保護膜用スラリーを直接塗布して乾燥させることにより、セパレーターの表面に保護膜を形成することができる。
(3)第3の態様としては、セパレーター表面に機能層が形成されている場合には、該機能層表面に前述の保護膜用スラリーを塗布して乾燥させることにより、機能層表面に保護膜を形成することができる。
(1) As a 1st aspect, a protective film can be formed in the active material layer surface by apply | coating and drying the above-mentioned slurry for protective films on the active material layer surface of a positive electrode and / or a negative electrode.
(2) As a 2nd aspect, a protective film can be formed in the surface of a separator by apply | coating and drying the above-mentioned slurry for protective films directly on the separator surface.
(3) As a third aspect, when a functional layer is formed on the separator surface, the protective film is applied to the surface of the functional layer by applying the above-mentioned slurry for protective film on the surface of the functional layer and drying it. Can be formed.
保護膜用スラリーの正極、負極またはセパレーターへの塗布方法については特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。保護膜用スラリーの塗布量も特に制限されないが、液状媒体を除去した後に形成される保護膜の厚さが、0.5〜4μmとなる量とすることが好ましく、0.5〜3μmとなる量とすることがより好ましい。保護膜の膜厚が前記範囲にあると、電極内部への電解液の浸透性および保液性が良好となると共に、電極の内部抵抗の上昇を抑制することもできる。 There is no particular limitation on the method of applying the protective film slurry to the positive electrode, negative electrode or separator. The coating can be performed by an appropriate method such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, or a brush coating method. The coating amount of the protective film slurry is not particularly limited, but the thickness of the protective film formed after removing the liquid medium is preferably 0.5 to 4 μm, and preferably 0.5 to 3 μm. It is more preferable to use the amount. When the thickness of the protective film is in the above range, the permeability of the electrolytic solution into the electrode and the liquid retaining property are improved, and an increase in the internal resistance of the electrode can be suppressed.
塗布後の塗膜からの乾燥方法(水および任意的に使用される非水系媒体の除去方法)についても特に制限されず、例えば温風、熱風、低湿風による乾燥;真空乾燥;(遠)赤外線、電子線などの照射による乾燥などによることができる。乾燥速度としては、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ速く液状媒体が除去できるように適宜に設定することができる。具体的には、塗膜の乾燥処理は、好ましくは20〜250℃、より好ましくは50〜150℃の温度範囲において、好ましくは1〜120分間、より好ましくは5〜60分間の処理時間で行うことができる。 There is no particular limitation on the drying method from the coated film after coating (method for removing water and optionally used non-aqueous medium); for example, drying with warm air, hot air, low humidity air; vacuum drying; (far) infrared , Drying by irradiation with an electron beam or the like. The drying speed is appropriately set so that the liquid medium can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not peel from the current collector. be able to. Specifically, the coating film is preferably dried at a temperature of 20 to 250 ° C., more preferably 50 to 150 ° C., preferably for 1 to 120 minutes, more preferably 5 to 60 minutes. be able to.
4.蓄電デバイス
本実施の形態に係る蓄電デバイスは、上述の蓄電デバイス電極および上述の保護膜を備えるセパレーターの少なくとも一方を備えていればよい。蓄電デバイスの具体的製造方法としては、正極と負極との間にこれら電極間の短絡を防止するためのセパレーターを挟ん
で積層し、または正極、セパレーター、負極およびセパレーターをこの順序に積層して電極/セパレーター積層体とし、これを電池形状に応じて巻く、折るなどして電池容器に入れ、この電池容器に電解液を注入して封口する方法が挙げられる。なお、電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、適宜の形状であることができる。
4). Power Storage Device The power storage device according to the present embodiment only needs to include at least one of the above-described power storage device electrode and the separator including the above-described protective film. As a specific method for manufacturing an electricity storage device, a positive electrode and a negative electrode are laminated with a separator for preventing a short circuit between the electrodes, or a positive electrode, a separator, a negative electrode, and a separator are laminated in this order to form an electrode. / Separator laminated body, this may be wound or folded according to the shape of the battery, put into a battery container, and an electrolyte solution is injected into the battery container and sealed. In addition, the shape of the battery can be an appropriate shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, or the like.
電解液は、液状でもゲル状でもよく、活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。 The electrolyte solution may be liquid or gel, and an electrolyte that effectively expresses the function as a battery may be selected from the known electrolytes used for the electricity storage device according to the type of the active material. The electrolytic solution can be a solution in which an electrolyte is dissolved in a suitable solvent.
上記電解質としては、リチウムイオン二次電池では、従来から公知のリチウム塩のいずれをも使用することができ、その具体例としては、例えばLiClO4、LiBF4、LiPF6、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C2H5)4、LiCF3SO3、LiCH3SO3、LiC4F9SO3、Li(CF3SO2)2N、低級脂肪酸カルボン酸リチウムなどを例示することができる。ニッケル水素二次電池では、例えば従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。 As the electrolyte, in the lithium ion secondary battery, any conventionally known lithium salt can be used, and specific examples thereof include, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 CO 2 , LiAsF. 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lithium of lower fatty acid carboxylate etc. can be illustrated. In a nickel metal hydride secondary battery, for example, an aqueous potassium hydroxide solution having a conventionally known concentration of 5 mol / liter or more can be used.
上記電解質を溶解するための溶媒は、特に制限されるものではないが、その具体例として、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどのカーボネート化合物;γ−ブチロラクトンなどのラクトン化合物;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル化合物;ジメチルスルホキシドなどのスルホキシド化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。電解液中の電解質の濃度としては、好ましくは0.5〜3.0モル/Lであり、より好ましくは0.7〜2.0モル/Lである。 The solvent for dissolving the electrolyte is not particularly limited. Specific examples thereof include carbonate compounds such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; Lactone compounds such as butyrolactone; ether compounds such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxide compounds such as dimethyl sulfoxide, etc. One or more selected from among them can be used. The concentration of the electrolyte in the electrolytic solution is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
本実施の形態に係る蓄電デバイスは、電気自動車、バイブリッドカー、トラック等の自動車に搭載される二次電池またはキャパシタとして好適であるほか、AV機器、OA機器、通信機器などに用いられる二次電池、キャパシタとしても好適である。 The power storage device according to the present embodiment is suitable as a secondary battery or a capacitor mounted on an automobile such as an electric vehicle, a hybrid car, and a truck, and also used as a secondary battery used in AV equipment, OA equipment, communication equipment, and the like. It is also suitable as a battery or a capacitor.
5.実施例
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
5. EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. “Part” and “%” in Examples and Comparative Examples are based on mass unless otherwise specified.
5.1.実施例1
5.1.1.水溶性重合体(A)の合成および評価
(1)水溶性重合体(A)を含む水溶液の調製
容量7Lのセパラブルフラスコの内部を十分に窒素置換した後、水1050質量部を仕込み、内温70℃に昇温し、次いで過硫酸ナトリウム0.3質量部を投入した。次いで、水110質量部、アクリルアミド80質量部、アクリル酸10質量部、アクリル酸エチル10質量部の混合液を1時間かけて滴下し、70℃±3℃で2時間反応を行い、さらに90℃±3℃で2時間反応を行った。その後、冷却し、20wt%水酸化ナトリウム水溶液でpH7に調節することにより、水溶性重合体(A)を8wt%含有する水溶液を得た。このようにして得られた水溶性重合体(A)を8wt%含有する水溶液を蓄電デバイス用バインダー組成物S1とした。この蓄電デバイス用バインダー組成物S1を25℃に調整し、BM型粘度計を用いて粘度を測定したところ3000mPa・sであった。
5.1. Example 1
5.1.1. Synthesis and Evaluation of Water-Soluble Polymer (A) (1) Preparation of Aqueous Solution Containing Water-Soluble Polymer (A) The interior of a 7-L separable flask was sufficiently purged with nitrogen, and charged with 1050 parts by weight of water. The temperature was raised to 70 ° C., and then 0.3 part by mass of sodium persulfate was added. Next, a mixed solution of 110 parts by mass of water, 80 parts by mass of acrylamide, 10 parts by mass of acrylic acid, and 10 parts by mass of ethyl acrylate was added dropwise over 1 hour, reacted at 70 ° C. ± 3 ° C. for 2 hours, and further 90 ° C. The reaction was performed at ± 3 ° C. for 2 hours. Then, it cooled and adjusted to pH 7 with 20 wt% sodium hydroxide aqueous solution, and obtained the aqueous solution containing 8 wt% of water-soluble polymers (A). An aqueous solution containing 8 wt% of the water-soluble polymer (A) thus obtained was designated as a binder composition S1 for an electricity storage device. It was 3000 mPa * s when this binder composition S1 for electrical storage devices was adjusted to 25 degreeC, and the viscosity was measured using the BM type | mold viscosity meter.
(2)分子量の測定
以下の条件により測定した水溶性重合体(A)の重量平均分子量(Mw)は6×106であり、重量平均分子量(Mw)/数平均分子量(Mn)の値(分散比)は30であった。
・測定機器:東ソー株式会社製、GPC(型番:HLC−8220)
・カラム:TSKgel guardcolum PWXL (東ソー株式会社製)、TSK‐GEL G2500PWXL(東ソー株式会社製)、TSK‐GEL GMPWXL(東ソー株式会社製)
・溶離液:0.1M NaNO3水溶液
・検量線:標準ポリエチレンオキシド
・測定方法:水溶性重合体(A)の濃度が0.3wt%となるように溶離液に溶解し、フィルターろ過後に測定。
(2) Measurement of molecular weight The weight average molecular weight (Mw) of the water-soluble polymer (A) measured under the following conditions is 6 × 10 6 , and the value of weight average molecular weight (Mw) / number average molecular weight (Mn) ( The dispersion ratio) was 30.
・ Measurement equipment: GPC (model number: HLC-8220) manufactured by Tosoh Corporation
Column: TSKgel guardcolumn PW XL (manufactured by Tosoh Corporation), TSK-GEL G2500PW XL (manufactured by Tosoh Corporation), TSK-GEL GMPW XL (manufactured by Tosoh Corporation)
Eluent: 0.1M NaNO 3 aqueous solution Calibration curve: standard polyethylene oxide Measurement method: Dissolved in the eluent so that the concentration of the water-soluble polymer (A) is 0.3 wt%, and measured after filter filtration.
5.1.2.正極用スラリー、負極用スラリーの調製および評価
(1)正極用スラリーの調製
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に上記で得られた蓄電デバイス用バインダー組成物S1を水溶性重合体(A)換算で1.5質量部に相当する量を投入し、さらに粒子径(D50値)が10μmの市販のニッケル・マンガン・コバルト酸リチウム(ニッケル(Ni)、コバルト(Co)、マンガン(Mn)の比率1:1:1)活物質粒子100質量部、アセチレンブラック2質量部、バナジン酸ナトリウム0.5質量部および水4質量部を投入し、90rpmで1時間攪拌を行った。得られたペーストに水を加えて固形分濃度を70%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1,800rpmで5分間、さらに真空下(約5.0×103Pa)において1,800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。
5.1.2. Preparation and Evaluation of Positive Electrode Slurry and Negative Electrode Slurry (1) Preparation of Positive Electrode Slurry A power storage device obtained above in a biaxial planetary mixer (trade name “TK Hibismix 2P-03” manufactured by PRIMIX Corporation) The binder composition S1 was added in an amount corresponding to 1.5 parts by mass in terms of the water-soluble polymer (A), and a commercially available nickel / manganese / cobalt acid lithium (nickel (D50 value) of 10 μm) Ni), cobalt (Co), manganese (Mn) ratio 1: 1: 1) 100 parts by mass of active material particles, 2 parts by mass of acetylene black, 0.5 parts by mass of sodium vanadate and 4 parts by mass of water were added, Stirring was performed at 90 rpm for 1 hour. After adding water to the obtained paste to adjust the solid content concentration to 70%, using a stirring defoaming machine (trade name “Awatori Nentaro” manufactured by Shinky Co., Ltd.) for 2 minutes at 200 rpm. The slurry for positive electrode was prepared by stirring and mixing at 800 rpm for 5 minutes and further under vacuum (about 5.0 × 10 3 Pa) at 1,800 rpm for 1.5 minutes.
(2)負極用スラリーの調製
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に、上記で得られた蓄電デバイス用バインダー組成物S1を水溶性重合体(A)換算で1質量部に相当する量を投入し、負極活物質としてグラファイト100質量部(固形分換算)、およびアセチレンブラック4質量部、イオン交換水53質量部を投入し、60rpmで1時間撹拌を行った。さらに水40質量部を投入した後、撹拌脱泡機(株式会社シンキー製、製品名「あわとり練太郎」)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに真空下において1,800rpmで1.5分間撹拌・混合することにより、負極用スラリーを調製した。
(2) Preparation of slurry for negative electrode A water-soluble polymer was prepared by using the biaxial planetary mixer (trade name “TK Hibismix 2P-03” manufactured by PRIMIX Corporation) and the binder composition S1 for an electricity storage device obtained above. (A) An amount corresponding to 1 part by mass is introduced, 100 parts by mass of graphite (in terms of solid content), 4 parts by mass of acetylene black, and 53 parts by mass of ion-exchanged water are introduced as the negative electrode active material. Stir for hours. After adding 40 parts by mass of water, using a stirring defoamer (product name “Awatori Nertaro” manufactured by Sinky Co., Ltd.) for 2 minutes at 200 rpm, then 5 minutes at 1,800 rpm, and further under vacuum The slurry for negative electrode was prepared by stirring and mixing at 1,800 rpm for 1.5 minutes.
(3)スラリーの曳糸性測定
上記で得られた正極用および負極用スラリーの曳糸性を、以下のようにして測定した。まず、容器の底辺に直径5.2mmの開口部が存在するザーンカップ(太佑機材株式会社製、ザーンビスコシティーカップNo.5)を準備した。このザーンカップの開口部を閉じた状態で、上記で調製したスラリーを40g流し込んだ。開口部を開放するとスラリーが流れ出した。このとき、開口部を開放した瞬間の時間をT0とし、スラリーが流れ出る際に糸を曳くようにして流出し続けた時間を目視で測定し、この時間をTAとした。さらに、糸を曳かなくなってからも測定を継続し、スラリーが流れ出なくなるまでの時間TBを測定した。測定した各値T0、TAおよびTBを下記式(3)に代入して曳糸性を求めた。このスラリーの曳糸性は、上述したように30〜80%である場合に集電体上への塗布性が良好であると判断することができる。
曳糸性(%)=((TA−T0)/(TB−T0))×100 ・・・・・(3)
(3) Measurement of the spinnability of the slurry The spinnability of the positive electrode slurry and the negative electrode slurry obtained above was measured as follows. First, a Zaan cup (Dazai Equipment Co., Ltd., Zaan Bisco City Cup No. 5) having an opening with a diameter of 5.2 mm at the bottom of the container was prepared. With the Zahn cup opening closed, 40 g of the slurry prepared above was poured. When the opening was opened, the slurry flowed out. In this case, the time instant of opening the opening and T 0, the time continued to flow out so as to draw the yarn when the slurry flows measured visually, the time was T A. Moreover, to continue the measurement from no longer attracted yarn was measured time T B until the slurry no longer flow out. The measured values T 0 , T A and T B were substituted into the following formula (3) to determine the spinnability. As described above, when the spinnability of the slurry is 30 to 80%, it can be determined that the applicability on the current collector is good.
Spinnability (%) = ((T A −T 0 ) / (T B −T 0 )) × 100 (3)
5.1.3.正極、負極の製造および評価
(1)正極の製造
アルミニウム箔からなる集電体の表面に、上記で調製した正極用スラリーを、乾燥後の膜厚が110μmとなるようにドクターブレード法によって均一に塗布し、120℃で10分間乾燥した。その後、膜(活物質層)の密度が3.0g/cm3になるようにロールプレス機によりプレス加工することにより、正極を得た。
5.1.3. Production and Evaluation of Positive Electrode and Negative Electrode (1) Production of Positive Electrode The positive electrode slurry prepared above is uniformly applied to the surface of the current collector made of aluminum foil by a doctor blade method so that the film thickness after drying becomes 110 μm. It was applied and dried at 120 ° C. for 10 minutes. Then, the positive electrode was obtained by pressing with a roll press so that the density of a film | membrane (active material layer) might be 3.0 g / cm < 3 >.
(2)負極の製造
銅箔からなる集電体の表面に、上記で調製した負極用スラリーを、乾燥後の膜厚が110μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜(活物質層)の密度が1.5g/cm3となるようにロールプレス機を使用してプレス加工することにより、負極を得た。
(2) Production of Negative Electrode The negative electrode slurry prepared above was uniformly applied to the surface of a current collector made of copper foil by a doctor blade method so that the film thickness after drying was 110 μm. Dried for minutes. Then, the negative electrode was obtained by pressing using a roll press so that the density of a film | membrane (active material layer) might be 1.5 g / cm < 3 >.
(3)極板のクラック率の評価
上記で得られた正極板、負極板を、それぞれ幅2cm×長さ10cmに切り出し、幅方向に直径2mmの丸棒に沿って正極板を折り曲げ回数100回にて繰り返し折り曲げ試験を行った。丸棒に沿った部分のクラックの大きさを目視により観察し計測し、クラック率を測定した。クラック率は、下記式(4)によって定義した。
クラック率(%)=
(クラックの入った長さ(mm)÷極板全体の長さ(mm))×100 ・・・・(4)
クラック率は四捨六入することにより5%刻みで評価し、差を明確にしやすくした。ここで、柔軟性や密着性に優れた電極板はクラック率が低い。クラック率は0%であることが望ましいが、正極板と負極板とをセパレーターを介して渦巻き状に捲回して極板群を製造する場合には、クラック率が20%までなら許容される。しかし、クラック率が20%より大きくなると、極板が切れ易くなり極板群の製造が不可能となり、極板群の生産性が低下する。このことから、クラック率が20%までが良好な範囲であると考えられる。
(3) Evaluation of crack rate of electrode plate Each of the positive electrode plate and the negative electrode plate obtained above was cut into 2 cm width × 10 cm length, and the positive electrode plate was bent 100 times along a round bar having a diameter of 2 mm in the width direction. The bending test was repeatedly performed. The size of the crack along the round bar was visually observed and measured, and the crack rate was measured. The crack rate was defined by the following formula (4).
Crack rate (%) =
(Length with cracks (mm) ÷ Total length of electrode plate (mm)) × 100 (4)
The crack rate was evaluated in 5% increments by rounding off to make it easier to clarify the difference. Here, the electrode plate excellent in flexibility and adhesion has a low crack rate. The crack rate is preferably 0%. However, when the electrode plate group is manufactured by winding the positive electrode plate and the negative electrode plate in a spiral shape through a separator, the crack rate is allowed up to 20%. However, when the crack rate is greater than 20%, the electrode plates are easily cut, making it impossible to manufacture the electrode plate group, and the productivity of the electrode plate group is lowered. From this, it is considered that the crack rate is good within 20%.
5.1.4.リチウムイオン電池セルの組立ておよび評価
(1)リチウムイオン電池セルの組立て
露点が−80℃以下となるようAr置換されたグローブボックス内で、上記で製造した負極を直径15.95mmに打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレーター(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、上記で製造した正極を直径16.16mmに打ち抜き成形したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPF6を1モル/Lの濃度で溶解した溶液である。
5.1.4. Assembling and Evaluation of Lithium Ion Battery Cell (1) Assembling of Lithium Ion Battery Cell In the glove box substituted with Ar so that the dew point is -80 ° C. or lower, the negative electrode produced above was punched and molded to a diameter of 15.95 mm Was placed on a bipolar coin cell (trade name “HS flat cell” manufactured by Hosen Co., Ltd.). Next, a separator made of a polypropylene porous membrane punched into a diameter of 24 mm (trade name “Celguard # 2400” manufactured by Celgard Co., Ltd.) was placed, and after injecting 500 μL of an electrolyte solution so that air did not enter, A lithium ion battery cell (power storage device) was assembled by placing the positive electrode manufactured in the above-described method by punching and molding the positive electrode to a diameter of 16.16 mm, and sealing the outer body of the bipolar coin cell with a screw. The electrolytic solution used here is a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent of ethylene carbonate / ethyl methyl carbonate = 1/1 (mass ratio).
(2)レート特性、残存容量率および抵抗上昇率の測定
上記で製造したリチウムイオン電池セルを25℃の恒温槽に入れ、定電流(0.2C)にて充電を開始し、電圧が4.1Vになった時点で引き続き定電圧(4.1V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。次いで、定電流(0.2C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とした(エージング充放電)。
(2) Measurement of rate characteristics, remaining capacity rate, and resistance increase rate The lithium ion battery cell produced above was placed in a thermostatic bath at 25 ° C., and charging was started at a constant current (0.2 C). When the voltage reached 1 V, charging was continued at a constant voltage (4.1 V), and when the current value reached 0.01 C, charging was completed (cut off). Next, discharging was started at a constant current (0.2 C), and the time when the voltage reached 2.5 V was regarded as discharging completion (cut-off) (aging charge / discharge).
上記エージング充放電後のセルを25℃の恒温槽に入れ、定電流(0.2C)にて充電を開始し、電圧が4.1Vになった時点で引き続き定電圧(4.1V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。次いで、定電流(
0.2C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とし、0.2Cにおける放電容量(初期)の値であるC1を測定した。
The cell after the aging charge / discharge is put in a thermostat at 25 ° C., and charging is started at a constant current (0.2 C). When the voltage reaches 4.1 V, the cell is continuously maintained at a constant voltage (4.1 V). Charging was continued, and charging was completed (cut off) when the current value reached 0.01C. Next, constant current (
The discharge was started at 0.2 C), and when the voltage reached 2.5 V, the discharge was completed (cut-off), and C1 as the value of the discharge capacity (initial) at 0.2 C was measured.
上記放電容量(初期)測定後のセルを25℃の恒温槽に入れ、定電流(0.2C)にて充電を開始し、電圧が4.1Vになった時点で引き続き定電圧(4.1V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。次いで、定電流(5.0C)方式で放電したときの放電容量C2を測定した。そして、これらの測定値を用いて、下記式(5)によってリチウムイオン二次電池の5Cレート特性(%)を算出した。
5Cレート特性(%)=(C2/C1)×100 ・・・・・(5)
なお、5Cレート特性の値が大きいほど、高速放電においても良好な出力特性得られると判断することができるが、特に5Cレート特性の値が60%以上である場合、良好と判断できる。
The cell after the discharge capacity (initial) measurement was placed in a constant temperature bath at 25 ° C., charging was started at a constant current (0.2 C), and when the voltage reached 4.1 V, the constant voltage (4.1 V) was continued. The charging was continued at), and the time when the current value reached 0.01 C was defined as the completion of charging (cut-off). Subsequently, the discharge capacity C2 when discharging by a constant current (5.0C) system was measured. And using these measured values, 5C rate characteristic (%) of the lithium ion secondary battery was computed by following formula (5).
5C rate characteristics (%) = (C2 / C1) × 100 (5)
It can be determined that the larger the value of the 5C rate characteristic, the better the output characteristic can be obtained even in the high-speed discharge, but it can be determined that the value is particularly good when the value of the 5C rate characteristic is 60% or more.
上記放電容量(初期)測定後のセルを25℃の恒温槽に入れ、定電流(0.2C)にて充電を開始し、電圧が4.1Vになった時点で引き続き定電圧(4.1V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。 The cell after the discharge capacity (initial) measurement was placed in a constant temperature bath at 25 ° C., charging was started at a constant current (0.2 C), and when the voltage reached 4.1 V, the constant voltage (4.1 V) was continued. The charging was continued at), and the time when the current value reached 0.01 C was defined as the completion of charging (cut-off).
この充電状態のセルについてEIS測定(“Electrochemical Inpedance Spectroscopy”、「電気化学インピーダンス測定」)を行い、初期の抵抗値EISaを測定した。 An EIS measurement ("Electrochemical Impedance Spectroscopy", "electrochemical impedance measurement") was performed on the charged cell, and an initial resistance value EISA was measured.
次に、初期の抵抗値EISaを測定したセルを60℃の恒温槽に入れ、定電流(0.2C)にて充電を開始し、電圧が4.4Vになった時点で引き続き定電圧(4.4V)にて充電を168時間続行した(過充電の加速試験)。 Next, the cell in which the initial resistance value EISa was measured was placed in a constant temperature bath at 60 ° C., and charging was started at a constant current (0.2 C). When the voltage reached 4.4 V, the constant voltage (4 4V), charging was continued for 168 hours (overcharge acceleration test).
その後、この充電状態のセルを25℃の恒温槽に入れてセル温度を25℃に低下してから、定電流(0.2C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)として、0.2Cにおける放電容量(試験後)の値であるC2を測定した。 After that, the charged cell was placed in a constant temperature bath at 25 ° C., the cell temperature was lowered to 25 ° C., and then discharging was started at a constant current (0.2 C), and the voltage became 2.5V. Was completed (cutoff), and C2 as a value of the discharge capacity at 0.2 C (after the test) was measured.
上記放電容量(試験後)のセルを25℃の恒温槽に入れ、定電流(0.2C)にて充電を開始し、電圧が4.1Vになった時点で引き続き定電圧(4.1V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。次いで、定電流(0.2C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とした。このセルのEIS測定を行い、熱ストレスおよび過充電ストレス印加後の抵抗値であるEISbを測定した。 The cell having the above discharge capacity (after the test) is placed in a constant temperature bath at 25 ° C., and charging is started at a constant current (0.2 C). When the voltage reaches 4.1 V, the constant voltage (4.1 V) continues. The charging was continued at, and the time when the current value reached 0.01 C was regarded as charging completion (cut-off). Next, discharging was started at a constant current (0.2 C), and the time when the voltage reached 2.5 V was regarded as completion of discharging (cut-off). EIS measurement of this cell was performed, and EISb which is a resistance value after application of thermal stress and overcharge stress was measured.
上記の各測定値を下記式(6)および下記式(7)に代入して残存容量率および抵抗上昇率をそれぞれ求めた。
残存容量率(%)=(C2/C1)×100 ・・・・・(6)
抵抗上昇率(%)=((EISb−EISa)/EISa)×100 ・・・・(7)
この残存容量率が75%以上であり、かつ、抵抗上昇率300%以下であるとき、耐久性は良好であると評価することができる。
The respective measured values were substituted into the following formula (6) and the following formula (7) to determine the remaining capacity rate and the resistance increase rate, respectively.
Residual capacity ratio (%) = (C2 / C1) × 100 (6)
Resistance increase rate (%) = ((EISb−EISa) / EISa) × 100 (7)
When this remaining capacity ratio is 75% or more and the resistance increase rate is 300% or less, it can be evaluated that the durability is good.
なお、上記測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値を示す。例えば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、「10C」とは0.1時間かけて放電完了となる電流値のことをいう。 In the above measurement conditions, “1C” indicates a current value at which discharge is completed in one hour after constant current discharge of a cell having a certain electric capacity. For example, “0.1 C” is a current value at which discharge is completed over 10 hours, and “10 C” is a current value at which discharge is completed over 0.1 hours.
5.2.実施例2〜9、比較例2〜3
上記実施例1の「5.1.1.水溶性重合体(A)の合成と評価」において、単量体の組成と開始剤の量を適宜に変更したほかは実施例1と同様にして、表1に示す組成の重合体を含む水溶液(蓄電デバイス用バインダー組成物S2〜S11)を調製し、分子量を測定した。その結果を表1に併せて示した。
5.2. Examples 2-9, Comparative Examples 2-3
In the same manner as in Example 1 except that the composition of the monomer and the amount of the initiator were appropriately changed in “5.1.1. Synthesis and Evaluation of Water-Soluble Polymer (A)” in Example 1 above. Then, an aqueous solution (binder composition for electricity storage device S2 to S11) containing a polymer having the composition shown in Table 1 was prepared, and the molecular weight was measured. The results are also shown in Table 1.
ただし、蓄電デバイス用バインダー組成物S10は、以下のようにして調製した。容量7Lのセパラブルフラスコの内部を十分に窒素置換した後、水1050質量部を仕込み、内温70℃に昇温した。次いで、過硫酸ナトリウム0.6質量部、水110質量部、アクリルアミド80質量部、アクリル酸10質量部、アクリル酸エチル10質量部の混合液を1時間かけて滴下し、70℃で3時間反応を行い、さらに90℃で5時間反応を行うことにより重合体を得た。こうして得られた重合体は、反応系がゲル化しており、バインダーとして使用できるものではなかった。このようにして得られた重合体を含有する水溶液を蓄電デバイス用バインダー組成物S10とした。 However, the binder composition S10 for electricity storage devices was prepared as follows. After the inside of the separable flask having a volume of 7 L was sufficiently purged with nitrogen, 1050 parts by mass of water was charged and the internal temperature was raised to 70 ° C. Next, a mixed solution of 0.6 parts by mass of sodium persulfate, 110 parts by mass of water, 80 parts by mass of acrylamide, 10 parts by mass of acrylic acid, and 10 parts by mass of ethyl acrylate was added dropwise over 1 hour and reacted at 70 ° C. for 3 hours. Then, a polymer was obtained by further reacting at 90 ° C. for 5 hours. The polymer thus obtained had a gelled reaction system and could not be used as a binder. The aqueous solution containing the polymer thus obtained was designated as a binder composition S10 for an electricity storage device.
開始剤を少量ずつ反応系中に滴下する方法に変更したため、開始剤濃度が低く、開始剤の分解による反応停止が起きにくくなったため、蓄電デバイス用バインダー組成物S1に含有される水溶性重合体(A)の単量体組成と同じ組成ではあるが、蓄電デバイス用バインダー組成物S1に含有される水溶性重合体(A)よりも分子量が大きくなった(重量平均分子量(Mw)は6×106より大きい)ものと推測される。 Since the initiator was dropped into the reaction system little by little, the initiator concentration was low and it was difficult for the reaction to stop due to decomposition of the initiator, so the water-soluble polymer contained in the binder composition S1 for electricity storage devices Although it is the same composition as the monomer composition of (A), molecular weight became larger than the water-soluble polymer (A) contained in binder composition S1 for electrical storage devices (weight average molecular weight (Mw) is 6x). Is estimated to be greater than 10 6 ).
次いで、上記実施例1の「5.1.2.正極、負極用スラリーの調製および評価」において、重合体の添加量および活物質の種類を表2の添加量とした以外は、実施例1と同様に正極、負極用スラリーをそれぞれ調製し、スラリーの曳糸性を測定した。その結果を表2に併せて示した。 Next, in Example 5 “5.1.2. Preparation and evaluation of slurry for positive electrode and negative electrode”, Example 1 was carried out except that the addition amount of the polymer and the type of the active material were those shown in Table 2. Similarly, a positive electrode slurry and a negative electrode slurry were prepared, and the spinnability of the slurry was measured. The results are also shown in Table 2.
さらに、上記実施例1の「5.1.3.正極、負極の製造および評価」、「5.1.4.リチウムイオン電池セルの組立ておよび評価」と同様にして電極、蓄電デバイスを作製し、評価を行った。その結果を表2に併せて示した。 Further, in the same manner as in “5.1.3. Production and evaluation of positive electrode and negative electrode” and “5.1.4. Assembly and evaluation of lithium ion battery cell” in Example 1 above, an electrode and an electricity storage device were produced. And evaluated. The results are also shown in Table 2.
5.3.実施例1〜9、比較例1〜3の評価結果
下表1に、各蓄電デバイス用バインダー組成物に含まれる重合体の単量体組成および分子量測定の結果を示す。下表2に、正極、負極用スラリーの組成および各評価結果を示す。
5.3. Evaluation Results of Examples 1 to 9 and Comparative Examples 1 to 3 Table 1 below shows the monomer composition and molecular weight measurement results of the polymers contained in each binder composition for an electricity storage device. Table 2 below shows the compositions of the positive electrode and negative electrode slurries and the evaluation results.
なお、表1における各成分の略称は、それぞれ以下の意味である。
・AMM:アクリルアミド
・MAMM:メタクリルアミド
・NMAM:N−メチロールアクリルアミド
・ATBS:アクリルアミドt−ブチルスルホン酸
・AA:アクリル酸
・MAA:メタクリル酸
・VS:ビニルスルホン酸
・AS:アリルスルホン酸
・MAS:メタアリルスルホン酸
・MMA:メタクリル酸メチル
・MA:アクリル酸メチル
・BA:アクリル酸n−ブチル
・EA:アクリル酸エチル
・HEMA:ヒドロキシエチルメタクリレート
・AN:アクリロニトリル
・MAN:メタクリロニトリル
表1における「−」の表記は、該当する成分を使用しなかったか、あるいは該当する操作を行わなかったことを示す。
In addition, the abbreviation of each component in Table 1 has the following meaning, respectively.
AMM: acrylamide MAMMA: methacrylamide NMAM: N-methylol acrylamide ATBS: acrylamide t-butyl sulfonic acid AA: acrylic acid MAA: methacrylic acid VS: vinyl sulfonic acid AS: allyl sulfonic acid MAS: Methallylsulfonic acid, MMA: methyl methacrylate, MA: methyl acrylate, BA: n-butyl acrylate, EA: ethyl acrylate, HEMA: hydroxyethyl methacrylate, AN: acrylonitrile, MAN: methacrylonitrile The notation “-” indicates that the corresponding component was not used or the corresponding operation was not performed.
表2における各成分の略称は、それぞれ以下の意味である。
・NMC(111):ユミコア社製、ニッケル・マンガン・コバルト酸リチウム(ニッケル(Ni):コバルト(Co):マンガン(Mn)が1:1:1)、グレード名「MX−
10」
・NMC(532):ユミコア社製、ニッケル・マンガン・コバルト酸リチウム(ニッケル(Ni):コバルト(Co):マンガン(Mn)が5:3:2)、グレード名「TX−10」
・AB:アセチレンブラック(電気化学工業株式会社製、デンカブラック50%プレス)・黒鉛:日立化成工業株式会社製、商品名「MAG」
・NaVO3:和光純薬工業株式会社製、メタバナジン(V)酸ナトリウム
Abbreviations of each component in Table 2 have the following meanings.
NMC (111): manufactured by Umicore, nickel, manganese, lithium cobaltate (nickel (Ni): cobalt (Co): manganese (Mn) is 1: 1: 1), grade name "MX-
10 "
NMC (532): manufactured by Umicore, nickel, manganese, lithium cobaltate (nickel (Ni): cobalt (Co): manganese (Mn) is 5: 3: 2), grade name "TX-10"
・ AB: Acetylene black (manufactured by Denki Black, Denka Black 50% press) ・ Graphite: Hitachi Chemical Co., Ltd., trade name “MAG”
NaVO 3 : manufactured by Wako Pure Chemical Industries, Ltd., sodium metavanadate (V)
上表2から明らかなように、実施例1〜9に示した本発明に係る蓄電デバイス電極用スラリーは、曳糸性に優れ、集電体と活物質層との間の結着性および活物質間の結着性が良好であるためクラック率が低い優れた電極を与えた。また、これらの電極を備える蓄電デバイス(リチウムイオン電池)は、充放電レート特性が良好であり、かつ耐酸化性が良好であるため、耐久性に優れるものであった。 As apparent from Table 2 above, the slurry for the electricity storage device electrode according to the present invention shown in Examples 1 to 9 is excellent in the spinnability, and the binding property and activity between the current collector and the active material layer are excellent. An excellent electrode having a low crack rate was obtained because of good binding between the materials. In addition, an electricity storage device (lithium ion battery) including these electrodes has excellent charge / discharge rate characteristics and excellent oxidation resistance, and thus has excellent durability.
一方、比較例1に示した蓄電デバイス電極用スラリーでは、クラック率が高い電極を与えた。また、これらの電極を備える蓄電デバイスでは、充放電耐久特性が劣っていた。比較例2〜3に示した蓄電デバイス電極用スラリーでは、曳糸性が低いため均一な膜厚の活物質層が形成されなかったことにより良好な電極が得られず、良好な充放電特性を示す蓄電デバイスは得られなかった。 On the other hand, the power storage device electrode slurry shown in Comparative Example 1 gave an electrode having a high crack rate. Moreover, in an electrical storage device provided with these electrodes, the charge / discharge durability characteristics were inferior. In the slurry for electricity storage device electrodes shown in Comparative Examples 2 to 3, a good electrode cannot be obtained because the active material layer having a uniform film thickness was not formed due to low spinnability, and good charge / discharge characteristics were obtained. The electricity storage device shown was not obtained.
5.4.実施例10
5.4.1.保護膜用スラリーの調製
フィラーとして酸化チタン(製品名「KR380」、チタン工業株式会社製、ルチル型、平均粒子径0.38μm)を水100質量部に対して20質量部、上記実施例1で得られた蓄電デバイス用バインダー組成物S1をフィラーに対して水溶性重合体(A)換算で5質量部に相当する量を、T.K.フィルミックス(R)56−50型(プライミクス株式会社製)を用いて混合分散処理を行い、酸化チタンが分散された保護膜用スラリーを調製した。このようにして得られた保護膜用スラリーの曳糸性を実施例1と同様にして評価した。
5.4. Example 10
5.4.1. Preparation of slurry for protective film Titanium oxide (product name “KR380”, manufactured by Titanium Industry Co., Ltd., rutile type, average particle size 0.38 μm) is 20 parts by mass with respect to 100 parts by mass of water. An amount corresponding to 5 parts by mass of the obtained binder composition S1 for an electricity storage device in terms of the water-soluble polymer (A) with respect to the filler was calculated using T.I. K. Mixing and dispersing treatment was performed using a film mix (R) 56-50 type (manufactured by PRIMIX Co., Ltd.) to prepare a slurry for a protective film in which titanium oxide was dispersed. The spinnability of the protective film slurry thus obtained was evaluated in the same manner as in Example 1.
5.4.2.正極の作製
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に電気化学デバイス電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」)4.0質量部(固形分換算)、導電助剤(電気化学工業株式会社製、商品名「デンカブラック50%プレス品」)3.0質量部、正極活物質として粒径5μmのLiCoO2(ハヤシ化成株式会社製)100質量部(固形分換算)、N−メチルピロリドン(NMP)36質量部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを投入し、固形分を65%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。アルミニウム箔よりなる集電体の表面に、得られた電極用スラリーを、乾燥後の膜厚が120μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、活物質層の密度が3.0g/cm3となるようにロールプレス機によりプレス加工することにより、正極を得た。
5.4.2. 3. Production of positive electrode Biaxial planetary mixer (product name “TK Hibismix 2P-03” manufactured by PRIMIX Corporation) and binder for electrochemical device electrode (product name “KF polymer # 1120” manufactured by Kureha Co., Ltd.) 0 parts by mass (converted to solid content), 3.0 parts by mass of conductive assistant (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “DENKA BLACK 50% press product”), LiCoO 2 having a particle diameter of 5 μm as a positive electrode active material (Hayashi Kasei) 100 parts by mass (manufactured by Corporation) (solid content conversion) and 36 parts by mass of N-methylpyrrolidone (NMP) were added and stirred at 60 rpm for 2 hours. After adding NMP to the obtained paste to adjust the solid content to 65%, using a stirring defoaming machine (trade name “Awatori Netaro”, manufactured by Shinky Co., Ltd.), 2 minutes at 200 rpm, 1800 rpm The slurry for positive electrode was prepared by stirring and mixing for 5 minutes at 1800 rpm for 1 minute at 1800 rpm. The obtained electrode slurry was uniformly applied to the surface of a current collector made of aluminum foil by a doctor blade method so that the film thickness after drying was 120 μm, followed by drying treatment at 120 ° C. for 20 minutes. Then, the positive electrode was obtained by pressing with a roll press so that the density of an active material layer might be set to 3.0 g / cm < 3 >.
次いで、上記で作製した保護膜用スラリーをダイコート法を用いて活物質層の表面に塗布した後、120℃、5分で乾燥して、活物質層の表面に保護膜を形成した。なお、形成された保護膜の厚みは3μmであった。このようにして得られた正極について、上記実施例1と同様にして極板(保護膜)のクラック率を評価した。 Next, the protective film slurry prepared above was applied to the surface of the active material layer using a die coating method, and then dried at 120 ° C. for 5 minutes to form a protective film on the surface of the active material layer. The formed protective film had a thickness of 3 μm. For the positive electrode thus obtained, the crack rate of the electrode plate (protective film) was evaluated in the same manner as in Example 1.
5.4.3.負極
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に、ポリフッ化ビニリデン(PVDF)4質量部(固形分換算)、負極活物質としてグラファイト100質量部(固形分換算)、N−メチルピロリドン(NMP)80質量部を投入し、60rpmで1時間撹拌を行った。その後、さらにNMP20質量部を投入した後、撹拌脱泡機(株式会社シンキー製、製品名「あわとり練太郎」)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに真空下において1,800rpmで1.5分間撹拌・混合することにより、負極用スラリーを調製した。
5.4.3. Negative electrode Biaxial planetary mixer (product name “TK Hibismix 2P-03” manufactured by PRIMIX Corporation), 4 parts by mass of polyvinylidene fluoride (PVDF) (in terms of solid content), and 100 parts by mass of graphite as a negative electrode active material ( Solid conversion), 80 parts by mass of N-methylpyrrolidone (NMP) were added, and the mixture was stirred at 60 rpm for 1 hour. Then, after adding 20 parts by mass of NMP, using a stirring defoaming machine (product name “Awatori Netaro” manufactured by Shinky Co., Ltd.) for 2 minutes at 200 rpm, then for 5 minutes at 1,800 rpm, further vacuum Below, the slurry for negative electrodes was prepared by stirring and mixing for 1.5 minutes at 1,800 rpm.
銅箔からなる集電体の表面に、上記で調製した負極用スラリーを、乾燥後の膜厚が110μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜の密度が1.5g/cm3となるようにロールプレス機を使用してプレス加工することにより、負極を得た。 The negative electrode slurry prepared above was uniformly applied to the surface of a current collector made of copper foil by a doctor blade method so that the film thickness after drying was 110 μm, and dried at 120 ° C. for 20 minutes. Then, the negative electrode was obtained by pressing using a roll-press machine so that the density of a film | membrane may be 1.5 g / cm < 3 >.
5.4.4.リチウムイオン電池セルの組立て
露点が−80℃以下となるようAr置換されたグローブボックス内で、上記で製造した負極を直径15.95mmに打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレーター(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、上記で製造した正極を直径16.16mmに打ち抜き成形したものを正極に形成された保護膜とセパレーターとが相対するように載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPF6を1モル/Lの濃度で溶解した溶液である。このようにして得られた蓄電デバイスについて、上記実施例1と同様にしてレート特性、残存容量率、抵抗上昇率の評価を行った。
5.4.4. Assembly of Lithium Ion Battery Cell A bipolar coin cell (Hosen Co., Ltd.) obtained by punching and molding the negative electrode produced above to a diameter of 15.95 mm in an Ar-substituted glove box with a dew point of −80 ° C. or lower. And product name “HS flat cell”). Next, a separator made of a polypropylene porous membrane punched into a diameter of 24 mm (trade name “Celguard # 2400” manufactured by Celgard Co., Ltd.) was placed, and after injecting 500 μL of an electrolyte solution so that air did not enter, The positive electrode manufactured in the above is punched and molded to a diameter of 16.16 mm and placed so that the protective film formed on the positive electrode and the separator face each other, and the outer body of the bipolar coin cell is closed with a screw and sealed. Thus, a lithium ion battery cell (electric storage device) was assembled. The electrolytic solution used here is a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent of ethylene carbonate / ethyl methyl carbonate = 1/1 (mass ratio). The power storage device thus obtained was evaluated for rate characteristics, remaining capacity rate, and resistance increase rate in the same manner as in Example 1.
5.5.実施例11〜17、比較例4〜6
上記実施例10において、使用した蓄電デバイス用バインダー組成物を表3に記載したものにそれぞれ変更し、使用したフィラーを表3に記載のものとした以外は、実施例10と同様にして保護膜用スラリーを調製し、その曳糸性について評価した。また、上記実施例10において、使用した保護膜用スラリーを表3に記載のものとした以外は、実施例10と同様にして正極を作製し、そのクラック率を評価した。さらに、上記実施例10と同様にして負極を作製した後、蓄電デバイスを製造し、同様にレート特性、残存容量率、抵抗上昇率を評価した。これらの評価結果を表3に併せて示した。
5.5. Examples 11-17, Comparative Examples 4-6
A protective film in the same manner as in Example 10 except that the binder composition for an electricity storage device used in Example 10 was changed to that shown in Table 3 and the filler used was that shown in Table 3. Slurry was prepared and its spinnability was evaluated. Further, a positive electrode was produced in the same manner as in Example 10 except that the protective film slurry used in Example 10 was that shown in Table 3, and the crack rate was evaluated. Furthermore, after producing a negative electrode in the same manner as in Example 10, an electricity storage device was manufactured, and rate characteristics, remaining capacity ratio, and resistance increase rate were similarly evaluated. These evaluation results are also shown in Table 3.
5.6.実施例18〜20、比較例7〜9
上記実施例10において、使用した蓄電デバイス用バインダー組成物を表4に記載したものにそれぞれ変更し、使用したフィラーを表4に記載のものとした以外は、上記実施例10と同様にして保護膜用スラリーを調製し、その曳糸性について評価した。その評価結果を表4に併せて示した。
5.6. Examples 18-20, Comparative Examples 7-9
In Example 10 above, the binder composition for an electricity storage device used was changed to that shown in Table 4 and the protection was performed in the same manner as in Example 10 except that the filler used was that shown in Table 4. A membrane slurry was prepared and evaluated for spinnability. The evaluation results are also shown in Table 4.
次いで、上記実施例10と同様にして負極を作製し、その負極の活物質層表面に、得られた保護膜用スラリーをダイコート法を用いて塗布した後、120℃、5分で乾燥することにより、活物質層表面に保護膜を形成した。このようにして得られた負極について、上記実施例10と同様にして極板(保護膜)のクラック率を評価した。その評価結果を表4に併せて示した。 Next, a negative electrode is prepared in the same manner as in Example 10, and the obtained protective film slurry is applied to the surface of the active material layer of the negative electrode using a die coating method, and then dried at 120 ° C. for 5 minutes. Thus, a protective film was formed on the surface of the active material layer. For the negative electrode thus obtained, the crack rate of the electrode plate (protective film) was evaluated in the same manner as in Example 10. The evaluation results are also shown in Table 4.
また、正極として上記実施例10で作製された保護膜が形成される前の正極を用い、負極として上記で得られた保護膜付き負極を用いた以外は、上記実施例10と同様にして蓄電デバイスを製造し(但し、負極の保護膜とセパレーターとが相対するように載置した。)、同様にレート特性、残存容量率、抵抗上昇率を評価した。これらの評価結果を表4に併せて示した。 Further, the battery was charged in the same manner as in Example 10 except that the positive electrode before forming the protective film produced in Example 10 was used as the positive electrode, and the negative electrode with protective film obtained above was used as the negative electrode. A device was manufactured (however, the negative electrode protective film and the separator were placed so as to face each other), and the rate characteristics, the remaining capacity rate, and the resistance increase rate were similarly evaluated. These evaluation results are also shown in Table 4.
5.7.実施例21
上記実施例10で調製した保護膜用スラリーを、ポリプロピレン製多孔膜からなるセパレーター(セルガード株式会社製、商品名「セルガード#2400」)の片面に乾燥後の厚さが10μmになるようにワイヤーバーを用いて塗工し、次いで90℃で20分間乾燥することにより、保護膜付きセパレーターを得た。このようにして得られた保護膜付きセパレーターについて、上記実施例10と同様にして保護膜のクラック率を評価した。その評価結果を表5に併せて示した。
5.7. Example 21
The wire bar was prepared by drying the protective film slurry prepared in Example 10 on one side of a separator made of a polypropylene porous film (trade name “Celguard # 2400” manufactured by Celgard Co., Ltd.) so that the thickness after drying was 10 μm. And then dried at 90 ° C. for 20 minutes to obtain a separator with a protective film. The separator with protective film thus obtained was evaluated for the crack rate of the protective film in the same manner as in Example 10. The evaluation results are also shown in Table 5.
さらに、正極として上記実施例10で作製された保護膜が形成される前の正極を、負極として上記実施例10で作製した負極を用い、上記で得られた保護膜付きセパレーターの保護膜面が正極側になるようにして、上記実施例10と同様にして蓄電デバイスを作製し、同様にレート特性、残存容量率、抵抗上昇率を評価した。その結果を表5に併せて示した。 Furthermore, using the positive electrode before forming the protective film produced in Example 10 as the positive electrode and the negative electrode produced in Example 10 as the negative electrode, the protective film surface of the separator with protective film obtained above was An electricity storage device was fabricated in the same manner as in Example 10 with the positive electrode side, and the rate characteristics, the remaining capacity rate, and the resistance increase rate were similarly evaluated. The results are also shown in Table 5.
5.8.実施例22〜28、比較例10〜12
上記実施例21において、使用した蓄電デバイス用バインダー組成物およびフィラーを表5に記載のものに変更して保護膜用スラリーを調製した以外は、上記実施例21と同様にして保護膜付きセパレーター、正極、負極、蓄電デバイスを製造し、同様に評価した。その結果を表5に併せて示した。
5.8. Examples 22-28, Comparative Examples 10-12
In Example 21 above, a separator with a protective film was prepared in the same manner as in Example 21 except that the slurry for protective film was prepared by changing the binder composition and filler for the electricity storage device used to those shown in Table 5. A positive electrode, a negative electrode, and an electricity storage device were manufactured and evaluated in the same manner. The results are also shown in Table 5.
5.9.実施例29〜31、比較例13〜15
上記実施例21において、使用した蓄電デバイス用バインダー組成物およびフィラーを表6に記載のものに変更して保護膜用スラリーを調製し、保護膜付きセパレーターの保護膜面が負極側になるようにした以外は、上記実施例21と同様にして保護膜付きセパレーター、正極、負極、蓄電デバイスを製造し、同様に評価した。その結果を表6に併せて示した。
5.9. Examples 29-31, Comparative Examples 13-15
In Example 21, the binder composition for an electricity storage device and the filler used were changed to those shown in Table 6 to prepare a slurry for the protective film, so that the protective film surface of the separator with the protective film was on the negative electrode side. A separator with a protective film, a positive electrode, a negative electrode, and an electricity storage device were produced in the same manner as in Example 21 except that the evaluation was performed in the same manner. The results are also shown in Table 6.
5.10.実施例10〜31、比較例4〜15の評価結果
下表3〜下表6に、保護膜用スラリーの組成および各評価結果を示す。
5.10. Evaluation Results of Examples 10 to 31 and Comparative Examples 4 to 15 Tables 3 to 6 below show the composition of the slurry for the protective film and each evaluation result.
表3〜表6に記載のフィラーは、それぞれ以下の通りである。
・酸化チタン:製品名「KR380」(チタン工業株式会社製、ルチル型、平均粒子径0.38μm)をそのまま使用に供するか、または製品名「KR380」をめのう乳鉢で粉砕し、ふるいを用いて分級することにより、平均粒子径が0.08μm、0.12μmである酸化チタンをそれぞれ調製して使用に供した。
・酸化アルミニウム:製品名「AKP‐3000」(住友化学株式会社製、平均粒子径0.74μm)、または製品名「AL−160SG−3」(昭和電工株式会社製、平均粒子径0.98μm)を使用に供した。
・酸化ジルコニウム:製品名「UEP酸化ジルコニウム」(第一希元素化学工業株式会社製、平均粒子径0.67μm)
・シリカ:製品名「シーホスター(R) KE−S50」(株式会社日本触媒製、平均粒
子径0.54μm)を使用に供した。
・酸化マグネシウム:製品名「PUREMAG(R) FNM−G」(タテホ化学工業株式会社製、平均粒子径0.50μm)
The fillers described in Tables 3 to 6 are as follows.
Titanium oxide: The product name “KR380” (manufactured by Titanium Industry Co., Ltd., rutile type, average particle size 0.38 μm) is used as it is, or is ground in a mortar with the product name “KR380” and used with a sieve. By classification, titanium oxides having an average particle diameter of 0.08 μm and 0.12 μm were prepared and used.
Aluminum oxide: Product name “AKP-3000” (manufactured by Sumitomo Chemical Co., Ltd., average particle size 0.74 μm), or product name “AL-160SG-3” (manufactured by Showa Denko KK, average particle size 0.98 μm) Was used.
Zirconium oxide: Product name “UEP zirconium oxide” (Daiichi Rare Element Chemical Industries, Ltd., average particle size 0.67 μm)
Silica: The product name “Sea Hoster (R) KE-S50” (manufactured by Nippon Shokubai Co., Ltd., average particle size 0.54 μm) was used.
Magnesium oxide: Product name “PUREMAG® FNM-G” (manufactured by Tateho Chemical Industry Co., Ltd., average particle size 0.50 μm)
表3〜表6から明らかなように、実施例10〜31に示した本発明に係る保護膜用スラリーは、曳糸性に優れ、クラック率が低い優れた保護膜を与えた。また、保護膜付き電極または保護膜付きセパレーターを備える蓄電デバイス(リチウムイオン電池)は、充放電レート特性が良好であり、かつ耐酸化性が良好であるため、充放電耐久特性に優れるものであった。 As is apparent from Tables 3 to 6, the slurry for protective film according to the present invention shown in Examples 10 to 31 gave an excellent protective film having excellent spinnability and a low crack rate. In addition, an electricity storage device (lithium ion battery) including an electrode with a protective film or a separator with a protective film has good charge / discharge rate characteristics and good oxidation resistance, and therefore has excellent charge / discharge durability characteristics. It was.
本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。 The present invention is not limited to the above embodiment, and various modifications can be made. The present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects). The present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration. Furthermore, the present invention includes a configuration that achieves the same effects as the configuration described in the above embodiment or a configuration that can achieve the same object. Furthermore, the present invention includes a configuration obtained by adding a known technique to the configuration described in the above embodiment.
Claims (12)
前記水溶性重合体(A)100質量部中に含有される(メタ)アクリルアミドに由来する繰り返し単位の割合が40〜100質量部であることを特徴とする、蓄電デバイス用スラリー。 A slurry for an electricity storage device containing 1 to 10 parts by mass of a water-soluble polymer (A) with respect to 100 parts by mass of an active material,
The slurry for an electricity storage device, wherein the proportion of the repeating unit derived from (meth) acrylamide contained in 100 parts by mass of the water-soluble polymer (A) is 40 to 100 parts by mass.
さらに、前記活物質層の表面に請求項2ないし請求項4のいずれか一項に記載の蓄電デバイス用スラリーを塗布および乾燥させて形成された層を備える、蓄電デバイス電極。 A current collector, and an active material layer formed on the surface of the current collector,
Furthermore, an electrical storage device electrode provided with the layer formed by apply | coating and drying the slurry for electrical storage devices as described in any one of Claims 2 thru | or 4 on the surface of the said active material layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013151464A JP2015022956A (en) | 2013-07-22 | 2013-07-22 | Slurry for power storage device, power storage device electrode, separator and power storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013151464A JP2015022956A (en) | 2013-07-22 | 2013-07-22 | Slurry for power storage device, power storage device electrode, separator and power storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015022956A true JP2015022956A (en) | 2015-02-02 |
Family
ID=52487217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013151464A Pending JP2015022956A (en) | 2013-07-22 | 2013-07-22 | Slurry for power storage device, power storage device electrode, separator and power storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015022956A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016171074A (en) * | 2015-03-13 | 2016-09-23 | 日本ゼオン株式会社 | Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery |
JPWO2015122322A1 (en) * | 2014-02-14 | 2017-03-30 | 日本ゼオン株式会社 | Secondary battery porous membrane composition, secondary battery porous membrane, and secondary battery |
WO2017163806A1 (en) * | 2016-03-24 | 2017-09-28 | 日本ゼオン株式会社 | Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery |
JP2018006333A (en) * | 2016-06-23 | 2018-01-11 | 荒川化学工業株式会社 | Binder solution for lithium ion battery positive electrode, powdery binder for lithium ion battery positive electrode, slurry for lithium ion battery positive electrode, positive electrode for lithium ion battery, and lithium ion battery |
JP2018006334A (en) * | 2016-06-23 | 2018-01-11 | 荒川化学工業株式会社 | Slurry for lithium ion battery negative electrode, method for manufacturing the same, negative electrode for lithium ion battery, and lithium ion battery |
JP2018026266A (en) * | 2016-08-10 | 2018-02-15 | 荒川化学工業株式会社 | Lithium ion secondary battery separator, method for manufacturing lithium ion secondary battery separator, and lithium ion secondary battery |
WO2019065909A1 (en) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery, and secondary battery |
JP2019075374A (en) * | 2017-10-17 | 2019-05-16 | エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. | Separator for secondary battery, method for manufacturing the same, and lithium secondary battery including the same |
JP2019140034A (en) * | 2018-02-14 | 2019-08-22 | Tdk株式会社 | Binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
KR20200028933A (en) | 2017-07-12 | 2020-03-17 | 니폰 제온 가부시키가이샤 | Binder composition for electrochemical device functional layer, composition for electrochemical device functional layer, functional layer for electrochemical device, and electrochemical device |
CN110885650A (en) * | 2018-09-07 | 2020-03-17 | 荒川化学工业株式会社 | Binder aqueous solution for lithium ion battery, slurry for lithium ion battery electrode, and lithium ion battery |
JP2020095780A (en) * | 2018-12-10 | 2020-06-18 | トヨタ自動車株式会社 | Positive electrode |
US10720647B2 (en) * | 2016-01-29 | 2020-07-21 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non- aqueous secondary battery |
KR20210080387A (en) | 2018-10-31 | 2021-06-30 | 니폰 제온 가부시키가이샤 | Binder composition for secondary battery and manufacturing method thereof, slurry composition for secondary battery, functional layer for secondary battery and manufacturing method thereof, electrode layer for secondary battery, and secondary battery |
JP2022528479A (en) * | 2019-09-23 | 2022-06-10 | エルジー エナジー ソリューション リミテッド | Binder for lithium secondary battery negative electrode and negative electrode for lithium secondary battery containing it |
WO2023074967A1 (en) * | 2021-10-25 | 2023-05-04 | 주식회사 한솔케미칼 | Copolymer for separator, and secondary battery comprising same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203370A (en) * | 2004-01-17 | 2005-07-28 | Samsung Sdi Co Ltd | Lithium secondary battery anode and lithium secondary battery using it |
WO2011024789A1 (en) * | 2009-08-24 | 2011-03-03 | Jsr株式会社 | Composition for forming electrode, slurry for forming electrode, electrode, and electrochemical device |
JP2012151108A (en) * | 2010-12-28 | 2012-08-09 | Mitsui Chemicals Inc | Electrochemical cell acrylic water dispersion and aqueous paste and manufacturing method of electrode and battery consisting of the same |
JP2012527070A (en) * | 2009-05-11 | 2012-11-01 | ネグゼオン・リミテッド | Lithium ion rechargeable battery cell |
JP2014130751A (en) * | 2012-12-28 | 2014-07-10 | Mitsubishi Rayon Co Ltd | Binder resin for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
JP2014165131A (en) * | 2013-02-27 | 2014-09-08 | Nippon Zeon Co Ltd | Method for manufacturing slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, and lithium ion secondary battery |
-
2013
- 2013-07-22 JP JP2013151464A patent/JP2015022956A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203370A (en) * | 2004-01-17 | 2005-07-28 | Samsung Sdi Co Ltd | Lithium secondary battery anode and lithium secondary battery using it |
JP2012527070A (en) * | 2009-05-11 | 2012-11-01 | ネグゼオン・リミテッド | Lithium ion rechargeable battery cell |
WO2011024789A1 (en) * | 2009-08-24 | 2011-03-03 | Jsr株式会社 | Composition for forming electrode, slurry for forming electrode, electrode, and electrochemical device |
JP2012151108A (en) * | 2010-12-28 | 2012-08-09 | Mitsui Chemicals Inc | Electrochemical cell acrylic water dispersion and aqueous paste and manufacturing method of electrode and battery consisting of the same |
JP2014130751A (en) * | 2012-12-28 | 2014-07-10 | Mitsubishi Rayon Co Ltd | Binder resin for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
JP2014165131A (en) * | 2013-02-27 | 2014-09-08 | Nippon Zeon Co Ltd | Method for manufacturing slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, and lithium ion secondary battery |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015122322A1 (en) * | 2014-02-14 | 2017-03-30 | 日本ゼオン株式会社 | Secondary battery porous membrane composition, secondary battery porous membrane, and secondary battery |
JP2016171074A (en) * | 2015-03-13 | 2016-09-23 | 日本ゼオン株式会社 | Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery |
US10720647B2 (en) * | 2016-01-29 | 2020-07-21 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non- aqueous secondary battery |
KR102338192B1 (en) | 2016-03-24 | 2021-12-09 | 니폰 제온 가부시키가이샤 | Binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery |
JP7031576B2 (en) | 2016-03-24 | 2022-03-08 | 日本ゼオン株式会社 | Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries |
CN108780892A (en) * | 2016-03-24 | 2018-11-09 | 日本瑞翁株式会社 | Binder composition for non-aqueous secondary battery electrode, non-aqueous secondary battery slurry composition for electrode, non-aqueous secondary battery electrode and non-aqueous secondary battery |
KR20180127335A (en) * | 2016-03-24 | 2018-11-28 | 니폰 제온 가부시키가이샤 | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
JPWO2017163806A1 (en) * | 2016-03-24 | 2019-01-31 | 日本ゼオン株式会社 | Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery |
WO2017163806A1 (en) * | 2016-03-24 | 2017-09-28 | 日本ゼオン株式会社 | Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery |
EP3435456A4 (en) * | 2016-03-24 | 2019-08-07 | Zeon Corporation | Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery |
US10985374B2 (en) | 2016-03-24 | 2021-04-20 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery |
JP2018006334A (en) * | 2016-06-23 | 2018-01-11 | 荒川化学工業株式会社 | Slurry for lithium ion battery negative electrode, method for manufacturing the same, negative electrode for lithium ion battery, and lithium ion battery |
JP7156449B2 (en) | 2016-06-23 | 2022-10-19 | 荒川化学工業株式会社 | Binder aqueous solution for lithium ion battery negative electrode |
JP2021158125A (en) * | 2016-06-23 | 2021-10-07 | 荒川化学工業株式会社 | Slurry for lithium ion battery negative electrode and production method thereof, negative electrode for lithium ion battery, and lithium ion battery |
JP2018006333A (en) * | 2016-06-23 | 2018-01-11 | 荒川化学工業株式会社 | Binder solution for lithium ion battery positive electrode, powdery binder for lithium ion battery positive electrode, slurry for lithium ion battery positive electrode, positive electrode for lithium ion battery, and lithium ion battery |
JP2018026266A (en) * | 2016-08-10 | 2018-02-15 | 荒川化学工業株式会社 | Lithium ion secondary battery separator, method for manufacturing lithium ion secondary battery separator, and lithium ion secondary battery |
CN108305970A (en) * | 2016-08-10 | 2018-07-20 | 荒川化学工业株式会社 | Separator for lithium ion secondary battery and its manufacturing method and lithium rechargeable battery |
CN108305970B (en) * | 2016-08-10 | 2021-11-23 | 荒川化学工业株式会社 | Separator for lithium ion secondary battery, method for producing same, and lithium ion secondary battery |
KR20200028933A (en) | 2017-07-12 | 2020-03-17 | 니폰 제온 가부시키가이샤 | Binder composition for electrochemical device functional layer, composition for electrochemical device functional layer, functional layer for electrochemical device, and electrochemical device |
WO2019065909A1 (en) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery, and secondary battery |
US11978903B2 (en) | 2017-09-28 | 2024-05-07 | Zeon Corporation | Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery, and secondary battery |
KR20200060394A (en) | 2017-09-28 | 2020-05-29 | 니폰 제온 가부시키가이샤 | Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery and secondary battery |
JP7316773B2 (en) | 2017-10-17 | 2023-07-28 | エスケー イノベーション カンパニー リミテッド | SECONDARY BATTERY SEPARATOR, MANUFACTURING METHOD THEREOF, AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME |
JP2019075374A (en) * | 2017-10-17 | 2019-05-16 | エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. | Separator for secondary battery, method for manufacturing the same, and lithium secondary battery including the same |
JP2019140034A (en) * | 2018-02-14 | 2019-08-22 | Tdk株式会社 | Binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
CN110885650B (en) * | 2018-09-07 | 2022-06-14 | 荒川化学工业株式会社 | Binder aqueous solution for lithium ion battery, slurry for lithium ion battery electrode, and lithium ion battery |
JP2020043064A (en) * | 2018-09-07 | 2020-03-19 | 荒川化学工業株式会社 | Binder aqueous solution for lithium ion battery, slurry for lithium ion battery electrode and manufacturing method therefor, lithium ion battery electrode, and lithium ion battery |
CN110885650A (en) * | 2018-09-07 | 2020-03-17 | 荒川化学工业株式会社 | Binder aqueous solution for lithium ion battery, slurry for lithium ion battery electrode, and lithium ion battery |
KR20210080387A (en) | 2018-10-31 | 2021-06-30 | 니폰 제온 가부시키가이샤 | Binder composition for secondary battery and manufacturing method thereof, slurry composition for secondary battery, functional layer for secondary battery and manufacturing method thereof, electrode layer for secondary battery, and secondary battery |
JP2020095780A (en) * | 2018-12-10 | 2020-06-18 | トヨタ自動車株式会社 | Positive electrode |
JP2022528479A (en) * | 2019-09-23 | 2022-06-10 | エルジー エナジー ソリューション リミテッド | Binder for lithium secondary battery negative electrode and negative electrode for lithium secondary battery containing it |
JP7274604B2 (en) | 2019-09-23 | 2023-05-16 | エルジー エナジー ソリューション リミテッド | Binder for lithium secondary battery negative electrode and negative electrode for lithium secondary battery containing the same |
WO2023074967A1 (en) * | 2021-10-25 | 2023-05-04 | 주식회사 한솔케미칼 | Copolymer for separator, and secondary battery comprising same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015022956A (en) | Slurry for power storage device, power storage device electrode, separator and power storage device | |
JP2015118908A (en) | Binder composition for electricity storage device, slurry for electricity storage device, electricity storage device electrode, separator, and electricity storage device | |
JP2015106488A (en) | Slurry for electricity storage device negative electrode and electricity storage device negative electrode, slurry for electricity storage device positive electrode and electricity storage device positive electrode, and electricity storage device | |
WO2015008626A1 (en) | Binder composition for storage device, slurry for storage device, electrode for storage device, separator, and storage device | |
JP5708872B1 (en) | Nonaqueous secondary battery binder, nonaqueous secondary battery resin composition, nonaqueous secondary battery separator, nonaqueous secondary battery electrode and nonaqueous secondary battery | |
US10403896B2 (en) | Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device | |
JP6233577B2 (en) | Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device | |
JP6465323B2 (en) | Nonaqueous electrolyte secondary battery electrode binder and use thereof | |
JP5652633B1 (en) | Lithium ion secondary battery composition, lithium ion secondary battery slurry, lithium ion secondary battery electrode, lithium ion secondary battery separator, and lithium ion secondary battery | |
JP5499951B2 (en) | Secondary battery binder, production method, secondary battery negative electrode composition, and secondary battery | |
JP6645101B2 (en) | Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6388145B2 (en) | Nonaqueous electrolyte secondary battery electrode mixture layer composition, method for producing the same, and use thereof | |
WO2016158939A1 (en) | Composition for electrode mixture layer of nonaqueous electrolyte secondary battery, production method for said composition, and use of said composition | |
JP6759589B2 (en) | Conductive composition for electrochemical element, composition for electrochemical element electrode, current collector with adhesive layer and electrode for electrochemical element | |
WO2017122540A1 (en) | Aqueous binder composition for secondary cell electrode, slurry for secondary cell electrode, binder, secondary cell electrode, and secondary cell | |
JP5459526B1 (en) | Binder composition for power storage device, slurry for power storage device electrode, power storage device electrode, slurry for protective film formation, protective film, and power storage device | |
JP2016134241A (en) | Binder composition for power storage device, slurry for power storage device electrode, power storage device electrode and power storage device | |
JP2017120708A (en) | Composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device | |
WO2016002586A1 (en) | Binder composition for power storage devices | |
JP2016051677A (en) | Binder composition for power storage device, slurry for power storage device, power storage device electrode, separator and power storage device | |
JP7143114B2 (en) | Composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device | |
JP2016134242A (en) | Binder composition for power storage device, slurry for power storage device electrode, power storage device electrode and power storage device | |
JP2016051678A (en) | Binder composition for power storage device positive electrode, slurry for power storage device positive electrode, power storage device positive electrode, and power storage device | |
WO2023013594A1 (en) | Electrode binder, electrode mixture layer formation composition, lithium ion secondary battery electrode, and lithium ion secondary battery | |
JP2017107792A (en) | Composition for electricity storage device electrode, slurry for electricity storage device electrode, electricity storage device electrode, and electricity storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161229 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170531 |