[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015013844A - Fullerene derivative - Google Patents

Fullerene derivative Download PDF

Info

Publication number
JP2015013844A
JP2015013844A JP2013142700A JP2013142700A JP2015013844A JP 2015013844 A JP2015013844 A JP 2015013844A JP 2013142700 A JP2013142700 A JP 2013142700A JP 2013142700 A JP2013142700 A JP 2013142700A JP 2015013844 A JP2015013844 A JP 2015013844A
Authority
JP
Japan
Prior art keywords
group
fullerene derivative
substituent
halogen atom
fullerene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013142700A
Other languages
Japanese (ja)
Inventor
伊藤 敏幸
Toshiyuki Ito
敏幸 伊藤
上谷 保則
Yasunori Kamiya
保則 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University NUC
Sumitomo Chemical Co Ltd
Original Assignee
Tottori University NUC
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University NUC, Sumitomo Chemical Co Ltd filed Critical Tottori University NUC
Priority to JP2013142700A priority Critical patent/JP2015013844A/en
Publication of JP2015013844A publication Critical patent/JP2015013844A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Indole Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fullerene derivative that is used for an organic photoelectric conversion element to achieve an excellent open-circuit voltage.SOLUTION: This invention relates to the following fullerene derivative, where an A ring is a fullerene skeleton; Rand Rrepresent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an arylalkyl group, or a univalent heterocyclic group; and Rand Rrepresent a univalent heterocyclic group selected from the group consisting of an aryl group, an arylalkyl group, a 2-thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a piperidyl group, a quinolyl group and an isoquinolyl group, or a specific group.

Description

本発明は、フラーレン誘導体、かかるフラーレン誘導体を含む組成物、及びかかるフラーレン誘導体又は組成物を含む層を備える有機光電変換素子に関する。   The present invention relates to a fullerene derivative, a composition containing such a fullerene derivative, and an organic photoelectric conversion device comprising a layer containing such fullerene derivative or composition.

電荷輸送性(電子輸送性又は正孔輸送性)を有する有機半導体材料は、有機太陽電池、光センサー等に用いられる有機光電変換素子等への適用が検討されている。例えば、有機半導体材料であるフラーレン誘導体は、有機太陽電池への適用が検討されている。このようなフラーレン誘導体としては、例えば、[6,6]−フェニルC61−酪酸メチルエステル(以下、[60]−PCBMという。)が知られている(非特許文献1参照)。   Application of organic semiconductor materials having a charge transporting property (electron transporting property or hole transporting property) to organic photoelectric conversion elements used in organic solar cells, optical sensors, and the like has been studied. For example, fullerene derivatives that are organic semiconductor materials are being studied for application to organic solar cells. As such a fullerene derivative, for example, [6,6] -phenyl C61-butyric acid methyl ester (hereinafter referred to as [60] -PCBM) is known (see Non-Patent Document 1).

Advanced Functional Materials Vol.13 (2003) 85pAdvanced Functional Materials Vol.13 (2003) 85p

しかし、[60]−PCBMを含む層を備える有機光電変換素子は、開放電圧(Voc)が必ずしも十分高くないという問題点がある。   However, an organic photoelectric conversion element including a layer containing [60] -PCBM has a problem that an open circuit voltage (Voc) is not necessarily high enough.

そこで、本発明は、有機光電変換素子に用いた場合に、優れた開放電圧を実現できるフラーレン誘導体を提供することを目的とする。   Then, an object of this invention is to provide the fullerene derivative which can implement | achieve the outstanding open circuit voltage, when it uses for an organic photoelectric conversion element.

即ち、本発明は、下記[1]〜[6]を提供する。
[1]下記式(1)で表されるフラーレン誘導体。

Figure 2015013844
(式(1)中、A環はフラーレン骨格を表す。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよい1価の複素環基又は下記式(2)で表される基を表す。R及びRは、それぞれ独立に、置換基を有していてもよいアリール基;置換基を有していてもよいアリールアルキル基;置換基を有していてもよく、2−チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基及びイソキノリル基からなる群から選択される1価の複素環基;又は下記式(2)で表される基を表す。)
Figure 2015013844
(式(2)中、mは1〜6の整数を表す。qは1〜4の整数を表す。pは0〜5の整数を表す。Xは、メチル基又は置換基を有していてもよいアリール基を表す。mが複数個ある場合、複数個あるmは異なっていてもよい。)
[2]前記R1が、前記式(2)で表される基である、[1]に記載のフラーレン誘導体。
[3][1]又は[2]に記載のフラーレン誘導体と電子供与性化合物とを含む組成物。
[4]前記電子供与性化合物が高分子化合物である、[3]に記載の組成物。
[5][1]又は[2]に記載のフラーレン誘導体を含む層を備える有機光電変換素子。
[6][3]又は[4]に記載の組成物を含む層を備える有機光電変換素子。 That is, the present invention provides the following [1] to [6].
[1] A fullerene derivative represented by the following formula (1).
Figure 2015013844
(In Formula (1), A ring represents a fullerene skeleton. R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom. , An aryl group which may have a substituent, an arylalkyl group which may have a substituent, a monovalent heterocyclic group which may have a substituent, or the following formula (2): R 3 and R 4 each independently represents an aryl group which may have a substituent; an arylalkyl group which may have a substituent; , A monovalent heterocyclic group selected from the group consisting of 2-thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidyl group, quinolyl group and isoquinolyl group; or a group represented by the following formula (2) .)
Figure 2015013844
(In Formula (2), m represents an integer of 1 to 6. q represents an integer of 1 to 4. p represents an integer of 0 to 5. X has a methyl group or a substituent. (In the case where there are a plurality of m, a plurality of m may be different.)
[2] The fullerene derivative according to [1], wherein R 1 is a group represented by the formula (2).
[3] A composition comprising the fullerene derivative according to [1] or [2] and an electron donating compound.
[4] The composition according to [3], wherein the electron donating compound is a polymer compound.
[5] An organic photoelectric conversion device comprising a layer containing the fullerene derivative according to [1] or [2].
[6] An organic photoelectric conversion device comprising a layer containing the composition according to [3] or [4].

本発明のフラーレン誘導体を用いれば、優れた開放電圧を示す有機光電変換素子を提供することができるので、本発明は極めて有用である。   Since the organic photoelectric conversion element which shows the outstanding open circuit voltage can be provided if the fullerene derivative of this invention is used, this invention is very useful.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<フラーレン誘導体>
本発明のフラーレン誘導体は、下記式(1)で表されるフラーレン誘導体である。
<Fullerene derivative>
The fullerene derivative of the present invention is a fullerene derivative represented by the following formula (1).

Figure 2015013844
Figure 2015013844

式(1)中、A環はフラーレン骨格を表す。CはA環を構成する炭素原子を表す。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよい1価の複素環基又は下記式(2)で表される基を表す。R及びRは、それぞれ独立に、置換基を有していてもよいアリール基;置換基を有していてもよいアリールアルキル基;置換基を有していてもよく、2−チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基及びイソキノリル基からなる群から選択される1価の複素環基;又は下記式(2)で表される基を表す。 In Formula (1), A ring represents a fullerene skeleton. C represents the carbon atom which comprises A ring. R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, an aryl group that may have a substituent, or a substituent. An arylalkyl group which may have a monovalent heterocyclic group which may have a substituent or a group represented by the following formula (2). R 3 and R 4 each independently represents an aryl group which may have a substituent; an arylalkyl group which may have a substituent; an optionally substituted 2-thienyl group; Represents a monovalent heterocyclic group selected from the group consisting of pyrrolyl group, furyl group, pyridyl group, piperidyl group, quinolyl group and isoquinolyl group; or a group represented by the following formula (2).

Figure 2015013844
Figure 2015013844

式(2)中、mは1〜6の整数を表す。qは1〜4の整数を表す。pは0〜5の整数を表す。Xは、メチル基又は置換基を有していてもよいアリール基を表す。mが複数個ある場合、複数個あるmは異なっていてもよい。   In formula (2), m represents an integer of 1 to 6. q represents the integer of 1-4. p represents an integer of 0 to 5. X represents a methyl group or an aryl group which may have a substituent. When there are a plurality of m, the plurality of m may be different.

本明細書において、「置換基を有していてもよい」とは、その化合物又は基を構成するすべての水素原子が無置換である場合、及び1個以上の水素原子の一部又は全部が置換基によって置換されている場合の両方の態様を含む。   In the present specification, “which may have a substituent” means that all hydrogen atoms constituting the compound or group are unsubstituted, and a part or all of one or more hydrogen atoms are Both embodiments are included when substituted by a substituent.

式(1)で表されるフラーレン誘導体はフレロピロリジン誘導体である。前記式(1)で表されるフラーレン誘導体は種々の異性体を含み得るが、本発明の目的を損なわないことを条件として特に限定されず、本発明のフラーレン誘導体は例えばシス体であってもトランス体であってもよい。   The fullerene derivative represented by the formula (1) is a fulleropyrrolidine derivative. The fullerene derivative represented by the formula (1) may contain various isomers, but is not particularly limited on the condition that the object of the present invention is not impaired. The fullerene derivative of the present invention may be, for example, a cis isomer. A trans form may be sufficient.

式(1)中、フラーレン骨格であるA環が由来するフラーレンは特に限定されず、C60フラーレン、C70フラーレン、C82フラーレン、C84フラーレン等のいずれであってもよいが、開放電圧の向上のためにはA環は好ましくはC60フラーレンである。 In formula (1), the fullerene from which the A ring which is a fullerene skeleton is derived is not particularly limited, and may be any of C 60 fullerene, C 70 fullerene, C 82 fullerene, C 84 fullerene, etc. For improvement, the A ring is preferably C 60 fullerene.

式(1)中、R及びRで表されるハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。有機光電変換素子に用いた場合に光電変換効率を高めることができるので、ハロゲン原子はフッ素原子であることが好ましい。 In the formula (1), examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Since the photoelectric conversion efficiency can be increased when used in an organic photoelectric conversion element, the halogen atom is preferably a fluorine atom.

及びRで表される、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の炭素原子数は、通常1〜20である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、sec−ブチル基、3−メチルブチル基、ペンチル基、ヘキシル基、2−エチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基及びラウリル基が挙げられる。アルキル基中の水素原子はハロゲン原子で置換されていてもよい。1個以上の水素原子がハロゲン原子で置換されているアルキル基は、フッ素原子で置換されているアルキル基が好ましい。フッ素原子で置換されているアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基及びパーフルオロオクチル基が挙げられる。 The alkyl group in which one or more hydrogen atoms represented by R 1 and R 2 may be substituted with a halogen atom may be linear or branched, and may be a cycloalkyl group. The number of carbon atoms of the alkyl group is usually 1-20. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, sec-butyl group, 3-methylbutyl group, pentyl group, hexyl group and 2-ethylhexyl. Group, heptyl group, octyl group, nonyl group, decyl group and lauryl group. The hydrogen atom in the alkyl group may be substituted with a halogen atom. The alkyl group in which one or more hydrogen atoms are substituted with a halogen atom is preferably an alkyl group substituted with a fluorine atom. Examples of the alkyl group substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.

式(1)中、R、R、R及びRで表される、置換基を有していてもよいアリール基におけるアリール基は、無置換の芳香族炭化水素から、水素原子1個を除いた原子団であり、ベンゼン環を有する基、縮合環を有する基、独立したベンゼン環又は縮合環2個以上が直接又はビニレン等の基を介して結合した基も含まれる。アリール基の炭素原子数は、通常6〜60であり、6〜30であることが好ましい。なお、前記のアリール基の炭素原子数には、置換基の炭素原子数は含まれない。
アリール基としては、例えば、フェニル基、1−ナフチル基及び2−ナフチル基が挙げられる。アリール基が有していてもよい置換基としては、例えば、ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基及び前記式(2)で表される基が挙げられる。
In the formula (1), the aryl group in the aryl group which may have a substituent represented by R 1 , R 2 , R 3 and R 4 is an unsubstituted aromatic hydrocarbon, a hydrogen atom 1 It is an atomic group excluding a group, and includes a group having a benzene ring, a group having a condensed ring, a group in which two or more independent benzene rings or condensed rings are bonded directly or via a group such as vinylene. The number of carbon atoms of the aryl group is usually 6 to 60, and preferably 6 to 30. The number of carbon atoms of the aryl group does not include the number of carbon atoms of the substituent.
As an aryl group, a phenyl group, 1-naphthyl group, and 2-naphthyl group are mentioned, for example. Examples of the substituent that the aryl group may have include, for example, a halogen atom, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and one or more hydrogen atoms substituted with a halogen atom. And an alkoxy group which may be present and a group represented by the formula (2).

このハロゲン原子及び1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基の具体例は、前述のR及びRで表されるハロゲン原子及び1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基の具体例と同じである。 Specific examples of this halogen atom and an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom include the halogen atom represented by the aforementioned R 1 and R 2 and one or more hydrogen atoms represented by a halogen atom. The same as the specific examples of the alkyl group which may be substituted with

アリール基が有していてもよい置換基である、1個以上の水素原子がハロゲン原子で置換されていてもよい前述のアルコキシ基の炭素原子数は、通常1〜20である。アルコキシ基中のアルキル部は鎖状でも環状でもよく、アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基及びラウリルオキシ基が挙げられる。1個以上の水素原子がハロゲン原子で置換されているアルコキシ基としては、フッ素原子で置換されているアルコキシ基が好ましい。フッ素原子で置換されているアルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基及びパーフルオロオクチルオキシ基が挙げられる。   The number of carbon atoms of the aforementioned alkoxy group in which one or more hydrogen atoms, which are substituents that the aryl group may have, may be substituted with a halogen atom is usually 1-20. The alkyl part in the alkoxy group may be linear or cyclic. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group. Pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and lauryloxy group. As the alkoxy group in which one or more hydrogen atoms are substituted with a halogen atom, an alkoxy group substituted with a fluorine atom is preferable. Examples of the alkoxy group substituted with a fluorine atom include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.

式(1)中、R、R、R及びRで表される、置換基を有していてもよいアリールアルキル基の炭素原子数は、通常7〜60であり、7〜30であることが好ましい。なお、このアリールアルキル基の炭素原子数には、置換基の炭素原子数は含まれない。
アリールアルキル基の具体例としては、フェニル−C1−12アルキル基(「C1−12」は、炭素原子数が1〜12であることを意味する。以下同じ。)、1−ナフチル−C1−12アルキル基及び2−ナフチル−C1−12アルキル基が挙げられる。アリールアルキル基が有していてもよい置換基としては、例えば、ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基及び前記式(2)で表される基が挙げられる。該ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の定義及び具体例は、前述のアリール基が有していてもよい置換基であるハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の定義及び具体例と同じである。
In formula (1), the number of carbon atoms of the arylalkyl group which may have a substituent represented by R 1 , R 2 , R 3 and R 4 is usually 7 to 60, and 7 to 30. It is preferable that The number of carbon atoms of the arylalkyl group does not include the number of carbon atoms of the substituent.
Specific examples of the arylalkyl group include a phenyl-C 1-12 alkyl group (“C 1-12” means 1 to 12 carbon atoms; the same shall apply hereinafter), 1-naphthyl-C Examples include 1-12 alkyl groups and 2-naphthyl-C 1-12 alkyl groups. Examples of the substituent that the arylalkyl group may have include, for example, a halogen atom, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and one or more hydrogen atoms substituted with a halogen atom. And an alkoxy group which may be used and a group represented by the formula (2). The definition and specific examples of the halogen atom, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and an alkoxy group in which one or more hydrogen atoms may be substituted with a halogen atom are described above. A halogen atom which is a substituent that the aryl group may have, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and a hydrogen atom in which one or more hydrogen atoms are substituted with a halogen atom The definition and specific example of a good alkoxy group are the same.

式(1)中、R及びRで表される、置換基を有していてもよい1価の複素環基は、複素環式化合物から水素原子1個を除いた残りの原子団をいう。1価の複素環基の炭素原子数は通常4〜60程度であり、好ましくは4〜20である。なお、この1価の複素環基の炭素原子数には、置換基の炭素原子数は含まれない。前記複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、燐原子、硼素原子、珪素原子等のヘテロ原子を環内に含む化合物をいう。1価の複素環基としては、芳香族の1価の複素環基が好ましい。
1価の複素環基の具体例としては、チエニル基(2−チエニル基、3−チエニル基)、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基及びイソキノリル基が挙げられる。置換基を有していてもよい1価の複素環基の置換基としては、例えば、ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基、及び前記式(2)で表される基が挙げられる。該ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の定義及び具体例は、前述のアリール基が有していてもよい置換基であるハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の定義及び具体例と同じである。
In the formula (1), the monovalent heterocyclic group represented by R 1 and R 2 which may have a substituent is the remaining atomic group obtained by removing one hydrogen atom from the heterocyclic compound. Say. The number of carbon atoms of the monovalent heterocyclic group is usually about 4 to 60, preferably 4 to 20. The number of carbon atoms in the monovalent heterocyclic group does not include the number of carbon atoms in the substituent. The heterocyclic compound is an organic compound having a cyclic structure in which the elements constituting the ring are not only carbon atoms, but also hetero atoms such as oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, silicon atoms, etc. A compound containing an atom in the ring. As the monovalent heterocyclic group, an aromatic monovalent heterocyclic group is preferable.
Specific examples of the monovalent heterocyclic group include a thienyl group (2-thienyl group, 3-thienyl group), pyrrolyl group, furyl group, pyridyl group, piperidyl group, quinolyl group, and isoquinolyl group. Examples of the substituent of the monovalent heterocyclic group that may have a substituent include a halogen atom, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and one or more hydrogen atoms. Examples include an alkoxy group in which an atom may be substituted with a halogen atom, and a group represented by the formula (2). The definition and specific examples of the halogen atom, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and an alkoxy group in which one or more hydrogen atoms may be substituted with a halogen atom are described above. A halogen atom which is a substituent that the aryl group may have, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and a hydrogen atom in which one or more hydrogen atoms are substituted with a halogen atom The definition and specific example of a good alkoxy group are the same.

式(1)中、R及びRで表される、置換基を有していてもよく、2−チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基及びイソキノリル基からなる群から選択される1価の複素環基が有し得る置換基としては、例えば、ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基、及び前記式(2)で表される基が挙げられる。該ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の定義及び具体例は、前述のアリール基が有していてもよい置換基であるハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の定義及び具体例と同じである。 In formula (1), it may have a substituent represented by R 3 and R 4 , and consists of a 2-thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidyl group, quinolyl group and isoquinolyl group. Examples of the substituent that the monovalent heterocyclic group selected from the group may have include a halogen atom, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and one or more hydrogen atoms. Include an alkoxy group which may be substituted with a halogen atom, and a group represented by the formula (2). The definition and specific examples of the halogen atom, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and an alkoxy group in which one or more hydrogen atoms may be substituted with a halogen atom are described above. A halogen atom which is a substituent that the aryl group may have, an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, and a hydrogen atom in which one or more hydrogen atoms are substituted with a halogen atom The definition and specific example of a good alkoxy group are the same.

有機光電変換素子に用いた場合の開放電圧を高めることができるので、式(1)中、R1は前記式(2)で表される基であることが好ましく、Rは水素原子が好ましく、R及びRは、置換基を有していてもよいフェニル基又は置換基を有していてもよい2−チエニル基であることが好ましい。 In the formula (1), R 1 is preferably a group represented by the formula (2), and R 2 is preferably a hydrogen atom because the open circuit voltage when used in an organic photoelectric conversion element can be increased. , R 3 and R 4 are preferably a phenyl group which may have a substituent or a 2-thienyl group which may have a substituent.

前記式(2)で表される基において、mは1〜6の整数を表し、qは1〜4の整数を表し、pは0〜5の整数を表す。mが複数個ある場合、複数個あるmは異なっていてもよい。有機光電変換素子に用いた場合の光電変換効率を高めることができるので、mは2であることが好ましく、qは2であることが好ましく、pは0であることが好ましい。Xは、メチル基又は置換基を有していてもよいアリール基を表す。置換基を有していてもよいアリール基の具体例は、前述のR、R、R及びRで表される置換基を有していてもよいアリール基の具体例と同じである。 In the group represented by the formula (2), m represents an integer of 1 to 6, q represents an integer of 1 to 4, and p represents an integer of 0 to 5. When there are a plurality of m, the plurality of m may be different. Since photoelectric conversion efficiency when used in an organic photoelectric conversion element can be increased, m is preferably 2, q is preferably 2, and p is preferably 0. X represents a methyl group or an aryl group which may have a substituent. Specific examples of the aryl group which may have a substituent are the same as the specific examples of the aryl group which may have a substituent represented by the aforementioned R 1 , R 2 , R 3 and R 4. is there.

前記式(1)で表されるフラーレン誘導体の例としては、具体的には以下に示す化合物が挙げられる。   Specific examples of the fullerene derivative represented by the formula (1) include the following compounds.

Figure 2015013844
Figure 2015013844

上記式中、A環及びA環中のCは前述と同じ意味を表す。   In the above formula, A ring and C in A ring have the same meaning as described above.

<フラーレン誘導体の製造方法>
本発明のフラーレン誘導体は、例えば、フラーレン、下記式(3)で表されるアミン化合物及び下記式(4)で表されるアルデヒド化合物を用い、これらを反応させる反応工程により製造することができる。
具体的には、まず、アミン化合物とアルデヒド化合物とを反応させて、イミニウムヒドロキシドを生成させる。次いで、該イミニウムヒドロキシドの脱水反応により、アゾメチンイリドを生成させる。さらに、該アゾメチンイリドとフラーレンとの1,3−双極子環化付加反応によりフラーレン誘導体を生成させることにより、所望のフラーレン誘導体を得ることができる(European Journal of Organic Chemistry 2005年, 3064-3074ページ参照)。
<Method for producing fullerene derivative>
The fullerene derivative of the present invention can be produced, for example, by a reaction step in which fullerene, an amine compound represented by the following formula (3) and an aldehyde compound represented by the following formula (4) are reacted.
Specifically, first, an amine compound and an aldehyde compound are reacted to generate iminium hydroxide. Subsequently, azomethine ylide is produced by a dehydration reaction of the iminium hydroxide. Furthermore, a desired fullerene derivative can be obtained by producing a fullerene derivative by 1,3-dipolar cycloaddition reaction of the azomethine ylide and fullerene (European Journal of Organic Chemistry 2005, 3064-3074). reference).

Figure 2015013844
Figure 2015013844

式(3)及び式(4)中、R1、R、R及びRは前述と同じ意味を表す。
式(3)で表されるアミン化合物としては、例えば、N−ベンジル−2−(2−メトキシエトキシ)エタンアミン、N−ベンジル−2−メトキシエタンアミン、N−(チオフェン−2−イルメチル)ブタン−1−アミン、N−(チオフェン−2−イルメチル)−2−(2−メトキシエトキシ)エタンアミン、N−(チオフェン−3−イルメチル)−2−(2−メトキシエトキシ)エタンアミンなどが挙げられる。
In formula (3) and formula (4), R 1 , R 2 , R 3 and R 4 represent the same meaning as described above.
Examples of the amine compound represented by the formula (3) include N-benzyl-2- (2-methoxyethoxy) ethanamine, N-benzyl-2-methoxyethanamine, N- (thiophen-2-ylmethyl) butane- Examples include 1-amine, N- (thiophen-2-ylmethyl) -2- (2-methoxyethoxy) ethanamine, and N- (thiophen-3-ylmethyl) -2- (2-methoxyethoxy) ethanamine.

前記反応工程に用いられるアミン化合物の量は、フラーレン1モルに対して、通常0.1モル〜10モルであり、好ましくは0.5モル〜3モルの範囲である。   The amount of the amine compound used in the reaction step is usually 0.1 mol to 10 mol, preferably 0.5 mol to 3 mol, relative to 1 mol of fullerene.

式(4)で表されるアルデヒド化合物としては、例えば、ジメチルアミノベンズアルデヒド、トリメチルシリルベンズアルデヒド、ジメチルアミノナフチルアルデヒド及びトリメチルシリルナフチルアルデヒド、ベンズアルデヒド、チオフェン−2−カルバルデヒド、チオフェン−3−カルバルデヒドが挙げられる。   Examples of the aldehyde compound represented by the formula (4) include dimethylaminobenzaldehyde, trimethylsilylbenzaldehyde, dimethylaminonaphthylaldehyde and trimethylsilylnaphthylaldehyde, benzaldehyde, thiophene-2-carbaldehyde, and thiophene-3-carbaldehyde.

前記反応工程に用いられるアルデヒド化合物の量は、フラーレン1モルに対して、通常0.1モル〜10モルであり、好ましくは0.5モル〜4モルの範囲である。   The amount of the aldehyde compound used in the reaction step is usually 0.1 mol to 10 mol, preferably 0.5 mol to 4 mol, relative to 1 mol of fullerene.

前記反応工程は、溶媒中で行なわれる。溶媒としては、トルエン、キシレン、ヘキサン、オクタン、クロルベンゼン等の反応に対して不活性な溶媒が用いられる。反応に用いられる溶媒の量は、フラーレン1重量部に対して、通常1重量部〜10000重量部である。   The reaction step is performed in a solvent. As the solvent, a solvent inert to the reaction such as toluene, xylene, hexane, octane, chlorobenzene and the like is used. The amount of the solvent used in the reaction is usually 1 part by weight to 10,000 parts by weight with respect to 1 part by weight of fullerene.

前記反応工程はフラーレン、アミン化合物及びアルデヒド化合物を溶媒中で混合し加熱反応させればよく、反応温度は通常50℃〜350℃の範囲である。反応時間は、通常、30分間から50時間である。
前記反応工程において、所望のフラーレン誘導体が例えばシス(cis)型のフラーレン誘導体である場合には、シス型のフラーレン誘導体はトランス(trans)型のフラーレン誘導体と比較したときに高温により安定であるので、前記反応工程における反応温度をより高く設定し、反応時間をより長くすることでシス型のフラーレン誘導体をより効率的に得ることができる。
The said reaction process should just mix a fullerene, an amine compound, and an aldehyde compound in a solvent, and make it heat-react, and reaction temperature is the range of 50 to 350 degreeC normally. The reaction time is usually 30 minutes to 50 hours.
In the reaction step, when the desired fullerene derivative is, for example, a cis-type fullerene derivative, the cis-type fullerene derivative is more stable at a high temperature when compared with a trans-type fullerene derivative. The cis-type fullerene derivative can be obtained more efficiently by setting the reaction temperature in the reaction step higher and making the reaction time longer.

加熱反応後、反応生成物を室温まで放冷し、溶媒をロータリーエバポレーターで減圧留去することで、反応混合物が得られる。   After the heating reaction, the reaction product is allowed to cool to room temperature, and the solvent is distilled off under reduced pressure using a rotary evaporator to obtain a reaction mixture.

前記反応混合物は、通常、本発明のフラーレン誘導体、反応の副生物及び未反応の原料等を含む。該反応混合物をシリカゲルカラムクロマトグラフィー法により分離精製し、フラーレン誘導体を得ることができる。   The reaction mixture usually contains the fullerene derivative of the present invention, reaction by-products, unreacted raw materials, and the like. The reaction mixture can be separated and purified by silica gel column chromatography to obtain a fullerene derivative.

高純度のフラーレン誘導体を得る精製方法としては、例えば、二硫化炭素と酢酸エステルとを展開溶媒として用いたシリカゲルカラムクロマトグラフィーで精製する方法、及び、芳香族炭化水素と酢酸エステルとを展開溶媒として用いたシリカゲルカラムクロマトグラフィーで精製する方法が挙げられる。高純度のフラーレン誘導体を得る精製方法としては、芳香族炭化水素と酢酸エステルを展開溶媒として用いたシリカゲルカラムクロマトグラフィーで精製する方法が好ましい。シリカゲルカラムクロマトグラフィーとしては、シリカゲルフラッシュカラムクロマトグラフィーが好ましい。   As a purification method for obtaining a high-purity fullerene derivative, for example, a method of purifying by silica gel column chromatography using carbon disulfide and acetate as developing solvents, and an aromatic hydrocarbon and acetate as developing solvents. The method of refine | purifying with the used silica gel column chromatography is mentioned. As a purification method for obtaining a high-purity fullerene derivative, a method for purification by silica gel column chromatography using an aromatic hydrocarbon and an acetate as a developing solvent is preferable. As silica gel column chromatography, silica gel flash column chromatography is preferable.

原料であるアミン化合物及びアルデヒド類の使用量、反応時間といった反応条件等を適宜調整し、また分離精製条件を適宜調整することにより、フラーレンに付加する付加基(構造)の数を調節し、所望の数の付加基が付加されたフラーレン誘導体を選択的に得ることができる。   The number of additional groups (structures) added to fullerenes can be adjusted by adjusting the reaction conditions such as the amount of amine compound and aldehyde used as raw materials and the reaction time, as well as by appropriately adjusting the separation and purification conditions. It is possible to selectively obtain a fullerene derivative having the number of addition groups added.

<組成物>
本発明のフラーレン誘導体は、電子受容性化合物として用いることも電子供与性化合物として用いることもできるが、電子受容性化合物として用いることが好ましい。本発明のフラーレン誘導体は、例えば有機光電変換素子の半導体材料として好適に用いることができる。
<Composition>
The fullerene derivative of the present invention can be used as an electron accepting compound or an electron donating compound, but is preferably used as an electron accepting compound. The fullerene derivative of the present invention can be suitably used, for example, as a semiconductor material for organic photoelectric conversion elements.

本発明のフラーレン誘導体を電子受容性材料として用いる場合には、本発明のフラーレン誘導体のみを単独で用いることもできるが、フラーレン誘導体と電子供与性化合物とを含む組成物として用いることが好ましい。
この組成物が含み得る電子供与性化合物は、高分子化合物であることが好ましい。
When the fullerene derivative of the present invention is used as an electron-accepting material, only the fullerene derivative of the present invention can be used alone, but it is preferably used as a composition containing a fullerene derivative and an electron-donating compound.
The electron donating compound that can be contained in the composition is preferably a polymer compound.

<有機光電変換素子>
本発明のフラーレン誘導体を用いる有機光電変換素子は、一対の電極と、該一対の電極間に本発明のフラーレン誘導体を含む層を有する。本発明のフラーレン誘導体を電子受容性化合物として用いる場合、有機光電変換素子は、上述したように本発明のフラーレン誘導体のみを含む層を備えていてもよく、本発明のフラーレン誘導体と電子供与性化合物とを含む組成物を含む層を備えていてもよい。
<Organic photoelectric conversion element>
The organic photoelectric conversion element using the fullerene derivative of the present invention has a pair of electrodes and a layer containing the fullerene derivative of the present invention between the pair of electrodes. When the fullerene derivative of the present invention is used as an electron-accepting compound, the organic photoelectric conversion element may include a layer containing only the fullerene derivative of the present invention as described above, and the fullerene derivative and the electron-donating compound of the present invention. And a layer containing a composition containing.

本発明のフラーレン誘導体を用いる有機光電変換素子としては、
1.少なくとも一方が透明又は半透明である一対の電極と、該一対の電極間に設けられ、電子受容性化合物として本発明のフラーレン誘導体を含有する第1の有機層と、該第1の有機層に隣接して設けられた電子供与性化合物を含有する第2の有機層とを有する有機光電変換素子、及び
2.少なくとも一方が透明又は半透明である一対の電極と、該一対の電極間に設けられ、電子受容性化合物として本発明のフラーレン誘導体及び電子供与性化合物を含有する有機層を少なくとも一層有する有機光電変換素子が好ましい。
As an organic photoelectric conversion element using the fullerene derivative of the present invention,
1. A pair of electrodes, at least one of which is transparent or translucent, a first organic layer provided between the pair of electrodes and containing the fullerene derivative of the present invention as an electron-accepting compound, and the first organic layer 1. an organic photoelectric conversion device having a second organic layer containing an electron donating compound provided adjacent thereto; Organic photoelectric conversion comprising a pair of electrodes, at least one of which is transparent or translucent, and at least one organic layer provided between the pair of electrodes and containing the fullerene derivative of the present invention and an electron-donating compound as an electron-accepting compound Elements are preferred.

ヘテロ接合界面を多く含むという観点からは、前記2.の構成の有機光電変換素子がより好ましい。また、本発明の有機光電変換素子には、一対の電極のうちの少なくとも一方の電極と該有機光電変換素子中の有機層との間に付加的な層を設けてもよい。付加的な層としては、例えば、正孔又は電子を輸送する電荷輸送層及びバッファ層が挙げられる。   From the viewpoint of including many heterojunction interfaces, the above-mentioned 2. The organic photoelectric conversion element of the structure is more preferable. Moreover, you may provide an additional layer in the organic photoelectric conversion element of this invention between the at least one electrode of a pair of electrodes, and the organic layer in this organic photoelectric conversion element. Examples of the additional layer include a charge transport layer and a buffer layer that transport holes or electrons.

前記2.の有機光電変換素子において、有機層中のフラーレン誘導体の量は、電子供与性化合物100重量部に対して、10重量部〜1000重量部であることが好ましく、50重量部〜500重量部であることがより好ましい。   2. In the organic photoelectric conversion device, the amount of the fullerene derivative in the organic layer is preferably 10 parts by weight to 1000 parts by weight, and 50 parts by weight to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. It is more preferable.

本発明のフラーレン誘導体を含む層(有機層)は、本発明のフラーレン誘導体を含む組成物を含む層であることが好ましく、本発明のフラーレン誘導体と電子供与性化合物とを含む組成物を含む層であることがより好ましい。該有機層の厚さは、通常、1nm〜100μmであり、好ましくは2nm〜1000nmであり、より好ましくは5nm〜500nmであり、さらに好ましくは20nm〜200nmである。   The layer (organic layer) containing the fullerene derivative of the present invention is preferably a layer containing a composition containing the fullerene derivative of the present invention, and a layer containing a composition containing the fullerene derivative of the present invention and an electron donating compound. It is more preferable that The thickness of the organic layer is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.

前記電子供与性化合物は、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、例えば、フタロシアニン、金属フタロシアニン、ポルフィリン、金属ポルフィリン、オリゴチオフェン、テトラセン、ペンタセン及びルブレンが挙げられる。
高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン構造を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体が挙げられる。
前記電子供与性化合物は、塗布性の観点からは、高分子化合物であることが好ましい。
The electron donating compound may be a low molecular compound or a high molecular compound. Examples of the low molecular weight compound include phthalocyanine, metal phthalocyanine, porphyrin, metal porphyrin, oligothiophene, tetracene, pentacene, and rubrene.
Examples of the polymer compound include polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine structure in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, Examples include polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and polyfluorene and derivatives thereof.
The electron donating compound is preferably a polymer compound from the viewpoint of coatability.

有機光電変換素子の光電変換効率を高めることができるので、前記電子供与性化合物は、下記式(5)で表される構造単位及び下記式(6)で表される構造単位からなる群から選ばれる構造単位を有する高分子化合物であることが好ましく、下記式(5)で表される構造単位を有する高分子化合物であることがより好ましい。   Since the photoelectric conversion efficiency of the organic photoelectric conversion element can be increased, the electron donating compound is selected from the group consisting of a structural unit represented by the following formula (5) and a structural unit represented by the following formula (6). The polymer compound having a structural unit is preferably a polymer compound having a structural unit represented by the following formula (5).

Figure 2015013844
Figure 2015013844

式(5)及び式(6)中、R、R、R、R、R、R10、R11、R12、R13及びR14は、それぞれ独立に、水素原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基又は置換基を有していてもよいアリール基を表す。 In formula (5) and formula (6), R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom, 1 An alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom, an alkoxy group in which one or more hydrogen atoms may be substituted with a halogen atom, or an aryl group optionally having a substituent .

式(5)中、R及びRで表される、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基及び置換基を有していてもよいアリール基の定義及び具体例は、前述のR及びRで表される、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基及び置換基を有していてもよいアリール基の定義及び具体例と同じである。R及びRで表される、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の具体例は、前述のR及びRで表されるアリール基が有していてもよい置換基である1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の具体例と同じである。 In formula (5), the definition and specific examples of the alkyl group optionally substituted by one or more hydrogen atoms represented by R 5 and R 6 and the optionally substituted aryl group Examples include definitions and specific examples of the alkyl group optionally substituted with one or more hydrogen atoms represented by R 1 and R 2 described above and an aryl group optionally having a substituent. Is the same. Specific examples of the alkoxy group represented by R 5 and R 6 in which one or more hydrogen atoms may be substituted with a halogen atom include the aryl group represented by R 1 and R 2 described above. This is the same as the specific examples of the alkoxy group in which one or more hydrogen atoms that may be substituted may be substituted with a halogen atom.

式(5)中、有機光電変換素子の光電変換効率を高めることができるので、R及びRのうちの少なくとも一方が、炭素原子数1〜20のアルキル基であることが好ましく、炭素原子数4〜8のアルキル基であることがより好ましい。 In the formula (5), since the photoelectric conversion efficiency of the organic photoelectric conversion element can be increased, at least one of R 5 and R 6 is preferably an alkyl group having 1 to 20 carbon atoms, More preferably, it is an alkyl group of several 4-8.

前記式(6)中、R〜R14で表される、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基及び置換基を有していてもよいアリール基の定義及び具体例は、前述のR及びRで表される、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基及び置換基を有していてもよいアリール基の定義及び具体例と同じである。R〜R14で表される、1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の具体例は、前述のR及びRで表されるアリール基が有していてもよい置換基である1個以上の水素原子がハロゲン原子で置換されていてもよいアルコキシ基の具体例と同じである。 In the formula (6), the definition of an aryl group optionally having one or more alkyl groups optionally substituted by one or more hydrogen atoms represented by R 7 to R 14 and a substituent, and Specific examples include definitions and specifics of the alkyl group optionally substituted by one or more hydrogen atoms represented by R 1 and R 2 described above and an aryl group optionally having a substituent. Same as example. Specific examples of the alkoxy group represented by R 7 to R 14 in which one or more hydrogen atoms may be substituted with a halogen atom include the aryl group represented by R 1 and R 2 described above. This is the same as the specific examples of the alkoxy group in which one or more hydrogen atoms that may be substituted may be substituted with a halogen atom.

式(6)中、モノマーの合成の行いやすさの観点からは、R〜R14は水素原子であることが好ましい。また、有機光電変換素子に用いた場合に光電変換効率を高めることができるので、R及びRは、炭素原子数1〜20のアルキル基又は炭素原子数6〜20のアリール基であることが好ましく、炭素原子数5〜8のアルキル基又は炭素原子数6〜15のアリール基であることがより好ましい。 In formula (6), R 7 to R 14 are preferably hydrogen atoms from the viewpoint of ease of monomer synthesis. Further, it can be increased photoelectric conversion efficiency when used in an organic photoelectric conversion element, R 7 and R 8 is an alkyl group or an aryl group having 6 to 20 carbon atoms having 1 to 20 carbon atoms Is preferable, and an alkyl group having 5 to 8 carbon atoms or an aryl group having 6 to 15 carbon atoms is more preferable.

電子供与性化合物として用いられる高分子化合物の具体例としては、例えば、下記式(7)で表される繰り返し単位からなる高分子化合物が挙げられる。   Specific examples of the polymer compound used as the electron donating compound include a polymer compound composed of a repeating unit represented by the following formula (7).

Figure 2015013844
Figure 2015013844

本発明のフラーレン誘導体を含む組成物を含む層、及び本発明のフラーレン誘導体と電子供与性化合物とを含む組成物を含む層の製造方法は、特に制限されず、例えば、本発明のフラーレン誘導体を含む溶液からの成膜による方法が挙げられる。   The production method of the layer containing the composition containing the fullerene derivative of the present invention and the layer containing the composition containing the fullerene derivative of the present invention and the electron donating compound is not particularly limited. For example, the fullerene derivative of the present invention The method by the film-forming from the solution containing is mentioned.

溶液からの成膜に用いる溶媒の例としては、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒が挙げられる。前記フラーレン誘導体は、通常、前記溶媒に0.1重量%以上溶解させることができる。   Examples of solvents used for film formation from solution include toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene and other hydrocarbon solvents, carbon tetrachloride, chloroform, Halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, and trichlorobenzene, and ether solvents such as tetrahydrofuran and tetrahydropyran Can be mentioned. The fullerene derivative can usually be dissolved in the solvent in an amount of 0.1% by weight or more.

前記溶液は、さらに高分子化合物を含んでいてもよい。該溶液に用いられる溶媒の具体例としては、前述の溶媒が挙げられるが、高分子化合物の溶解性の観点からは、炭化水素であることが好ましく、トルエン、キシレン及びメシチレンがより好ましい。   The solution may further contain a polymer compound. Specific examples of the solvent used in the solution include the solvents described above. From the viewpoint of the solubility of the polymer compound, hydrocarbons are preferable, and toluene, xylene, and mesitylene are more preferable.

溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。   For film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an ink jet printing method, and a dispenser printing method are preferable.

本発明の有機光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物(例えば、本発明のフラーレン誘導体又は該フラーレン誘導体を含む組成物)を含む層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板を用いる場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。   The organic photoelectric conversion element of the present invention is usually formed on a substrate. This substrate may be any substrate that does not chemically change when an electrode is formed and a layer containing an organic substance (for example, the fullerene derivative of the present invention or a composition containing the fullerene derivative) is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. When an opaque substrate is used, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.

前記の透明又は半透明の電極の例としては、導電性の金属酸化物膜、半透明の金属薄膜が挙げられる。透明又は半透明の電極の材料としては、例えば、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、NESA、金、白金、銀及び銅が挙げられ、ITO、IZO及び酸化スズが好ましい。電極の作製方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法及びメッキ法が挙げられる。また、透明又は半透明の電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。   Examples of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Examples of the material of the transparent or translucent electrode include indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), indium zinc oxide (IZO), NESA, gold, platinum, silver, and copper. ITO, IZO and tin oxide are preferred. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Moreover, you may use organic transparent electrically conductive films, such as a polyaniline and its derivative (s), polythiophene, and its derivative (s) as a transparent or translucent electrode.

不透明な電極の材料としては、金属、導電性高分子等を用いることができる。好ましくは一対の電極のうち一方の電極は仕事関数の小さい材料が好ましい。仕事関数の小さい材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びこれらの金属のうち2つ以上の金属の合金、これらの金属のうち1つ以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上の金属との合金、グラファイト、及び、グラファイト層間化合物が挙げられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金及びカルシウム−アルミニウム合金が挙げられる。   As an opaque electrode material, a metal, a conductive polymer, or the like can be used. Preferably, one of the pair of electrodes is preferably made of a material having a low work function. Examples of materials having a small work function include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. And alloys of two or more of these metals, one or more of these metals, and of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin Examples include alloys with one or more metals, graphite, and graphite intercalation compounds. Examples of alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.

前記バッファ層に用いられる材料としては、例えば、アルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物が挙げられ、具体的にはフッ化リチウムが挙げられる。また、酸化チタン等の無機半導体の微粒子を用いることもできる。   Examples of the material used for the buffer layer include alkali metal or alkaline earth metal halides or oxides, and specifically lithium fluoride. In addition, fine particles of an inorganic semiconductor such as titanium oxide can be used.

有機光電変換素子は、透明又は半透明の電極側に太陽光等の光を照射することにより、電極間に光起電力を発生させ、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。   The organic photoelectric conversion element can be operated as an organic thin film solar cell by generating photovoltaic power between the electrodes by irradiating light such as sunlight on the transparent or translucent electrode side. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.

また、有機光電変換素子は、電極間に電圧を印加した状態で、透明又は半透明の電極側に光を照射することにより、光電流を流すことができる。このようにすれば有機光電変換素子を有機光センサーとして動作させることができる。有機光センサーを複数個集積することにより有機イメージセンサーとして用いることもできる。   Moreover, the organic photoelectric conversion element can flow a photocurrent by irradiating light to the transparent or translucent electrode side in the state which applied the voltage between electrodes. In this way, the organic photoelectric conversion element can be operated as an organic light sensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.

以下、本発明をさらに詳細に説明するために実施例を示す。本発明は下記実施例に限定されるものではない。   Examples are given below to illustrate the present invention in more detail. The present invention is not limited to the following examples.

試薬および溶媒は市販品をそのまま使用するか、乾燥剤存在下で蒸留精製して使用した。C60フラーレンはフロンティアカーボン社製の製品を使用した。
1H NMR及び13C NMRスペクトルはJEOL MH500で測定し、テトラメチルシラン(TMS)を内部標準に使用した。赤外吸収スペクトルはFT-IR 8000を使用して測定した。MALDI-TOF MSスペクトルはBRUKER AutoFLEX-T2で測定した。
Reagents and solvents were either commercial products used as they were, or distilled and purified in the presence of a desiccant. As C 60 fullerene, a product manufactured by Frontier Carbon Co. was used.
1 H NMR and 13 C NMR spectra were measured with JEOL MH500, and tetramethylsilane (TMS) was used as an internal standard. The infrared absorption spectrum was measured using FT-IR 8000. MALDI-TOF MS spectra were measured with BRUKER AutoFLEX-T2.

[実施例1]
フラーレン誘導体A(トランス−N−メトキシエトキシエチル−2,5−ジ(2−チエニル)フレロピロリジンの合成
下記式で表されるフラーレン誘導体Aを下記のスキームに従って合成した。
[Example 1]
Synthesis of Fullerene Derivative A (Trans-N-methoxyethoxyethyl-2,5-di (2-thienyl) fulleropyrrolidine A fullerene derivative A represented by the following formula was synthesized according to the following scheme.

Figure 2015013844
Figure 2015013844

Figure 2015013844
Figure 2015013844

2口ナスフラスコ(50mL)にC60フラーレン(100mg、0.139mmol)、N−(チオフェン−2−イルメチル)−2−(2−メトキシエトキシ)エタンアミン(N-(2-thiophen-2-ylmethyl)-2-(2-methoxyethoxy)ethanamine)(86.8mg、0.417mmol)、チオフェン−2−カルバルデヒド(thiophene-2-carbaldehyde)(46.8mg、0.417mmol)をとり、酢酸(0.2mL)、クロロベンゼン(Chlorobenzene)(20mL)を加え、130℃で13時間、加熱還流した。室温まで放冷後、ロータリーエバポレーターで溶媒を除去し、メタノールで3回洗浄を行った。次いで、シリカゲルフラッシュカラムクロマトグラフィー(トルエン/酢酸エチル=1/0-1/1(体積比))、分取薄層クロマトグラフィー(トルエン/酢酸エチル=10/1(体積比))で精製し、フラーレン誘導体A(61.5mg、0.0597mmol)を得た。収率は43%であった。1H NMR、13C NMR、IR、MALDI-TOF-MSの測定結果を以下に示す。 To a two-necked eggplant flask (50 mL), C 60 fullerene (100 mg, 0.139 mmol), N- (thiophen-2-ylmethyl) -2- (2-methoxyethoxy) ethanamine (N- (2-thiophen-2-ylmethyl)- 2- (2-methoxyethoxy) ethanamine) (86.8mg, 0.417mmol), thiophene-2-carbaldehyde (46.8mg, 0.417mmol), acetic acid (0.2mL), chlorobenzene (Chlorobenzene) (20 mL) was added, and the mixture was heated to reflux at 130 ° C. for 13 hours. After cooling to room temperature, the solvent was removed with a rotary evaporator and washed with methanol three times. Next, purification by silica gel flash column chromatography (toluene / ethyl acetate = 1 / 0-1 / 1 (volume ratio)), preparative thin layer chromatography (toluene / ethyl acetate = 10/1 (volume ratio)), Fullerene derivative A (61.5 mg, 0.0597 mmol) was obtained. The yield was 43%. The measurement results of 1 H NMR, 13 C NMR, IR, and MALDI-TOF-MS are shown below.

1H NMR (400MHz, ppm, CDCl3, J = Hz)
δ 3.01-3.04(1H, m), 3.31-3.35(1H, m), 3.39(3H, s), 3.60-3.62(2H, m), 3.71-3.74(2H, m), 3.89-3.92(1H, m), 3.96-4.00(1H, m), 6.64(2H, s), 7.06-7.08(2H, m), 7.42(2H, d, J=5.8Hz), 7.47(2H, d, J=2.9Hz)
13C NMR(125MHz, CDCl3)
δ 45.84, 58.90, 70.43, 72.03, 73.26, 74.30 126.54, 126.92, 126.48, 136.29, 136.86, 139.51, 139.80, 141.01, 141.54, 141.69, 141.99, 142.38, 142.52, 142.92, 144.41, 144.98, 145.13, 145.38, 145.86, 146.05, 146.10, 146.12, 147.24, 153.17;
IR (KBr, cm-1)
2858, 2347, 1512, 1462, 1429, 1122, 826, 698, 574, 526;
MALDI-TOF-MS (matrix: SA) found 1029.0864 ( C75H19NO2S2, exact mass:1029.0857).
1 H NMR (400MHz, ppm, CDCl 3 , J = Hz)
δ 3.01-3.04 (1H, m), 3.31-3.35 (1H, m), 3.39 (3H, s), 3.60-3.62 (2H, m), 3.71-3.74 (2H, m), 3.89-3.92 (1H, m), 3.96-4.00 (1H, m), 6.64 (2H, s), 7.06-7.08 (2H, m), 7.42 (2H, d, J = 5.8Hz), 7.47 (2H, d, J = 2.9Hz )
13 C NMR (125 MHz, CDCl 3 )
δ 45.84, 58.90, 70.43, 72.03, 73.26, 74.30 126.54, 126.92, 126.48, 136.29, 136.86, 139.51, 139.80, 141.01, 141.54, 141.69, 141.99, 142.38, 142.52, 142.92, 144.41, 144.98, 145.13, 145.38, 146.05, 146.10, 146.12, 147.24, 153.17;
IR (KBr, cm -1 )
2858, 2347, 1512, 1462, 1429, 1122, 826, 698, 574, 526;
MALDI-TOF-MS (matrix: SA) found 1029.0864 (C 75 H 19 NO 2 S 2 , exact mass: 1029.0857).

[実施例2]
フラーレン誘導体B(シス−N−ブチル−2,5−ジ(2−チエニル)フレロピロリジン)の合成
下記式で表されるフラーレン誘導体Bを下記のスキームに従って合成した。
[Example 2]
Synthesis of Fullerene Derivative B (cis-N-Butyl-2,5-di (2-thienyl) fureropyrrolidine) Fullerene derivative B represented by the following formula was synthesized according to the following scheme.

Figure 2015013844
Figure 2015013844

Figure 2015013844
Figure 2015013844

2口ナスフラスコ(30 mL)にC60フラーレン(52mg、0.0721mmol)、N−(チオフェン−2−イルメチル)ブタン−1−アミン(N-(thiophen-2-ylmethyl)butan-1-amine)(24mg、0.127mmol)、チオフェン−2−カルバルデヒド(thiophene-2-carbaldehyde)(20mg、0.178mmol)をとり、酢酸(0.1mL)、オルトジクロロベンゼン(10mL)を加え、180℃で136時間、加熱還流した。室温まで放冷後、ロータリーエバポレーターで溶媒を除去し、メタノールで3回洗浄を行った。次いで、分取薄層クロマトグラフィー(ヘキサン/二硫化炭素=1/2(体積比))で精製し、フラーレン誘導体Bを得た(11.5mg、0.0120mmol)。収率は16%であった。1H NMR、13C NMR、IR、MALDI-TOF-MSの測定結果を以下に示す。 C 60 fullerene (52 mg, 0.0721 mmol), N- (thiophen-2-ylmethyl) butan-1-amine (N- (thiophen-2-ylmethyl) butan-1-amine) 24 mg, 0.127 mmol), thiophene-2-carbaldehyde (20 mg, 0.178 mmol) was taken, acetic acid (0.1 mL) and orthodichlorobenzene (10 mL) were added and heated at 180 ° C. for 136 hours. Refluxed. After cooling to room temperature, the solvent was removed with a rotary evaporator and washed with methanol three times. Subsequently, purification was performed by preparative thin layer chromatography (hexane / carbon disulfide = 1/2 (volume ratio)) to obtain fullerene derivative B (11.5 mg, 0.0120 mmol). The yield was 16%. The measurement results of 1 H NMR, 13 C NMR, IR, and MALDI-TOF-MS are shown below.

1H NMR (500MHz, ppm, CDCl3, J = Hz)
δ 0.87(3H, t, J=7.5Hz), 1.22(2H, sex, J=7.5Hz), 1.61(2H, q, J=8.0Hz), 3.24(2H, t, J=8.0Hz), 5.81(2H, s), 6.99(2H, s), 7.32-7.38(4H, m)
13C NMR(125MHz, CDCl3)
δ 14.16, 21.00, 24.43, 48.83, 74.30, 127.89, 135.14, 139.13, 139.57, 141.17, 141.57, 141.62, 141.66, 141.71, 141.80, 142.22, 142.28, 143.93, 144.32, 144.75, 144.86, 144.97, 145.26, 145.32, 145.51, 145.65, 145.72, 145.82, 145.96, 146.31, 146.95;
IR (KBr, cm-1)
2952, 2925, 2864, 2808, 2677, 2312, 1512, 1462, 1430, 1301, 1234, 1181, 698, 526;
MALDI-TOF-MS (matrix: SA) found 983.0800 ( C74H17NS2, exact mass:983.0802).
1 H NMR (500MHz, ppm, CDCl 3 , J = Hz)
δ 0.87 (3H, t, J = 7.5Hz), 1.22 (2H, sex, J = 7.5Hz), 1.61 (2H, q, J = 8.0Hz), 3.24 (2H, t, J = 8.0Hz), 5.81 (2H, s), 6.99 (2H, s), 7.32-7.38 (4H, m)
13 C NMR (125 MHz, CDCl 3 )
δ 14.16, 21.00, 24.43, 48.83, 74.30, 127.89, 135.14, 139.13, 139.57, 141.17, 141.57, 141.62, 141.66, 141.71, 141.80, 142.22, 142.28, 143.93, 144.32, 144.75, 144.86, 144.97, 145.26, 145.32, 14 , 145.65, 145.72, 145.82, 145.96, 146.31, 146.95;
IR (KBr, cm -1 )
2952, 2925, 2864, 2808, 2677, 2312, 1512, 1462, 1430, 1301, 1234, 1181, 698, 526;
MALDI-TOF-MS (matrix: SA) found 983.0800 (C 74 H 17 NS 2 , exact mass: 983.0802).

[実施例3]
フラーレン誘導体C(シス−N−メトキシエトキシエチル−2,5−(ジフェニル)フレロピロリジン)の合成
下記式で表されるフラーレン誘導体Cを下記スキームに従って合成した。
[Example 3]
Synthesis of fullerene derivative C (cis-N-methoxyethoxyethyl-2,5- (diphenyl) fulleropyrrolidine) Fullerene derivative C represented by the following formula was synthesized according to the following scheme.

Figure 2015013844
Figure 2015013844

Figure 2015013844
Figure 2015013844

ジムロートコンデンサーを装着した2口フラスコ(100mL)にC60フラーレン(133mg、0.21mmol)、N−ベンジル−2−(2−メトキシエトキシ)エタンアミン(N-benzyl-2-(2-methoxyethoxy)ethanamine)(133mg、0.633mmol)、ベンズアルデヒド(benzaldehyde)(72mg、0.678mmol)をとり、オルトジクロロベンゼン(35mL)と酢酸(0.5mL)を加え、180℃で72時間加熱還流した。室温まで放冷後、ロータリーエバポレーターで溶媒を除去し、メタノールで3回洗浄した後、シリカゲルフラッシュカラムクロマトグラフィー(二硫化炭素のみ、トルエン/酢酸エチル=1/1(体積比))、分取薄層クロマトグラフィー(トルエン/酢酸エチル=10/1(体積比))、(二硫化炭素/ジクロロエタン=1/1(体積比))で精製して褐色粉末状のフラーレン誘導体Cを45mg(0.0437mmol)得た。収率は21%であった。1H NMR、13C NMR、IR、MALDI-TOF-MSの測定結果を以下に示す。 C 60 fullerene (133 mg, 0.21 mmol), N-benzyl-2- (2-methoxyethoxy) ethanamine (100 mL) equipped with a Dimroth condenser 133 mg, 0.633 mmol) and benzaldehyde (72 mg, 0.678 mmol) were taken, orthodichlorobenzene (35 mL) and acetic acid (0.5 mL) were added, and the mixture was heated to reflux at 180 ° C. for 72 hours. After cooling to room temperature, the solvent is removed with a rotary evaporator, and after washing with methanol three times, silica gel flash column chromatography (carbon disulfide only, toluene / ethyl acetate = 1/1 (volume ratio)), preparative thin Purification by layer chromatography (toluene / ethyl acetate = 10/1 (volume ratio)), (carbon disulfide / dichloroethane = 1/1 (volume ratio)) and 45 mg (0.0437 mmol) of fullerene derivative C in the form of brown powder Obtained. The yield was 21%. The measurement results of 1 H NMR, 13 C NMR, IR, and MALDI-TOF-MS are shown below.

1H NMR (500 MHz, ppm, CDCl3) δ 3.37 (2H, t, J = 5.7Hz, 5.7Hz), 3.41 (3H, s), 3.48-3.50 (2H, m), 3.52-3.53 (2H, m), 3.70 (2H, t, J = 5.7Hz, 5.7Hz), 5.81 (2H, s), 7.32-7.35 (4H, m), 7.47 (2H, t, J = 6.9Hz, 6.9Hz), 7.64 (2H, d, J = 6.9Hz), 8.20 (2H, d, J = 8.0Hz).
13C NMR (125 MHz, ppm, CDCl3) δ 46.80, 58.88, 67.68, 70.11, 71.97, 74.91, 79.48, 128.13, 128.78, 129.21, 130.23, 136.51, 136.82, 139.12, 141.26, 141.75, 141.81, 141.97, 142.30, 142.40, 144.87, 144.99, 145.63, 145.89, 145.98, 147.08, 153.65, 154.01.
IR (KBr, cm-1) 2917.13, 2879.61, 1455.70, 1260.19, 1186.07, 114.99, 1118.17, 1104.91, 1077.08, 1027.82, 737.13, 698.42, 526.91.
MALDI-TOF-MS (matrix: SA) found 1017.1726 (calcd for C79H23NO2, exact mass: 1017.1729).
1 H NMR (500 MHz, ppm, CDCl 3 ) δ 3.37 (2H, t, J = 5.7Hz, 5.7Hz), 3.41 (3H, s), 3.48-3.50 (2H, m), 3.52-3.53 (2H, m), 3.70 (2H, t, J = 5.7Hz, 5.7Hz), 5.81 (2H, s), 7.32-7.35 (4H, m), 7.47 (2H, t, J = 6.9Hz, 6.9Hz), 7.64 (2H, d, J = 6.9Hz), 8.20 (2H, d, J = 8.0Hz).
13 C NMR (125 MHz, ppm, CDCl 3 ) δ 46.80, 58.88, 67.68, 70.11, 71.97, 74.91, 79.48, 128.13, 128.78, 129.21, 130.23, 136.51, 136.82, 139.12, 141.26, 141.75, 141.81, 141.97, 142.30 , 142.40, 144.87, 144.99, 145.63, 145.89, 145.98, 147.08, 153.65, 154.01.
IR (KBr, cm -1 ) 2917.13, 2879.61, 1455.70, 1260.19, 1186.07, 114.99, 1118.17, 1104.91, 1077.08, 1027.82, 737.13, 698.42, 526.91.
MALDI-TOF-MS (matrix: SA) found 1017.1726 (calcd for C 79 H 23 NO 2 , exact mass: 1017.1729).

[実施例4]
フラーレン誘導体D(トランス−N−メトキシエトキシエチルー2,5−(ジフェニル)フレロピロリジン)の合成
下記式で表されるフラーレン誘導体Dを上記実施例3と同様のスキームに従って合成した。
[Example 4]
Synthesis of Fullerene Derivative D (Trans-N-methoxyethoxyethyl-2,5- (diphenyl) fulleropyrrolidine) Fullerene derivative D represented by the following formula was synthesized according to the same scheme as in Example 3 above.

Figure 2015013844
Figure 2015013844

ジムロートコンデンサーを装着した2口フラスコ(100mL)にC60フラーレン(204mg、0.28mmol)、N−ベンジル−2−(2−メトキシエトキシ)エタンアミン(N-benzyl-2-(2-methoxyethoxy)ethanamine)(178mg、0.85mmol)、ベンズアルデヒド(benzaldehyde)(93mg、0.88mmol)をとり、オルトジクロロベンゼン(o-dichlorobenzene)(40mL)と酢酸(0.5mL)を加え、180℃で5時間加熱還流した。室温まで放冷後、ロータリーエバポレーターで溶媒を除去し、メタノールで3回洗浄した後、シリカゲルフラッシュカラムクロマトグラフィー(二硫化炭素のみ、トルエン/酢酸エチル=1/1(体積比))、分取薄層クロマトグラフィー(トルエン/酢酸エチル=10/1(体積比))、(二硫化炭素/ジクロロエタン=1/1(体積比))で精製して褐色粉末状のフラーレン誘導体Dを54mg(0.0529mmol)得た。収率は19%であった。1H NMR、13C NMR、IR、MALDI-TOF-MSの測定結果を以下に示す。 C 60 fullerene (204 mg, 0.28 mmol), N-benzyl-2- (2-methoxyethoxy) ethanamine (N-benzyl-2- (2-methoxyethoxy) ethanamine) in a two-necked flask (100 mL) equipped with a Dimroth condenser 178 mg, 0.85 mmol) and benzaldehyde (93 mg, 0.88 mmol) were taken, ortho-dichlorobenzene (40 mL) and acetic acid (0.5 mL) were added, and the mixture was heated to reflux at 180 ° C. for 5 hours. After cooling to room temperature, the solvent is removed with a rotary evaporator, and after washing with methanol three times, silica gel flash column chromatography (carbon disulfide only, toluene / ethyl acetate = 1/1 (volume ratio)), preparative thin Purified by layer chromatography (toluene / ethyl acetate = 10/1 (volume ratio)), (carbon disulfide / dichloroethane = 1/1 (volume ratio)) to give 54 mg (0.0529 mmol) of fullerene derivative D in the form of brown powder Obtained. The yield was 19%. The measurement results of 1 H NMR, 13 C NMR, IR, and MALDI-TOF-MS are shown below.

1H NMR (400 MHz, ppm, CDCl3) δ 2.91-2.94 (1H, m), 3.21-3.24 (1H, m), 3.40 (3H, s), 3.58-3.60 (2H, m), 3.66-3.68 (2H, m), 3.89 (2H, t, J = 6.8Hz), 6.38 (2H, s), 7.35 (2H, t, J = 7.8Hz), 7.46 (4H, t, J = 7.8Hz), 7.95 (4H, d, J = 6.8Hz).
13C NMR (125 MHz, ppm, CDCl3) δ 45.55, 59.09, 70.34, 70.50, 72.05, 74.49, 77.88, 128.35, 128.67, 130.17, 135.64, 136.54, 138.69, 139.45, 139.88, 141.53, 141.57, 141.84, 141.94, 141.97, 142.36, 142.50, 142.98, 144.39, 144.41, 144.97, 145.08, 145.16, 145.32, 145.42, 145.82, 145.87, 145.97, 146.06, 146.12, 147.24, 153.89, 155.85.
IR (KBr, cm-1) 2851.00, 1452.66, 1428.57, 1187.70, 1106.13, 1027.75, 745.90, 709.54, 700.99, 526.93.
MALDI-TOF-MS (matrix: SA) found 1017.1719 (calcd for C79H23NO2, exact mass: 1017.1729).
1 H NMR (400 MHz, ppm, CDCl 3 ) δ 2.91-2.94 (1H, m), 3.21-3.24 (1H, m), 3.40 (3H, s), 3.58-3.60 (2H, m), 3.66-3.68 (2H, m), 3.89 (2H, t, J = 6.8Hz), 6.38 (2H, s), 7.35 (2H, t, J = 7.8Hz), 7.46 (4H, t, J = 7.8Hz), 7.95 (4H, d, J = 6.8Hz).
13 C NMR (125 MHz, ppm, CDCl 3 ) δ 45.55, 59.09, 70.34, 70.50, 72.05, 74.49, 77.88, 128.35, 128.67, 130.17, 135.64, 136.54, 138.69, 139.45, 139.88, 141.53, 141.57, 141.84, 141.94 , 141.97, 142.36, 142.50, 142.98, 144.39, 144.41, 144.97, 145.08, 145.16, 145.32, 145.42, 145.82, 145.87, 145.97, 146.06, 146.12, 147.24, 153.89, 155.85.
IR (KBr, cm -1 ) 2851.00, 1452.66, 1428.57, 1187.70, 1106.13, 1027.75, 745.90, 709.54, 700.99, 526.93.
MALDI-TOF-MS (matrix: SA) found 1017.1719 (calcd for C 79 H 23 NO 2 , exact mass: 1017.1729).

実施例5(有機薄膜太陽電池の作製及び評価)
レジオレギュラーポリ(3−ヘキシルチオフェン)(アルドリッチ社製、ロット番号:08510JJ)を1重量%の濃度でクロロベンゼンに溶解させた。得られた液に、フラーレン誘導体Aをレジオレギュラーポリ(3−ヘキシルチオフェン)の重量に対して等倍重量加えた。得られた液を、孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液を作製した。
レジオレギュラーポリ(3−ヘキシルチオフェン)は電子供与性化合物として作用し、フラーレン誘導体Aは電子受容性化合物として作用する。
Example 5 (Production and Evaluation of Organic Thin Film Solar Cell)
Regioregular poly (3-hexylthiophene) (manufactured by Aldrich, lot number: 08510JJ) was dissolved in chlorobenzene at a concentration of 1% by weight. To the resulting liquid, fullerene derivative A was added at an equal weight to the weight of regioregular poly (3-hexylthiophene). The obtained liquid was filtered through a Teflon (registered trademark) filter having a pore diameter of 1.0 μm to prepare a coating solution.
Regioregular poly (3-hexylthiophene) acts as an electron donating compound, and fullerene derivative A acts as an electron accepting compound.

スパッタ法により150nmの厚さでITO膜を付けたガラス基板を、紫外線−オゾン洗浄装置を用いてオゾンUV処理して表面処理を行った。次に、前記塗布溶液をスピンコート法によりITO膜が形成された基板に塗布し、有機薄膜太陽電池の活性層を得た。活性層の厚さは、約100nmであった。その後、窒素ガス雰囲気下、130℃の条件で10分間ベークを行った。その後、真空蒸着機によりフッ化リチウムを4nmの厚さで蒸着し、次いでAlを100nmの厚さで蒸着した。蒸着のときの真空度は、すべて1〜9×10-3Paであった。また、得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池の特性(光電変換効率、短絡電流密度(Jsc)、開放電圧(Voc)、及びフィルファクター(FF))は、ソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定して求めた。結果を表1に示す。 A glass substrate on which an ITO film having a thickness of 150 nm was formed by a sputtering method was subjected to surface treatment by ozone UV treatment using an ultraviolet-ozone cleaning apparatus. Next, the said coating solution was apply | coated to the board | substrate with which the ITO film | membrane was formed with the spin coat method, and the active layer of the organic thin film solar cell was obtained. The thickness of the active layer was about 100 nm. Thereafter, baking was performed for 10 minutes at 130 ° C. in a nitrogen gas atmosphere. Then, lithium fluoride was vapor-deposited with a thickness of 4 nm by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. Moreover, the shape of the obtained organic thin film solar cell was a square of 2 mm × 2 mm. The characteristics (photoelectric conversion efficiency, short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF)) of the obtained organic thin-film solar cell are solar simulators (trade name: OTENTO-SUNII: AM1 manufactured by Spectrometer Co. A constant light was irradiated using a .5G filter and an irradiance of 100 mW / cm 2 ), and the generated current and voltage were measured. The results are shown in Table 1.

実施例6(有機薄膜太陽電池の作製及び評価)
フラーレン誘導体Aの代わりにフラーレン誘導体Bを用いた以外は、実施例5と同様の方法で有機薄膜太陽電池を作製し、有機薄膜太陽電池の特性を求めた。結果を表1に示す。
Example 6 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 5 except that the fullerene derivative B was used instead of the fullerene derivative A, and the characteristics of the organic thin film solar cell were determined. The results are shown in Table 1.

実施例7(有機薄膜太陽電池の作製及び評価)
フラーレン誘導体Aの代わりにフラーレン誘導体Cを用いた以外は、実施例5と同様の方法で有機薄膜太陽電池を作製し、有機薄膜太陽電池の特性を求めた。結果を表1に示す。
Example 7 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 5 except that the fullerene derivative C was used instead of the fullerene derivative A, and the characteristics of the organic thin film solar cell were determined. The results are shown in Table 1.

実施例8(有機薄膜太陽電池の作製及び評価)
フラーレン誘導体Aの代わりにフラーレン誘導体Dを用いた以外は、実施例5と同様の方法で有機薄膜太陽電池を作製し、有機薄膜太陽電池の特性を求めた。結果を表1に示す。
Example 8 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 5 except that the fullerene derivative D was used in place of the fullerene derivative A, and the characteristics of the organic thin film solar cell were determined. The results are shown in Table 1.

比較例1(有機薄膜太陽電池の作製及び評価)
フラーレン誘導体Aの代わりに[60]−PCBMを用いた以外は、実施例5と同様の方法で有機薄膜太陽電池を作製し、有機薄膜太陽電池の特性を求めた。結果を表1に示す。なお、[60]−PCBMは、商品名E100(フロンティアカーボン社製、ロット番号:9B0024−A)を用いた。
Comparative Example 1 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 5 except that [60] -PCBM was used instead of the fullerene derivative A, and the characteristics of the organic thin film solar cell were determined. The results are shown in Table 1. [60] -PCBM used the trade name E100 (manufactured by Frontier Carbon, lot number: 9B0024-A).

Figure 2015013844
Figure 2015013844

Claims (6)

下記式(1)で表されるフラーレン誘導体。
Figure 2015013844
(式(1)中、A環はフラーレン骨格を表す。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、1個以上の水素原子がハロゲン原子で置換されていてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよい1価の複素環基又は下記式(2)で表される基を表す。R及びRは、それぞれ独立に、置換基を有していてもよいアリール基;置換基を有していてもよいアリールアルキル基;置換基を有してもよく、2−チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基及びイソキノリル基からなる群から選択される1価の複素環基;又は下記式(2)で表される基を表す。)
Figure 2015013844
(式(2)中、mは1〜6の整数を表す。qは1〜4の整数を表す。pは0〜5の整数を表す。Xは、メチル基又は置換基を有していてもよいアリール基を表す。mが複数個ある場合、複数個あるmは異なっていてもよい。)
A fullerene derivative represented by the following formula (1).
Figure 2015013844
(In Formula (1), A ring represents a fullerene skeleton. R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or an alkyl group in which one or more hydrogen atoms may be substituted with a halogen atom. , An aryl group which may have a substituent, an arylalkyl group which may have a substituent, a monovalent heterocyclic group which may have a substituent, or the following formula (2): R 3 and R 4 each independently represents an aryl group which may have a substituent; an arylalkyl group which may have a substituent; A monovalent heterocyclic group selected from the group consisting of 2-thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidyl group, quinolyl group and isoquinolyl group; or a group represented by the following formula (2). )
Figure 2015013844
(In Formula (2), m represents an integer of 1 to 6. q represents an integer of 1 to 4. p represents an integer of 0 to 5. X has a methyl group or a substituent. (In the case where there are a plurality of m, a plurality of m may be different.)
前記R1が、前記式(2)で表される基である、請求項1に記載のフラーレン誘導体。 The fullerene derivative according to claim 1, wherein R 1 is a group represented by the formula (2). 請求項1又は2に記載のフラーレン誘導体と電子供与性化合物とを含む組成物。   A composition comprising the fullerene derivative according to claim 1 and an electron donating compound. 前記電子供与性化合物が高分子化合物である、請求項3に記載の組成物。   The composition according to claim 3, wherein the electron donating compound is a polymer compound. 請求項1又は2に記載のフラーレン誘導体を含む層を備える有機光電変換素子。   An organic photoelectric conversion element provided with the layer containing the fullerene derivative of Claim 1 or 2. 請求項3又は4に記載の組成物を含む層を備える有機光電変換素子。   An organic photoelectric conversion element provided with the layer containing the composition of Claim 3 or 4.
JP2013142700A 2013-07-08 2013-07-08 Fullerene derivative Pending JP2015013844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013142700A JP2015013844A (en) 2013-07-08 2013-07-08 Fullerene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013142700A JP2015013844A (en) 2013-07-08 2013-07-08 Fullerene derivative

Publications (1)

Publication Number Publication Date
JP2015013844A true JP2015013844A (en) 2015-01-22

Family

ID=52435876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013142700A Pending JP2015013844A (en) 2013-07-08 2013-07-08 Fullerene derivative

Country Status (1)

Country Link
JP (1) JP2015013844A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006812A1 (en) * 2015-07-03 2017-01-12 昭和電工株式会社 Fullerene derivative and lubricant
WO2017061543A1 (en) * 2015-10-06 2017-04-13 ダイキン工業株式会社 FULLERENE DERIVATIVE AND n-TYPE SEMICONDUCTOR MATERIAL
JP2017206479A (en) * 2016-05-20 2017-11-24 株式会社リコー Organic material and photoelectric conversion element
US12109512B2 (en) * 2017-12-22 2024-10-08 Daikin Industries, Ltd. Purification method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067708A (en) * 2007-09-12 2009-04-02 Tottori Univ Fullerene derivative
JP2009084264A (en) * 2007-09-12 2009-04-23 Sumitomo Chemical Co Ltd Fullerene derivative
JP2009137932A (en) * 2007-11-15 2009-06-25 Sumitomo Chemical Co Ltd Fullerene derivative and organic photoelectric converter using the same
JP2013095683A (en) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd Fullerene derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067708A (en) * 2007-09-12 2009-04-02 Tottori Univ Fullerene derivative
JP2009084264A (en) * 2007-09-12 2009-04-23 Sumitomo Chemical Co Ltd Fullerene derivative
JP2009137932A (en) * 2007-11-15 2009-06-25 Sumitomo Chemical Co Ltd Fullerene derivative and organic photoelectric converter using the same
JP2013095683A (en) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd Fullerene derivative

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
LI, XIANGZI ET AL.: "Synthesis, Characterization, Optical and Electrochemical Properties of Fulleropyrrolidines Containin", CHINESE JOURNAL OF CHEMISTRY, vol. 30, no. 5, JPN6017007169, 2012, pages 1097 - 1101, XP055601606, ISSN: 0003512317, DOI: 10.1002/cjoc.201100444 *
SANDANAYAKA, ATULA S.D. ET AL.: "Photoinduced electron transfer in fullerene triads bearing pyrene and fluorene", CHEMICAL PHYSICS, vol. Vol.325, No.2-3, JPN6017007170, 2006, pages 452 - 460, ISSN: 0003512318 *
TROSHIN, PAVEL A ET AL.: "An efficient [2+3] cycloaddition approach to the synthesis of pyridyl-appended fullerene ligands", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, JPN6017007173, 2005, pages 3064 - 3074, ISSN: 0003512319 *
WILSON, STEPHEN R. ET AL.: "Amino acids as precursors for N-unsubstituted fulleropyrrolidine derivatives", TETRAHEDRON LETTERS, vol. 37, no. 6, JPN6017007174, 1996, pages 775 - 778, XP004030258, ISSN: 0003512320, DOI: 10.1016/0040-4039(95)02295-3 *
吉村研 他: "チオフェン置換フレロピロリジンの有機薄膜太陽電池素子機能", 有機典型元素化学討論会講演要旨集, vol. 38, JPN6017007176, 2011, pages 413 - 416, ISSN: 0003512322 *
早瀬修一 他: "フレロピロリジン誘導体の軌道エネルギーに対する置換基効果", 情報化学討論会講演要旨集, vol. 34, JPN6017007175, 2011, pages 19, ISSN: 0003512321 *
菅原清孝 他: "有機薄膜太陽電池のアクセプター素子となるチオフェン置換基フレロピロリジン誘導体", 日本化学会講演予稿集, vol. 93, no. 2, JPN6017007164, 8 March 2013 (2013-03-08), pages 263 - 2, ISSN: 0003512315 *
菅原清高 他: "有機薄膜太陽電池のアクセプターとなるアリール置換基フレロピリミジン誘導体の合成", 有機電子移動化学討論会講演要旨集, vol. 37, JPN6017007167, 20 June 2013 (2013-06-20), pages 134 - 135, ISSN: 0003512316 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006812A1 (en) * 2015-07-03 2017-01-12 昭和電工株式会社 Fullerene derivative and lubricant
JPWO2017006812A1 (en) * 2015-07-03 2017-07-06 昭和電工株式会社 Fullerene derivatives and lubricants
CN107709296A (en) * 2015-07-03 2018-02-16 昭和电工株式会社 Fullerene derivate and lubricant
US10336764B2 (en) 2015-07-03 2019-07-02 Showa Denko K.K. Fullerene derivative and lubricant
WO2017061543A1 (en) * 2015-10-06 2017-04-13 ダイキン工業株式会社 FULLERENE DERIVATIVE AND n-TYPE SEMICONDUCTOR MATERIAL
JPWO2017061543A1 (en) * 2015-10-06 2018-07-12 ダイキン工業株式会社 Fullerene derivative and n-type semiconductor material
JP2020109093A (en) * 2015-10-06 2020-07-16 ダイキン工業株式会社 Fullerene derivative and n-type semiconductor material
US10894770B2 (en) * 2015-10-06 2021-01-19 Daikin Industries, Ltd. Fullerene derivative and n-type semiconductor material
JP2017206479A (en) * 2016-05-20 2017-11-24 株式会社リコー Organic material and photoelectric conversion element
US12109512B2 (en) * 2017-12-22 2024-10-08 Daikin Industries, Ltd. Purification method

Similar Documents

Publication Publication Date Title
JP5323393B2 (en) Fullerene derivatives
JP5639753B2 (en) Fullerene derivatives
JP5682108B2 (en) Fullerene derivatives
JP5425438B2 (en) Fullerene derivatives
JP5906803B2 (en) Organic photoelectric conversion element material and method for producing organic photoelectric conversion element
JP6687025B2 (en) Photoelectric conversion element
JP2011181719A (en) Fullerene derivative and method of manufacturing the same
US8673958B2 (en) Fullerene derivatives
JP6711272B2 (en) Polymer compound and organic semiconductor device using the same
JP2015013844A (en) Fullerene derivative
JP2009067708A (en) Fullerene derivative
JP5366434B2 (en) Fullerene derivative and organic photoelectric conversion device using the same
JP5534714B2 (en) Fullerene derivatives
JP2013095683A (en) Fullerene derivative
KR101678580B1 (en) Organic semiconducting compounds, manufacturing method thereof, and organic electronic device and organic photovoltaic device containing the same
JP5503184B2 (en) Fullerene derivative, composition and organic photoelectric conversion device
JP2015105233A (en) Fullerene derivative
JP5481911B2 (en) Fullerene derivatives
WO2011132573A1 (en) Fullerene derivative and method for producing same
JP6101007B2 (en) Photoelectric conversion element
JP2014028768A (en) Fullerene derivative, organic semiconductor film and organic thin film solar cell using the same, and fullerene derivative production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912