JP2015017730A - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP2015017730A JP2015017730A JP2013144110A JP2013144110A JP2015017730A JP 2015017730 A JP2015017730 A JP 2015017730A JP 2013144110 A JP2013144110 A JP 2013144110A JP 2013144110 A JP2013144110 A JP 2013144110A JP 2015017730 A JP2015017730 A JP 2015017730A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- refrigerating machine
- machine oil
- carbon atoms
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
- Lubricants (AREA)
- Compressor (AREA)
Abstract
Description
本発明は、空気調和機に関する。 The present invention relates to an air conditioner.
空気調和機では、冷媒としてR410Aが使用されている。しかし、地球環境に及ぼす影響を低減するために、地球温暖化係数(以下「GWP」という。)がR410Aの1/3程度であるジフルオロメタン(以下「R32」という。)へ移行することが検討されている。 In the air conditioner, R410A is used as a refrigerant. However, in order to reduce the influence on the global environment, it is considered to shift to difluoromethane (hereinafter referred to as “R32”) whose global warming potential (hereinafter referred to as “GWP”) is about 1/3 of R410A. Has been.
ところで、圧縮機に内蔵されたモータの絶縁フィルムは、加工が容易であることが要求される。現在、絶縁フィルムには加工が容易なポリエチレンテレフタレート(以下「PET」という。)やポリエチレンナフタレート(以下「PEN」という。)が用いられている。 By the way, the motor insulation film built in the compressor is required to be easily processed. Currently, polyethylene terephthalate (hereinafter referred to as “PET”) and polyethylene naphthalate (hereinafter referred to as “PEN”), which are easy to process, are used for the insulating film.
しかし、PETやPENは加水分解性を有するため、冷凍サイクル内の水分によってPETやPENが加水分解を起こすおそれがある。 However, since PET and PEN are hydrolyzable, there is a possibility that the PET and PEN may be hydrolyzed by moisture in the refrigeration cycle.
加水分解を起こさない材料としてポリフェニレンサルファイドやポリエーテルエーテルケトンを絶縁フィルムに用いることで、モータの絶縁を維持することもできるが、コストアップや硬さによる生産性の悪化といった課題が生じる。 Although the insulation of the motor can be maintained by using polyphenylene sulfide or polyetheretherketone as an insulating film as a material that does not cause hydrolysis, problems such as increased cost and reduced productivity due to hardness arise.
一方、特許文献1には、冷凍機油に吸湿性のあるポリビニルエーテルを用いることで、冷凍サイクル内の水分を吸湿し、絶縁フィルムの加水分解を抑制することが開示されている。 On the other hand, Patent Document 1 discloses that moisture in the refrigeration cycle is absorbed by using polyvinyl ether having hygroscopicity for the refrigerating machine oil to suppress hydrolysis of the insulating film.
しかしながら、ポリビニルエーテル油は化学反応を起こして水を吸湿するわけではなく、単に水分を保持しているに過ぎない。そのため、ポリビニルエーテル油は、加熱すると保持した水分を放出する特性がある。 However, polyvinyl ether oil does not cause a chemical reaction to absorb water, but merely retains moisture. Therefore, polyvinyl ether oil has a characteristic of releasing retained moisture when heated.
絶縁フィルムは圧縮機に内蔵されており、運転が開始されると、圧縮機の内部は高温になる。特に、冷媒としてR32を用いた場合、R410Aに比べて圧縮機の内部がより高温になりやすい。つまり、水分を含んだポリビニルエーテル油は圧縮機の内部で水分を放出し、絶縁フィルムが加水分解を起こすおそれがある。 The insulating film is built in the compressor, and when the operation is started, the inside of the compressor becomes hot. In particular, when R32 is used as the refrigerant, the interior of the compressor is likely to be hotter than R410A. That is, the polyvinyl ether oil containing moisture may release moisture inside the compressor, and the insulating film may be hydrolyzed.
本発明の目的は、圧縮機に内蔵されたモータの絶縁フィルムの加水分解を抑制した空気調和機を提供することにある。 The objective of this invention is providing the air conditioner which suppressed the hydrolysis of the insulating film of the motor incorporated in the compressor.
本発明の空気調和機は、圧縮機、室外熱交換器、膨張機構及び室内熱交換器と、R32、若しくは、R32が50重量%より多く含まれている混合冷媒からなる冷媒と、エステル其の数が4つ以上、飽和水分量が1000ppm以上、且つ、動粘度が40mm2/s〜100mm2/sの範囲内であって、炭素数が5つ以下の脂肪酸を有するポリオールエステル油を備え、圧縮機はモータを内蔵し、モータの絶縁フィルムは、ポリエチレンテレフタレート又はポリエチレンナフタレートからなる。 The air conditioner of the present invention includes a compressor, an outdoor heat exchanger, an expansion mechanism, an indoor heat exchanger, a refrigerant composed of R32 or a mixed refrigerant containing more than 50% by weight of R32, an ester, number four or more, the saturated water content of 1000ppm or higher, and a kinematic viscosity in a range of 40mm 2 / s~100mm 2 / s, with a polyol ester oil carbon atoms having five or less fatty acid, The compressor has a built-in motor, and the insulating film of the motor is made of polyethylene terephthalate or polyethylene naphthalate.
本発明によれば、圧縮機のモータの絶縁フィルムの加水分解を抑制した空気調和機を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which suppressed the hydrolysis of the insulating film of the motor of a compressor can be provided.
以下、本発明の実施形態に係る空気調和機について説明する。 Hereinafter, an air conditioner according to an embodiment of the present invention will be described.
図1は冷暖房兼用の空気調和機の概略図である。本実施形態の空気調和機は、圧縮機1、室外熱交換器3、膨張機構4、室内熱交換器5を配管で接続し、冷媒が循環する。 FIG. 1 is a schematic view of an air conditioner that is also used for air conditioning. The air conditioner of this embodiment connects the compressor 1, the outdoor heat exchanger 3, the expansion mechanism 4, and the indoor heat exchanger 5 with piping, and a refrigerant circulates.
冷房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は、四方弁2を介して室外熱交換器3に流れる。高温高圧のガス冷媒は、凝縮器として機能する室外熱交換器3で冷却され、高圧の液冷媒となる。高圧の液冷媒は、膨張機構4で膨張され、僅かにガスを含む低温低圧の液冷媒となって、室内熱交換器6に流れる。低温低圧の液冷媒は、蒸発器として機能する室内熱交換器6で加熱され、低温のガス冷媒となり、再び四方弁2を介して圧縮機1に戻る。暖房運転の場合、四方弁2によって冷媒の流れが変えられ、冷媒は冷房運転と逆方向に流れる。 In the case of the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows to the outdoor heat exchanger 3 via the four-way valve 2. The high-temperature and high-pressure gas refrigerant is cooled by the outdoor heat exchanger 3 functioning as a condenser, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is expanded by the expansion mechanism 4 and becomes a low-temperature and low-pressure liquid refrigerant containing a slight amount of gas and flows to the indoor heat exchanger 6. The low-temperature and low-pressure liquid refrigerant is heated by the indoor heat exchanger 6 functioning as an evaporator, becomes a low-temperature gas refrigerant, and returns to the compressor 1 through the four-way valve 2 again. In the heating operation, the refrigerant flow is changed by the four-way valve 2, and the refrigerant flows in the opposite direction to the cooling operation.
なお、四方弁2を用いずに、冷房あるいは暖房のいずれか一方のみの機能を有するように構成してもよい。また、膨張機構4として、電子膨張弁、キャピラリーチューブや温度式膨張機構などを用いることができる。 In addition, you may comprise so that it may have only the function of either cooling or heating, without using the four-way valve 2. As the expansion mechanism 4, an electronic expansion valve, a capillary tube, a temperature type expansion mechanism, or the like can be used.
図2は圧縮機の概略図である。圧縮機1は、端板9と渦巻状ラップ10を有する固定スクロール部材8と、ラップ12を有する旋回スクロール部材11をお互いにラップ10とラップ12とを向い合わせにして噛み合わせて圧縮機構部を形成し、旋回スクロール部材11をクランクシャフト13によって旋回運動させる。固定スクロール部材8及び旋回スクロール部材11によって形成される圧縮室14(14a、14b・・・)のうち、最も外側に位置している圧縮室は、旋回運動にともなって容積が次第に縮小しながら、固定スクロール部材8及び旋回スクロール部材11の中心に向かって移動していく。圧縮室14が固定スクロール部材8及び旋回スクロール部材11の中心近傍に達したとき、圧縮室14が吐出口15と連通して、圧縮室14で圧縮されたガス冷媒が吐出パイプ18を通じて圧縮機1の外に吐出される。 FIG. 2 is a schematic view of the compressor. The compressor 1 engages the fixed scroll member 8 having the end plate 9 and the spiral wrap 10 and the orbiting scroll member 11 having the wrap 12 with the wrap 10 and the wrap 12 facing each other to engage the compression mechanism portion. Then, the orbiting scroll member 11 is orbited by the crankshaft 13. Of the compression chambers 14 (14a, 14b...) Formed by the fixed scroll member 8 and the orbiting scroll member 11, the outermost compression chamber is gradually reduced in volume with the orbiting motion. The fixed scroll member 8 and the orbiting scroll member 11 move toward the center. When the compression chamber 14 reaches the vicinity of the center of the fixed scroll member 8 and the orbiting scroll member 11, the compression chamber 14 communicates with the discharge port 15, and the gas refrigerant compressed in the compression chamber 14 passes through the discharge pipe 18. It is discharged outside.
圧縮機1は、圧力容器17内に電動モータ19を内蔵しており、圧縮機1は一定速あるいは図示しないインバータによって制御された電圧に応じた回転速度でクランクシャフト13が回転し、圧縮動作を行う。電動モータ19は冷媒および冷凍機油の雰囲気中で作動する。モータ19の図示しないコイルの相間や積層鋼鈑の間には、絶縁を保持するために絶縁フィルムが配置されている。また、電動モータ19の下部に油溜め部が設けられており、油溜め部に溜まっている冷凍機油は圧力差によってクランクシャフト13に設けられた油孔21を通って、旋回スクロール部材11とクランクシャフト13との摺動部や滑り軸受け20等の潤滑に供される。 The compressor 1 has a built-in electric motor 19 in the pressure vessel 17, and the compressor 1 rotates at a constant speed or at a rotational speed corresponding to a voltage controlled by an inverter (not shown) to perform a compression operation. Do. The electric motor 19 operates in an atmosphere of refrigerant and refrigeration oil. An insulating film is arranged between the phases of coils (not shown) of the motor 19 and between the laminated steel plates in order to maintain insulation. Further, an oil sump is provided at the lower portion of the electric motor 19, and the refrigerating machine oil accumulated in the oil sump passes through the oil hole 21 provided in the crankshaft 13 due to a pressure difference, and the orbiting scroll member 11 and the crank. It is used for lubrication of the sliding portion with the shaft 13, the sliding bearing 20, and the like.
絶縁フィルムには、加工が容易なPETまたはPENを用いている。しかし、このPETやPENは加水分解性を有するため、冷凍サイクル中に存在する水分を何らかの形で除去する必要がある。そこで、本実施形態では、冷凍サイクル中に存在する水分を除去する手段として、冷凍機油に吸湿性および水分との反応性を有するポリオールエステル油を用いている。 As the insulating film, PET or PEN, which is easy to process, is used. However, since PET and PEN are hydrolyzable, it is necessary to remove the water present in the refrigeration cycle in some form. Therefore, in the present embodiment, as a means for removing moisture present in the refrigeration cycle, a polyol ester oil having hygroscopicity and reactivity with moisture is used as the refrigerating machine oil.
表3は、ポリオールエステル油による絶縁フィルムの加水分解の抑制について、実験した結果である。実施例1は、下記化学式(1)および(2)で表されるR32に相溶するポリオールエステル油を用い、比較例は、吸湿性を有するが水分との反応性を有しない冷凍機油を用いた。具体的には、比較例1は下記化学式(3)(式中、m=90、n=10を表し、R2およびR3はメチルオキシ基及びエチルオキシ基を表す。)で表される側鎖エーテル油、比較例2は下記化学式(4)(式中、R4およびR5は水素もしくは炭素数1〜3のアルキル基を表す。)で表される環状エーテル油を用いた。 Table 3 shows the results of experiments on the suppression of hydrolysis of the insulating film by polyol ester oil. Example 1 uses a polyol ester oil that is compatible with R32 represented by the following chemical formulas (1) and (2), and the comparative example uses a refrigerating machine oil that is hygroscopic but not reactive with moisture. It was. Specifically, Comparative Example 1 is a side chain represented by the following chemical formula (3) (wherein m = 90 and n = 10, and R 2 and R 3 represent a methyloxy group and an ethyloxy group). The ether oil, Comparative Example 2, used a cyclic ether oil represented by the following chemical formula (4) (wherein R 4 and R 5 represent hydrogen or an alkyl group having 1 to 3 carbon atoms).
ルームエアコンを設置する際に、真空引きをせずに室内機と室外機を接続配管で接続した場合、外気の湿度や接続配管の長さによって異なるが、冷凍サイクル内に最大で1000ppmの水分が混入すると考えられる。そのため、圧縮機1に混入する水分量を1、000ppmと想定し、油中水分量を1、000ppmとした。 When installing a room air conditioner, if the indoor unit and the outdoor unit are connected by a connecting pipe without evacuation, the maximum amount of water is 1000 ppm in the refrigeration cycle, although it depends on the humidity of the outside air and the length of the connecting pipe. It is thought that it mixes. Therefore, the moisture content mixed into the compressor 1 is assumed to be 1,000 ppm, and the moisture content in the oil is set to 1,000 ppm.
また、冷媒としてR32を採用した場合、圧縮機1の吐出温度が140℃まで上昇する可能性がある。そこで、冷媒としてR32を採用した場合における絶縁フィルムの信頼性試験を行なった。表1は、R32単体と冷凍機油との混合液中に絶縁フィルムを140℃で40日間浸漬した後、冷凍機油の粘度及びR32との臨界溶解温度、並びに、絶縁フィルムの引張強度及び伸度を測定した結果である。 Moreover, when R32 is employ | adopted as a refrigerant | coolant, the discharge temperature of the compressor 1 may rise to 140 degreeC. Then, the reliability test of the insulating film in case R32 is employ | adopted as a refrigerant | coolant was done. Table 1 shows the viscosity of refrigerating machine oil, the critical solution temperature with R32, and the tensile strength and elongation of the insulating film after dipping the insulating film in a mixed solution of R32 alone and refrigerating machine oil at 140 ° C. for 40 days. It is the result of measurement.
実施例1は、表1に示す通り、冷凍機油の粘度及びR32との臨界溶解温度は変わらず、絶縁フィルムの破断強度および伸度は初期値に対して80%以上を保つ結果となった。 In Example 1, as shown in Table 1, the viscosity of the refrigerating machine oil and the critical melting temperature with R32 were not changed, and the breaking strength and elongation of the insulating film were maintained at 80% or more with respect to the initial values.
一方、比較例1は、表1に示す通り、冷凍機油の粘度やR32との臨界溶解温度は変わらない結果となったが、絶縁フィルムの伸度が初期値に対して70%以下となった。絶縁フィルムは使用する場所にもよるが、主に折り曲げたりチューブ状に巻きつけたりして使用することが多いため、引張強度よりもどの程度伸びるか、つまり伸度が重要となる。伸度が前歴の70%を下回ると、使用中にフィルムの折り曲げ部に亀裂が生じたり、フィルムが破断したりする可能性が考えられるため、比較例1は絶縁フィルムの劣化を抑制できていないと言える。 On the other hand, in Comparative Example 1, as shown in Table 1, the viscosity of the refrigerating machine oil and the critical solution temperature with R32 did not change, but the elongation of the insulating film was 70% or less with respect to the initial value. . Although the insulating film depends on the place where it is used, it is often used mainly by being bent or wound into a tube shape, and therefore, how much the insulating film extends beyond the tensile strength, that is, the elongation is important. If the elongation is less than 70% of the previous history, there is a possibility that the folded portion of the film is cracked during use or the film may be broken. Therefore, Comparative Example 1 cannot suppress deterioration of the insulating film. It can be said.
また、比較例2は、表1に示す通り、絶縁フィルムの劣化物と思われる成分が析出し冷凍機油の白濁が見られた。絶縁フィルムの劣化物は油中に溶解しないため、キャピラリーチューブ等を閉塞する可能性がある。冷却するとその成分が凝集し、より白濁が濃くなり臨界溶解温度を測定することが出来なかった。絶縁フィルムの伸度も70%以下となり、絶縁フィルムの劣化を抑制できない結果となった。 In Comparative Example 2, as shown in Table 1, a component that was considered to be a deteriorated insulating film was precipitated, and the turbidity of the refrigerating machine oil was observed. Since the degradation product of the insulating film is not dissolved in the oil, there is a possibility that the capillary tube or the like is blocked. When cooled, the components aggregated, becoming more cloudy and the critical solution temperature could not be measured. The elongation of the insulating film was also 70% or less, and it was impossible to suppress the deterioration of the insulating film.
以上の結果より、絶縁フィルムの加水分解による劣化を抑制するためには、吸湿性および水分との反応性を有するポリオールエステル油を冷凍機油として使用することが有効であることが判る。 From the above results, it can be seen that it is effective to use a polyol ester oil having hygroscopicity and reactivity with moisture as a refrigerating machine oil in order to suppress degradation due to hydrolysis of the insulating film.
また、本実施形態の冷凍機油は、冷凍サイクル中の水分を吸湿するために、ポリオールエステル油の中でも吸湿性の高いものが好ましい。空気調和機には、上述した通り、1、000ppm程度の水分が混入する可能性があるため、冷凍機油の飽和水分量は1、000ppm以上であることが必要となる。 In addition, the refrigerating machine oil of the present embodiment is preferably a highly hygroscopic oil among polyol ester oils in order to absorb moisture in the refrigeration cycle. Since the air conditioner may contain about 1,000 ppm of moisture as described above, the saturated moisture content of the refrigerating machine oil needs to be 1,000 ppm or more.
表2は、ポリオールエステル油に水分量が1、000ppmとなるように水を注入して振り混ぜ、観察した結果である。冷凍機油成分Aは多価アルコールとしてネオペンチルグリコール(エステル基の数:2)を使用したもの、冷凍機油成分Bは多価アルコールとしてトリメチロールプロパン(エステル基の数:3)を使用したもの、冷凍機油成分Cは多価アルコールとしてペンタエリスリトール(エステル基の数:4)を使用したもの、冷凍機油成分Dは表1の実施例1と同様のものであり多価アルコールとしてペンタエリスリトールとジペンタエリスリトール(エステル基の数:6)を使用したものをそれぞれ用いた。 Table 2 shows the results obtained by injecting water into the polyol ester oil so that the water content becomes 1,000 ppm, shaking and observing. Refrigerator oil component A uses neopentyl glycol (number of ester groups: 2) as a polyhydric alcohol, Refrigerator oil component B uses trimethylolpropane (number of ester groups: 3) as a polyhydric alcohol, The refrigerating machine oil component C uses pentaerythritol (number of ester groups: 4) as the polyhydric alcohol, and the refrigerating machine oil component D is the same as that in Example 1 in Table 1, and the polyhydric alcohols are pentaerythritol and dipentayl. Those using erythritol (number of ester groups: 6) were used.
表2に示す通り、構成中のエステル基の数が少ない冷凍機油成分Aおよび冷凍機油成分Bは、水分が分離し、油中に沈殿している様子が観察された。 As shown in Table 2, it was observed that the refrigerating machine oil component A and the refrigerating machine oil component B having a small number of ester groups in the structure were separated in water and precipitated in the oil.
一方、冷凍機油成分Cおよび冷凍機油成分Dは、60分以上経過しても、水分が分離しない結果となった。つまり、ポリオールエステル油は、エステル基の数が4つ以上であれば、飽和水分量が1、000ppm以上となることがわかった。 On the other hand, with regard to the refrigerating machine oil component C and the refrigerating machine oil component D, the water did not separate even after 60 minutes or longer. That is, it was found that the polyol ester oil has a saturated water content of 1,000 ppm or more when the number of ester groups is 4 or more.
冷媒の種類によって相溶する冷凍機油は異なる。R32と相溶性の悪い冷凍機油を使用すると、冬場の起動時に摺動部に冷凍機油が摺動部に供給されにくく、又、圧縮機1の外に吐出した冷凍機油が冷凍サイクルの低温部に滞留することで油戻り性が悪くなる。 The refrigerating machine oil to be compatible varies depending on the type of refrigerant. If a refrigerating machine oil that is incompatible with R32 is used, it is difficult for the refrigerating machine oil to be supplied to the sliding part at the start-up in winter, and the refrigerating machine oil discharged outside the compressor 1 enters the low temperature part of the refrigerating cycle. The oil return property deteriorates by staying.
そこで、冷凍機油とR32との相溶性評価を行った。表3は、R32との相溶性評価に用いた冷凍機油であり、表4は表3に記載の冷凍機油の相溶性評価である。冷凍機油成分C1乃至C5は、エステル其の数が最大4つのペンタエリスリトールである。冷凍機油成分Dは、エステル其の数が最大6つのペンタエリスリトールとジペンタエリスリトールである。冷凍機油成分B1は、エステル其の数が最大3つのトリメチロールプロパンである。冷凍機油成分A1は、エステル其の数が最大2つのネオペンチルグリコールである。 Then, compatibility evaluation with refrigeration oil and R32 was performed. Table 3 shows the refrigerating machine oil used for the compatibility evaluation with R32, and Table 4 shows the refrigerating machine oil compatibility evaluation shown in Table 3. The refrigerating machine oil components C1 to C5 are pentaerythritol having up to four esters. The refrigerating machine oil component D is pentaerythritol and dipentaerythritol having a maximum of 6 esters. The refrigerating machine oil component B1 is trimethylolpropane having a maximum of three esters. The refrigerating machine oil component A1 is neopentyl glycol having a maximum of two esters.
比較例6に示すように、冷凍機油成分C2とR410Aの低温側臨界溶解温度は10℃以下である。しかし、比較例1に示すように、比較例8と同じ冷凍機油成分C2とR32の低温側臨界溶解温度は20℃以上であり、R410Aを用いた空気調和機に使われてきた冷凍機油成分C2は、R32との相溶性が悪い結果となった。 As shown in Comparative Example 6, the low-temperature critical dissolution temperature of the refrigerator oil components C2 and R410A is 10 ° C. or lower. However, as shown in Comparative Example 1, the low temperature side critical dissolution temperature of the same refrigerating machine oil components C2 and R32 as in Comparative Example 8 is 20 ° C. or higher, and the refrigerating machine oil component C2 that has been used in an air conditioner using R410A. Resulted in poor compatibility with R32.
また、比較例2、3に示すように、冷凍機油成分C2に対し、粘度を変化させた冷凍機油成分C3や冷凍機油成分C4であっても、相溶性が改善されない結果となった。 Further, as shown in Comparative Examples 2 and 3, the compatibility was not improved even with the refrigerating machine oil component C3 and the refrigerating machine oil component C4 in which the viscosity was changed with respect to the refrigerating machine oil component C2.
一方、比較例6、7に示すように、比較的炭素数の少ない脂肪酸を使用した冷凍機油成分B1及び冷凍機油成分A1とR32の臨界溶解温度は−10度以下となる結果となった。つまり、ポリオールエステル油は、比較的炭素数の少ない脂肪酸を原料にすることで、R32との相溶性が改善されることがわかった。 On the other hand, as shown in Comparative Examples 6 and 7, the critical solution temperature of the refrigerating machine oil component B1 and the refrigerating machine oil components A1 and R32 using fatty acids having a relatively small number of carbon atoms was -10 degrees or less. That is, it was found that the polyol ester oil is improved in compatibility with R32 by using a fatty acid having a relatively small number of carbons as a raw material.
ところで、本実施形態の空気調和機に用いる冷凍機油の粘度は、圧縮機1の種類によって異なるが、スクロール圧縮機やロータリ圧縮機の場合では40℃における粘度が40mm2/s〜100mm2/sの範囲が好ましい。粘度40mm2/s未満の場合は冷媒が溶解した冷凍機油の粘度が低くなってしまい、圧縮機1の内部での油膜が十分に保持されず潤滑性が保てない。また、粘度100mm2/sを超えると粘性抵抗、摩擦抵抗等の機会損失が増大し、圧縮機効率を低下させる恐れがある。 Incidentally, the viscosity of the refrigerating machine oil used in the air conditioner of the present embodiment varies depending on the kind of the compressor 1, the viscosity at 40 ° C. in the case of a scroll compressor or a rotary compressor 40mm 2 / s~100mm 2 / s The range of is preferable. When the viscosity is less than 40 mm 2 / s, the viscosity of the refrigerating machine oil in which the refrigerant is dissolved becomes low, and the oil film inside the compressor 1 is not sufficiently maintained, and the lubricity cannot be maintained. On the other hand, when the viscosity exceeds 100 mm 2 / s, opportunity loss such as viscosity resistance and frictional resistance increases, which may reduce the compressor efficiency.
比較例6、7に示すように、冷凍機油成分B1及び冷凍機油成分A1は、R32との相溶性に優れるが、構成中のエステル基の平均の数が少ないため、粘度が30mm2/s以下であり、空気調和機の冷凍機油として採用することはできない。 As shown in Comparative Examples 6 and 7, the refrigerating machine oil component B1 and the refrigerating machine oil component A1 are excellent in compatibility with R32, but the viscosity is 30 mm 2 / s or less because the average number of ester groups in the composition is small. Therefore, it cannot be employed as a refrigerating machine oil for an air conditioner.
これに対して、比較的炭素数の少ない脂肪酸とエステル基の平均の数が4以上となるアルコールを使用した実施形態1、2に示す冷凍機油成分D1及び冷凍機油成分C1は、R32との低温側臨界溶解温度が10℃以下であり、動粘度も40mm2/s〜100mm2/sの範囲にあり、冷凍空調装置に適用することが可能である。 On the other hand, the refrigerating machine oil component D1 and the refrigerating machine oil component C1 shown in the first and second embodiments using the fatty acid having a relatively small number of carbon atoms and the alcohol having an average number of ester groups of 4 or more are low in temperature with R32. side critical solution temperature is at 10 ° C. or less, a kinematic viscosity in the range of 40mm 2 / s~100mm 2 / s, it can be applied to the refrigeration air conditioning system.
以上、説明したとおり、本実施形態における冷凍機油は、エステル其の数が4つ以上、飽和水分量が1000ppm以上、且つ、動粘度が40mm2/s〜100mm2/sの範囲内であって、炭素数が5つ以下の脂肪酸を有するポリオールエステル油である。 As explained above, the refrigerating machine oil in this embodiment, esters its number 4 or more, the saturated water content of 1000ppm or higher, and a kinematic viscosity in a range of 40mm 2 / s~100mm 2 / s A polyol ester oil having a fatty acid having 5 or less carbon atoms.
飽和水分量1、000ppm以上、R32との低温側臨界溶解温度が10℃以下、動粘度が40mm2/s〜100mm2/sの範囲となる条件を満たす冷凍機油を作製するために、原料として、例えば、多価アルコールは、ペンタエリスリトール、ジペンタエリスリトールなどがある。1価の脂肪酸は、ブタン酸、ペンタン酸、2−メチルプロパン酸、2−メチルブタン酸等の炭素数4〜5と比較的炭素数の少ない脂肪酸などが挙げられる。なお、基油の異常な粘度低下を防止するために、オクタン酸、2−メチルペンタン酸、2−メチルヘキサン酸、2−エチルヘキサン酸、イソオクタン酸、3、5、5−トリメチルヘキサン酸等の炭素数8〜12の比較的炭素数の多い脂肪酸を混合してもよい。 Saturated water content 1,000ppm or more, 10 ° C. low temperature side critical solution temperature with R32 or less, for kinematic viscosity to produce satisfying refrigerating machine oil in the range of 40mm 2 / s~100mm 2 / s, as a raw material Examples of the polyhydric alcohol include pentaerythritol and dipentaerythritol. Examples of the monovalent fatty acid include fatty acids having 4 to 5 carbon atoms and relatively few carbon atoms such as butanoic acid, pentanoic acid, 2-methylpropanoic acid, and 2-methylbutanoic acid. In order to prevent abnormal viscosity reduction of the base oil, octanoic acid, 2-methylpentanoic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, isooctanoic acid, 3,5,5-trimethylhexanoic acid, etc. A fatty acid having a relatively large number of carbon atoms having 8 to 12 carbon atoms may be mixed.
さらに、分子中にエステル基を少なくとも4個保有する化学式(1)または(2)で示される脂肪酸のエステル油(式中のR1は炭素数4〜5のアルキル基又は炭素数8〜12のアルキル基であり、式中のR1の少なくとも1つは炭素数4〜5のアルキル基である)の群から選ばれる1種類又は2種類混合したものが好ましい。 Furthermore, the ester oil of the fatty acid represented by the chemical formula (1) or (2) having at least 4 ester groups in the molecule (wherein R 1 is an alkyl group having 4 to 5 carbon atoms or 8 to 12 carbon atoms). It is an alkyl group, and at least one of R 1 in the formula is preferably one or a mixture of two selected from the group of 4 to 5 carbon atoms.
本実施形態では、前記した冷凍機油に潤滑性向上剤、酸化防止剤、酸捕捉剤、消泡剤、金属不活性剤等を添加しても全く問題はない。特にポリオールエステル油は、水分共存下で加水分解に起因する劣化が生じるため、酸化防止剤、酸捕捉剤の配合は必須である。酸化防止剤としてはフェノール系である2、6−ジ−t−ブチル−p−クレゾール(DBPC)が好ましい。 In the present embodiment, there is no problem even if a lubricity improver, an antioxidant, an acid scavenger, an antifoaming agent, a metal deactivator, and the like are added to the above-described refrigerating machine oil. In particular, the polyol ester oil is deteriorated due to hydrolysis in the presence of moisture, and therefore it is essential to add an antioxidant and an acid scavenger. As the antioxidant, phenol-based 2,6-di-t-butyl-p-cresol (DBPC) is preferable.
また、冷凍機油中に水分捕捉効果のある添加剤を配合することにより、さらに効果を上げることが出来る。 Moreover, the effect can be further improved by blending an additive having a moisture trapping effect in the refrigerating machine oil.
配合する添加剤の一例として、アルキルグリシジルエステルが挙げられる。この添加剤は、ポリオールエステル油が劣化して生成した酸のみでなく、水分そのものも捕捉する効果があるため、冷凍機油としての水分を吸収する能力が向上する。 As an example of the additive to be blended, alkyl glycidyl ester can be mentioned. Since this additive has an effect of capturing not only the acid produced by the degradation of the polyol ester oil but also the water itself, the ability to absorb the water as the refrigerating machine oil is improved.
本実施形態の形態においては、圧縮機が備えるモータの絶縁フィルムは、PETまたはPENからなるが、エステル結合を有する他の重合樹脂やエステル結合を有する樹脂を用いた積層フィルムのような複合材でもよい。 In the form of this embodiment, the motor insulation film provided in the compressor is made of PET or PEN, but it may be a composite material such as other polymer resin having an ester bond or a laminated film using a resin having an ester bond. Good.
また、本発明による空気調和機は、凝縮器と蒸発器とが分離されて冷媒管で連結されたセパレートタイプであっても、凝縮器あるいは蒸発器を複数有するマルチタイプであっても適用可能である。 The air conditioner according to the present invention can be applied to a separate type in which a condenser and an evaporator are separated and connected by a refrigerant pipe, or a multi-type having a plurality of condensers or evaporators. is there.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
本実施形態では、冷媒としてR32を用いる場合について説明したが、R32が50重量%より多く含まれている混合冷媒にも適用可能である。 In this embodiment, the case where R32 is used as the refrigerant has been described. However, the present invention can also be applied to a mixed refrigerant containing more than 50% by weight of R32.
1…圧縮機、2…四方弁、3…室外熱交換器、4…膨張手段、5…室内熱交換機 DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Expansion means, 5 ... Indoor heat exchanger
Claims (2)
R32、若しくは、R32が50重量%より多く含まれている混合冷媒からなる冷媒と、
エステル其の数が4つ以上、飽和水分量が1000ppm以上、且つ、動粘度が40mm2/s〜100mm2/sの範囲内であって、炭素数が5つ以下の脂肪酸を有するポリオールエステル油を備え、
前記圧縮機はモータを内蔵し、前記モータの絶縁フィルムは、ポリエチレンテレフタレート又はポリエチレンナフタレートからなる空気調和機。 A compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger;
R32 or a refrigerant made of a mixed refrigerant containing more than 50% by weight of R32;
Esters its number 4 or more, the saturated water content of 1000ppm or higher, and a kinematic viscosity in a range of 40mm 2 / s~100mm 2 / s, a polyol ester oil carbon atoms having five or fewer fatty acids With
The compressor includes a motor, and the motor insulating film is made of polyethylene terephthalate or polyethylene naphthalate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013144110A JP2015017730A (en) | 2013-07-10 | 2013-07-10 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013144110A JP2015017730A (en) | 2013-07-10 | 2013-07-10 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015017730A true JP2015017730A (en) | 2015-01-29 |
Family
ID=52438891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013144110A Pending JP2015017730A (en) | 2013-07-10 | 2013-07-10 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015017730A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019158233A (en) * | 2018-03-13 | 2019-09-19 | Jxtgエネルギー株式会社 | Refrigerating machine, use of refrigerating machine oil, method for suppressing elution of oligomer, refrigerating machine oil, refrigerating machine working fluid composition, and method for manufacturing refrigerating machine oil |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10159730A (en) * | 1996-11-30 | 1998-06-16 | Techno Onishi:Kk | Coolant compressing device for refrigerator |
JP2967574B2 (en) * | 1990-11-16 | 1999-10-25 | 株式会社日立製作所 | Refrigeration equipment |
JP2002356691A (en) * | 2001-05-31 | 2002-12-13 | Matsushita Refrig Co Ltd | Refrigerator |
JP2011043276A (en) * | 2009-08-20 | 2011-03-03 | Daikin Industries Ltd | Refrigerating device |
JP2011052032A (en) * | 2009-08-31 | 2011-03-17 | Hitachi Appliances Inc | Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene |
WO2011086800A1 (en) * | 2010-01-18 | 2011-07-21 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
JP2011157408A (en) * | 2010-01-29 | 2011-08-18 | Hitachi Appliances Inc | Reciprocating compressor and refrigerator using the same |
JP2012031239A (en) * | 2010-07-29 | 2012-02-16 | Hitachi Appliances Inc | Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus |
JP2012057812A (en) * | 2010-09-06 | 2012-03-22 | Hitachi Appliances Inc | Refrigerant compressor and freezing cycle |
JP2013076533A (en) * | 2011-09-30 | 2013-04-25 | Hitachi Appliances Inc | Compressor for refrigeration and air conditioning, and refrigeration and air conditioning device |
-
2013
- 2013-07-10 JP JP2013144110A patent/JP2015017730A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2967574B2 (en) * | 1990-11-16 | 1999-10-25 | 株式会社日立製作所 | Refrigeration equipment |
JPH10159730A (en) * | 1996-11-30 | 1998-06-16 | Techno Onishi:Kk | Coolant compressing device for refrigerator |
JP2002356691A (en) * | 2001-05-31 | 2002-12-13 | Matsushita Refrig Co Ltd | Refrigerator |
JP2011043276A (en) * | 2009-08-20 | 2011-03-03 | Daikin Industries Ltd | Refrigerating device |
JP2011052032A (en) * | 2009-08-31 | 2011-03-17 | Hitachi Appliances Inc | Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene |
WO2011086800A1 (en) * | 2010-01-18 | 2011-07-21 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
JP2011157408A (en) * | 2010-01-29 | 2011-08-18 | Hitachi Appliances Inc | Reciprocating compressor and refrigerator using the same |
JP2012031239A (en) * | 2010-07-29 | 2012-02-16 | Hitachi Appliances Inc | Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus |
JP2012057812A (en) * | 2010-09-06 | 2012-03-22 | Hitachi Appliances Inc | Refrigerant compressor and freezing cycle |
JP2013076533A (en) * | 2011-09-30 | 2013-04-25 | Hitachi Appliances Inc | Compressor for refrigeration and air conditioning, and refrigeration and air conditioning device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019158233A (en) * | 2018-03-13 | 2019-09-19 | Jxtgエネルギー株式会社 | Refrigerating machine, use of refrigerating machine oil, method for suppressing elution of oligomer, refrigerating machine oil, refrigerating machine working fluid composition, and method for manufacturing refrigerating machine oil |
JP7198589B2 (en) | 2018-03-13 | 2023-01-04 | Eneos株式会社 | Refrigerator, use of refrigerating machine oil, method for suppressing oligomer elution, refrigerating machine oil, working fluid composition for refrigerating machine, and method for producing refrigerating machine oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5466772B2 (en) | Compressor for refrigeration and air-conditioning equipment | |
EP2930228B1 (en) | Cooling-equipment working-fluid composition | |
KR101987631B1 (en) | Refrigerating machine oil and working fluid composition for refrigerating machine | |
US20120024007A1 (en) | Compressor for refrigeration and air-conditioning and refrigerating and air-conditioning apparatus | |
JP2020034260A (en) | Refrigeration cycle device | |
JP5537999B2 (en) | Refrigerating machine oil for refrigerant R32 | |
CN109072895B (en) | Electric compressor and refrigerating and air-conditioning device | |
JP2011052032A (en) | Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene | |
CN111484890B (en) | Refrigerating machine oil composition and application thereof | |
CN114659288B (en) | Refrigeration cycle device | |
JP6271102B1 (en) | Refrigeration cycle equipment | |
JP2013133443A (en) | Refrigerating machine oil composition | |
CN109576037A (en) | A kind of refrigerator oil, refrigerated machine oil composition and its application | |
KR101196536B1 (en) | Refrigerant compressor and refrigeration cycle | |
JP2015014395A (en) | Air conditioner | |
JP2011094039A (en) | Refrigerant compressor, refrigeration cycle apparatus | |
JP6012878B2 (en) | Compressor and refrigeration cycle equipment | |
JP6522345B2 (en) | Refrigerating apparatus and sealed electric compressor | |
JP2015017730A (en) | Air conditioner | |
JP2016023902A (en) | Air conditioner | |
JP2014228154A (en) | Air conditioner | |
JP2010168436A (en) | Refrigerant compressor and refrigerator equipped with the same | |
JP7053938B1 (en) | Refrigeration cycle device | |
CN108517247A (en) | A kind of synthesis refrigerator oil and preparation method thereof | |
JP2005248773A (en) | Refrigerating device and refrigerant compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150722 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150818 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150903 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170314 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171010 |